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Abstract

We propose A-Crab (Actor-Critic Regularized by Average Bellman error), a new
practical algorithm for offline reinforcement learning (RL) in complex environ-
ments with insufficient data coverage. Our algorithm combines the marginalized
importance sampling framework with the actor-critic paradigm, where the critic
returns evaluations of the actor (policy) that are pessimistic relative to the offline
data and have a small average (importance-weighted) Bellman error. Compared
to existing methods, our algorithm simultaneously offers a number of advantages:
(1) It achieves the optimal statistical rate of 1/

√
N—where N is the size of

offline dataset—in converging to the best policy covered in the offline dataset,
even when combined with general function approximators. (2) It relies on a
weaker average notion of policy coverage (compared to the ℓ∞ single-policy
concentrability) that exploits the structure of policy visitations. (3) It outper-
forms the data-collection behavior policy over a wide range of specific hyper-
parameters. We provide both theoretical analysis and experimental results to
validate the effectiveness of our proposed algorithm. The code is available at
https://github.com/zhuhl98/ACrab.

1 Introduction

Offline reinforcement learning (RL) algorithms aim at learning a good policy based only on historical
interaction data. This paradigm allows for leveraging previously-collected data in learning policies
while avoiding possibly costly and dangerous trial and errors and finds applications in a wide range of
domains from precision medicine (Tang et al., 2022) to robotics (Sinha et al., 2022) to climate (Rolnick
et al., 2022). Despite wide applicability, offline RL has yet to achieve success stories akin to those
observed in online settings that allow for trials and errors (Mnih et al., 2013; Silver et al., 2016; Ran
et al., 2019; Mirhoseini et al., 2020; Oh et al., 2020; Fawzi et al., 2022; Degrave et al., 2022).

Enabling offline RL for complex real-world problems requires developing algorithms that first,
handle complex high-dimensional observations and second, have minimal requirements on the data
coverage and “best” exploit the information available in data. Powerful function approximators such
as deep neural networks are observed to be effective in handling complex environments and deep RL
algorithms have been behind the success stories mentioned above. This motivates us to investigate
provably optimal offline RL algorithms that can be combined with general function approximators
and have minimal requirements on the coverage and size of the offline dataset.
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In RL theory, the data coverage requirements are often characterized by concentrability defini-
tions (Munos, 2007; Scherrer, 2014). For a policy π, the ratio of the state-action occupancy distribu-
tion dπ of π to the dataset distribution µ, denoted by wπ = dπ/µ, is used to define concentrability.
The most widely-used definition is ℓ∞ concentrability, defined as the infinite norm of wπ, i.e.,
Cπ

ℓ∞
= ∥wπ∥∞. Many earlier works on offline RL require all-policy ℓ∞ concentrability (i.e., Cπ

ℓ∞
is

bounded for all candidate policy π) (Scherrer, 2014; Liu et al., 2019a; Chen and Jiang, 2019; Jiang,
2019; Wang et al., 2019; Liao et al., 2020; Zhang et al., 2020a) or stronger assumptions such as
a uniform lower bound on µ(a|s) (Xie and Jiang, 2021). However, such all-policy concentrability
assumptions are often violated in practical scenarios, and in most cases, only partial dataset coverage
is guaranteed.

To deal with partial data coverage, recent works use conservative algorithms, which try to avoid
policies not well-covered by the dataset, to learn a good policy with much weaker dataset coverage
requirements (Kumar et al., 2020; Jin et al., 2021). In particular, algorithms developed based on
the principle of pessimism in the face of uncertainty are shown to find the best covered policy
(or sometimes they require coverage of the optimal policy) (e.g., Rashidinejad et al. (2021, 2022);
Zhan et al. (2022); Chen and Jiang (2022)). However, most of these works use ℓ∞ concentrability
to characterize the dataset coverage. This could still be restrictive even if we only require single-
policy concentrability, since the ℓ∞ definition characterizes coverage in terms of the worst-case
maximum ratio over all states and actions. Other milder variants of the single-policy concentrability
coefficient are proposed by Xie et al. (2021); Uehara and Sun (2021) which consider definitions that
exploit the structure of the function class to reduce the coverage requirement and involve taking a
maximum over the functions in the hypothesis class instead of all states and actions. However, as
we show in Section 2.4, when the function class is very expressive, these variants will degenerate
to ℓ∞ concentrability. Moreover, previous algorithms requiring milder variants of single-policy
concentrability are either computationally intractable (Xie et al., 2021; Uehara and Sun, 2021) or
suffer a suboptimal rate of suboptimality (Cheng et al., 2022). Therefore, a natural and important
question is raised:

Is there a computationally efficient and statistically optimal algorithm that can be
combined with general function approximators and have minimal requirements on
dataset coverage?

We answer this question affirmatively by proposing a novel algorithm named A-Crab (Actor-Critic
Regularized by Average Bellman error). We also discuss more related works in Appendix A.

Table 1: Comparison of provable offline RL algorithms with general function approximation.
Algorithm Computation Any covered policy Coverage assumption Policy improvement Suboptimality

Xie et al. (2021) Intractable Yes single-policy, Cπ
Bellman Yes O

(
1√
N

)
Uehara and Sun (2021) Intractable Yes single-policy, ℓ∞ and ℓ2 Yes O

(
1√
N

)
Chen and Jiang (2022) Intractable No single-policy, ℓ∞ No O

(
1√

Ngap(Q⋆)

)
Zhan et al. (2022) Efficient Yes two-policy, ℓ∞ Yes O

(
1

N1/6

)
Cheng et al. (2022) Efficient Yes single-policy, Cπ

Bellman Yes & Robust O
(

1
N1/3

)
Rashidinejad et al. (2022) Efficient No single-policy, ℓ∞ No O

(
1√
N

)
Ozdaglar et al. (2022) Efficient No single-policy, ℓ∞ No O

(
1√
N

)
A-Crab (this work) Efficient Yes single-policy, ℓ2 Yes & Robust O

(
1√
N

)

1.1 Contributions

In this paper, we build on the adversarially trained actor-critic (ATAC) algorithm of Cheng et al.
(2022) and combine it with the marginalized importance sampling (MIS) framework (Xie et al., 2019;
Chen and Jiang, 2022; Rashidinejad et al., 2022). In particular, we replace the squared Euclidean
norm of the Bellman-consistency error term in the critic’s objective of the ATAC algorithm with an
importance-weighted average Bellman error term. We prove that this simple yet critical modification
of the ATAC algorithm enjoys the properties highlighted below (see Table 1 for comparisons with
previous works).
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1. Optimal statistical rate in competing with the best covered policy: In Theorem 1, we prove that
our A-Crab algorithm, which uses average Bellman error, enjoys an optimal statistical rate of 1/

√
N .

In contrast, we prove in Proposition 4.1 that the ATAC algorithm, which uses the squared Bellman
error, fails to achieve the optimal rate in certain offline learning instances. As Cheng et al. (2022)
explains, the squared Bellman-error regularizer appears to be the culprit behind the suboptimal rate
of ATAC being 1/N1/3. Moreover, our algorithm improves over any policy covered in the data. This
is in contrast to the recent work Rashidinejad et al. (2022), which proposes an algorithm based on the
MIS framework that achieves the 1/

√
N rate only when the optimal policy (i.e. the policy with the

highest expected rewards) is covered in the data.

