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Abstract

We present RL-QESA—Reinforcement-Learning
Quasi-Equilibrium ~ Simulated Annealing—a
new framework that couples classical simulated
annealing (SA) with an adaptive, learning-based
cooling schedule. A policy network observes
block-level statistics and lowers the temperature
T, +1 only when the empirical energy moments
at T, coincide with their quasi-equilibrium
predictions, certifying that the sampler has fully
explored the current thermal state before cooling
further. We show that RL-QESA inherits SA’s
classical convergence guarantees while permitting
far richer cooling profiles than hand-crafted
schedules. On the Rosenbrock function and
Lennard—Jones cluster benchmarks, RL-QESA
attains up to three-fold faster convergence and
consistently lower terminal energies compared
with vanilla SA and recent neural variants. By
automating temperature descent in a principled,
quasi-equilibrium fashion and retaining simple
proposal mechanics, RL-QESA offers a robust,
learning-driven optimiser for challenging global
optimisation tasks.

1. Introduction

SA is a foundational metaheuristic for global optimisation,
tracing its origins to the physical annealing process that grad-
ually cools a material so it can settle into a low—energy state
(Kirkpatrick et al., 1983; van Laarhoven & Aarts, 1987).
By occasionally accepting uphill moves, SA enables trajec-
tories to escape local minima and explore rugged energy
landscapes, making it a workhorse for both continuous and
combinatorial problems ranging from VLSI layout to molec-
ular design.

Despite its elegance, SA’s real-world performance is no-
toriously sensitive to (i) the cooling schedule and (ii) the
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move-generation mechanism (Suman & Kumar, 2006; In-
gber, 1993). Classical recipes fix a hand-designed tem-
perature decay and couple it with a Gaussian proposal
whose variance is tuned by trial-and-error. Deviations in
either component can cripple exploration or waste com-
putation, and—more crucially—invalidate the theoretical
convergence guarantees that make SA attractive in the first
place (Eglese, 1990; Yang, 2008).

Our central insight is that the chain should cool only after
it has demonstrably equilibrated at the current temperature.
Let T}, be the temperature during block n. Denote by 1(T5,)
and o(T,,) the equilibrium mean and standard deviation
of the energy at T,,, and let (f)7, be the empirical mean
collected from the k Metropolis—Hastings moves in that
block. We declare block n to be in quasi-equilibrium when
the mean discrepancy falls below a tolerance A > 0:

\W(T) = (f)m| < Aa(Ty). ¢))

Whenever condition (1) holds, our RL controller is per-
mitted to lower the temperature; otherwise it continues
sampling at the current 7;, until sufficient mixing is ob-
served. This statistics-driven gate guarantees that every
cooling step respects the assumptions underlying SA’s clas-
sical convergence proofs (Geman & Geman, 1984; Hajek,
1988; Granville et al., 1994), while leaving the Metropolis—
Hastings proposal mechanism itself unchanged.

We translate the quasi-equilibrium criterion into action with
RL-QESA—Reinforcement-Learning Quasi-Equilibrium
Simulated Annealing. A single lightweight RL agent gov-
erns the cooling schedule: it observes block-level statis-
tics and lowers the temperature only when condition (1)
is met. Move proposals, by contrast, follow the classical
Metropolis—Hastings kernel with a fixed variance, so no
extra proposal agent or step-size tuning is required. Because
the proposal scale is held constant, temperature control is
completely decoupled from move generation—eliminating a
common source of manual engineering. The cooling policy
is trained with Proximal Policy Optimisation (PPO), produc-
ing an adaptive schedule that remains faithful to SA theory
yet flexibly adapts to the energy landscape.

This work makes three key contributions:

* We formulate SA as a block-level MDP that enforces
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a quasi-equilibrium check, and realise it with the
learning-driven RL-QESA framework.

* We prove that RL-QESA inherits the classical con-
vergence guarantees of logarithmic-cooling SA while
admitting much richer, data-dependent schedules.

* Experiments on the Rosenbrock function and
Lennard—Jones clusters show up to 3 x faster conver-
gence and lower final energies than vanilla SA and
recent neural variants—all without step-size tuning.

