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ABSTRACT

We show vectorized sketch generation can be identified as a reversal of the stroke
deformation process. This relationship was established by means of a diffusion
model that learns data distributions over the stroke-point locations and pen states
of real human sketches. Given randomly scattered stroke-points, sketch generation
becomes a process of deformation-based denoising, where the generator rectifies
positions of stroke points at each timestep to converge at a recognizable sketch.
A key innovation was to embed recognizability into the reverse time diffusion
process. It was observed that the estimated noise during the reversal process is
strongly correlated with sketch classification accuracy. An auxiliary recurrent neu-
ral network (RNN) was consequently used to quantify recognizability during data
sampling. It follows that, based on the recognizability scores, a sampling short-
cut function can also be devised that renders better quality sketches with fewer
sampling steps. Finally it is shown that the model can be easily extended to a con-
ditional generation framework, where given incomplete and unfaithful sketches, it
yields one that is more visually appealing and with higher recognizability.

1 INTRODUCTION

Free-hand human sketches are abstract concepts which can efficiently express ideas. Generative
models for sketches have received increasing attentions in recent years. Compared with producing
pixelated sketches (Ge et al., 2020; Chen et al., 2001; Liu et al., 2020), modeling sketches with
point trajectories is more reasonable and appealing as it more closely resembles drawing process of
humans. Sketch-RNN (Ha & Eck, 2018) utilizes a set of discrete stroke points and binary pen states
as an approximation of the continuous drawing trajectory. BézierSketch (Das et al., 2020) makes
use of parametric representation, which fits the stroke trajectory by Bézier curves. Very recently,
SketchODE (Das et al., 2021a) applies neural ordinary differential equations to representing stroke
trajectory through continuous-time functions. All said approaches however suffer from the inability
to model complex vectorized sketches. This is largely attributed to the de-facto RNN backbone that
falls short in accommodating large stroke point numbers – rule of thumb is anything beyond 200
points will fail (Pascanu et al., 2013; Das et al., 2021b).

In this paper, we attempt to change the status quo in how stroke-point trajectories are modeled.
Instead of seeing sketch generation as a process of determining where the next stroke-point lies
under each recurrent step (as per RNN), we attempt to estimate distributions of all stroke-points
holistically at each time instance – as every knitting enthusiast will tell you, it is all about having a
global plan, never just about the next thread! 1.

Our key novelty lies with the realization that sketch generation can be conceptualized as the reversal
of a stroke deformation process. Through modeling a forward deformation process (i.e., sketch to
noise), our diffusion model learns the stroke-point distributions of real human sketches, and thus
able to reverse the process to generate novel sketches given noisy input. It follows that given this
diffusion setup, the sequential information in sketches can be persevered by simply maintaining the
temporal ordering of stroke-points during reverse-time diffusion.

∗Correspondence to: Yonggang Qi (qiyg@bupt.edu.cn). Code to be found at GitHub page
1https://www.ravelry.com/
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Figure 1: (a) Built on diffusion models, sketch generation is formulated as a stroke deformation
rectification problem. Essentially, our model is to reorganize points with fixed adjacency, such that
placing them on meaningful locations out of a total mess, dubbed sketch knitting. Note that the order
of stroke points is pre-determined and unchanged. (b) Generated sketches with different deformation
levels associated with timesteps by our model. Early sampling stage is not efficient that the obtained
data change little and remain noisy. (c) Early sampling is inefficient as basically the same estimated
noise to each stroke point is used, led sketch remains noisy and unrecognizable. And different noise
patterns can be observed at different timesteps, which motivate us to devise recognizability-based
skipping (blue△) based on the estimated noise to find shortcut sampling. Red solid curve denotes
mean and the shade denotes variance. 1000 generated sketches are used for plotting.

We further draw importance on the overall quality (recognizability) of the sketches generated. We
show that the estimated noise in the sampling stage naturally can reflect the recognizability of the
generated sketch at each timestep. It follows that a learnable RNN was devised to explicitly model
the relation between estimated noise and recognizability. This is achieved by introducing an pre-
trained image classifier as supervision signal. Embedding recognizabilty into the sampling process
also yields the added benefit of introducing skip steps that allows for more efficient and effective data
generation. This is because early stages for generating sequential data is very inefficient using vanilla
DDPMs sampling (Ho et al., 2020) as witnessed in Figure 1 (b), resulting in minor improvement of
recognizability in a long period of sampling as unveiled in Figure 1 (c).

Last but not least, we demonstrate the model (without retraining) can be readily used to remedy de-
fects in sketches due to unfaithful or incomplete drawing, by incorporating instance-aware guidance
into data sampling. Motivated by recent works on guided diffusion models (Dhariwal & Nichol,
2021; Ho & Salimans, 2022), gradients of perceptual similarity (Zhang et al., 2018) between the
generated data and the conditional sketch were incorporated during sampling to guide the noise pre-
diction, thereby influencing the obtained sample at each timestep. This was done with the goal of
enforcing visual similarity to the conditional, flawed sketch, while also being more appealing and
recognizable after reverse-time diffusion.

Our contributions can be summarized as follows: (i) Denoising diffusion models are exploited for
sketch generation in vector format. The generative model is to learn distribution over stroke points’
locations, from a deformation-based denoising process which starts from noise. (ii) The quality,
i.e., recognizablity, of the generated sketches is quantifiable by leveraging the knowledge of the
estimated noises during sampling. This is achieved by devising an auxiliary RNN, which is trained
supervised under a pre-trained image classifier, to predict the recognizability of a generated sketch at
timestep t from the corresponding estimated noise. (iii) A shortcut sampling path can be discovered
through a simple skip strategy based on the learned quality measurement net. This allows faster
and more effective generation with little trade off in data quality. (iv) Instance-aware guidance built
on perceptual metric is embedded into the reverse-time diffusion. It enables our model to recover
distorted or corrupted sketches without retraining.