2. A weaker notion of data coverage that exploits visitation structure: As we discussed earlier, ℓ∞
concentrability notion is used in many prior works (Rashidinejad et al., 2021; Chen and Jiang, 2022;
Ozdaglar et al., 2022; Rashidinejad et al., 2022). Our importance-weighted average Bellman error as
well as using Bernstein inequality in the proof relies on guarantees in terms of an ℓ2 single-policy
concentrability notion that is weaker than the ℓ∞ variant. In particular, we have Cπ

ℓ∞
= ∥wπ∥∞

and Cπ
ℓ2

= ∥wπ∥2,µ, where ∥ · ∥2,µ is the weighted 2-norm w.r.t. the dataset distribution µ. The
latter implies that the coverage coefficient only matters as much as it is covered by the dataset.
Moreover, by the definition of wπ, we can obtain that (Cπ

ℓ2
)2 = Edπ [wπ(s, a)], which provides

another explanation of ℓ2 concentrability that the coverage coefficient only matters as much as it is
actually visited by the policy. There are also other notions of single-policy concentrability exploiting
function approximation structures to make the coverage coefficient smaller (e.g., Cπ

Bellman in Xie et al.
(2021)). However, these notions degenerate to Cπ

ℓ∞
as the function class gets richer (see Figure 1 for

an intuitive comparison of different notions of concentrability and Section 2.4 for a rigorous proof).

3. Robust policy improvement: Policy improvement (PI) refers to the property that an offline RL
algorithm (under a careful choice of specific hyperparameters) can always improve upon the behavior
policy that is used to collect the data. In particular, robust policy improvement (RPI) means the PI
property holds under a wide range of the choice of specific hyperparameters (Cheng et al., 2022; Xie
et al., 2022). Similar to the ATAC algorithm in Cheng et al. (2022), our approach enjoys the robust
policy improvement guarantee as shown in Theorem 2.

4. Inheriting many other benefits of adversarially-trained actor-critic: Since our algorithm is
based on ATAC with a different choice of regularizer, it can be easily implemented as ATAC to be
applied to practical scenarios, and we provide experimental results in Section 6. Also, our algorithm
is robust to model misspecification and does not require the completeness assumption (Assumption 2
in Cheng et al. (2022)) on the value function class, which makes it more practical. Moreover, our
algorithm can learn a policy that outperforms any other policies well covered by the dataset.

2 Background

Notation. We use ∆(X ) to denote the probability simplex over a set X and use Unif(X ) to denote
the uniform distribution over X . We denote by ∥ · ∥2,µ =

√
Eµ[(·)2] the Euclidean norm weighted
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by distribution µ. We use the notation x ≲ y when there exists constant c > 0 such that x ≤ cy and
x ≳ y if y ≲ x and denote x ≍ y if x ≲ y and y ≲ x hold simultaneously. We also use standard
O(·) notation to hide constants and use Õ(·) to suppress logarithmic factors.

2.1 Markov decision process

An infinite-horizon discounted MDP is described by a tuple M = (S,A, P,R, γ, ρ), where S is the
state space,A is the action space, P : S×A → ∆(S) is the transition kernel, R : S×A → ∆([0, 1])
encodes a family of reward distributions with r : S × A → [0, 1] as the expected reward function,
γ ∈ [0, 1) is the discount factor and ρ : S → [0, 1] is the initial state distribution. We assume A is
finite while allowing S to be arbitrarily complex. A stationary (stochastic) policy π : S → ∆(A)
specifies a distribution over actions in each state. Each policy π induces a (discounted) occupancy
density over state-action pairs dπ : S ×A → [0, 1] defined as dπ(s, a) := (1− γ)

∑∞
t=0 γ

tPt(st =
s, at = a;π), where Pt(st = s, at = a;π) denotes the visitation probability of state-action pair
(s, a) at time step t, starting at s0 ∼ ρ(·) and following π. We also write dπ(s) =

∑
a∈A dπ(s, a) to

denote the (discounted) state occupancy, and use Eπ[·] as a shorthand of E(s,a)∼dπ [·] or Es∼dπ [·].
The value function of a policy π is the discounted cumulative reward gained by executing that
policy V π(s) := E [

∑∞
t=0 γ

trt | s0 = s, at ∼ π(·|st), ∀ t ≥ 0] starting at state s ∈ S where
rt = R(st, at). Similarly, we define Q function of a policy as the expected cumulative re-
ward gained by executing that policy starting from a state-action pair (s, a), i.e., Qπ(s, a) :=
E [
∑∞

t=0 γ
trt | s0 = s, a0 = a, at ∼ π(·|st), ∀ t > 0] . We write J(π) := (1 − γ)Es∼ρ[V

π(s)] =
E(s,a)∼dπ [r(s, a)] to represent the (normalized) average value of policy π. We denote by π⋆ the
optimal policy that maximizes the above objective and use the shorthand V ⋆ := V π⋆

, Q⋆ := Qπ⋆

to
denote the optimal value function and optimal Q function respectively.

2.2 Function approximation

In modern RL, the state space S is usually large or infinite, making the classic tabular RL algorithms
not scalable since their sample complexity depends on the cardinality of S. Therefore, (general)
function approximation is necessary for real-world scenarios with huge state space. In this paper,
we assume access to three function classes: a function class F ⊆ {f : S × A → [0, Vmax]} that
models the (approximate) Q-functions of policies, a function classW ⊆ {w : S × A → [0, Bw]}1

that represents marginalized importance weights with respect to data distribution, and a policy class
Π ⊆ {π : S → ∆(A)} consisting of candidate policies. Our framework combines the marginalized
importance sampling framework (e.g., Zhan et al. (2022); Rashidinejad et al. (2022)) with actor-critic
methods (Xie et al., 2021; Cheng et al., 2022), which improves and selects among a set of candidate
policies by successive computation of their Q-functions.

For any function f ∈ F and any policy π ∈ Π, we denote f(s, π) =
∑

a∈A π(a|s)f(s, a) for any
s ∈ S and denote Bellman operator T π : RS×A → RS×A as

(T πf)(s, a) = r(s, a) + γEs′∼P (·|s,a)[f(s
′, π)]. (1)

Note that solving the fixed point equation (1) for f finds the Q-function of policy π.

We make the following assumption on the expressivity of our function classes.
Assumption 1 (Approximate Realizability). Assume there exists ϵF ≥ 0, s.t. for any policy π ∈ Π,
minf∈F maxadmissible ν ∥f − T πf∥22,ν ≤ ϵF , where admissible ν is defined by ν ∈ {dπ|π ∈ Π}.

This assumption is also required for Xie et al. (2021); Cheng et al. (2022). Note that when ∥f −
T πf∥2,ν is small for all admissible ν, we have f ≈ Qπ. Therefore, Assumption 1 assumes that for
any policy π, Qπ is “approximatly” realized in F . In particular, when ϵF = 0, Assumption 1 is
equivalent to Qπ ∈ F for any π ∈ Π.

2.3 Offline reinforcement learning

In this paper, we study offline RL where we assume access only to a previously-collected and
fixed dataset of interactions D = {(si, ai, ri, s′i)}Ni=1, where ri ∼ R(si, ai), s′i ∼ P (· | si, ai).

1Without loss of generality, we always assume that the all-one function is contained in W .
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To streamline the analysis, we assume that (si, ai) pairs are generated i.i.d. according to a data
distribution µ ∈ ∆(S × A). We make the common assumption that the dataset is collected by a
behavior policy, i.e., µ is the discounted visitation probability of a behavior policy, which we also
denote by µ. For convenience, we assume the behavior policy µ ∈ Π. The goal of offline RL is to
learn a good policy π̂ (a policy with a high J(π̂)) using the offline dataset. Also, for any function f
that takes (s, a, r, s′) as input, we define the expectation w.r.t. the datasetD (or empirical expectation)
as ED[f ] =

1
N

∑
(si,ai,ri,s′i)∈D f(si, ai, ri, s

′
i).

Marginalized importance weights. We define the marginalized importance weights of any policy
π to be the ratio between the discounted state-action occupancy of π and the data distribution
wπ(s, a) := dπ(s,a)

µ(s,a) . Such weights have been defined in prior works on theoretical RL (Xie and Jiang,
2020; Zhan et al., 2022; Rashidinejad et al., 2022; Ozdaglar et al., 2022) as well as practical RL
algorithms (Nachum et al., 2019a,b; Zhang et al., 2020b,c; Lee et al., 2021).