From an AI4Math perspective, RL-QESA showcases a
tight coupling between analytic rigour and learning: the
quasi-equilibrium constraint, equipped with Lipschitz con-
trol, yields a closed-form drop bound (cf. (2)) that is embed-
ded directly into the reward. A small transformer controller
is trained on-line to drive the temperature towards the analyt-
ically optimal update T, |, effectively saturating the bound
at each step and thereby achieving near-optimal cooling
speed without sacrificing convergence guarantees.

By embedding quasi-equilibrium monitoring into an
RL feedback-loop and retaining the simplicity of a
fixed-variance proposal, RL-QESA bridges the gap between
principled SA theory and the flexibility demanded by mod-
ern optimisation challenges.

2. Background and Related Work

Non-convex optimization poses significant challenges in sci-
entific computing and machine learning, where the objective
function f(x) may contain multiple local minima or saddle
points. Formally, one seeks

¥ =

arg min f(),

where X' C R" is the feasible region and f lacks convexity.
Classical gradient-based methods often fail to traverse these
rugged landscapes fully, leading to premature convergence
to local minima. Thus, global optimization heuristics like
SA are frequently employed to mitigate these issues.

SA, illustrated in Algorithm 1, is a stochastic global-search
metaheuristic inspired by physical annealing processes
(Kirkpatrick et al., 1983; Ingber, 1993).

At each iteration, SA proposes a candidate x;y; from
¢+ Az, accepting it according to the Metropolis-Hastings

criterion:
)1}

where T} is the system temperature at time ¢t. As 7; — 0
over many iterations, the distribution of states concentrates
on the set of global optima with high probability (Geman &

f(@i11) — f(@4)

P($t+1 | ZCt7Tt) = min{exp(— T
t

-

Algorithm 1 Simulated Annealing (SA)

Input: initial point X; initial temperature 77; cooling rule
C; proposal kernel M; outer iterations B; inner
iterations k

Output: approximate minimiser X%,
for b < 1to B do

> outer loop

fori < 1tok do > inner loop
draw X} ~ M(- | XiH T);
o - exp(— LEDFHIDY,
accept X} w.p. min{a, 1};
otherwise set Xz — Xé_l;
| Tog1 < C(Th);
return X%

Geman, 1984; Hajek, 1988; Granville et al., 1994). However,
achieving effective exploration heavily depends on two key
factors: (i) the cooling schedule or how T; decreases, and (ii)
the perturbation distribution, which determines how Ax;
is sampled. Figure 1 shows that several schedules reaching
the same terminal temperature can differ by more than an
order of magnitude in relative error if the chain is cooled
too quickly (panels b—c).

Prior work on learning-based annealing typically drives the
reinforcement-learning (RL) agent with a reward that de-
pends only on the final energy, implicitly assuming that
every intermediate temperature block has reached near-
equilibrium (Correia et al., 2023). Adaptive Simulated An-
nealing (ASA) introduces online step-size adjustment, yet
still follows a fixed—or at best heuristic—temperature curve
and therefore cannot guarantee equilibrium between succes-
sive blocks (Ingber, 1996). These observations motivate our
focus on adaptive, RL-driven cooling policies that explicitly
monitor convergence diagnostics rather than relying solely
on the final objective value.

Enhancing SA with Machine Learning. A growing body
of work integrates machine-learning techniques into SA to
automate or refine temperature schedules, move magnitudes,
and acceptance rules. In particular, reinforcement learning
(RL) has been employed to adjust acceptance thresholds
or move parameters by framing SA as a Markov-decision
process (Cai et al., 2019; Vashisht et al., 2020; Li et al.,
2023; Elgammal et al., 2021; Correia et al., 2023). Such RL-
based schemes replace manual heuristics with data-driven
strategies, improving adaptability across diverse problem
instances.

Neural-network integrations. Complementary to these RL
approaches, several recent papers weave the “heat—explore,
cool-exploit” logic of SA inside neural models themselves:



RL-QESA: Reinforcement-Learning Quasi-Equilibrium Simulated Annealing

Cooling Schedules (log T)

SA on L (relative error)

Rolling Acceptance Rate

Temperature
Relative Error

Acceptance Rate
(rolling window 100)