2 RELATED WORKS

Sketch Generation There is a rich literature of research works related to sketch generation. Early
works (Guo et al., 2007; Li et al., 2019) leverage edge maps as substitution for sketches. Coupled
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with deep learning, much progress has been made recently. Particularly, generative adversarial net-
works (GANs) have motivated extensive works in sketch synthesis, involving doodle-sketch genera-
tion (Ge et al., 2020), image-to-sketch translation (Liu et al., 2020), colored sketch rendering(Rathod
et al., 2021), pencil-shading sketch generation (Li et al., 2020b), and face sketch synthesis (Wang
et al., 2020). However, those models are all pixel-based generation, which is fundamentally dif-
ferent from how humans sketch objects using pens or brushes. Towards modeling sketches like
humans, sketches are preferred to be treated as sequential pen actions, and RNN-based variational
autoencoder (VAE) (Ha & Eck, 2018; Zhang et al., 2017; Graves, 2013), reinforcement learning
(RL) (Xie et al., 2013; Zheng et al., 2018; Ganin et al., 2018), Transformed-based sketch represen-
tation (Ribeiro et al., 2020; Lin et al., 2020), learning parametric Bézier curve (Das et al., 2020;
2021b), and neural ODE (Das et al., 2021a) are explored for sketch generation. (Aksan et al., 2020)
proposes a relational model built on auto-encoder, which can decompose sketch formed by a single
temporal sequence into a group of disordered strokes. Particularly, promising generative results on
complex structures have been witnessed. Other notable works include generating stylized line draw-
ing from 3D shapes (Liu et al., 2021), and intent communication through sketching by referential
communication game (Mihai & Hare, 2021).

Diffusion Models Recently, approaches with diffusion models have delivered impressive results on
several generative tasks, including image generation (Ho et al., 2020; Dhariwal & Nichol, 2021),
shape generation (Cai et al., 2020), 3D shape modelling (Luo & Hu, 2021), audio synthesis (Kong
et al., 2020), and cross-domain generation (Popov et al., 2021; Nichol et al., 2021). Different from
likelihood-based models (variational auto-encoder (VAEs) (Kingma & Welling, 2013), normalizing
flow models (Dinh et al., 2014; Papamakarios et al., 2021), energy-based models (EBMs) (LeCun
et al., 2006)) and implicit generative models (GANs (Goodfellow et al., 2014)), diffusion models
can be categorized into score-based generative modeling (SGM) (Song et al., 2020), which aims to
model the gradient of the log probability density function by score matching (Hyvärinen & Dayan,
2005). There are two popular sub-classes in SGMs, i.e., score matching with Langevin dynam-
ics (SMLD) (Song & Ermon, 2019) and denoising diffusion probabilistic models (DDPM) (Sohl-
Dickstein et al., 2015; Ho et al., 2020). Despite attractive, rare work with diffusion models targets
at handling sketches. The most relevant work to ours is Diff-HW (Luhman & Luhman, 2020) which
also applies diffusion models for sequential data generation, i.e., handwriting. However, Diff-HW
adopts the vanilla DDPMs and focuses on text-to-sketch translation. On contrast, we offer (model
built-in) quality quantifiable diffusion models, improved sampling strategy and gradients guided
conditional sampling based on DDIM.

3 DIFFUSION MODELS FOR VECTORIZED SKETCH GENERATION

Our objective is to generate sketch stroke sequences from noise by a novel method built on denois-
ing diffusion implicit models (DDIMs). DDIMs generalize DDPMs by introducing a non-Markovian
diffusion process, which yet still has the same forward marginals as DDPMs. Uniquely, we propose
a method to find a shortcut sampling trajectory based on recognizablity of a generated sketch. More-
over, we will present how to rectify a flawed sketch by our trained unconditional sketch generation
model on-the-fly during the generative process.

3.1 PROBLEM SETUP

We construct a sketch in a sequence as s0 = {s1, s2, . . . , sN} using the representation from Ha
& Eck (2018), i.e. stroke-3. Each point si is represented as a 3-D vector (∆xi,∆yi, gi), where
(∆xi,∆yi) indicates the offsets at point i during the pen’s moving trajectory, and gi is a binary pen
state, denoting whether the pen is touching the paper or not. Our goal is to learn the probability
distribution of the offsets {(∆xi,∆yi)} from the training data by diffusion models. Then, a sketch
can be drawn given the estimated (∆xi,∆yi) for each point and the corresponding pen state pi
inferred by a pen-state network. We will describe more details in the following sections.

3.2 SKETCH DIFFUSION IN FORWARD PROCESS

During the forward process, the noise will be gradually added to each point offsets of an original
sketch, resulting in increased stroke distortion over time. Consider we have N ordered stroke points
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for a given sketch s0 = {s1, s2, . . . , sN}, the offset (∆xi,∆yi) of each point si is supposed to
be sampled independently from a distribution q(s0). To diffuse s0 into s1, . . . , sT , the Markov
diffusion process introduced in DDPMs is applied here. Formally, the forward process enforces each
of the point offsets (∆xi,∆yi) in s0 to drift along both x and y coordinates by gradually adding
noises sampled from Gaussain distributions with pre-defined schedules α1, . . . , αT . Therefore, the
Markov chain in forward process is defined by:

q(s1:T |s0) :=
T∏
t=1

q(st|st−1), q(st|st−1) := N
(
st;

√
αt
αt−1

st−1,

(
1− αt

αt−1

)
I

)
. (1)