2.4 Coverage of offline dataset

We study offline RL with access to a dataset with partial coverage. We measure the coverage of policy
π in the dataset using the weighted ℓ2 single-policy concentrability coefficient defined below.
Definition 1 (ℓ2 concentrability). Given a policy π, define Cπ

ℓ2
= ∥wπ∥2,µ = ∥dπ/µ∥2,µ .

This definition is much weaker than the all-policy concentrability conventionally used in offline
RL (Scherrer, 2014; Liu et al., 2019a; Chen and Jiang, 2019; Jiang, 2019; Wang et al., 2019; Liao
et al., 2020; Zhang et al., 2020a), which requires the ratio dπ(s,a)

µ(s,a) to be bounded for all s ∈ S and
a ∈ A as well as all policies π. The following proposition compares two variants of single-policy
concentrability definition that appeared in recent works Rashidinejad et al. (2021); Xie et al. (2021)
with the ℓ2 variant defined in Definition 1; see Appendix A.1 for more discussion on different
concentrability definitions in prior work. To our knowledge, the ℓ2 version of concentrability
definition has been only used in offline RL with all-policy coverage (Farahmand et al., 2010; Xie
and Jiang, 2020). In the context of partial coverage, Uehara and Sun (2021) used ℓ2 version in a
model-based setting, but their algorithms are computationally intractable. Recent works Xie et al.
(2021); Cheng et al. (2022) use another milder version of concentrability than ℓ∞, and we compare
different concentrability versions in Proposition 2.1. An intuitive comparison is presented in Figure 1.
Proposition 2.1 (Comparing concentrability definitions). Define the ℓ∞ single-policy concentrabil-
ity (Rashidinejad et al., 2021) as Cπ

ℓ∞
= ∥dπ/µ∥∞ and the Bellman-consistent single-policy concen-

trability (Xie et al., 2021) as Cπ
Bellman = maxf∈F

∥f−T πf∥2
2,dπ

∥f−T πf∥2
2,µ

. Then, it always holds (Cπ
ℓ2
)2 ≤ Cπ

ℓ∞
,

Cπ
ℓ2
≤ Cπ

ℓ∞
and there exist offline RL instances where (Cπ

ℓ2
)2 ≤ Cπ

Bellman, Cπ
ℓ2
≤ Cπ

Bellman.

A proof for Proposition 2.1 is presented in Appendix B. It is easy to show that the ℓ2 variant is
bounded by ℓ∞ variant of concentrability as the former requires Edπ [wπ(s, a)] to be bounded while
the latter requires wπ(s, a) to be bounded for any s ∈ S and a ∈ A. Example 1 provides a concrete
example that Cπ

ℓ2
is bounded by a constant while Cπ

ℓ∞
could be arbitrarily large.

Example 1 (Arbitrarily large ℓ∞ concentrability with a constant ℓ2 concentrability). Consider the
simplest two-arm bandit settings, where the dataset distribution is µ(a1) = 1− ϵ2, µ(a2) = ϵ2 for
an arbitrarily small ϵ > 0. Let π be a policy s.t. π(a1) = dπ(a1) = 1− ϵ, π(a2) = dπ(a2) = ϵ.

Then one can calculate that wπ(a1) = 1−ϵ
1−ϵ2 ≤ 1 and wπ(a2) = 1

ϵ . Therefore, Cπ
ℓ2
≤
√
2 while

Cπ
ℓ∞

= 1
ϵ can be arbitrarily large.

Furthermore, the Bellman-consistent variant can exploit the structure in the Q-function class F for a
smaller concentrability coefficient. However, in situations where the class F is highly expressive,
Cπ

Bellman could be close to Cπ
ℓ∞

and thus possibly larger than Cπ
ℓ2

.

Finally, we make a boundedness assumption on our marginalized importance weight function class
W in terms of ℓ2 concentrability and a single-policy realizability assumption.
Assumption 2 (Boundedness in ℓ2 norm ofW). Assume ∥w∥2,µ ≤ C⋆

ℓ2
for all w ∈ W .

Assumption 3 (Single-policy realizability of wπ). Assume wπ ∈ W for some policy π ∈ Π that we
aim to compete with.
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The definition of C⋆
ℓ2

is similar to Xie and Jiang (2020) but they need wπ ∈ W for all π ∈ Π, which
is much stronger than our single-policy realizability assumption forW .

3 Actor-Critic Regularized by Average Bellman Error

In this section, we introduce our main algorithm named A-Crab (Actor-Critic Regularized by Average
Bellman error, Algorithm 1), and compare it with the previous ATAC algorithm (Cheng et al., 2022).
In Section 4, we will provide theoretical guarantees of A-Crab and discuss its advantages.

3.1 From Actor-Critic to A-Crab

Our algorithm design builds upon the actor-critic method, in which we iteratively evaluate a policy
and improve the policy based on the evaluation. Consider the following actor-critic example:

π̂∗ ∈ arg maxπ∈Πf
π(s0, π), fπ ∈ arg minf∈FEµ[((f − T πf)(s, a))2],

where we assume s0 is the fixed initial state in this example and recall that f(s, π) =∑
a∈A π(a|s)f(s, a). Here, the policy is evaluated by the function that minimizes the squared

Bellman error. However, insufficient data coverage may lead the critic to give an unreliable evaluation
of the policy. To address this, the critic can compute a Bellman-consistent pessimistic evaluation
of π (Xie et al., 2021), which picks the most pessimistic f ∈ F that approximately satisfies the
Bellman equation. Introducing a hyperparameter β ≥ 0 to tradeoff between pessimism and Bellman
consistency yields the following criteria for the critic:

fπ ∈ arg minf∈Ff(s0, π) + βEµ[((f − T πf)(s, a))2].

Cheng et al. (2022) argue that instead of the above absolute pessimism, a relative pessimism approach
of optimizing the performance of π relative to the behavior policy, results in an algorithm that
improves over the behavior policy for any β ≥ 0 (i.e., robust policy improvement). Incorporating
relative pessimism in the update rule gives the ATAC algorithm (Cheng et al., 2022):

π̂∗ ∈ arg maxπ∈ΠEµ[f
π(s, π)− fπ(s, a)],

fπ ∈ arg minf∈FEµ[f(s, π)− f(s, a)] + βEµ[((f − T πf)(s, a))2].

Finally, we introduce the importance weights w(s, a) and change the squared Bellman regularizer to
an importance-weighted average Bellman error to arrive at:

π̂⋆ ∈ argmax
π∈Π
Lµ(π, f

π), s.t. fπ ∈ argmin
f∈F
Lµ(π, f) + βEµ(π, f), (2)

where
Lµ(π, f) = Eµ[f(s, π)− f(s, a)], (3)
Eµ(π, f) = max

w∈W
|Eµ[w(s, a)(f − T πf)(s, a)]|. (4)

Maximization over w in the importance-weighted average Bellman regularizer in (4) ensures that
the Bellman error is small when averaged over measure µ · w for any w ∈ W , which turns out
to be sufficient to control the suboptimality of the learned policy as the performance difference
decomposition Lemma 1 shows. 2

Squared Bellman error v.s. importance-weighted average Bellman error. Unlike our ap-
proach, the ATAC algorithm in Cheng et al. (2022) uses squared Bellman error, wherein
direct empirical approximation leads to overestimating the regularization term.3 To obtain
an unbiased empirical estimator, Cheng et al. (2022) uses ED

[
(f(s, a)− r − γf(s′, π))2

]
−

ming∈F ED
[
(g(s, a)− r − γf(s′, π))2

]
as the empirical estimator which subtracts the overesti-

mation. Yet, as we later see in Proposition 4.1, even with this correction, ATAC fails to achieve the
optimal statistical rate of 1/

√
N in certain offline learning instances. In contrast, the importance-

weighted average Bellman error in our algorithm is unbiased (as it involves no non-linearity). This
makes our theoretical analysis much simpler and leads to achieving an optimal statistical rate of
1/
√
N as shown in Theorem 1.

2Such importance-weighted minimax formulations of Bellman error have been used in prior work on
off-policy evaluation (Uehara et al., 2020) and offline RL with all-policy coverage (Xie and Jiang, 2020).

