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ABSTRACT

Fairness in human and algorithmic decision-making is crucial in areas such as
criminal justice, education, and social welfare. Recently, counterfactual fairness has
drawn increasing research interest, suggesting that decision-making for individuals
should remain the same when intervening with different values on the protected
attributes. Nevertheless, the question of "which attributes and individuals should be
protected" is rarely discussed in the existing counterfactual fairness literature. For
example, when considering leg disability as a protected attribute, the algorithms
should not treat individuals with leg disabilities differently in college admissions,
but one may naturally take into this factor for the purpose of selecting runner
athletes. In other words, when and how to enforce fairness is expected to depend
on the causal relation between the protected attribute and the outcome of interest.
Formally, this paper proposes principal counterfactual fairness using the concept
of principal stratification from the causal inference literature, focusing on whether
an algorithm is counterfactually fair for individuals whose protected attribute has
no individual causal effect on the outcome of interest. To examine whether an
algorithm satisfies principal counterfactual fairness, we derive the statistical bounds,
and propose a post-processing approach to achieving principal counterfactual
fairness with minimal individual decision changes. Experiments are conducted
using synthetic and real-world datasets to verify the effectiveness of our methods.

1 INTRODUCTION

Addressing the fairness of automated algorithms is critical to making safe decisions in areas such as
criminal justice (Brennan et al., 2009; Dieterich et al., 2016), education (Reardon and Owens, 2014),
and social welfare (Chouldechova et al., 2018). To achieve fair machine learning, many association-
based fairness notions have been proposed to constrain the statistical independence between protected
attributes and decisions, e.g., statistical parity (Dwork et al., 2012), equalized odds (Hardt et al.,
2016), and predictive parity (Chouldechova, 2017). In addition, the algorithmic fairness can also be
approached from a causal perspective (Kusner et al., 2017; Zhang et al., 2017a;b; 2018a;b; Zhang
and Bareinboim, 2018; Nabi and Shpitser, 2018; Wu et al., 2019a;b; Chiappa, 2019; Imai and Jiang,
2020; Mishler et al., 2021; Zuo et al., 2022). Among them, counterfactual fairness (Kusner et al.,
2017) has garnered considerable attention recently. This criterion demands that any alterations made
to the values of protected attributes do not result in changes to individual decision-making.

Nevertheless, as Chouldechova and Roth (2020) pointed out, the question of "which attributes and
individuals should be protected" is rarely discussed in the existing counterfactual fairness literature.
Should counterfactual fairness hold for all sensitive attributes on all individuals? For example, when
considering leg disability as a protected attribute, it is reasonable to require that the algorithms should
not treat individuals with disabilities differently in college admissions, but should the algorithms
also be required to make the same decisions for individuals with disabilities when selecting runner
athletes? In such cases, it is clear that it is not appropriate to select individuals with disabilities as
running athletes. But what if the sensitive attribute is gender or race instead? How to reflect the
differences between disability and gender as sensitive attributes?

To tackle the above issues, we summarize relevant studies in Table 1, which can be broadly divided
into two branches. On one hand, instead of requiring fairness to hold on all individuals as in
demographic parity (Darlington, 1971), equalized odds (Hardt et al., 2016) constrains the examination
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Table 1: A summary of the proposed principal counterfactual fairness and related concepts.

Fairness Definition Formulation (A: protected attribute; D: decision; Y : outcome; X: covariate)

Demographic Parity (Darlington, 1971) A ⊥⊥ D
Equalized Odds (Hardt et al., 2016) A ⊥⊥ D | Y
Equality of Opportunity (Hardt et al., 2016) A ⊥⊥ D | Y = 1

Counterfactual Equalized Odds (Mishler et al., 2021) A ⊥⊥ D | Y (D = 0) = 1
Principal Fairness (Imai and Jiang, 2020) A ⊥⊥ D | (Y (D = 0), Y (D = 1))

Counterfactual Parity (Mitchell et al., 2021) P(D(0) = 1) = P(D(1) = 1)
Conditional Counterfactual Fairness (Mitchell et al., 2021) P(D(0) = 1) = P(D(1) = 1) | X
Principal Counterfactual Parity (ours) P(D(0) = 1) = P(D(1) = 1) | Y (A = 0) = Y (A = 1)
Principal Conditional Counterfactual Fairness (ours) P(D(0) = 1) = P(D(1) = 1) | Y (A = 0) = Y (A = 1), X
Principal Counterfactual Equalized Odds (ours) P(D(0) = 1) = P(D(1) = 1) | Y (A = 0) = Y (A = 1) = y,X

Counterfactual Fairness (Kusner et al., 2017) Di(Ai = 0) = Di(Ai = 1)
Path-Specific Counterfactual Fairness (Chiappa, 2019) Di(Ai = 0) = Di(Ai = 1,Mi(Ai) = Mi(0))
Principal Counterfactual Fairness (ours) Di(Ai = 0) = Di(Ai = 1) holds for Yi(Ai = 0) = Yi(Ai = 1)

of demographic parity to subgroups with the same observed outcome. By considering the effect of
decision-making on the observed outcomes, counterfactual equalized odds (Mishler et al., 2021)
generalizes the above concepts to make fair decisions on individuals with the same value on the
potential outcome under control. Principle fairness (Imai and Jiang, 2020) further uses the concept of
principal stratification from the causal inference literature to consider the joint potential outcomes
of the decision on outcome. However, despite considering specific subgroups defined from a
counterfactual view, these fairness notions still use the statistical independence of sensitive attributes
and decision-making on that subgroup, which is not sufficient to guarantee individual counterfactual
fairness (Kusner et al., 2017; Mitchell et al., 2021). On the other hand, path-specific counterfactual
fairness (Chiappa, 2019) promotes the notion of counterfactual fairness to restricted on unfair paths,
rather than considering the total effect of sensitive attributes on decision-making. Despite partially
answering the question of "which attributes should be protected", similar to counterfactual fairness,
path-specific counterfactual fairness requires fairness on all individuals. This motivates us to rethink
counterfactual fairness to better answer that "which attributes and individuals should be protected".