3.3 DDIM BASED GENERATIVE PROCESS

Following (Song et al., 2021), DDIM-based sampling is adopted to generate sketches from noise,
i.e., the reverse process, as it normally achieves high data quality with significantly small sampling
steps. More importantly, their non-Markovian sampling process supports us in discovering a novel
shortcut sampling function being more efficient and effective for our sketch generation. Formally,
the generative process is defined as follows:

qσ(st−1|st, s0) = N
(
√
αt−1s0 +

√
1− αt−1 − σ2

t ·
st −

√
αts0√

1− αt
, σ2
t I

)
. (2)

With DDIM we can predict s0 through the generative process

p
(t)
θ (st−1|st) =

{
N (f

(1)
θ (s1), σ

2
1I) if t=1

qσ(st−1|st, f (t)θ (st)), otherwise
(3)

where f (t)θ (st) = (st −
√
1− αt · ϵ(t)θ (st))/

√
αt is a prediction of s0 based on our noise approxi-

mator ϵ(t)θ . Then we can sample a data sample s0 from a random noise sT = N (0, I) by iteratively
repeating the following equation

st−1 =
√
αt−1

(
st −

√
1− αtϵ

(t)
θ (st)√

αt

)
+
√
1− αt−1 − σ2

t · ϵ
(t)
θ (st). (4)

More detailed derivations about DDPMs and how DDIMs generalize DDPMs by defining a non-
Markovian forward process and obtain the corresponding generative process described in Eq. 3 can
be found in Appendix A.1 and Appendix A.2.

3.4 NOISE APPROXIMATOR ϵ
(t)
θ

In our case the noise approximator ϵ(t)θ (st) in Eq (4) is a trainable network to estimate noise ϵ(t) ∈
RN×2 as coordinate offsets for st ∈ RN×2 at timestep t. An improved U-Net is developed to handle
the sequence of the points from a vectorized sketch. Namely, we add a trainable embedding and a
decoding layer into U-Net to transform the input st into an embedding et ∈ RN×128 and convert the
penultimate feature embedding back to coordinates. Then the rest design is as per the conventional
U-Net for dealing with 2D images. Please refer to Appendix A.3 for details.

3.5 RECOGNIZABILITY BASED SHORTCUT SAMPLING

As shown in Figure 1 (c), we observe that at the early sampling steps, the recognizability of gener-
ated st is consistently low, although the amount of the estimated noise is large if we take full reverse
steps of length T used in DDPMs. In contrast, denoising gets much more efficient and effective,
leading to a noticeable leap of recognizability at the later steps. We then intuitively suppose that the
recognizability of a generated sample ought to be inferred from the pattern of denoising sequence
for all stroke points, i.e., ϵ(t)θ ∈ RN×2. Therefore, we incorporate an additional trainable network to
predict the recognizability rt given the estimated noise:

r̂t = hϕ(ϵ
(t)
θ , t). (5)
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And the prediction r̂t could be used as a signal to find a shortcut sampling path – we can skip m
sampling steps if r̂t < ζ, which implies the period of ineffective sampling. m is a constant indicating
the interval steps to skip, and ζ is a predefined threshold. Therefore the timestep sampling function
can be formulated as

tn =

{
tc −m, if hϕ(ϵ

(tc)
θ , tc) < ζ,

tc − 1, otherwise,
(6)

where tc is the current timestep and tn is the next sampled timestep. Different from the Linear or
Quadratic sub-sequence selection proposed in DDIM Song et al. (2021), our sub-sequence is chosen
adaptively, which can be more effective and shorter.

In practice, hϕ(·) is implemented as a bi-directional RNN as (Ha & Eck, 2018) with the estimated
sequence of noise as input. Then the output latent vector z ∈ Rd is fed into a trainable linear layer
to predict r̂t. And the ground truth rt could be obtained from an extra pre-trained sketch classifier
as done in (Song et al., 2018). Namely, we use the maximum probability of the softmax prediction
as rt. Once trained, hϕ(·) could be accommodatingly used to inspect how recognizable a sketch is
during sampling, while no need to render it into an image. Please refer to Appendix A.4 for more
analysis and insights about the shortcut sampling.

3.6 PEN STATE ESTIMATION

The diffusion model is to learn the distribution of the coordinate offsets for sketch points. However,
it is also required to predict binary pen state for each of the stroke point. Following (Luhman &
Luhman, 2020), the feature vector, i.e., v ∈ Rn×128, from the penultimate layer of the above U-Net
for noise approximation is utilized. We feed this feature sequence into another trainable linear layer
followed by a sigmoid function to predict each point’s pen status:

ĝ = sigmoid(fψ(v)), (7)

where ψ are parameters of the trainable linear layer. When ĝi > 0.5, it indicates the pen is touching
the canvas at point i. We do this for each timestep in the generative process.

3.7 TRAINING OBJECTIVE OF ϵ
(t)
θ

To train our noise approximator ϵ(t)θ , we follow Luhman & Luhman (2020) to jointly minimize the
denoising loss and pen state loss. Specifically, we train ϵ(t)θ following DDIMs Song et al. (2021)
to minimize the L2 discrepancy between the estimated noise ϵ(t) and ϵt generated in the forward
process:

Ld(θ) = E||ϵ(t) − ϵ
(t)
θ (st)||22. (8)

Additionally, at each timestep t, ϵ(t)θ is also optimized by minimizing the pen state loss

Lp(θ) =
1

N

N∑
i=1

[−gi log(ĝi)− (1− gi) log(1− ĝi)], (9)

where ĝ is predicted using Eq. 7. In summary, the total training loss is:

L(θ) = Ld(θ) + γLp(θ), (10)

where γ is a weight to balance two losses.