107
0 20000 40000 60000 100000 0

Iteration

80000 20000

40000

o
60000 100000 0

Iteration

80000

20000

40000 60000
Iteration

80000 100000

Figure 1. Impact of cooling schedules on simulated—annealing performance for the 6-atom Lennard—Jones cluster. Left, panel (a):
six classical schedules—geometric, linear, logarithmic (Boltzmann), Cauchy/fast-SA, very-fast SA, and Lundy—Mees—are matched to
the same starting temperature Tp = 3 and final temperature Tynq = 1072, Centre, panel (b): mean relative error | Evest — Ex|/|Ex|
over 20 independent runs (shaded band = 20th—80th percentiles after outlier removal). Schedules that cool too aggressively (Cauchy,
very-fast) freeze prematurely, whereas slow cooling (linear) wastes computation; geometric and Lundy—Mees achieve the lowest errors.
Right, panel (c): rolling 100-step acceptance rates clarify the sampling dynamics: abrupt schedules quench the chain almost immediately,
while smoother schedules prolong effective exploration. Together, the panels demonstrate that temperature policy alone can induce
orders-of-magnitude differences in optimisation quality and sampling behaviour, underscoring the importance of principled, adaptive

cooling.

1. Model-level cooling (SICNN). Chen et al. (2024) em-
bed a sparsity-penalised temperature term into an Input-
Convex Neural Network for optimal transport. The
penalty is annealed so the model first explores a wide
solution space, then gradually focuses for sharper trans-
port maps.

2. Hyper-parameter search (SA-CNN). Guo & Cao
(2022) treat filter sizes, learning rates, and other
CNN hyper-parameters as an annealing state, letting
SA stochastically explore that space and boost text-
categorisation accuracy without manual tuning.

3. Optimiser-level fusion (SA-GD). Cai (2021) inject
temperature-controlled probabilistic jumps into each
gradient-descent step, enabling escape from sharp local
minima and thus better generalisation.

Our RL-guided framework is complementary: it learns when
to fire these SA moves and how fast to cool. Hence it can act
as a plug-in decision layer for architectures such as SICNN
or SA-CNN while preserving their task-specific advantages.

Quasi-Equilibrium and Effective Sampling. Classical
convergence proofs for SA assume that, at every tempera-
ture T},, the Markov chain has reached (near) equilibrium
in the Boltzmann distribution 77, () x exp[—f(x)/T,)
before the system is cooled further (Geman & Geman, 1984;
Hajek, 1988; Granville et al., 1994). Empirical work soon
showed that premature cooling leads to metastability, inspir-
ing “equilibrium tests” based on energy-histogram overlap
(Aarts & Korst, 1985) and specific-heat plateaus (Romeo &
Sangiovanni-Vincentelli, 1991); in contrast, Xu et al. (2025)
achieve equilibrium by designing the move-generation ker-

nel itself to satisfy detailed balance at each temperature,
removing the need for such diagnostic checks.

Rapid equilibration also hinges on the efficiency of the
proposal kernel. Optimal-scaling theory for random-walk
Metropolis shows that an acceptance probability close to
0.234 maximises expected squared-jump distance as dimen-
sion grows (Roberts & Rosenthal, 1997; 2001). Adaptive
SA variants therefore rescale step sizes online to steer the
empirical acceptance rate toward this target, achieving prov-
able ergodicity while removing manual tuning (Atchadé &
Liu, 2010; Ingber, 1996).

Building on these insights, we introduce a single RL con-
troller that governs the temperature schedule: cooling
is postponed until equilibrium diagnostics—stabilised en-
ergy variance, sufficient effective sample size, and (option-
ally) replica-swap statistics—meet calibrated thresholds.
This sole “temperature agent” keeps the chain in quasi-
equilibrium at every thermal stage, thereby accelerating
traversal of rugged landscapes while retaining SA’s classical
global-optimality guarantees. Although the present work
keeps the Metropolis—Hastings proposal kernel fixed, we
outline how the framework naturally extends to learning
adaptive proposal distributions, results of which will be
reported in forthcoming work.

MDP. Formally, an MDP is a tuple (S, A, R, P, ), with
S as a state set, A as an action set, R as an immediate
reward function set, P as a transition kernel, and v € [0, 1)
as a discount factor (Bellman, 1957; Puterman, 1994; Sutton
& Barto, 1998). A policy 7 : S — P(A) is optimized to
maximize the expected discounted return. In the SA setting,
states might include the current solution , the temperature
T, and acceptance or energy statistics, while actions define
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how to perturb x or update 7". Rewards can reflect improved
sample quality or equilibrium adherence.