In this paper, instead of forcing decisions to remain the same for all individuals when the protected
attribute changes as in counterfactual fairness, we propose principal counterfactual fairness using the
concept of principal stratification from the causal inference literature (Frangakis and Rubin, 2002;
Pearl, 2011), focusing on whether the counterfactual fairness holds for individuals whose protected
attribute has no individual causal effect on the outcome of interest. For the aforementioned example,
since leg disability (as a sensitive attribute) may affect athlete performance (as an outcome), we only
require that decisions remain similar for those individuals with disabilities that do not affect athlete
performance. In contrast, since disability and gender (as sensitive attributes) do not have a causal
effect on the exam pass (as an outcome), we might expect decision-making for all individuals to satisfy
counterfactual fairness. In summary, the proposed principal counterfactual fairness further considers
the effect of protected attributes on outcomes of interest from a counterfactual perspective, and we
show the principal counterfactual fairness would degenerate to standard counterfactual fairness when
the protected attributes have no individual causal effect on outcomes for all individuals.

To examine whether an algorithm satisfies principal counterfactual fairness, we first derive the
necessary conditions1 for an algorithm to satisfy principal counterfactual fairness based on statistical
bounds. Then we propose an optimization-based evaluation method to test whether an algorithm
satisfies principal counterfactual fairness. Specifically, the algorithm does not satisfy the principal
counterfactual fairness if the feasible region under particular constraints is the empty set, or if there
exists a principal stratum with the optimized maximum probability value less than zero. We further
propose a principled post-processing approach to achieve principal counterfactual fairness with
minimal individual decision changes, and theoretically prove the optimality of the post-processing
approach using doubly robust estimation. We conduct extensive experiments on synthetic and
real-world datasets to verify the effectiveness of the proposed algorithm.

The main contributions of this paper are:

1Due to partial identifiability, it is difficult to find necessary and sufficient conditions for principal counter-
factual fairness, similar problems also exist in the counterfactual fairness literature (Kusner et al., 2017).
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• We propose a novel fairness notion using the concept of principal stratification, called
principal counterfactual fairness, which requires the counterfactual fairness to hold only
when the protected attribute has no individual causal effect on the outcome of interest.

• We derive the necessary conditions for an algorithm to satisfy principal counterfactual
fairness based on statistical bounds, and propose an optimization-based evaluation method
to test whether an algorithm satisfies principal counterfactual fairness.

• We further propose a principled post-processing approach to achieving principal counterfac-
tual fairness with minimal individual decision changes, and theoretically prove the optimality
of the post-processing approach using doubly robust estimation.

• We conduct experiments on both synthetic and real-world datasets to verify the effectiveness
of the proposed optimization-based evaluation and post-processing approach.

2 PRELIMINARIES

We first formalize the issue of fairness in decision making, as well as summarize the related statistical
and counterfactual fairness notions that have been widely studied. Suppose a simple random sample
of n units from a super population P, for each unit i, the covariate (e.g., age or income) and the binary
protected attribute (e.g., gender or disability) are denoted as Xi ∈ X and Ai ∈ {0, 1}, respectively.
Let Yi ∈ Y = {0, 1} be the binary outcome variable of interest and Di ∈ {0, 1} be the binary
decision variable. For the simplicity of exposition, we assume the protected attribute, decision
variable, and outcome variable are all binary, and covariates are discrete, but these variables can all
be extended to other variable types in our work. To study the counterfactual fairness problem, we
adopt the potential outcome framework (Rubin, 1974; Neyman, 1990). Specifically, let Yi(0) and
Yi(1) be the outcome of the unit i had this unit have the protected attribute Ai = 0 and Ai = 1,
respectively. Since each unit can only have one particular value of protected attribute, we always
observe the corresponding outcome be either Yi(0) or Yi(1), but not both. This is also known as the
fundamental problem of causal inference (Holland, 1986; Morgan and Winship, 2015). Formally, the
observed outcome for unit i is Yi = (1−Ai)Yi(0) +AiYi(1). In other words, the observed outcome
is the potential outcome corresponding to the protected attribute value, which is also known as the
consistency assumption in the causal inference literature (Hernán and Robins, 2020).

Based on the observed protected attributes, covariates, and outcomes of interest, i.e.,
{(Ai, Xi, Yi)}Ni=1, a machine learning algorithm D(·) for decision-making is obtained. Specifi-
cally, let Di(0) and Di(1) be the potential algorithmic decisions for the unit i had this unit have
the protected attribute Ai = 0 and Ai = 1, respectively. By the consistency assumption again,
the algorithmic decision for individual i in the factual world would be Di. In order for algorithms
to make fair decisions, as shown in Table 1, many statistical fairness notions have been proposed,
such as demographic parity (Darlington, 1971), i.e., A ⊥⊥ D, equalized odds (Hardt et al., 2016),
i.e., A ⊥⊥ D | Y , and equality of opportunity (Hardt et al., 2016), i.e., A ⊥⊥ D | Y = 1. By
noting the causal effect of decision D on the observed outcomes Y , counterfactual equalized odds
generalizes the above concepts to make fair decisions on individuals with counterfactual advantaged
outcomes (Mishler et al., 2021), i.e., A ⊥⊥ D | Y (D = 0) = 1. Principle fairness further uses the
concept of principal stratification from the causal inference literature to consider the joint potential
outcome of decisions on outcomes (Imai and Jiang, 2020), i.e., A ⊥⊥ D | (Y (D = 0), Y (D = 1)).
Nevertheless, despite considering a specific counterfactual stratum, these fairness notions still use the
statistical independence of sensitive attributes and decisions on that stratum, which is not sufficient
to guarantee causal effect-based fairness notions (Kusner et al., 2017; Mitchell et al., 2021).

Instead of considering the statistical (conditional) independence between the protected attribute A
and decision D, causality-based fairness considers the causal effect of the protected attribute A on
decision D. Among them, counterfactual parity in Definition 1 requires that there is no average
causal effect of the protected attribute A on decision D over the population (Mitchell et al., 2021).

Definition 1 (Counterfactual parity (Mitchell et al., 2021)). An algorithm D for decision-making
satisfies counterfactual parity, if under any value a and a′ attainable by A,

P(D(a) = 1) = P(D(a′) = 1).

3



Under review as a conference paper at ICLR 2024

Table 2: The principal counterfactual fairness considers units in the principal fairness strata (in red),
whereas counterfactual fairness considers all units including in the auxiliary fairness strata (in blue).