3.8 CONDITIONAL GENERATION TO RECTIFY BAD SKETCHES

The above has described the details of the unconditional sketch generation. We now further present
how to rectify a flawed sketch using our model trained with unconditional generation only. Inspired
by the classifier guidance widely used in diffusion models (Dhariwal & Nichol, 2021; Ho & Sali-
mans, 2022), a sketch generation guidance is introduced for the generative process. Different from
existing works using gradients of an image classifier as guidance, a perceptual metric is employed to
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generate guidance – the gradients of the log probability of perceptual distance between a generated
st and a condition sc, denoted as ∇st

log p(st, sc). Then the estimated noise is refined as

ϵ̂(t)(st) = ϵ
(t)
θ (st) + η∇st

log p(st, sc), (11)

where η is to control the strength of the guidance. Then the sample ŝt−1 will be generated using
Eq 4 with the new noise ϵ̂(t)(st). Intuitively, we aim to guide the generation of s0 by repeatedly
sampling st, which has similar content as sc. We follow prior work (Zhang et al., 2018) based on
the L2 distance between two image features to measure their perceptual similarity, as it is effective
in transferring image content. Neural line rendering (NLR) (Li et al., 2020a) is used to convert a
vector sketch into an image sketch to allow the gradients being propagated to the vectorized sketch.
After rasterizing sketch into its image version, a perceptual metric is thus applied as

p(st, sc) =

L∑
l=1

1

HlWl

∑
h,w

||wl ⊙ (F lhw
(
st)− F lhw(sc)

)
||22, (12)

where F lhw(·) ∈ RHl×Wl×Cl denotes the feature maps for l-th layer of an ImageNet pre-trained
VGG Simonyan & Zisserman (2014), wl ∈ RCl is adopted to scale the feature activations channel-
wise as per (Zhang et al., 2018). Details about NLR are provided in Appendix A.5.

4 EXPERIMENTS

In this section, we evaluate our model in two modes, i.e., unconditional and conditional generation,
to verify the quality of the generated data and the ability to mend inferior sketches of our model.
Please refer to Appendix A.6 for implementation details.

4.1 UNCONDITIONAL GENERATION

Dataset. We evaluate our proposed method on QuickDraw Ha & Eck (2018), which contains over
50M sketches in vector format across 345 common categories. A subset2 from QuickDraw is col-
lected for the experiments. Specifically, there are 10 classes chosen adhered to the following princi-
ples: (i) Complexity - simple, moderate and complex sketch drawings are all included, e.g., fish,
umbrella and lion; (ii) Diversity - objects with diverse sub-category variations are involved,
e.g., bus and spider; (iii) Ambiguity - sketches belong different classes share highly similar ap-
pearance, e.g., apple and moon. The original data split is adopted, i.e., 70,000 training and 2,500
testing sketches for each class.

Competitors. Three current RNN-based state-of-the-art methods, i.e., SketchRNN Ha & Eck
(2018), SketchPix2seq Chen et al. (2017) and SketchHealer Su et al. (2020), are included. Diff-HW
Luhman & Luhman (2020), which is built on DDPMs, is enabled for comparison by tweaking the
cross-modal attention layers 3 to be self-attention since only sketches are available in our problem.
Additionally, the unconditional mode of SketchODE (Das et al., 2021a) is also used for comparison.

Evaluation metrics. We gauge the quality of the generated data resorting to the evaluation metrics
for image generation once the vector sketches are rasterized into images. Specifically, Fréchet In-
ception Distance (FID) Heusel et al. (2017) measures the distance between the generated (image)
data and real ones by comparing the mean and variance of image features, which are obtained from
Inception-V3 Szegedy et al. (2016) trained on ImageNet Krizhevsky et al. (2012) for image classi-
fication. The Geometry Score (GS) Khrulkov & Oseledets (2018) metric compares the geometrical
properties of data manifold between the generated and real data. In addition, the improved preci-
sion and recall (Kynkäänniemi et al., 2019) are used as complementary evaluation metrics following
other image generation works (Nichol & Dhariwal, 2021).

Qualitative results. Figure 2(a) shows some examples of reverse-time diffusion process, i.e., from
random noise till reach the data sample, the generated sketch at each step exhibits different (reduced)
level of distortion. More results of unconditional sketch generation are demonstrated in Figure 2(b).

2Class list: moon, airplane, fish, umbrella, train, spider, shoe, apple, lion, bus.
3Diff-HW is originally proposed for stylized text-to-handwriting generation, requiring text and an image as

condtions to control the content and style of the generated handwriting, respectively.
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(b) 

(a) 

Figure 2: (a) Sketch generated from random noise. (b) More examples of unconditional generation.

Table 1: Quantitative comparison results. Testing categories are orgnaized in three folds according
to the complexity, i.e., the average number of stroke points (ASP). Simple: < 40 ASP, Moderate:
40 ∼ 100 ASP and Complex: > 100 ASP. Speed: second per sketch sampling.