Neural Simulated Annealing (N-SA). Earlier efforts at
“Neural SA” have embedded neural networks to learn the
distribution used for candidate proposals or temperature
schedules (Correia et al., 2023). Although these methods
enhance adaptive capabilities, they often concentrate on
final cost objectives and do not explicitly enforce local equi-
librium conditions. By contrast, our design unites equilib-
rium checks with RL-driven scheduling and a Metropolis-
Hastings approach to move generation. This enables au-
tomated, quasi-equilibrium SA that retains the algorithm’s
classical global properties while reducing the manual tuning
burden.

In the next section, we detail our methodology, describ-
ing how multi-agent RL separately handles local move up-
dates and global temperature management to sustain near-
equilibrium conditions at each thermal stage.

3. Theory

This section formalises the quasi-equilibrium (QE) princi-
ple that underpins RL-QESA and proves that the resulting
algorithm inherits the global-optimisation guarantees of
classical SA. We first introduce the QE condition and the
associated convergence theorem, then derive an explicit
cooling-rate design rule that lets the agent cool as fast as
possible while still satisfying QE. Finally, we discuss how an
oft-line choice of proposal variance maximises intra-block
mixing efficiency.

3.1. Quasi-Equilibrium Criterion and Convergence
Guarantees

LetT; > T, > - - - be the (unknown) temperature sequence
generated by a continuous, monotone decreasing cooling
function C': [0, 00) — [0, 00):

o0
Tot1 = C(T,), ZTn = o0, T, — 0.
n=1

Within block n the sampler performs k Metropolis—Hastings
(MH) steps at temperature T}, using a fixed Gaussian pro-

: 2
posal variance oy,

QE condition. Let (7)) and o(T;,) denote the Boltz-
mann mean and standard deviation of the energy at temper-
ature T,,. Let (f)r, be the empirical mean energy collected

during the £ MH moves in block n. For a tolerance parame-
ter A > 0, block n satisfies QE if

’M(Tn) - <f>Tn

< Ao(Ty). ()

RL-QESA is allowed to transition from 7;, to 1},11 only
after (1) holds, guaranteeing sufficient mixing at each tem-
perature.

Theorem 3.1 (Almost-sure convergence under QE). As-
sume that

(i) the MH kernel with fixed variance is irreducible and
aperiodic at every T,,;

(ii) the cooling function C' is monotone decreasing, with
Tn,—0and ", T, = oco; and

(iii) every block satisfies the QF condition (1).

Then, with probability 1, the state trajectory visits every
global minimiser of f infinitely often and converges almost
surely to the global minimum level set.

Proof sketch. The proof adapts the supermartingale frame-
work of Geman & Geman (1984), Hajek (1988), and
Granville et al. (1994). QE guarantees that each temper-
ature drop occurs only after the chain is O(\)-close (in
mean energy) to the Boltzmann law at 7;,. Combined with
the logarithmic tail ), T, = oo, this yields the same prob-
abilistic bounds on escaping local minima as in standard
SA.

3.2. A Fast - Yet Safe — Cooling-Rate Design

Our goal is to cool as aggressively as possible while still
respecting the quasi-equilibrium constraint (1). The key
observation is that the admissible temperature drop depends
on the smoothness of the Boltzmann mean energy u(7), a
purely mathematical property of the underlying optimisation
landscape. Below we derive an explicit upper bound on
AT, =T, — T, +1 and then show how RL-QESA learns,
in an on-line fashion, to approximate that bound without
ever violating QE. This bridges the mathematical design
rule with the data-driven policy that the Al4Math workshop
emphasises.

Assumption 3.2 (Lipschitz continuity of ;). There exists
L > 0 such that |(T) — p(T")] < L|T — T'| for all
7,7 > 0.

Assumption 3.2 holds whenever f(x) has finite second mo-
ments under all Boltzmann distributions, a mild condition
satisfied by most bounded-below energies.

Lemma 3.3 (Maximum admissible temperature drop). Let
en = [(f)1, — W(T})| be the sampling error after k MH
moves at T,,. Under Assumption 3.2, any temperature up-
date obeying

Ao(T,) —en
L

guarantees that block n+1 will start within the QF tolerance

(D.

AT, < (@)
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Corollary 3.4 (Fastest monotone schedule). Define the one-
step optimum
Mo (T,) —en }
7 .

The sequence {T}} is the fastest monotone decreasing
schedule that never violates quasi-equilibrium.