Observed data (A = 0, Y = 0) (A = 0, Y = 1) (A = 1, Y = 0) (A = 1, Y = 1)

Principal fairness (Y (0) = 0, Y (1) = 0) (Y (0) = 1, Y (1) = 1) (Y (0) = 0, Y (1) = 0) (Y (0) = 1, Y (1) = 1)
Auxiliary fairness (Y (0) = 0, Y (1) = 1) (Y (0) = 1, Y (1) = 0) (Y (0) = 1, Y (1) = 0) (Y (0) = 0, Y (1) = 1)

By incorporating the covariate X , conditional counterfactual fairness in Definition 2 requires that
there is no conditional average causal effect of the protected attribute A on the decision D over
subpopulations under context X = x for all x ∈ X .

Definition 2 (Conditional counterfactual fairness (Mitchell et al., 2021)). An algorithm D for
decision-making is conditional counterfactually fair, if under any context X = x and any value a
and a′ attainable by A,

P(D(a) = 1 | X = x) = P(D(a′) = 1 | X = x).

Different from counterfactual parity in Definition 1 which constrains on the total population and
conditional counterfactual fairness in Definition 2 which constrains on the subpopulations determined
by the covariates, individual counterfactual fairness in Definition 3 further requires that there is no
individual causal effect of the protected attribute A on the decision D over all the individuals.

Definition 3 (Counterfactual fairness (Kusner et al., 2017)). An algorithm D for decision-making is
individual counterfactually fair2, if under any context X = x and any value a and a′ attainable by A,

P(Di(a) = Di(a
′)) = 1.

Counterfactual fairness states that A should not be a cause of decision D in any individual instance,
with many follow-up studies (Zhang and Bareinboim, 2018; Chiappa, 2019). As in Table 1, one
representative variant is path-specific counterfactual fairness, which requires counterfactual fairness
to hold only on unfair paths (Chiappa, 2019).

Despite partially answering the question of "which attributes should be protected", similar to counter-
factual fairness, path-specific counterfactual fairness also requires fairness on all individuals. This
motivates us to rethink these counterfactual fairness notions to better answer the question of "which
and how to decide the attributes and individuals that should be protected".

3 PRINCIPAL COUNTERFACTUAL FAIRNESS

In this section, we first propose the notions of principal counterfactual fairness using the concept of
principal stratification from the causal inference literature. Ordered from weakest to strongest, we
propose principal counterfactual parity in Definition 4, principal conditional counterfactual fairness
in Definition 5, principal counterfactual equalized odds in Definition 6, and principal conditional
counterfactual fairness in Definition 7, respectively. We also derive the necessary conditions for an
algorithmic decision to satisfy principal counterfactual fairness based on statistical bounds.

Specifically, the principal strata are defined as the joint potential outcome values (Frangakis and
Rubin, 2002), i.e., (Yi(a), Yi(a′)), where a and a′ are the sensitive attribute values attainable by A,
and each principal stratum represents how an individual would be affected by the protected attribute
on the outcome of interest. In the proposed principal counterfactual fairness, we focus on whether the
counterfactual fairness notions hold on individuals whose protected attribute has no individual causal
effect on the outcome of interest, i.e., Yi(a) = Yi(a

′) for all a and a′ attainable by A.

Compared with the previous counterfactual fairness notions, Table 2 shows the difference: the
proposed principal counterfactual fairness notions focus only on those individuals in "principal
fairness" stratum (in red), while previous counterfactual fairness notions focus on individuals in both
"principal fairness" stratum (in red) and "auxiliary fairness" stratum (in blue). Unlike the observed
outcome Yi, however, the potential outcomes, and hence principal strata, are not affected by the

2Counterfactual fairness in Kusner et al. (2017) refers to individual counterfactual fairness with the defi-
nition that P (DA←a(U) = y | X = x,A = a) = P (DA←a′(U) = y | X = x,A = a). This is equivalent to
P(Di(a) = Di(a

′)) = 1 using potential outcomes formulation (Mitchell et al., 2021).
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sensitive attribute value. Moreover, since we only observe one potential outcome for any individual,
principal strata are not directly observable and be distinguished, as shown in Table 2.

In the disabled athlete selection example, the principal strata are defined by the athlete performance
Yi(Ai) under each of the two scenarios—disabled Ai = 1 or not disabled Ai = 0. Then it is fair
to let the algorithmic decision D be unaffected by whether those individuals are disabled A = 1
or not A = 0, because the disability of those individuals has no individual causal effect on the
athlete’s performance, i.e., Yi(0) = Yi(1). The following Definition 4 formally states the principal
counterfactual parity, which requires counterfactual parity to hold on that particular stratum.
Definition 4 (Principal counterfactual parity). An algorithmD for decision-making satisfies principal
counterfactual parity, if under any value a and a′ attainable by A,

P(D(a) = 1 | Y (a) = Y (a′)) = P(D(a′) = 1 | Y (a) = Y (a′)).

By conditional on covariate X , Definition 5 states the principal conditional counterfactual fairness.
Definition 5 (Principal conditional counterfactual fairness). An algorithm D for decision-making
is principal conditional counterfactually fair, if under any context X = x and any value a and a′
attainable by A,

P(D(a) = 1 | Y (a) = Y (a′), X = x) = P(D(a′) = 1 | Y (a) = Y (a′), X = x).

We now describe the potential limitations of using principal conditional counterfactual fairness in
Definition 5. Recall the disabled athlete selection example and let Y denote athlete performance.
Although the protected attribute has no individual causal effect on the outcome for both Y (a) =
Y (a′) = 0 and Y (a) = Y (a′) = 1 individuals. However, since individuals at Y (a) = Y (a′) = 1
have better athlete performance compared with individuals at Y (a) = Y (a′) = 0, it is natural to
allow high probability of being selected as an athlete for individuals at the stratum Y (a) = Y (a′) = 1.
That is, P(D(a) = 1 | Y (a) = Y (a′) = 1) > P(D(a) = 1 | Y (a) = Y (a′) = 0). This motivates us
to further divide stratum (Y (0) = Y (1)) into multiple strata (Y (0) = Y (1) = y) for all y ∈ Y , and
propose the corresponding principal counterfactual equalized odds in Definition 6.
Definition 6 (Principal counterfactual equalized odds). An algorithm D for decision-making satisfies
principal counterfactual equalized odds, if under any context X = x and any value a and a′

attainable by A, for all y ∈ Y ,

P(D(a) = 1 | Y (a) = Y (a′) = y,X = x) = P(D(a′) = 1 | Y (a) = Y (a′) = y,X = x).