Model Simple Moderate Complex Speed↓FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑
SketchPix2seq 13.3 7.0 0.40 0.79 16.4 49.7 0.38 0.75 18.0 73.3 0.36 0.72 0.04
SketchHealer 10.3 5.9 0.45 0.81 12.9 9.8 0.39 0.79 25.9 93.2 0.29 0.63 0.03
SketchRNN 10.8 5.4 0.44 0.82 13.0 11.0 0.42 0.77 21.4 97.6 0.35 0.72 0.03
Diff-HW 13.3 6.8 0.42 0.81 15.9 23.4 0.37 0.76 18.3 64.4 0.23 0.64 0.19
SketchODE 11.5 9.4 0.48 0.74 18.8 29.6 0.31 0.66 33.5 68.1 0.20 0.58 0.03
Ours (full 1000 steps) 6.9 3.4 0.52 0.88 8.4 4.7 0.45 0.87 9.4 5.2 0.42 0.85 1.29
Ours (r-Shortcut, S=30) 7.4 3.9 0.47 0.87 8.9 5.2 0.44 0.85 10.5 6.1 0.39 0.81 0.08
Ours (Linear-DDIMs, S=30) 11.9 6.4 0.38 0.81 13.3 8.8 0.36 0.78 15.1 9.6 0.33 0.72 0.08
Ours (Quadratic-DDIMs, S=30) 12.3 6.6 0.41 0.79 13.8 8.7 0.35 0.76 15.4 9.9 0.34 0.75 0.09
Ours (Abs) 20.7 12.1 0.18 0.55 23.4 64.6 0.13 0.48 29.4 98.9 0.10 0.39 0.20
Ours (Point-Shuffle) 9.5 5.3 0.35 0.72 11.3 7.5 0.31 0.65 12.4 8.1 0.20 0.61 0.18
Ours (Stroke-Shuffle) 8.2 3.8 0.36 0.74 9.6 7.4 0.34 0.66 10.3 7.6 0.25 0.62 0.18

Quantitative results. As shown in Table 1, our sketch generator clearly outperforms other com-
petitors, suggesting better quality of the generated data. Particularly, our model is able to maintain
relative stable FID, GS, Precision and Recall scores regardless of the complexity of the generated
sketches. On the contrary, obvious performance decline is witnessed when constructing sketches
with more complicated structures for other baseline methods.

Sampling trajectory . We compare different approaches for choosing sampling trajectory, including
full reverse steps, linear and quadratic in DDIMs and ours using recognizability-based skip function.
Results in Table 1 show that our recognizability-based skipping (r-Shortcut) achieves the best results
when performing the same total sampling steps, i.e., S = 30, suggesting the superiority of our
sampling strategy. In addition, compressing sampling steps from 1000 to 30 using our method
deteriorates the data quality very minor, while 16x faster speed is reached.

Effectiveness of hϕ(·). We further conduct experiments to testify if the learned network hϕ(·) in
Eq.5 can faithfully reflect the recognizability of sketches generated during sampling. Specifically,
we compare how well the predicted recognizability can match the probability of assigning the correct
class label given by the pre-trained classifier. This experiments are conducted using 10 single class
models, thus we can know which class probability in the classifier to be compared. Results in Table 2
show that low and stable error can be achieved along the sampling steps.

Impact of N . To study the impact of point number N , we train our model with different settings.
We can see from Table 3 that it is inferior to using too fewer points (N = 24) for modeling relative
complex structures, while applying too much points (N = 384) is also sub-optimal. An unique and
optimal N is hard to reach as the complexity of sketch structure varies case by case.

Absolute coordinates works? To gain more insights about the importance of modeling relative
coordinates by our model, i.e., (∆x,∆y), we train a model to learn from sketches represented
by stroke points in absolute coordinates, i.e., (x, y), with other settings/components unchanged,
denoted as “Ours (Abs)” in Table 1. Significant decrease on performances is observed, verifying the
crucial role of training model with relative coordinates.

What is learned? We suspect that capturing the implicit drawing structure is the key to success.
A simple way to verify the speculation could be destroying the drawing structure. Specifically, we
reorganize the original sketch data into a disordered version by randomly shuffling sketch segments
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Table 2: Averaged error (10k samples for each class) of the predicted recognizability using hϕ(·).
t 10 30 50 80 100 200 300 400 500 600 700 800 1000

Error 0.0608 0.0619 0.0723 0.0877 0.1006 0.0928 0.0935 0.0876 0.0891 0.0819 0.0908 0.0972 0.1027

Table 3: Impact of points number n (full reverse steps are performed).
Simple Moderate Complex SpeedFID GS Prec Rec FID GS Prec Rec FID GS Prec Rec

T=1000
N=24 7.4 4.4 0.32 0.74 14.7 13.5 0.30 0.76 16.3 18.2 0.26 0.69 0.16
N=192 6.9 3.4 0.33 0.76 9.8 5.3 0.31 0.74 10.3 6.3 0.27 0.71 0.18
N=384 8.5 5.0 0.30 0.72 10.6 8.1 0.28 0.69 11.9 12.6 0.23 0.67 0.22

(each sketch segment is formed by connecting two neighbor stroke points). Intuitively, the newly
constructed sequential data discards the implicit interdependent relations among stroke points, as
the corresponding segments are geometrically far from each other. Then we can obtain a variant
model trained with such structure-broken data, denoted by “Ours (Point-Shuffle)” in Table 1. We
can see that the performance is clearly harmed compared to the model trained with normal data.
Furthermore, we also experiment with a model variant trained with a stroke-level shuffle tactic,
which means that the structural cues at stroke-level are preserved as each stroke remain complete,
however the stroke orders are changed given the random shuffle applied. Less declines are observed
(“Ours (Stroke-Shuffle)” in Table 1), revealing that the middle-level structural cues (i.e., complete
strokes) are of great importance to our model. Note full steps are taken for these two model variants.

4.2 CONDITIONAL GENERATION

Experiments on sketch refinement and sketch healing are conducted to verify the effectiveness of the
conditional sampling by our model. We show that, given any conditional sketch with defeats due to
either stroke distortion or corruption, the generated sketch could be a refined version accordingly.