Ty = maX{T<Tn:T,L—T§

n

Lemma 3.3 couples two quantities: (a) the sampling er-
ror £, = O(k~'/?), observable on-line; and (b) the local
Lipschitz constant L, generally unknown in black-box op-
timisation. Instead of estimating L explicitly, RL-QESA
trains a policy 7 : S — (0, 1) that maps the current block
statistics S;, = (T, {f)T,,,€n, - - - ) to @ cooling coefficient
ant1 = 79(Sn), and sets Ty, 11 = vy y1T5,. The policy is
rewarded according to

R, = _(an+1 - 1) T, - ﬁ]]-{QEviolated} .

encourage fast cooling

penalise breach of (1)

where 8 > T3 is a large constant. This reward encodes
exactly the optimisation problem of Corollary 3.4: maximise
the temperature drop subject to the QE constraint. Proximal
Policy Optimisation (PPO) updates (Schulman et al., 2017)
adjust 0 so that o, ~ 1 — 2202)=¢n thereby yielding

LT,
Tny1~T), | without knowing L in advance.

Because £, = O(k~'/?), inequality (2) shows that dou-
bling k increases the admissible temperature drop by a
factor of v/2. Hence, the RL agent faces a natural explo-
ration—exploitation trade-off: invest more MH steps (larger
k) to reduce e, or accept a smaller drop AT,,. PPO implic-
itly learns this trade-off by observing returns accumulated
over many training episodes.

4. Method

Subsection 4.1 casts SA as a single-agent MDP: the agent
chooses the next temperature 7),4; while the Metropo-
lis—Hastings proposals keep a fixed variance. Subsection 4.2
describes the Transformer policy that makes those cooling
decisions, using attention over past block-level statistics.
Together, they explain what we control (temperature) and
how we learn it, setting the stage for Section 5.

4.1. MDP Formulation for Simulated Annealing with
Adaptive Cooling

We recast classical Simulated Annealing (SA) as an MDP
with one agent that selects the cooling coefficient o, 41 €
(0, 1) at the end of each block n. The run is divided into B
blocks; each block executes k Metropolis—Hastings (MH)

steps with a constant proposal variance o2.

After block n the environment returns

Sn = (Tm ()., <f2>Tn’ U(f)T,Lapn) €S,

9
10
11
12
13
14
15
16

17

Algorithm 2 RL-QESA (deployment)

Input: initial point Xy; initial temperature 77; trained pol-
icy mp; proposal variance o2; outer iterations B;
inner iterations k

Output: approx. minimiser X &

for b +— 1to B do

fori< 1tokdo
draw X} ~ N(X; 1, 0%1);
o e expl— (F(X}) = f(X;7)) /T
accept X! w.p. min{a, 1};
otherwise set X} <+ X;~ ! ;
compute summary Sy = (Ty, i, 0p, Pp) ;
| b1 < mo(Sp) s Top1 < ap1Th
return X &

where T, is the current temperature, {f)r, and o(f)r, are
the mean and standard deviation of the observed energies,
and p,, is the acceptance rate in that block.

Given S,,, the agent outputs o, +1 and sets Ty, 11 = 1 715.
‘We employ the block-level reward

Ry = —(ans1 — 1) T — B 1{QE violated} » (1

with large [ to heavily penalise any breach of the
quasi-equilibrium (QE) condition (1). The first term en-
courages maximal cooling; the second enforces safety.

Within block n + 1 we draw £k proposals
X, ~ N(X,,_1,0%I) and accept with probability

min{1, exp[~(f(Xpn) — f(Xm-1))/Tos1]}. No proposal
parameters are adapted.

4.2. Transformer Policy Architecture

t-1 t
Transformer 00 o0

TITTLT
PRQOOO

Figure 2. Transformer-based cooling policy in RL-QESA. A se-
quence of past block summaries—state s, action a, and reward
R—is fed into the transformer; the head emits the next cooling
action a;.

Block summaries {S1,...,S,} form a sequence whose
global context can influence future cooling decisions. Com-
pared with recurrent networks, transformers capture such
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long-range dependencies via multi-head self-attention, with-
out suffering from vanishing gradients, and scale naturally
to hundreds of blocks.

Each summary .S,, is mapped through a small MLP ¢ : S —
Rdmoael | Positional encodings p,, (learned or sinusoidal) are
added to preserve order:

Z?L = ¢<Sn) + Pn-

The sequence {z°} is processed by L transformer blocks:

2},

Causal masking ensures that block n attends only to 1:n.