For the case of binary variables, it is equivalent to τ0(x) = τ1(x) = 0, where

τy(x) = P(D(1) = 1 | Y (0) = Y (1) = y,X = x)− P(D(0) = 1 | Y (0) = Y (1) = y,X = x),

for y = 0, 1. Denote pay(x) = P(Y = y | A = a,X = x) and qay(x) = P(D = 1 | A = a, Y =
y,X = x), which can be calculated from the observed data. Under the ignorability assumption, the
following lemma provides the sharp bounds on τ0(x) and τ1(x).
Assumption 1 (Ignorability). A ⊥⊥ (Y (1), Y (0), D(1), D(0)) | X .
Lemma 1. Under Assumption 1, the sharp upper and lower bounds on τ0(x) are

Lower(τ0(x)) = max

{
0, 1− (1− q10(x))p10(x)

p10(x)− p01(x)

}
−min

{
1,

q00(x)p00(x)

p10(x)− p01(x)

}
,

Upper(τ0(x)) = min

{
1,

q10(x)p10(x)

p10(x)− p01(x)

}
+min

{
0,

(1− q00(x))p00(x)

p10(x)− p01(x)
− 1

}
.

The sharp upper and lower bounds on τ1(x) are

Lower(τ1(x)) = max

{
0, 1− (1− q11(x))p11(x)

p01(x)− p10(x)

}
−min

{
1,

q01(x)p01(x)

p01(x)− p10(x)

}
,

Upper(τ1(x)) = min

{
1,

q11(x)p11(x)

p01(x)− p10(x)

}
+min

{
0,

(1− q01(x))p01(x)

p01(x)− p10(x)
− 1

}
.

The following Theorem 1 gives the necessary inequality conditions to determine whether the algorithm
satisfies principle counterfactual equalized odds based on statistical bounds in Lemma 1.
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Theorem 1. Under Assumption 1, the principle counterfactual equalized odds in Definition 6 under
stratum Y (0) = Y (1) = 0 is violated if either of the following two inequalities holds:

q00(x)p00(x) + (1− q10(x))p10(x) < p10(x)− p01(x),

q10(x)p10(x) + (1− q00(x))p00(x) < p10(x)− p01(x).

Similarly, the principle counterfactual equalized odds in Definition 6 under stratum Y (0) = Y (1) = 1
is violated if either of the following two inequalities holds:

q01(x)p01(x) + (1− q11(x))p11(x) < p01(x)− p10(x),

q11(x)p11(x) + (1− q01(x))p01(x) < p01(x)− p10(x).

Further, instead focusing on a specific subgroup, as an extension of individual counterfactual fairness
in (Kusner et al., 2017), we define principal counterfactual fairness to achieve strict individual fair.
Definition 7 (Principal counterfactual fairness). An algorithm D for decision-making is principal
counterfactually fair with respect to outcome Y , if under any value a and a′ attainable by A,

P(Di(a) = Di(a
′) | Yi(a) = Yi(a

′)) = 1.

We finally point out that the principal counterfactual fairness would degenerate to counterfactual
fairness when Yi(a) = Yi(a

′) holds on all individuals for any value a and a′ attainable by A.
Corollary 1 (Relation to counterfactual fairness). The principal counterfactual fairness is equivalent
to counterfactual fairness in (Kusner et al., 2017), when the protected attributes have no individual
causal effect on outcomes for all individuals.

4 IMPLEMENTING PRINCIPAL COUNTERFACTUAL FAIRNESS

4.1 OPTIMIZATION-BASED EVALUATION

We started with an optimization-based evaluation method for principal counterfactual fairness in
Definition 7, while other principal counterfactual fairness notions can be evaluated by similar
arguments. Denote wd0,d1,y0,y1

(x) = P(D(0) = d0, D(1) = d1, Y (0) = y0, Y (1) = y1 | X = x),
then principal counterfactual fairness is equivalent to w0,1,0,0(x) = w1,0,0,0(x) = w0,1,1,1(x) =
w1,0,1,1(x) = 0. The proposed optimization constraints for evaluating whether the algorithmic
decisions satisfy the principal counterfactual fairness are given as

w0,1,0,0(x) = w1,0,0,0(x) = w0,1,1,1(x) = w1,0,1,1(x) = 0,

wd0,d1,y0,y1
(x) ≥ 0 for all d0, d1, y0, y1 ∈ {0, 1},∑

a,b
wd0,a,y0,b(x) = P(D(0) = d0, Y (0) = y0 | X = x) for all d0, y0 ∈ {0, 1},∑

a,b
wa,d1,b,y1

(x) = P(D(1) = d1, Y (1) = y1 | X = x) for all d1, y1 ∈ {0, 1},

for all x ∈ X , where the first equation is the equivalent condition of principal counterfactual fairness,
the second equation comes from the positivity of the probabilities, and the last two equations come
from the definition of w(x). Notably, under Assumption 1, the terms on the right-hand side of
the last two equations can be identified and estimated using the observed data (see Section 4.2).
Therefore, with these constraints on w(x) imposed by the above equations set, we can determine that
the algorithmic decision does not satisfy principal counterfactual fairness, if there exists x ∈ X such
that the feasible domain of w(x) satisfying these constraints is the empty set. In practice, we can also
take one of w0,1,0,0(x), w1,0,0,0(x), w0,1,1,1(x), and w1,0,1,1(x), denoted as w̃(x), as the objective
function, and let the remaining three terms equal to zero as the optimization constraints, then solve
the minimum and maximum values of w̃(x), and obtain its value interval by solving this optimization
problem. The algorithm should be considered as a violation of principal counterfactual fairness, when
the minimum value of w̃(x) is greater than 0 or the maximum value of w̃(x) is less than 0.