3This is closely related to the infamous double-sampling issue; see Section 3.1 in Chen and Jiang (2019) for
a detailed discussion.
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3.2 Main algorithms

Since we do not have direct access to the dataset distribution µ, our algorithm instead solves an
empirical version of (2), which can be formalized as

π̂ ∈ argmax
π∈Π
LD(π, f

π), s.t. fπ ∈ argmin
f∈F
LD(π, f) + βED(π, f), (5)

where

LD(π, f) = ED[f(s, π)− f(s, a)], (6)

ED(π, f) = max
w∈W

|ED[w(s, a)(f(s, a)− r − γf(s′, π))]| . (7)

Algorithm 1 Actor-Critic Regularized by Average Bellman error (A-CRAB)

1: Input: Dataset D = {(si, ai, ri, s′i)}Ni=1, value function class F , importance weight function
classW , no-regret policy optimization oracle PO (Definition 2).

2: Initialization: π1 : uniform policy, β: hyperparameter.
3: for k = 1, 2, . . . ,K do
4: fk ← argminf∈F LD(πk, f) + βED(πk, f), where LD and ED are defined in (6), (7)
5: πk+1 ← PO(πk, fk,D).
6: end for
7: Output: π̄ = Unif

(
{πk}Kk=1

)
.

Similar to Cheng et al. (2022), we view program (5) as a Stackelberg game and solve it using a
no-regret oracle as shown in Algorithm 1. At each step k, the critic minimizes the objective defined
by (7) w.r.t. πk, and πk+1 is generated by a no-regret policy optimization oracle, given below.

Definition 2 (No-regret policy optimization oracle). An algorithm PO is defined as a no-regret
policy optimization oracle if for any (adversarial) sequence of functions f1, f2, . . . , fK ∈ F where
fk : S × A → [0, Vmax],∀k ∈ [K], the policy sequence π1, π2, . . . , πK produced by PO satisfies
that for any policy π ∈ Π, it holds that ϵπopt ≜

1
K

∑K
k=1 Eπ[fk(s, π)− fk(s, πk)] = o(1).

Among the well-known instances of the above no-regret policy optimization oracle is natural policy

gradient (Kakade, 2001) of the form πk+1(a|s) ∝ πk(a|s) exp(ηfk(s, a)) with η =
√

log |A|
2V 2

maxK
(Even-

Dar et al., 2009; Agarwal et al., 2021; Xie et al., 2021; Cheng et al., 2022). A detailed discussion
of the above policy optimization oracle can be found in Cheng et al. (2022). Utilizing the no-regret
oracle in solving the Stackelberg optimization problem in (5) yields Algorithm 1.

A remark on critic’s optimization problem. In our algorithm, for any given π, the critic needs to
solve a minf∈F maxw∈W optimization problem, whereas in ATAC (Cheng et al., 2022), the critic
needs to solve a minf∈F maxg∈F problem. Since we only assume single-policy realizability for
the classW (Assumption 3) but assume all-policy realizability for F (Assumption 1) (and Cheng
et al. (2022) even requires the Bellman-completeness assumption over F which is much stronger), in
general, the cardinality ofW could be much smaller than F , which makes the optimization region of
the critic’s optimization problem in our algorithm F ×W smaller than F × F in ATAC.

4 Theoretical Analysis

In this section, we show the theoretical guarantee of our main algorithm (Algorithm 1), which is
statistically optimal in terms of N .

4.1 Performance guarantee of the A-Crab algorithm

We first formally present our main theorem, which provides a theoretical guarantee of our A-Crab
algorithm (Algorithm 1). A proof sketch is provided in Section 5 and the complete proof is deferred
to Appendix C.3.
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Theorem 1 (Main theorem). Under Assumptions 1 and 2 and let π ∈ Π be any policy satisfying
Assumption 3, then with probability at least 1− δ,

J(π)− J(π̄) ≤ O
(
ϵstat + C⋆

ℓ2

√
ϵF
)
+ ϵπopt,

where ϵstat ≍ VmaxC
⋆
ℓ2

√
log(|F||Π||W|/δ)

N + VmaxBw log(|F||Π||W|/δ)
N , and π̄ is returned by Algorithm 1

with the choice of β = 2.

Below we discuss the advantages of our approach as shown in the above theorem.

Optimal statistical rate and computational efficiency. When ϵF = 0 (i.e., there is no model
misspecification), and when π = π⋆ is one of the optimal policies, the output policy π̄ achieves
O(1/

√
N) suboptimality rate which is optimal in N dependence (as long as K is large enough). This

improves the O(1/N1/3) rate of the previous algorithm (Cheng et al., 2022). Note that the algorithm
of Xie et al. (2021) can also achieve the optimal O(1/

√
N) rate but their algorithm involves hard

constraints of squared ℓ2 Bellman error and thus is computationally intractable. Cheng et al. (2022)
convert the hard constraints to a regularizer, making the algorithm computationally tractable while
degenerating the statistical rate. Our algorithm is both statistically optimal and computationally
efficient, which improves upon both Xie et al. (2021); Cheng et al. (2022) simultaneously.

Competing with any policy. Another advantage of our algorithm is that it can compete with any
policy π ∈ Π as long as wπ = dπ/µ is contained inW . In particular, the importance ratio of the
behavior policy wµ = dµ/µ = µ/µ ≡ 1 is always contained inW , which implies that our algorithm
satisfies robust policy improvement (see Theorem 2 for details).

Robustness to model misspecification. Theorem 1 also shows that our algorithm is robust to model
misspecification on realizability assumption. Note that our algorithm does not need a completeness
assumption, while Xie et al. (2021); Cheng et al. (2022) both require the (approximate) completeness
assumption.

Removal of the completeness assumption on F . Compared to our algorithm, Cheng et al. (2022)
additionally need a completeness assumption on F , which requires that for any f ∈ F and π ∈ Π,
it approximately holds that T πf ∈ F . They need this completeness assumption because they use
the estimator ED

[
(f(s, a)− r − γf(s′, π))2

]
−ming∈F ED

[
(g(s, a)− r − γf(s′, π))2

]
to address

the over-estimation issue caused by their squared ℓ2 Bellman error regularizer, and to make this
estimator accurate, they need ming∈F ED

[
(g(s, a)− r − γf(s′, π))2

]
to be small, which can be

implied by the (approximate) completeness assumption. In our algorithm, thanks to the nice property
of the weighted average Bellman error regularizer which can be estimated by a simple and unbiased
estimator, we can get rid of this strong assumption.

4.2 A-Crab for robust policy improvement

Robust policy improvement (RPI) refers to the property of an offline RL algorithm that the learned
policy (almost) always improves upon the behavior policy used to collect data over a wide range of
the choice of some specific hyperparameters (in this paper, the hyperparameter is β) (Cheng et al.,
2022). Similar to ATAC in Cheng et al. (2022), our A-Crab also enjoys the RPI property. Theorem 2
implies that as long as β = o(

√
N), our algorithm can learn a policy with vanishing suboptimality

compared to the behavior policy with high probability. The proof is deferred to Appendix D.

Theorem 2 (Robust policy improvement). Under Assumptions 1 and 2, with probability at least
1− δ,

J(µ)− J(π̄) ≲ (β + 1)(ϵstat + C⋆
ℓ2

√
ϵF ) + ϵπopt,

where ϵstat ≍ VmaxC
⋆
ℓ2

√
log(|F||Π||W|/δ)

N + VmaxBw log(|F||Π||W|/δ)
N , and π̄ is returned by Algorithm 1

with the choice of any β ≥ 0.