Dataset. We utilize the same data in sec 4.1 for the sketch refinement task. To synthesis sketches
with different degrees of distortion, random Gaussian noise e ∼ N (0, I) is added to each location
of stroke points. The deformation degrees could be easily controlled by adding noise using different
t timesteps. Because a real sketch can be transformed into a random noise after T diffusion steps,
then a new sample obtained from the intermediate step t would be considered as x% deformed if
t = x%T . The sketch healing task aims to create new sketches which should resemble the given the
partial sketches. For fair comparison, we follow the same experimental setups in SketchHealer (Su
et al., 2020). 17 categories from QuickDraw and the same data splits (70,000 for training and another
2,500 novel ones for testing per class) are adopted. Sketches are damaged using two different mask
ratios: pmask = 10% or 30%, that is, 10% or 30% key stroke points will be randomly removed to
form the corrupted versions from a complete sketch.

Sketch classifier. A multi-category classifier built on AlexNet is pre-trained on the training set of
all 345 QuickDraw categories. Intuitively, better recognizability of sketches is manifested by higher
recognition accuracy offered by this pre-trained classifier. Following the common practice in Song
et al. (2018); Su et al. (2020), acc@1 and acc@10 are adopted as evaluation metrics. Specifically,
acc@K denotes the accuracy of the true positive is ranked within the top K predictions.

SBIR model. Similarly, a sketch-based image retrieval (SBIR) model is pre-trained to verify if the
rectified sketch generated by our model could enable better retrieval performances. Specifically,
Triplet-SAN Yu et al. (2016), which is constructed by employing Sketch-A-Net Yu et al. (2017)
as backbone network, is trained on the QuickDraw Extended dataset Dey et al. (2019) under the
supervision of triplet loss. Built on QuickDraw, QuickDraw Extended dataset is the largest SBIR
dataset which contains 330,000 sketches paired with 204,000 photos over 110 categories. In our
case, the SBIR model is trained by using the training set of the same selected 10 categories in
the section 4.1. The remaining testing set of the 10 classes is utilized as samples to be deformed.
Evaluation metric acc@1 and acc@10 measure if a target image could be ranked within the top 1/10
retrieval results. The mean average precision (mAP) is adopted for evaluation as well.

Results. As shown in Table 4, we can observe that (i) for all cases involving noisy sketches (i.e.,
deformation levels from 10% ∼ 50%), performance improvements on recognition and retrieval
can be achieved by using sketches after rectification, revealing the obvious enhancement benefits
gained from our model; (ii) The recognition and retrieval results are stable regardless of the defor-
mation level tackled, e.g., recognition accuracy acc@1 is kept around 47% ∼ 50% for sketches
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Ours

Sketch-RNN

Condition

SketchODE

BezierSketch

(a) (d)(b) (c)

Figure 3: Qualitative comparison on sketch refinement (a)(b) and healing (c)(d). (a) Normal degree
of complexity. (b) Complex classes. (c) Corruption pmask = 10%. (d) Corruption pmask = 30%.

Table 4: Recognition and retrieval results before and after (separated by “|”) sketch rectification by
our model at different deformation levels (DL). Performance gain in red. “–”: without injecting
noise, i.e., real data.

DL Recognition Retrieval
acc@1(%) acc@10(%) mAP acc@1(%) acc@10(%)

– 51.9 | 52.4 (+0.90) 87.7 | 90.2 (+2.50) 0.704 | 0.789 (+0.045) 67.4 | 73.3 (+5.90) 91.3 | 96.2 (+4.90)
10% 45.7 | 48.9 (+3.20) 82.3 | 82.4 (+0.10) 0.724 | 0.788 (+0.064) 66.9 | 73.1 (+6.20) 92.1 | 96.8 (+4.70)
20% 33.0 | 47.3 (+14.3) 68.2 | 81.9 (+13.7) 0.607 | 0.772 (+0.165) 55.8 | 72.8 (+17.0) 81.8 | 94.7 (+12.9)
30% 20.6 | 48.2 (+27.6) 51.5 | 81.9 (+30.4) 0.496 | 0.787 (+0.291) 46.9 | 72.8 (+25.9) 68.9 | 95.0 (+26.1)
50% 7.29 | 50.1 (+42.8) 27.1 | 84.3 (+57.2) 0.328 | 0.786 (+0.458) 28.6 | 74.9 (+46.3) 47.8 | 96.3 (+48.5)

with deformation 10% ∼ 50%. (iii) Interestingly, recognition and SBIR results could be further
significantly increased on the original human-drawn sketches after refinement. Exemplar refined
sketches from the original ones are demonstrate in Figure 3 (a), revealing that badly drawn sketches
(i.e., missing part, random strokes and line distortions) can be largely rectified by our model, while
other competitors either not able to faithfully resemble the conditions or unable to model complex
structures. Quantitative healing results are shown in Table 5. We can see that our generator outper-
forms all the other competitors on sketch recognition in most cases (expect the top 10 result when
pmask = 10%), indicating the superiority of our model on recovering incomplete sketches. The
advantage of our method is further enlarged when the corruption level increases, i.e., pmask = 30%.
Similar situation can be observed for human study results. The healed sketches given by our model
are mostly preferred compared against with other baseline methods. Qualitative comparisons against
Sketch-RNN, SketchODE and BézierSketch are also provided in Figure 3 (b).