4.2 ESTIMATION

Let µd,y
a (x) = P(D = d, Y = y|A = a,X = x) and πa(x) = P(A = a | X = x), with µ̂d,y

a (x)
and π̂a(x) be the estimated conditional-mean and propensity, respectively. To estimate the right-hand
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side of the last two equations in the above optimization problem, without loss of generality, one
needs to estimate P(D(a) = d, Y (a) = y | X = x) for a, d, y ∈ {0, 1}. Let P̂ and Ê be the
estimated probability and expectation that can be obtained via regression or subclassification. Then
the outcome regression (OR) estimator is given as P̂OR(D(a) = d, Y (a) = y | X = x) = P̂(D =
d, Y = y|A = a,X = x) = µ̂d,y

a (x). The inverse propensity scoring (IPS) estimator is given
as P̂IPS(D(a) = d, Y (a) = y | X = x) = Ê [I(A = a) · I(D = d, Y = y)/π̂a(X)|X = x] ,

and the doubly robust (DR) estimator is given as P̂DR(D(a) = d, Y (a) = y | X = x) =

Ê
[
µ̂d,y
a (X) + I(A = a) ·

(
I(D = d, Y = y)− µ̂d,y

a (X)
)
/π̂a(X)|X = x

]
.

Theorem 2. Suppose that ||π̂a(x) − πa(x)||2 · ||µ̂d,y
a (x) − µd,y

a (x)||2 = oP(n
−1/2) for all x ∈ X

and a attainable by A, then P̂DR(D(a) = d, Y (a) = y | X = x) is asymptotically normal
√
n{P̂DR(D(a) = d, Y (a) = y | X = x)− P(D(a) = d, Y (a) = y | X = x)} −→ N(0, σ1(x)

2),

where σ1(x)2 = V[µ̂d,y
a (X) + I(A = a) ·

(
I(D = d, Y = y)− µ̂d,y

a (X)
)
/π̂a(X)|X = x].

4.3 POST-PROCESSING APPROACH

In applications, we first use the DR (or OR, IPS) estimators in Section 4.2 and plug them into the last
two constraints of the optimization problem in Section 4.1. As discussed in Section 4.1, if the feasible
domain is the empty set, or if there exists x ∈ X such that the interval of values of w̃(x) does not
contain 0, then the decision should be considered to violate principal counterfactual fairness. Inspired
by (Mishler et al., 2021), we further propose a post-processing method to adjust previously unfair
decisions by minimal individual decision changes so that it no longer violates optimization-based
fairness evaluation in Section 4.1. The advantage of the post-processing approach is the applicability
to any already-in-used models but evaluated unfair (Lohia et al., 2019).

Specifically, consider a set of non-negative parameters ϵ(x) = {ϵ00(x), ϵ01(x), ϵ10(x), ϵ11(x)} for
all x ∈ X , where each parameter ϵad(x) denotes the probability of forcing the decision D = d on the
individuals with A = a and X = x. With loss of generality, ϵad(x) + ϵa(1−d)(x) ≤ 1, and let D′ be
the final decision after the post-processing, then we have

Pϵ(D
′(a) = d, Y (a) = y | X = x) = Pϵ(D

′ = d, Y = y | A = a,X = x)

= ϵad(x) · P(Y = y | A = a,X = x) + (1− ϵa0(x)− ϵa1(x)) · P(D = d, Y = y | A = a,X = x)

= ϵad(x) · P(Y (a) = y | X = x) + (1− ϵa0(x)− ϵa1(x)) · P(D(a) = d, Y (a) = y | X = x)

= ϵad(x) · P(D(a) = 1− d, Y (a) = y | X = x) + (1− ϵa(1−d)(x)) · P(D(a) = d, Y (a) = y | X = x)

In order to obtain a fair decision D′ while minimally changing the original decision D, we obtain the
estimated ϵ̂(x) for all x ∈ X by solving the following optimization problem.

ϵ∗ =argmin
ϵ

1

n

n∑
i=1

ϵAi0(Xi) + ϵAi1(Xi),

s.t. w0,1,0,0(x) = w1,0,0,0(x) = w0,1,1,1(x) = w1,0,1,1(x) = 0,

wd0,d1,y0,y1
(x) ≥ 0 for all d0, d1, y0, y1 ∈ {0, 1}

ϵad(x)ϵa(1−d)(x) ≥ 0 and ϵad(x) + ϵa(1−d)(x) ≤ 1 for all a, d ∈ {0, 1}∑
a,b
wd0,a,y0,b(x) = Pϵ(D

′(0) = d0, Y (0) = y0 | X = x) for all d0, y0 ∈ {0, 1}∑
a,b
wa,d1,b,y1(x) = Pϵ(D

′(1) = d1, Y (1) = y1 | X = x) for all d1, y1 ∈ {0, 1},

for all x ∈ X . In practice, we use the DR estimate in Section 4.2 and then plug it in to the last two
constraints to obtain the DR estimates for Pϵ(D

′(a) = d, Y (a) = y | X = x), and estimate ϵ̂(x) for
all x ∈ X . Theorem 3 proves the consistency results of the estimated ϵ̂(x) to the optimal ϵ∗(x).
Theorem 3. Suppose that ||π̂a(x) − πa(x)||2 · ||µ̂d,y

a (x) − µd,y
a (x)||2 = oP(n

−1/2) for all x ∈ X
and a attainable by A, then ∥ϵ̂(x)− ϵ∗(x)∥ = OP (1/

√
n).

4.4 THEORETICAL ANALYSIS

After obtaining the optimization solution ϵ̂(x) in Section 4.3, the adjusted decision function D′ is
determined by combining original decision D and ϵ̂(x). Next, we prove that the adjusted decision D′

7
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Table 3: Synthetic experiment results for varying models and estimators. The intervals under w0100,
w1000, w0111 and w1011 show the minimum and maximum values when the other three are set to 0.

Method w0100 ϵ00 w1000 ϵ10 w0111 ϵ01 w1011 ϵ11 CF ↑ PCF ↑
LR + OR [-0.636, -0.083] 0 [-0.774, -0.083] 0 [0.083, 0.223] 0 [-0.672, -0.083] 0.109 +3.60% +6.68%
LR + IPS [0.153, 0.231] 0 [-0.772, -0.153] 0 [-0.666, -0.153] 0.166 [-0.715, -0.153] 0 +4.71% +6.89%
LR + DR [-0.631, -0.024] 0 [-0.710, -0.024] 0 [0.024, 0.196] 0 [-0.683, -0.024] 0.127 +2.97% +6.09%

SVM + OR [0.104, 0.260] 0 [-0.741, -0.104] 0.124 [-0.743, -0.104] 0 [-0.619, -0.104] 0 +1.47% +5.15%
SVM + IPS [0.192, 0.227] 0 [-0.720, -0.192] 0 [-0.739, -0.192] 0.199 [-0.732, -0.192] 0 +4.56% +8.98%
SVM + DR [-0.662, -0.034] 0 [-0.763, -0.034] 0 [0.034, 0.182] 0.186 [-0.607, -0.034] 0 +5.77% +8.30%