4.3 Suboptimality of squared l2 norm of Bellman error as regularizers

The ATAC algorithm of Cheng et al. (2022) suffers suboptimal statistical rate O(1/N1/3) due to
the squared ℓ2 Bellman error regularizer. Intuitively, in Cheng et al. (2022), they use Lemma 1 to
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decompose the performance difference and use ∥f − T πf∥2,µ to upper bound Eµ[(f − T πf)(s, a)],
which causes suboptimality since in general the former could be much larger than the latter. To
overcome this suboptimal step, in our algorithm, we use a weighted version of Eµ[(f − T πf)(s, a)]
as our regularizer instead of ∥f − T πf∥2,µ. Proposition 4.1 shows that ATAC is indeed statistically
suboptimal even under their optimal choice of the hyperparameter β = Θ(N2/3). The proof is
deferred to Appendix E.1.
Proposition 4.1 (Suboptimality of ATAC). If we change the regularizer s.t.

Eµ(π, f) = ∥f − T πf∥22,µ and ED(π, f) = L(f, f, π,D)−min
g∈F
L(g, f, π,D),

where L(g, f, π,D) = ED[(g(s, a) − r − γf(s′, π))2], then even under all policy realizability
(Qπ ∈ F for all π ∈ Π) and completeness assumption (T πf ∈ F for all π ∈ Π and f ∈ F),
with their optimal choice of β = Θ(N2/3) (Cheng et al., 2022), there exists an instance s.t. the
suboptimality of the returned policy of (5) (i.e., the output policy by ATAC) is Ω(1/N1/3) with at
least constant probability.

5 Proof Sketch

We provide a proof sketch of our main theorem (Theorem 1) in this section. The key lemma of the
proof is presented in Lemma 1.
Lemma 1 (Performance difference decomposition, Lemma 12 in Cheng et al. (2022)). For any
π, π̂ ∈ Π, and any f : S ×A → R, we can decompose J(π)− J(π̂) as

Eµ[(f − T π̂f)(s, a)] + Eπ[(T π̂f − f)(s, a)] + Eπ[f(s, π)− f(s, π̂)] + Lµ(π̂, f)− Lµ(π̂, Q
π̂).

Note that the first two terms in the RHS of the decomposition are average Bellman errors of f and π̂
w.r.t. µ and dπ . Based on this lemma, we can directly use the average Bellman error as the regularizer
instead of the squared Bellman error, which could be much larger and causes suboptimality.

Proof sketch of Theorem 1. For simplicity, we assume realizability of Qπ , i.e., ϵF = 0. By Lemma 1
and the definition of π̄, we have J(π)− J(π̄) = 1

K

∑K
k=1(J(π)− J(πk)), which equals to

1

K

K∑
k=1

(Eµ[(fk − T πkfk)(s, a)]︸ ︷︷ ︸
(a)

+Eπ[(T πkfk − fk)(s, a)]︸ ︷︷ ︸
(b)

+ Eπ[fk(s, π)− fk(s, πk)]︸ ︷︷ ︸
(c)

+Lµ(πk, fk)− Lµ(πk, Q
πk)︸ ︷︷ ︸

(d)

).

By the concentration argument, with high probability, we have Eµ(π, f) = ED(π, f) ± ϵstat and
Lµ(π, f) = LD(π, f)± ϵstat for all π ∈ Π and f ∈ F . Combining the fact that dπ/µ ∈ W , one can
show that (a) + (b) ≤ 2Eµ(πk, fk) ≤ 2ED(πk, fk) +O(ϵstat). Therefore,

(a) + (b) + (d) ≤Lµ(πk, fk) + 2ED(πk, fk) +O(ϵstat)− Lµ(πk, Q
πk)

≤LD(πk, fk) + 2ED(πk, fk) +O(ϵstat)− LD(πk, Q
πk)

≤LD(πk, Q
πk) + 2ED(πk, Q

πk) +O(ϵstat)− LD(πk, Q
πk)

≤O(ϵstat) + 2Eµ(πk, Q
πk) = O(ϵstat),

where the third inequality holds by the optimality of fk, and the last equality holds since the Bellman
error of Qπ w.r.t. π is 0. Therefore, with high probability,

J(π)− J(π̄) ≤ O(ϵstat) + ϵπopt.

6 Experiments

In this section, we conduct experiments of our proposed A-Crab algorithm (Algorithm 1) using a
selection of the Mujoco datasets (v2) from D4RL offline RL benchmark (Fu et al., 2020). In particular,
we compare the performances of A-Crab and ATAC, since ATAC is the state-of-the-art algorithm on
a range of continuous control tasks (Cheng et al., 2022).
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A more practical version of weighted average Bellman error. Recall the definition of our
proposed weighted average Bellman error regularizer

ED(π, f) = max
w∈W

|ED[w(s, a)(f(s, a)− r − γf(s′, π))]| .

Since the calculation of ED(π, f) requires solving an optimization problem w.r.t. importance weights
w, for computational efficiency, we chooseW = [0, C∞]S×A as in Hong et al. (2023), and thus
Eapp
D (π, f) = C∞ max{ED[(f(s, a)− r − γf(s′, π))+],ED[(r + γf(s′, π)− f(s, a))+]}, (8)

where (·)+ = max{·, 0} and C∞ can be viewed as a hyperparameter. We also observed that using a
combination of squared Bellman error and our average Bellman error achieves better performance in
practice, and we conjecture the reason is that the squared Bellman error regularizer is computationally
more efficient and statistically suboptimal, while our average Bellman error regularizer is statistically
optimal while computationally less efficient, and thus the combination of these two regularizers can
benefit the training procedure.

The practical implementation of our algorithm is nearly identical to (a lightweight version of)
ATAC (Cheng et al., 2022) , except that we choose

1

2

(
2Eapp

D (π, f) + βED[((f − T πf)(s, a))2]
)

as the regularizer, while ATAC uses βED[((f − T πf)(s, a))2]. All hyperparameters are the
same as ATAC, including β. For the additional hyperparamter C∞, we do a grid search on
{1, 2, 5, 10, 20, 50, 100, 200}.
Figure 2 compares the performance of ACrab and ATAC during training. It shows that our A-Crab has
higher returns and smaller deviations than ATAC in various settings (walker2d-random, halfcheetah-
medium-replay, hopper-medium-expert). We provide more details and results in Appendix F. We
also observed that in most settings, A-Crab has a smaller variance, which shows that the training
procedure of A-Crab is more stable. We provide the choice of β and C∞ for each setting in Table F.3.
Note that we use the same value of β as in ATAC.
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Figure 2: Comparison of A-Crab and ATAC. For each algorithm, we run 8 copies with random seeds
0-7 and plot the mean and standard deviation. We use the same pre-training method as ATAC for 100
epochs, and the plot starts after pre-training.

7 Discussion

We present a new offline RL algorithm called A-Crab (Algorithm 1) that can be combined with general
function approximators and handle datasets with partial coverage. A-Crab is an actor-critic method,
where the critic finds a relatively pessimistic evaluation of the actor while minimizing an importance-
weighted average Bellman error. We prove that A-Crab achieves the optimal statistical rate of 1/

√
N

converging to the best policy “covered” in the data. Importantly, the notion of coverage here is a
weaker ℓ2 variant of the single-policy concentrability, which only requires the average marginalized
importance weights over visitations of the target policy to be bounded. Also, A-Crab enjoys robust
policy improvement that consistently improves over the data-collection behavior policy. Moreover,
we empirically validated the effectiveness of A-Crab in the D4RL benchmark. Interesting avenues
for future work include combining A-Crab’s offline learning with an online fine-tuning algorithm
with a limited trial-and-error budget and developing new measures for single-policy coverage that
leverage both the visitation and hypothesis class structures.
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A Related Work

In this section, we review additional related literature not covered in the introductions.