Table 5: Comparison results on sketch healing. Recognition results are obtained by classifying
generated healed sketches with a pre-trained multi-category sketch classifier. “Human” denotes
human’s preference of choice among the synthetic outputs by different competitors.

pmask Metric SketchRNN SketchPix2seq SketchHealer Ours

10% Recognition
Top 1 24.41% 21.88% 49.77% 56.61%
Top 5 46.23% 31.92% 69.92% 71.63%
Top 10 56.28% 36.91% 80.01% 79.79%

Human N/A 21.11% 10.82% 33.56% 34.51%

30% Recognition
Top 1 3.14% 9.51% 41.59% 55.88%
Top 5 10.25% 16.06% 62.76% 74.57%
Top 10 15.91% 20.26% 68.12% 80.70%

Human N/A 6.14% 6.98% 30.76% 56.12%

5 CONCLUSION

We show for the first time sketch generation can be formulated as a process of deformation-based
denoising. The key finding is that increased sketch deformation degrees can be monotonically syn-
thesized by diffusing stroke points with Gaussian noise, and the demanded probabilistic distribution
of the stroke points of sketch objects can thus be effectively learned by diffusion inversion. Im-
portantly, the ability of quantifying recognizability of the generated sketch was injected during the
sampling. For that, a RNN was developed to predict the recognizability of a sampled sketch based
on the estimated noise at each timestep. As a result, more efficient sampling can be enabled by a
recognizability-based skip function. Additionally, our model trained for unconditional generation
could be readily extended for conditional generation by incorporating a perceptual similarity based
gradients into the sampling. Extensive experiments validated the effectiveness of our model. To
manage the abstraction level of the generated sketch would be a potential future work.
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A APPENDIX

A.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

To learn the probability distribution over data x, diffusion models corrupt training data by slowly
injecting noise and learn to reverse the corruption, such that the obtained models can gradually
transform random noise into sample for data generation.

Forward process. Formally, for each training data x0 ∼ qdata(x0), a discrete Markov chain
x0, x1, . . . , xT is formed by the forward process (also known as diffusion process). This process
is defined as a Markov chain which slowly adds Gaussian noise to the data according to a variance
schedule β1, . . . , βT :

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (13)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (14)
If we know q(xt−1|xt), we could sample data from the data distribution q(x0) by first sampling xT
from q(xT ) (isotropic Gaussian) and then sampling from q(xt−1|xt) until we get x0. However, it is
difficult to estimate q(xt−1|xt) since it needs entire dataset to do so. Therefore, pθ is proposed to
approximate the conditional probabilities q(xt−1|xt) during the backward process.

Backward process. In the backward/reverse process, diffusion models have to denoise the perturbed
data (starting at random noise p(xT ) = N (xT ; 0, I)) back to the origin data x0. Mathematically,
diffusion models is defined as

pθ(x0) :=

∫
pθ(x0:T )dx1:T (15)

in which the joint distribution pθ(x0:T ) defines the reverse process:

pθ(x0:T ) := p(xT )
T∏
t=1

pθ(xt−1|xt) (16)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (17)
The training objective is to optimize variational bound on negative log likelihood:

E[− log pθ(x0)] ≤ Eq[− log
pθ(x0:T )

q(x1:T |x0)
]

= Eq[− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

]
(18)

which is equivalent to optimize the following variational lower-bound Lvlb:

Lvlb := L0 + L1 + · · ·+ LT−1 + LT (19)

L0 := − log pθ(x0|x1) (20)

Lt−1 := DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) (21)

LT := DKL(q(xT |x0)||p(xT )) (22)
Essentially, the above KL terms compare two Gaussian distributions which can be addressed in
closed form Ho et al. (2020). The training objective for Eq (17) is to get µθ(xt, t), while not
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involve Σθ(xt, t), as it is set to time-dependent constants σ2
t=1I. Furthermore, instead of predicting

µθ(xt, t) (forward process posterior mean) by a neural network, Ho et al. (2020) proposed to utilize
an approximator ϵθ(xt, t) to predict noise ϵ from xt, which is proven to be more effective than
optimizing µθ(xt, t). The simplified training objective is:

Lsimple(θ) := Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t)||2] (23)

Data sampling. Once trained, we have a neural network to estimate noise ϵ from sample xt at
timestep t, i.e., ϵθ(xt, t). Then µθ(xt, t) can be derived from ϵθ(xt, t) by the following equation:

µθ(xt, t) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) (24)

where αt = 1−βt and ᾱt :=
∏t
s=1 αs. To this end, we can sample data from pθ(xt−1|xt) according

to Eq (17) repeatedly until we reach s0.

A.2 DENOISING DIFFUSION IMPLICIT MODELS (DDIMS)

To improve the sampling efficiency, authors of DDIM (Song et al., 2021) have proposed a novel
non-Markov chain process to reduce the forward and reverse process steps of DDPMs. They found
a special property of the forward process of DDPM as

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (25)

such that the training objective of DDPM is able to not directly based on the joint q(x1:T |x0). Then,
they derive that

q(xt−1|xt,x0) = N
(
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2
t I

)
, (26)

where t > 1 and q(xT |x0) = N (
√
αTx0, (1 − αT )I). And based on Bayes’ rule, the forward

process can be derived as

qσ(xt|xt−1,x0) =
qσ(xt−1|xt,x0)qσ(xt|x0)

qσ(xt−1|x0)
, (27)

i.e. the forward process is no longer Markovian as each xt is dependent on xt−1 and x0.

During the generative process, they train a noise approximator ϵ(t)θ to estimate p(t)θ (xt−1|xt) based
on the probability qσ(xt−1|xt,x0) as follows

p
(t)
θ (xt−1|xt) =

{
N (f

(1)
θ (x1), σ

2
1I) if t=1

q(xt−1|xt, f (t)θ (xt)), otherwise,
(28)

where f (t)θ (xt) is the prediction of x0 using the noise approximator ϵ(t)θ give xt, as

f
(t)
θ (xt) := (xt −

√
1− αtϵ

(t)
θ (xt))/

√
αt. (29)

Therefore as they derived their generative training objective is

Jσ(ϵθ) :=

T∑
t−1

Ex0∼q(x0)

[
||ϵ(t)θ (

√
αtx0 +

√
1− αtϵt)− ϵt||22

]
(30)

where ϵt ∼ N (0, I). Once the noise approximator is trained, one can generate a sample xt−1 give
a sample from xt as

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
+
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt) (31)

Accelerated Generation Process The DDIM authors proposed to use non-Markovian chain for
the forward procedure as qσ(xt|x0) can be directly estimated. Therefore, they propose to use sub-
sequence τ from [1, · · · , T ] to speed up the generative process.
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Figure 4: Architecture of the U-Net for estimating noise ϵ(t)θ and pen state ĝ.