RF + OR [-0.706, -0.110] 0.120 [-0.713, -0.110] 0 [-0.689, -0.110] 0 [0.110, 0.195] 0 +2.18% +6.67%
RF + IPS [0.163, 0.211] 0 [-0.727, -0.163] 0 [-0.680, -0.163] 0.171 [-0.755, -0.163] 0 +6.42% +8.35%
RF + DR [-0.713, -0.051] 0 [-0.676, -0.051] 0 [0.051, 0.253] 0.203 [-0.661, -0.051] 0 +6.49% +9.02%

NB + OR [-0.674, -0.161] 0 [-0.744, -0.161] 0 [0.161, 0.232] 0.173 [-0.742, -0.161] 0 +5.04% +8.31%
NB + IPS [-0.821, -0.175] 0 [0.175, 0.192] 0 [-0.775, -0.175] 0 [-0.577, -0.175] 0.181 +8.88% +9.31%
NB + DR [-0.793, -0.189] 0 [-0.688, -0.189] 0 [-0.707, -0.189] 0 [0.189, 0.208] 0.192 +4.83% +9.16%

tends to be fair as sample size n→ ∞. To this end, consider the following programming problem

α∗ =argmin
w

1

n

n∑
i=1

w2
0,1,0,0(Xi) + w2

1,0,0,0(Xi) + w2
0,1,1,1(Xi) + w2

1,0,1,1(Xi),

s.t. wd0,d1,y0,y1(x) ≥ 0 for all d0, d1, y0, y1 ∈ {0, 1},∑
a,b
wd0,a,y0,b(x) = Pϵ̂(D

′(0) = d0, Y (0) = y0 | X = x) for all d0, y0 ∈ {0, 1},∑
a,b
wa,d1,b,y1

(x) = Pϵ̂(D
′(1) = d1, Y (1) = y1 | X = x) for all d1, y1 ∈ {0, 1},

for all x ∈ X , where Pϵ̂(D
′(a), Y (a) | X = x) is the joint distribution of the potential outcomes

(D′(a), Y (a)) for the post-processed decision function D′ using ϵ̂(x) obtained in Section 4.3. We
use the mean sum of squares as the metric for evaluating principal counterfactual fairness. Theorem 4
proves the consistency results of α∗ to 0, validating the effectiveness of the post-processing approach.

Theorem 4. Suppose that ||π̂a(x) − πa(x)||2 · ||µ̂d,y
a (x) − µd,y

a (x)||2 = oP(n
−1/2) for all x ∈ X

and a attainable by A, then ||α∗||1 = OP (1/
√
n).

5 EMPIRICAL INVESTIGATION

To verify the effectiveness of the post-processing approach, we conduct experiments on both synthetic
and real-world dataset. The performance is evaluated by two metrics: counterfactual fairness (CF):
P(D(0) = D(1)) and principal counterfactual fairness (PCF): P(D(0) = D(1) | Y (0) = Y (1)).
For all experiments, we calculate the values of CF and PCF before and after the post-processing
operation and report the percentage change of each metric respectively.

5.1 SYNTHETIC EXPERIMENT

Synthetic data are generated from a structural equation model based on a random DAG with 10
nodes and 40 directed edges according to the Erdős-Rényi (ER) model, where four different models:
Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) and Naive Bayes
(NB) respectively to obtain the estimations of P(Y = 1 | A = a,X = x) as the decisions D(a, x)
(see Appendix C for details). Then we check whether the optimization equation in Section 4.1 is
solvable. If the feasible domain is empty, we further use the post-processing method in Section 4.3 to
obtain ϵ̂ad(x). Table 3 shows the synthetic experiment results. First, the intervals of the four w do
not contain 0, implying that the optimization equation has no solution. At this point there will be one
ϵ̂ad(x) nonzero, while the other three ϵ̂ad(x) are 0. Second, after the flip based on the ϵ̂ad(x), there
are positive changes in both PCF and CF, and the increase in PCF is more pronounced than CF for all
models. This is because our approach focuses only on the population with Y (0) = Y (1).

5.2 REAL-WORLD EXPERIMENT

The STUDENTINFO file in the Open University Learning Analytics Dataset (OULAD) dataset (Kuzilek
et al., 2017) is used for the real-world experiment. The data attributes include demographic informa-

8



Under review as a conference paper at ICLR 2024

Table 4: Real-world experiment results for different subgroups. The intervals under w0100, w1000,
w0111 and w1011 show the minimum and maximum values when the other three w are 0.

Subgroup w0100(X) ϵ00(X) w1000(X) ϵ10(X) w0111(X) ϵ01(X) w1011(X) ϵ11(X) CF ↑ PCF ↑
None [-0.716, 0.024] 0 [-0.747, 0.020] 0 [-0.457, 0.078] 0 [-0.078, 0.268] 0 - -

X1 ≥ 120 [-0.131, 0.274] 0 [-0.713, 0.059] 0 [-0.778, 0.093] 0 [-0.377, 0.131] 0 - -
X1 < 120 [-0.580, -0.030] 0 [0.030, 0.239] 0 [-0.747, -0.030] 0.040 [-0.702, -0.030] 0 +1.35% +1.79%

X2 > 0 [0.039, 0.242] 0 [-0.675, -0.039] 0.049 [-0.658, -0.039] 0 [-0.705, -0.039] 0 +3.52% +3.97%
X2 = 0 [-0.715, 0.007] 0 [-0.575, 0.007] 0 [-0.332, 0.092] 0 [-0.376, 0.213] 0 - -

X1 ≥ 120, X2 > 0 [0.173, 0.287] 0 [-0.754, -0.173] 0 [-0.715, -0.173] 0.196 [-0.704, -0.173] 0 +3.80% +8.51%
X1 ≥ 120, X2 = 0 [-0.749, 0.000] 0 [-0.444, 0.057] 0 [-0.748, 0.001] 0 [-0.057, 0.246] 0 - -
X1 < 120, X2 > 0 [0.176, 0.220] 0 [-0.738, -0.176] 0 [-0.731, -0.176] 0.184 [-0.706, -0.176] 0 +5.22% +9.59%
X1 < 120, X2 = 0 [-0.822, -0.231] 0 [-0.666, -0.231] 0 [-0.742, -0.231] 0 [0.231, 0.304] 0.124 +3.10% +5.02%