A.1 Dataset Coverage Assumptions

One central challenge of offline RL is the insufficient coverage of the dataset. In RL theory, concen-
trability is often used to characterize dataset coverage (Munos, 2007; Scherrer, 2014). For example,
many earlier works require all-policy ℓ∞ concentrability (Scherrer, 2014; Liu et al., 2019a; Chen
and Jiang, 2019; Jiang, 2019; Wang et al., 2019; Liao et al., 2020; Zhang et al., 2020a). Some
works even require the ratio between occupancy probability induced by polices and the dataset
distribution to be bounded for every time step (Szepesvári and Munos, 2005; Munos, 2007; Antos
et al., 2008; Farahmand et al., 2010; Antos et al., 2007). The work Xie and Jiang (2021) makes
stronger assumptions such as requiring lower bound on conditionals µ(a|s).
Since the all-policy concentrability assumption is strong and can often be violated in practice, recent
algorithms requiring only partial data coverage assumptions are developed based on single-policy
ℓ∞ concentrability (Rashidinejad et al., 2021; Zhan et al., 2022; Rashidinejad et al., 2022; Chen and
Jiang, 2022; Ozdaglar et al., 2022). However, This could still be restrictive even if only single-policy
concentrability is required since the ℓ∞ concentrability is an upper bound of density ratios over all
state-action pairs.

Milder versions of ℓ∞ concentrability have been studied in both all-policy concentrability frame-
work (Xie and Jiang, 2020, 2021; Feng et al., 2019; Uehara et al., 2020) or and single-policy
concentrability (Uehara and Sun, 2021; Xie et al., 2021; Song et al., 2022; Cheng et al., 2022).
However, these works based on milder versions of ℓ∞ single-policy concentrability are either com-
putationally intractable (Uehara and Sun, 2021; Xie et al., 2021) or suffer a suboptimal statistical
rate (Cheng et al., 2022).

Our work uses ℓ2 concentrability version, which also appears in Xie and Jiang (2020). In particular,
they also use weighted average Bellman error in their algorithm. However, their algorithm requires
all-policy concentrability assumptions and thus cannot deal with partial dataset coverage. To the
best of our knowledge among previous works, only Uehara and Sun (2021) used ℓ2 single-policy
concentrability to characterize data coverage, but their algorithm is designed for model-based settings
and are computationally intractable. Another closely related work is Uehara et al. (2020), which also
uses weighted average Bellman error. However, their algorithm is in the off-policy evaluation (OPE)
framework, and they use ℓ∞ concentrability version to characterize dataset coverage.

A.2 Conservative offline reinforcement learning

To address partial dataset coverage in offline RL, a line of recent applied works studies conservative
algorithms, which can be divided into several categories.

The first category enforces the learned policy to be close to the behavior policy (or equivalently,
dataset), which ensures that candidate policies not well covered by the dataset are eliminated. This
can be accomplished by either adding constraints explicitly (Fujimoto et al., 2019; Kumar et al.,
2019; Wu et al., 2019; Jaques et al., 2019; Siegel et al., 2020; Ghasemipour et al., 2020; Fujimoto
and Gu, 2021), implicitly (Peng et al., 2019; Nair et al., 2020), or by importance sampling with
bounded ratio (Swaminathan and Joachims, 2015; Liu et al., 2019b; Nachum et al., 2019b; Zhang
et al., 2020c,b; Lee et al., 2021).

The second category consists of model-based methods such as adversarial model learning (Rigter
et al., 2022), learning pessimistic models (Kidambi et al., 2020; Guo et al., 2022), using model
ensembles to form penalties (Yu et al., 2020), or combining model and values (Yu et al., 2021).

The last category aims to learn conservative values such as fitted Q-iteration using conservative
update (Liu et al., 2020), conservative Q-learning (CQL) (Kumar et al., 2020), critic regularization
(Kostrikov et al., 2021), and subtracting penalties (Rezaeifar et al., 2022).

On the theoretical side, many works use some form of uncertainty quantification to design to
ensure pessimism (Yin and Wang, 2021; Kumar et al., 2021; Uehara et al., 2021; Yin et al., 2022;
Zhang et al., 2022; Yan et al., 2022; Shi and Chi, 2022; Wang et al., 2022). Except for uncertainty
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quantification, in linear function approximation settings, Zanette et al. (2021) uses value function
perturbation combined with the actor-critic method. Recent advances in the theory of pessimistic
algorithms include MIS (Zhan et al., 2022; Chen and Jiang, 2022) and adversarially trained actor-critic
(ATAC) (Cheng et al., 2022). In particular, our algorithm is built based on MIS combined with the
actor-critic method.

B Proof of Proposition 2.1

The first part of the proposition is easy to see:

(Cπ
ℓ2)

2 = ∥wπ∥22,µ = Eµ[(w
π(s, a))2] ≤ Eµ

[
Cπ

ℓ∞

dπ(s, a)

µ(s, a)

]
= Cπ

ℓ∞Eµ

[
dπ(s, a)

µ(s, a)

]
= Cπ

ℓ∞ ,

Cπ
ℓ2 = ∥wπ∥2,µ ≤ ∥wπ∥∞ = Cπ

∞.

For the second part, consider the case where for a fixed policy π and for any s ∈ S, a ∈ A, there
exists f ∈ F such that (f − T πf)(s, a) is non-zero only at (s, a) and is zero otherwise. The
Bellman-consistent concentrability defines Cπ

Bellman to be the smallest constant that

max
f∈F

∥f − T πf∥22,dπ

∥f − T πf∥22,µ
≤ Cπ

Bellman

=⇒max
s,a

(f − T πf)2(s, a)dπ(s, a)

(f − T πf)2(s, a)µ(s, a)
≤ Cπ

Bellman

=⇒max
s,a

dπ(s, a)

µ(s, a)
≤ Cπ

Bellman,

which makes it equal to the ℓ∞ variant. On the other hand, the ℓ2 variant only requires the average
importance weights to be bounded:

∑
s,a

(
dπ(s, a)

µ(s, a)

)2

µ(s, a) = Edπ

[
dπ(s, a)

µ(s, a)

]
≤ (Cπ

ℓ2)
2.

C Theoretical Analysis of the Main Theorem

In this section, we provide theoretical proof of our main theorem (Theorem 1). We first present two
key lemmas in Appendix C.1 and then prove the main theorem in Appendix C.3. For convenience,
we always assume Assumptions 1 to 3 hold.

C.1 Key lemmas

The first lemma shows that with high probability, the population version of our weighted average
Bellman error regularizer is close to the empirical version.

Lemma 2 (Concentration of the empirical regularizer). With probability at least 1−δ, for any f ∈ F ,
π ∈ Π, we have

|Eµ(π, f)− ED(π, f)| ≤ ϵstat.

Proof. We condition on the high probability event in Lemma 4. For any f ∈ F and π ∈ Π, define
w∗

π,f = argmaxw∈W Eµ(π, f) = argmaxw∈W |Eµ[w(s, a)(f − T πf)(s, a)]| and define ŵπ,f =
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argmaxw∈W ED(π, f) = argmaxw∈W

∣∣∣ 1N ∑(s,a,r,s′)∈D w(s, a)(f(s, a)− r − γf(s′, π))
∣∣∣. Then

Eµ(π, f)− ED(π, f)

=|Eµ[w
∗
π,f (s, a)(f − T πf)(s, a)]| −

∣∣∣∣∣∣ 1N
∑

(s,a,r,s′)∈D

ŵπ,f (s, a)(f(s, a)− r − γf(s′, π))

∣∣∣∣∣∣
=|Eµ[w

∗
π,f (s, a)(f − T πf)(s, a)]| − |Eµ[ŵπ,f (s, a)(f − T πf)(s, a)]|

+ |Eµ[ŵπ,f (s, a)(f − T πf)(s, a)]| −

∣∣∣∣∣∣ 1N
∑

(s,a,r,s′)∈D

ŵπ,f (s, a)(f(s, a)− r − γf(s′, π))

∣∣∣∣∣∣
≥0− ϵstat = −ϵstat,

where the inequality holds by the optimality of w∗
π,f and Lemma 4. Similarly,

Eµ(π, f)− ED(π, f)

=|Eµ[w
∗
π,f (s, a)(f − T πf)(s, a)]| −

∣∣∣∣∣∣ 1N
∑

(s,a,r,s′)∈D

w∗
π,f (s, a)(f(s, a)− r − γf(s′, π))

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1N
∑

(s,a,r,s′)∈D

w∗
π,f (s, a)(f(s, a)− r − γf(s′, π))

∣∣∣∣∣∣
−

∣∣∣∣∣∣ 1N
∑

(s,a,r,s′)∈D

ŵπ,f (s, a)(f(s, a)− r − γf(s′, π))

∣∣∣∣∣∣
≤ϵstat + 0 = ϵstat,

where the inequality holds by the optimality of ŵπ,f and Lemma 4.