25T = TFBlock,(z!,, {2}, ... ¢=0,...,L—1.

The final hidden state h,, = zl is passed through a
two-layer head to produce the cooling coefficient o, 1 €
(0,1):

Opt1 = O'(W2 ReLU(WlhnD,
where o is the logistic function.

We optimise the policy with PPO (Schulman et al., 2017),
treating (1) as the episode-level return. Because QE viola-
tions trigger a large negative reward, the policy quickly
learns to approach the analytical cooling bound ( Sec-
tion 3.2) without explicit knowledge of the Lipschitz con-
stant.

The transformer aggregates historical acceptance rates, en-
ergy moments, and previous temperature drops. These fea-
tures allow the agent to predict when the chain is close
to equilibrium and to adjust «,,4; accordingly. Over re-
peated episodes, PPO converges to a policy that (i) cools
near the theoretical limit, yet (ii) maintains the QE con-
straint—mirroring the guarantees proved in Section 3.

A mathematically derived constraint (QE) shapes the
reward, while a transformer—state-of-the-art sequence
model—Ilearns on-line to saturate the cooling bound, demon-
strating how modern learning can operationalise rigorous
analytic insight.

5. Experiment Results

We assess our model using two well-known non-convex
optimization benchmarks: the Rosenbrock function (Rosen-
brock, 1960) and the Lennard-Jones potential (Wales &
Doye, 1997). For our experiments, both the N-SA (Correia
et al., 2023) and the RL-QESA architectures are employed,
maintaining consistent architecture and hyper-parameters
across all test cases. We consider varying problem sizes for
these benchmarks, with further details to be discussed in
subsequent sections.

In our experimental setup, the policy functions for N-SA
and RL-QESA are initially trained on smaller datasets and

subsequently tested on larger problem sets. This approach
allows us to explore the scalability and adaptability of our
proposed models. We maintain a uniform initial distribution
for all datasets and utilize an exponential cooling schedule
defined by T}, = aTé", which aids in the evaluation of the
model’s performance across different scales.

5.1. Rosenbrock Benchmark

The classical N-dimensional Rosenbrock function serves as
our non-convex testbed:

N-1

[ =3 {100(xi+1—xf)2+(1—xi)2},x e [-2,2]",
i=1
with its unique global minimiser at x* = (1,...,1). The

Rosenbrock function is notoriously ill-conditioned: gradi-
ents direct the optimiser toward a narrow, curved valley and
then become nearly parallel to the shallow slope that leads
to the global minimum.

The 2-D illustration in Fig. 3 shows how a classical SA
run explores the steep ridges of the Rosenbrock landscape,
slips into the narrow valley, and eventually converges to the
global minimiser at (1, 1).

Table 1 extends the comparison to N € {10, 20,50} di-
mensions and six evaluation budgets. RL-QESA consis-
tently dominates the baselines. At the earliest checkpoint
(1000 evaluations) it already achieves the lowest energy for
N =10and N = 20, and is a close second for N = 50. By
10000 evaluations it matches or surpasses the best compet-
ing method in every setting; at the full 50 000 evaluations it
attains the lowest mean energy in all cases, often by an order
of magnitude (red cells). Standard deviations shrink in par-
allel, indicating that the learned cooling schedule is reliable,
not merely lucky. These trends confirm the qualitative pic-
ture in Fig. 3: the transformer policy cools aggressively but
safely, reaching the curved valley faster than a hand-tuned
logarithmic schedule and finishing with consistently lower
energies as dimensionality grows.

5.2. The Lenard-Jones Potential

The Lennard—Jones potential is defined as

vor-u[(2)- 2]

where 7 is the distance between particles, e is the depth of
the potential well, and o is the finite distance at which the
inter—particle potential vanishes.

Table 2 reports mean energies over 10 runs for cluster sizes
N =6,9,13 at 10k and 20k evaluations. Across all settings
RL-QESA finds the lowest (most negative) energies, often
by large margins: for N =13 it improves on vanilla SA by
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Table 1. Comparison of simulation results for the Rosenbrock function. Each entry shows the mean energy over 20 runs, followed by the
standard deviation in parentheses. The best and second-best numbers in each column are highlighted red and blue, respectively.