Note: In real-world experiments, X1 = studied_credits and X2 = num_ of_prev_attempts.

tion about the students such as gender, age, education level, disability, and other attributes as well as
their final grades. This dataset contains 32,593 students and 11 attributes. We treat disability as the
sensitive attribute and binarize the final grades as the outcome of interest. First we learn a CPDAG
from the raw data using the PC algorithm in the causal-learn package. We find studied_credits:
the total number of credits for the modules the student is currently studying (denoted as X1) and
num_of_prev_attempts: the number of how many times the student has attempted this module (de-
noted as X2) with an undirected edge between it and the disability. Therefore we sample four DAGs
from the learned CPDAG corresponding to the four cases of no subgroup, X1 as subgroups, X2 as
subgroups, and both X1 and X2 as subgroups, respectively. For each DAG, we determine the path
coefficients based on linear regression and treat the residual of the regression as noise. For each
subgroup, the subsequent steps are the same as in the simulation experiments. The LR model is used
to obtain the decision D and the DR estimator is used to estimate P(D(a) = d, Y (a) = y | X = x).

Table 4 shows the real-world experiment results. When solving the optimization problem in Section
4.1 on the whole population, we find that the interval of all four w covers 0, i.e., the current algorithm
already satisfies the principle of counterfactual fairness. Therefore, post-processing is unnecessary
at this point, so there is no corresponding change in CF and PCF. When using X1 to divide the
population, the optimization equation for the subgroup of X1 ≥ 120 has no solution, and when
grouping according to X2, the optimization equation for the subgroup of X2 > 0 has no solution.
When we divide the whole population into four subgroups, we find that the optimization equations
for three of subgroups are unsolvable. Compared to the case of two subgroups, for the unsolvable
subgroups, the distance between zero and the interval of the four w and the value of the non-zero
ϵ̂ad(x) is significantly larger when the population is divided into four subgroups. This indicates that
the constraint is violated to a stronger extent when the population is divided into more subgroups.
Meanwhile, for the case of four subgroups, the CF and PCF of each unsolvable subgroup change
more due to the larger ϵ̂ad(x). In addition, for solvable subgroups, the interval of w0100 and w0111 are
very close to exclude 0 when the population is divided into four subgroups, which further indicates
that as the number of population group increases, each subgroup becomes more difficult to satisfy
the optimization equation. Finally, the growth of PCF is larger than that of CF for all unsolvable
subgroups, which shows that our approach is more effective on the population with Y (0) = Y (1).

6 CONCLUSION

This paper studies the question of "which attributes and individuals should be protected" in the context
of counterfactual fairness. Motivated by the example that disability serves as a sensitive attribute for
different outcomes of interest (e.g., college admissions, athlete selections), we suggest that when and
how to enforce fairness is expected to depend on whether the protected attribute has no individual
causal effect on the outcome of interest. Formally, we propose principal counterfactual fairness,
and theoretically derive the necessary conditions for an algorithm to satisfy principal counterfactual
fairness based on statistical bounds. Based on this, we further propose a principled post-processing
approach to achieve principal counterfactual fairness with minimal individual decision changes. A
limitation of this work is that the principal counterfactual fairness is partially identified, i.e., we cannot
give unbiased point estimates from the data, but can give its statistical bounds and a falsification
method. We leave it to future work about how to develop new identification and estimation strategies
under practical assumptions. In addition, combining causal discovery to achieve decisions that satisfy
the principal counterfactual fairness also serves as an interesting future topic.
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A PROOFS

Proof of Theorem 2. In this proof, for the simplicity of exposition, we only consider a special case
that the conditional set is empty

Let

φa,d,y(A,X,D, Y ;π, µ) = µ(X) + {I(A = a) · I(D = d, Y = y)− µ(X)}/π(X)

And
P̂DR(D(a) = d, Y (a) = y)− P(D(a) = d, Y (a) = y) = A1n +A2n

A1n =
1

n

n∑
i=1

[φa,d,y(A,X,D, Y ;π, µ)− P(D(a) = d, Y (a) = y)],

A2n =
1

n

n∑
i=1

[φa,d,y(A,X,D, Y ; π̂, µ̂)− φa,d,y(A,X,D, Y ;π, µ)].

By the central limit theorem,
√
nA1n is asymptotic normal. For A1n, Define the Gateaux derivative

of the generic function g in the direction [π̂ − π, µ̂− µ] by ∂[π̂−π,µ̂−µ]g. By a Taylor expansion for
E[A2n] yields that

E[A2n] = E[φa,d,y(A,X,D, Y ; π̂a, µ̂
d,y
a )− φa,d,y(A,X,D, Y ;πa, µ

d,y
a )]

= ∂[π̂a−πa,µ̂
d,y
a −µd,y

a ]E[φa,d,y(A,X,D, Y ;πa, µ
d,y
a )]

+
1

2
∂2
[π̂a−πa,µ̂

d,y
a −µd,y

a ]
E[φa,d,y(A,X,D, Y ;πa, µ

d,y
a )] + · · ·

The first-order term

∂[π̂a−πa,µ̂
d,y
a −µd,y

a ]E[φa,d,y(A,X,D, Y ;πa, µ
d,y
a )] = 0,

For the second-order term, we get
1

2
∂2
[π̂a−πa,µ̂

d,y
a −µd,y

a ]
E[φa,d,y(A,X,D, Y ;πa, µ

d,y
a )]

= E
[
I(A = a){I(D = d, Y = y)− µd,y

a (X)}
(πa(X))3

{π̂a(X)− πa(X)}2

+
I(A = a)

(πa(X))2
{π̂a(X)− πa(X)}{µ̂d,y

a (X)− µd,y
a (X)}

]
= E

[
1

(πa(X))
{π̂a(X)− πa(X)}{µ̂d,y

a (X)− µd,y
a (X)}

]
≤ C · ||π̂a(X)− πa(X)||2 · ||µ̂d,y

a (X)− µd,y
a (X)||2

= oP (n
−1/2),

where C is a finite constant. All higher-order terms can be shown to be dominated by the second-order
term. Therefore,

E[A2n] = oP (n
−1/2).

This completes the proof.

□

We first introduce a lemma from (Shapiro, 1991), and use it in the proof of Theorem 2 and 3.