The next lemma provides a high-probability upper bound of the empirical weighted average Bellman
error of fπ w.r.t. π, where fπ is the (approximate) Q-function of π.

Lemma 3 (Empirical weighted average Bellman error of approximate Q function). With probability
at least 1− δ, for any π ∈ Π, we have

ED(π, fπ) ≤ C⋆
ℓ2

√
ϵF + ϵstat.

where fπ = argminf∈F maxadmissible ν ∥f − T πf∥22,ν .

Proof. We condition on the high probability event in Lemma 2. Since

Eµ(π, fπ) = max
w∈W

|Eµ[w(s, a)(fπ − T πfπ)(s, a)]|

≤max
w∈W

∥w∥2,µ∥fπ − T πfπ∥2,µ

≤C⋆
ℓ2

√
ϵF ,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by the
definition of fπ and Assumption 1, we can immediately obtain that

ED(π, fπ) ≤ Eµ(π, fπ) + ϵstat = C⋆
ℓ2

√
ϵF + ϵstat.

C.2 Complementary lemmas

We provide two complementary lemmas in this section, which are both high-probability concentration
inequalities.
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Lemma 4 (Concentration of weighted average Bellman error). With probability at least 1− δ, for
any f ∈ F , π ∈ Π and w ∈ W , we have∣∣∣∣∣∣|Eµ[(f − T πf)w]| −

∣∣∣∣∣∣ 1N
∑

(s,a,r,s′)∈D

w(s, a)(f(s, a)− r − γf(s′, π))

∣∣∣∣∣∣
∣∣∣∣∣∣

≤O

(
VmaxC

⋆
ℓ2

√
log(|F||Π||W|/δ)

N
+

VmaxBw log(|F||Π||W|/δ)
N

)
≜ ϵstat.

Proof. It suffices to bound∣∣∣∣∣∣Eµ[(f − T πf)w]− 1

N

∑
(s,a,r,s′)∈D

w(s, a)(f(s, a)− r − γf(s′, π))

∣∣∣∣∣∣
for any fixed f ∈ F , π ∈ Π, w ∈ W , and a union bound and the triangle inequality conclude.

Note that

Eµ

 1

N

∑
(s,a,r,s′)∈D

(f(s, a)− r − γf(s′, π))w(s, a)


=E(s,a)∼µ,r∼r(s,a),s′∼P (·|s,a) [(f(s, a)− r − γf(s′, π))w(s, a)]

=E(s,a)∼µEr∼r(s,a),s′∼P (·|s,a) [(f(s, a)− r − γf(s′, π))w(s, a)|s, a]
=E(s,a)∼µ[(f(s, a)− T πf(s, a))w(s, a)].

Then by Bernstein’s inequality, we have that with probability at least 1− δ,∣∣∣∣∣∣Eµ[(f − T πf)w]− 1

N

∑
(s,a,r,s′)∈D

(f(s, a)− r − γf(s′, π))w(s, a)

∣∣∣∣∣∣
≤O

(√
Varµ[(f − T πf)w] log(1/δ)

N
+

VmaxBw log(1/δ)

N

)
.

Since
Varµ[(f − T πf)w] ≤ Eµ[(f − T πf)2w2] ≤ O(V 2

max∥w∥22,µ) ≤ O(V 2
max(C

⋆
ℓ2)

2),

we can obtain that∣∣∣∣∣∣Eµ[(f − T πf)w]− 1

N

∑
(s,a,r,s′)∈D

(f(s, a)− r − γf(s′, π))w(s, a)

∣∣∣∣∣∣
≤O

(
VmaxC

⋆
ℓ2

√
log(1/δ)

N
+

VmaxBw log(1/δ)

N

)
,

which implies the result.

Lemma 5 (Concentration of the actor’s objective). With probability at least 1− δ, for any f ∈ F ,
π ∈ Π, we have

|Lµ(π, f)− LD(π, f)| ≤ O

(
Vmax

√
log(|F||Π|/δ)

N

)
≤ ϵstat

where ϵstat is defined in Lemma 4.

Proof. Note that Eµ[LD(π, f)] = Lµ(π, f) and |f(s, π)− f(s, a)| ≤ O(Vmax). Applying a Hoeffd-
ing’s inequality for any fixed f , π and a union bound over all f ∈ F , π ∈ Π, we can obtain that with
probability at least 1− δ, it holds that

|Lµ(π, f)− LD(π, f)| ≤ O

(
Vmax

√
log(|F||Π|/δ)

N

)
.

for all f ∈ F and π ∈ Π.
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C.3 Proof of Theorem 1

Now we are able to prove our main theorem equipped with lemmas in previous sections.

Proof of Theorem 1. By Lemma 1 and the definition of π̄, we have

J(π)− J(π̄) =
1

K

K∑
k=1

(J(π)− J(πk))

=
1

K

K∑
k=1

(Eµ[(fk − T πkfk)(s, a)]︸ ︷︷ ︸
(a)

+Eπ[(T πkfk − fk)(s, a)]︸ ︷︷ ︸
(b)

+ Eπ[fk(s, π)− fk(s, πk)]︸ ︷︷ ︸
(c)

+Lµ(πk, fk)− Lµ(πk, Q
πk)︸ ︷︷ ︸

(d)

).

Now we condition on the high probability event in Lemma 2 and Lemma 5 simultaneously and
rescale δ by 1/2 and apply a union bound. Note that dπ/µ ∈ W , which implies that (a) + (b) ≤
2Eµ(πk, fk) ≤ 2ED(πk, fk) + 2ϵstat, where the last inequality holds by Lemma 2. By Lemma 13 of
Cheng et al. (2022), we can obtain that

|Lµ(πk, Q
πk)− Lµ(πk, fπk

)| ≤ ∥fπk
− T πkfπk

∥2,µ + ∥fπk
− T πkfπk

∥2,dπk ≤ O(
√
ϵF ),

where fπk
≜ argminf∈F maxadmissible ν ∥f − T πf∥22,ν . Also, by Lemma 5, we have

|Lµ(πk, fk)− LD(πk, fk)| + |Lµ(πk, fπk
)− LD(πk, fπk

)| ≤ O(ϵstat).

Therefore,

(a) + (b) + (d) ≤Lµ(πk, fk) + 2ED(πk, fk) + 2ϵstat − Lµ(πk, fπk
) +O(

√
ϵF )

≤LD(πk, fk) + 2ED(πk, fk) +O(ϵstat)− LD(πk, fπk
) +O(

√
ϵF )

≤LD(πk, fπk
) + 2ED(πk, fπk

) +O(ϵstat)− LD(πk, fπk
) +O(

√
ϵF )

≤O(ϵstat + C⋆
ℓ2

√
ϵF ).

where the third inequality holds by the optimality of fk, and the last inequality holds by Lemma 3.
Therefore,

J(π)− J(π̄) ≤ O(ϵstat + C⋆
ℓ2

√
ϵF ) + ϵπopt.

D Analysis of Robust Policy Improvement

Proof of Theorem 2. By Lemma 1 and the definition of π̄, we have

J(µ)− J(π̄) =
1

K

K∑
k=1

(J(µ)− J(πk))

=
1

K

K∑
k=1

(Eµ[(fk − T πkfk)(s, a)]︸ ︷︷ ︸
(a)

+Eµ[(T πkfk − fk)(s, a)]︸ ︷︷ ︸
(b)

+ Eπ[fk(s, µ)− fk(s, πk)]︸ ︷︷ ︸
(c)

+Lµ(πk, fk)− Lµ(πk, Q
πk)︸ ︷︷ ︸

(d)

).