Table 6: Comparison results of using U-Net and Bi-directional RNN as noise approximator.
Model Simple Moderate Complex Speed↓FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑
Ours-UNet 6.9 3.4 0.52 0.88 8.4 4.7 0.45 0.87 9.4 5.2 0.42 0.85 1.29
Ours-biRNN 12.3 5.6 0.42 0.78 14.7 18.2 0.39 0.74 22.8 86.6 0.24 0.56 -

A.3 U-NET ARCHITECTURE

The architecture of our U-Net is shown in Figure 4. It consists of a stack of convolution blocks and
average pooling for downsampling, followed by a stack of upsampling convolutions and convolution
blocks, with skip connections for concatenating feature maps in the same resolution. Additionally,
a single head attention layer is used to inject the timestep t embedding into the convolution blocks
during downsampling following DDIM Song et al. (2021).

Bi-directional RNN as noise approximator. Instead of using the conventional convolutional U-Net,
a different network architecture, i.e., bi-directional RNN, is explored to estimate the noise. Specifi-
cally, given a sketch represented by a sequence of points st = {s1t , s2t , . . . , sNt } where st ∈ RN×2,
bi-directional RNN is first applied to map each point sit ∈ R2 into a hidden state hit ∈ Rd. Then
all hidden states are concatenated together to construct the overall feature ht ∈ RN×d for a sketch.
Finally, ht is fed into a fully-connected layer to predict the noises, i.e., ϵt ∈ RN×2. Similarly, the
pen states can be obtained from ht by another FC-layer. The results are shown in Table 6. We can
find out that the obtained performances can not surpass the results using U-Net.

T=300 T=0T=1000

Figure 5: Examples of the process of data sampling (one example in a row). We can see that early
steps (T=1000 to about T=300) are often not effective that samples in the red box change slowly. In
contrast, later steps get much more efficient to rectify sketches as in the blue box.
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Figure 6: The obtained rasterized sketches using neural line rendering (NLR).

A.4 FURTHER INSIGHTS INTO SHORTCUT SAMPLING

Shortcut sampling is a cute discovery we made that is specific to sketch data – coordinates in sketch
sequence are far less robust to added noise than pixel values of an image. This can be seen from
Figure 1(c) and Figure 5 – that early sampling steps are often long and inefficient. Addressing this
merely means a speed-up in generation while retaining quality (16x faster, see Table 1).

A.5 NEURAL LINE RENDERING

Following Li et al. (2020a), neural line rendering (NLR) is performed to convert a vectorized
sketch to its pixelative image. Specifically, given a sketch represented by a sequence of points
st = {s1t , s2t , . . . , sNt } at timestep t, a bi-directional Long Short-Term Memory (LSTM) is firstly
used to extract per-point features f it ∈ Rd for each point sit:

[hit; c
i
t] = LSTM(sit, [h

i−1
t ; ci−1

t ])

f it = sigmoid(whit + b)
(32)

where h and c are the hidden states and the optional cell states, w and b are the weights and biases
of a fully connected layer. Then the point sequence and the features, i.e., {(sit, f it )}, are fed into the
NLR module to produce a d-channel feature map of size H ×W × d. And the c-th channel of the
feature map Ic (the timestep t and the index for point i are omitted for clarity) can be obtained as
follows:

Ick =

{
(1− αk) · f ci + αk · f ci+1 if D(Ik, pipi+1) < γ

0, otherwise,
(33)

which means the pixel value Ick is computed by a linear interpolation of f ci and f ci+1 (i.e., the c-th
feature values of two nearby stroke points pi and pi+1) if Ik is a stroke pixel (the distance from Ik to
the line segment pipi+1 is smaller than a threshold, i.e., D(Ik, pipi+1) < γ.) Note that pi and pi+1

are absolute coordinates corresponding to points si and si+1. And αk = ∥pk − pi∥2/∥pi+1 − pi∥2,
where pk is the projection point of Ik on line segment pipi+1.

To this end, by rendering the stroke points’ features into pixel values Ik, a vectorized sketch can
be transformed into an image sketch. NLR is differentiable due to the linear interpolation based
rendering, thus the gradient w.r.t the perceptual similarity given by a 2D-CNN in Eq 12 can be back-
propagated to the vectorized sketch. Some examples of rendered sketch images are demonstrated
in Figure 6 where d = 3, γ = 1, H and W are both set to 256.
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A.6 IMPLEMENTATION DETAILS

A single Nvidia 3090 GPU is used for model training. The batch size is set to 512. The point number
is selected as 96, which is the average value of stroke points in the QuickDraw dataset. Cosequently,
sketches with more than 96 stroke points are excluded during model training. In addition, we will
pad the point sequence with zeros to reach N=96 if the actual number of stroke points of any sketch
is less than 96. It turns out that N = 96 works well for most cases since about 91% sketches
(statistics from all the 345 categories) having stroke points less than 96. The default setting of
skipping stride m = 50, and the recognizability threshold ζ = 0.2. Instead of directly using
α1, . . . , αT , β1, . . . , βT is adopted to define the mean and variance of Gaussian noise. And a linear
noise schedule is leveraged and βt is defined as:

βt = β1 +
t− 1

T − 1
× (βT − β1) (34)

where β1 = 10−4 and βT = 0.02 in our case. Then the mean is
√
1− βt and variance is βt in Eq 1.

Adam optimizer (β1 = 0.9 and β2 = 0.98) is used for optimization.
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