Iterations \ 1000 2000 5000 10000 20000 50000
Problem Size: 10
SA 32.67 (3.36) 2292 (3.18) 19.56(2.86) 8.13(1.65) 0.88(0.51) 0.004 (<0.001)
N-SA 28.65(2.99) 29.86(3.24) 1891 (2.65) 6.36(1.76) 1.22(0.82) 0.004 (<0.001)
RL-QESA | 25.78 (3.09) 23.54(2.86) 13.64 (2.40) 6.37 (1.50) 0.97 (0.61) 0.002 (<0.0001)
Problem Size: 20
SA 61.46 (4.86) 57.72 (4.34) 34.20(2.82) 1791 (2.17) 2.08 (0.84) 0.30 (0.10)
N-SA 60.80 (4.39) 54.29 (3.69) 34.64(2.95) 15.23(2.01) 2.39(0.78) 0.01 (0.01)
RL-QESA | 54.96 (4.01) 47.01 (4.15) 29.61 (3.07) 14.34(1.88) 2.02(0.75) 0.004 (<0.001)
Problem Size: 50
SA 153.08 (5.60) 134.43 (4.62) 84.77 (4.14) 40.68 (2.54) 5.66 (0.83) 2.40 (0.30)
N-SA 165.56 (5.80) 135.79 (4.39) 84.36(3.74) 38.86 (2.78) 5.47 (1.00) 0.10 (0.20)
RL-QESA | 153.70 (4.75) 121.30 (5.26) 83.55(3.70) 34.51 (2.27) 4.91(0.89) 0.01 (<0.001)

m— SA path
Start
# Minimum

Figure 3. SA trajectory (red) on the log-scaled Rosenbrock land-
scape. The algorithm begins at the orange diamond, explores
broadly, enters the curved valley, and converges to the global
minimum (black Xx). Projected contours highlight the valley’s
geometry.

~11¢ at 20k steps and reduces the variance by more than
a factor of two. Neural SA narrows the gap in easy cases
(N =6) but shows large fluctuations for /N =13, confirming
that a static neural schedule cannot reliably navigate the
hard—core repulsion and the delicate many-body minima.
The transformer—guided cooling of RL-QESA therefore
offers both faster convergence and higher robustness on this
rugged potential landscape.

6. Conclusion and Outlook

We presented RL-QESA, a transformer-guided extension
of simulated annealing that enforces a quasi-equilibrium test
at the end of every block. On both smooth (Rosenbrock) and
rugged (Lennard—Jones) benchmarks the policy learns to
cool sooner than a fixed logarithmic schedule while keeping

Table 2. Simulation results for the Lennard—Jones potential. Each
entry is the mean energy over 10 runs; the number in parentheses
is the standard deviation. The best (most negative) and second-best
values per column are shaded red and blue, respectively.

Iterations 10000 20000
N =6
SA —1.14 (£3.43)  —2.24 (+4.95)
N-SA —9.29 (£0.81)  —10.83 (+0.82)
RL-QESA | —11.11 (+0.25) —12.20 (+£0.06)
N=9
SA —17.09 (£3.23)  —18.58 (+1.24)
N-SA —17.11 (£1.82)  —18.85 (+1.12)
RL-QESA | —20.96 (+0.61) —23.14 (+0.21)
N =13
SA —25.05 (£3.03) —26.81 (£2.39)
N-SA —18.51 (£95.09) —27.25 (£13.27)
RL-QESA | —36.30 (+£5.36) —40.74 (+£3.27)

the sampler near Boltzmann equilibrium, which translates
into faster convergence and lower final energies than classi-
cal SA and neural-annealing baselines.

The main limitation is that the size of each temperature
drop is still hand-fixed: the policy decides when to cool but
not how far. Subsection 3.2 shows that substantially larger
drops remain theoretically safe once quasi-equilibrium is
achieved, so letting the agent predict the cooling magnitude
should reduce wall-clock time even further.

Immediate extensions include a discrete test prob-
lem—where the same equilibrium check can be computed
from cost samples and acceptance statistics. We also
plan to scale to Lennard—Jones clusters with hundreds of
atoms, combining adaptive cooling with basin-hopping
moves. A parallel line of work will add a second agent
that chooses proposal scales or neighbourhood operators,
pushing RL-QESA toward a fully self-tuning optimiser for
both continuous and combinatorial landscapes.
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