Now we condition on the high probability event in Lemma 2 and Lemma 5 simultaneously and
rescale δ by 1/2 and apply a union bound. Note that (a) + (b) = 0. By Lemma 13 of Cheng et al.
(2022), we can obtain that

|Lµ(πk, Q
πk)− Lµ(πk, fπk

)| ≤ ∥fπk
− T πkfπk

∥2,µ + ∥fπk
− T πkfπk

∥2,dπk ≤ O(
√
ϵF ), (9)
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where fπk
≜ argminf∈F maxadmissible ν ∥f − T πf∥22,ν . Also, by Lemma 5, we have

|Lµ(πk, fk)− LD(πk, fk)| + |Lµ(πk, fπk
)− LD(πk, fπk

)| ≤ O(ϵstat). (10)

Therefore,

Lµ(πk, fk)− Lµ(πk, Q
πk)

≤Lµ(πk, fk) + βED(πk, fk)− Lµ(πk, Q
πk) (ED(·, ·) ≥ 0)

≤Lµ(πk, fk) + βED(πk, fk)− Lµ(πk, Q
πk)− βED(πk, fπk

)

+ βC⋆
ℓ2

√
ϵF + βϵstat (Lemma 3)

≲LD(πk, fk) + βED(πk, fk)− LD(πk, fπk
)− βED(πk, fπk

)

+ (β + 1)(ϵstat + C⋆
ℓ2

√
ϵF ) ((9), (10))

≤(β + 1)(ϵstat + C⋆
ℓ2

√
ϵF ). (Optimality of fk)

Therefore,

J(µ)− J(π̄) ≲ (β + 1)(ϵstat + C⋆
ℓ2

√
ϵF ) + ϵπopt.

E Analysis of the Suboptimality of ATAC

In this section, we prove Proposition 4.1 in Appendix E.1. For convenience, we use Bern(p) to
denote a Bernoulli variable with parameter p, and use Bin(n, p) to denote a binomial variable with
parameters n and p.

E.1 Proof of Proposition 4.1

Construction of a two-arm bandit example. Assume there are two arms a1, a2. Assume β =
Θ̃(Nα) where α > 1

2 . Note that this is a more general case than β = Θ(N2/3) as stated in the
proposition. Let ∆ = min{β/N, 1/10}. Assume the reward of the first arm is deterministic, i.e.,
r(a1) = 1/2 + ∆, and r(a2) = Bern(1/2). Let Π = {π1, π2}, where π1(a1) = 1, π1(a2) = 0, and
π2(a1) = 0, π2(a2) = 1. Also, let F = {f1, f2}, where f1(a1) = 1/2 + ∆, f1(a2) = 1/2 and
f2(a1) = 1/2 + ∆, f2(a2) = 1/2 + 2∆. Finally, the dataset distribution µ satisfies µ(a2) = 1

N∆2 ,
µ(a1) = 1 − µ(a2). Note that in bandit settings, for any policy π and any function f , we have
Qπ = T πf = r. Therefore, the example above satisfies both completeness and realizability
assumptions.

Proof of the suboptimality of ATAC. The ATAC algorithm is simplified to

π̂ ∈ argmax
π∈Π

Eµ[f
π(π)− fπ(a)],

s.t. fπ ∈ argmin
f∈F

Eµ[f(π)− f(a)] + βEµ[((f − r)(a))2],

in bandit settings.

For convenience, we assume that Pµ(a = a1) = PD(a = a1). Note that by anti-concentration of
the binomial distribution (Lemma 6), we have that with constant probability, it holds that r̂(a2) ≥
1
2 + 2√

Nµ(a2)
= 1

2 + 2∆.

Conditioned on this event, we compute fπ1 and fπ2 separately. We have

LD(π1, f1) =Eµ[f1(π1)− f1(a)] = f1(π1)− µ(a1)f1(a1)− µ(a2)f1(a2)

=µ(a2)(f1(a1)− f1(a2)) =
1

N∆
,

LD(π1, f2) =Eµ[f2(π1)− f2(a)] = f2(π1)− µ(a1)f2(a1)− µ(a2)f2(a2)

=µ(a2)(f2(a1)− f2(a2)) = −
1

N∆
,
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and

βED(π1, f1) =βEµ[((f1 − r)(a))2] = βµ(a2)

(
1

2

)2

=
βµ(a2)

4
,

βED(π1, f2) =βEµ[((f2 − r)(a))2]

=βµ(a2)

(
r̂(a2)

(
1

2
− 2∆

)2

+ (1− r̂(a2))

(
1

2
+ 2∆

)2
)

≤βµ(a2)

((
1

2
+ 2∆

)(
1

2
− 2∆

)2

+

(
1

2
− 2∆

)(
1

2
+ 2∆

)2
)

≤βµ(a2)

((
1

2

)2

− (2∆)
2

)

=
βµ(a2)

4
− 4

β

N
.

Also, we have

LD(π2, f1) =Eµ[f1(π2)− f1(a)] = f1(π2)− µ(a1)f1(a1)− µ(a2)f1(a2)

=µ(a1)(f1(a2)− f1(a1)) = −
(
1− 1

N∆2

)
∆,

LD(π2, f2) =Eµ[f2(π2)− f2(a)] = f2(π2)− µ(a1)f2(a1)− µ(a2)f2(a2)

=µ(a1)(f2(a2)− f2(a1)) =

(
1− 1

N∆2

)
∆,

and

βEµ(π2, f1) = βED(π1, f1) =
βµ(a2)

4
,

βEµ(π2, f2) = βED(π1, f2) ≤
βµ(a2)

4
− 4

β

N
.

Since β/N ≥ ∆, we can obtain that LD(π2, f1)+βED(π2, f1) > LD(π2, f2)+βED(π2, f2), which
implies that fπ2 = f2. Finally, note that

LD(π2, f
π2) = LD(π2, f2) >

∆

2
≥ 1

N∆
= |LD(π1, f

π1)|,

we have π̂=π2 by ATAC algorithm. Note that J(π1)− J(π̂) = r(π1)− r(π2) = ∆≫ Ω̃(1/
√
N).

Therefore, for any α > 1/2, there exists an instance s.t. ATAC cannot achieve the optimal rate
O(1/

√
N). In particular, when β = Θ(N2/3), we have J(π1)− J(π̂) = ∆ = Ω(1/N1/3).

E.2 Complementary lemma

Lemma 6 (Anti-concentration of Binomial distribution, adapted from Proposition 7.3.2 of Matoušek
and Vondrák (2001)). Let X ∼ Bin(n, 1

2 ) be a binomial random variable with mean µ = n
2 . Then

we have that for any t ∈ [0, 1
8 ] and universal constants c1, c2,

Pr (X ≥ µ+ nt) ≥ c1e
−c2t

2n.

F Additional Experimental Details and Results

F.1 More implementation details

Our implementation is nearly identical to ATAC, except that we use a different regularizer for the
critic. More details can be found in Cheng et al. (2022).
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Figure 3: Comparison of A-Crab and ATAC in more different settings.

F.2 Comparision of A-Crab and ATAC in different settings

In this section, we show comparisons of A-Crab and ATAC in more different settings in Figure 3.

F.3 Value of β and C∞ for each setting

In this section, we show our choices of β and C∞ for each setting in Table F.3. Note that
we directly choose the same value of β as in ATAC, and select C∞ by a grid search over
{1, 2, 5, 10, 20, 50, 100, 200}.
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Table 2: Choices of β and C∞ for each setting. The value of β is the same as in ATAC (Cheng et al.,
2022) and C∞ is chosen by a grid search.

β C∞

walker2d-random 64 50

walker2d-medium 64 1

walker2d-medium-replay 64 5

walker2d-medium-expert 64 2

hopper-random 64 2

hopper-medium 64 1

hopper-medium-replay 16 1

hopper-medium-expert 1 1

halfcheetah-random 16 10

halfcheetah-medium 4 1

halfcheetah-medium-replay 16 2

halfcheetah-medium-expert 0.062 5
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