Lemma 2 Let Θ be a compact subset of Rk. Let C(Θ) denote the set of continuous real-valued
functions on Θ, with L = C(Θ) × . . . × C(Θ) the r-dimensional Cartesian product. Let ψ(θ) =
(ψ0, . . . , ψr) ∈ L be a vector of convex functions. Consider the quantity α∗ defined as the solution
to the following convex optimization program:

α∗ = min
θ∈Θ

ψ0(θ)

subject to ψj(θ) ≤ 0, j = 1, . . . , r
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Assume that Slater’s condition holds, so that there is some θ ∈ Θ for which the inequalities are
satisfied and non-affine inequalities are strictly satisfied, i.e. ψj(θ) < 0 if ψj is non-affine. Now
consider a sequence of approximating programs, for n = 1, 2, . . . :

α̂n = min
θ∈Θ

ψ̂0n(θ)

subject to ψ̂jn(θ) ≤ 0, j = 1, . . . , r

with ψ̂n(θ) :=
(
ψ̂0n, . . . , ψ̂rn

)
∈ L. Assume that f(n)(ψ̂n − ψ) converges in distribution to a

random element W ∈ L for some real-valued function f(n). Then:

f(n) (α̂n − α0)⇝ L

for a particular random variable L. It follows that α̂n − α0 = OP(1/f(n)). □

Proof of Theorem 3. According to Theorem 2, the constraint part of the empirical optimization
problem is asymptotic to the constraint part of the oracle optimization problem. This can be proved
directly from Lemma 2. □

Proof of Theorem 4. Because ϵ∗ is solved by the programing question, it means,

min
w

1

n

n∑
i=1

w2
0,1,0,0(Xi) + w2

1,0,0,0(Xi) + w2
0,1,1,1(Xi) + w2

1,0,1,1(Xi) = 0,

s.t. wd0,d1,y0,y1
(x) ≥ 0 for all d0, d1, y0, y1 ∈ {0, 1}∑

a,b
wd0,a,y0,b(x) = Pϵ∗(D

′(0) = d0, Y (0) = y0 | X = x) for all d0, y0 ∈ {0, 1}∑
a,b
wa,d1,b,y1

(x) = Pϵ∗(D
′(1) = d1, Y (1) = y1 | X = x) for all d1, y1 ∈ {0, 1},

In the same way, we can prove that, for the following programing,

α∗ = min
w

1

n

n∑
i=1

w2
0,1,0,0(Xi) + w2

1,0,0,0(Xi) + w2
0,1,1,1(Xi) + w2

1,0,1,1(Xi),

s.t. wd0,d1,y0,y1
(x) ≥ 0 for all d0, d1, y0, y1 ∈ {0, 1}∑

a,b
wd0,a,y0,b(x) = Pϵ̂(D

′(0) = d0, Y (0) = y0 | X = x) for all d0, y0 ∈ {0, 1}∑
a,b
wa,d1,b,y1

(x) = Pϵ̂(D
′(1) = d1, Y (1) = y1 | X = x) for all d1, y1 ∈ {0, 1},

According to the proof of Theorem 2.
√
n{ϵ̂− ϵ}⇝W , W is a random element, the constraint part

convergence at rate
√
n. Using Lemma 2,

√
nα∗ converges to a random element. □

B ESTIMATION OF NUISANCE PARAMETERS WITH SAMPLE SPLITTING IN
THEOREM 2

If both π̂a(X) and µd,y
a are not assumed to be sufficiently “well-behaved,” i.e. if they do not belong

to Donsker classes, we need to estimate them by a data-splitting method (Chernozhukov et al., 2018;
Mishler et al., 2021; wager and Athey, 2018).

Let K be a small positive integer, and (for simplicity) suppose that m = n/K is also an integer. Let
I1, ..., IK be a random partition of the index set I = {1, ..., n} so that #Ik = m for k = 1, ...,K.
Denote ICk as the complement of Ik.

Step 1. Nuisance parameter training for each sub-sample.

for k = 1 to K do

(1) Construct estimates π̃a(x) and µ̃d,y
a (X) using the sample with ICk .
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(2) Obtain the predicted values of π̂a(X), and µ̂d,y
a (X) for i ∈ Ik.

end

Step 2. All the predicted values π̃a(Xi) and µ̃d,y
a (Xi) for i ∈ I consist of the estimates of πa(Xi)

and µd,y
a (Xi), denoted as π̂a(Xi), and µ̂d,y

a (Xi), respectively.

C EXPERIMENTAL DETAILS OF SYNTHETIC EXPERIMENT

We first randomly generate a DAG with 10 nodes and 40 directed edges according to the Erdős-Rényi
(ER) model. Following the previous study (Zuo et al., 2022), the path coefficients βjk of directed
edges Xj → Xk are sampled from a Uniform([−2,−0.5] ∪ [0.5, 2]) distribution. The data are
generated according to the following equation:

Xk =
∑

Xj∈pa(Xk)
βjkXj + ϵi, i = 1, . . . , n,

where pa (Xk) represents the parent nodes of Xk, noise ϵi ∼ N(0, 2.5) and n is the sample
size, which is 1,000 in the experiment. Then we randomly select two nodes as the outcome Y
and the sensitive attribute A, respectively. A is drawn from a Binomial([0,1]) with probability
σ(
∑

Xj∈pa(A) βjAXj+ϵi), where σ(·) denotes the sigmoid function. To evaluate our post-processing
approach, we need to have Y (0), Y (1), D(0) and D(1) for each sample. Therefore, we generate
Yi(a) from a Binomial([0,1]) with probability σ(

∑
Xj∈pa(Y ) βjYXj(a) + ϵi), where X(a) means

the value of X when A = a, and use four different models: Logistic Regression (LR), Support Vector
Machine (SVM), Random Forest (RF) and Naive Bayes (NB) respectively to obtain the estimations
of P(Y = 1 | A = a,X = x) as the decisions D(a, x). After obtaining potential outcomes for
each individual, we estimate P(D(a) = d, Y (a) = y | X = x) using OR, IPS and DR estimators,
respectively, where d and y ∈ {0, 1}. Then we check whether the optimization equation in Section
4.1 is solvable. If the feasible domain is empty, we further use the post-processing method in Section
4.3 to obtain ϵ̂ad(x). Finally, we flip D(0) and D(1) using ϵ̂ad(x) as the corresponding probabilities
and compute the percentage change of CF and PCF.
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