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ABSTRACT

The fluency and general applicability of large language models (LLMs) has mo-
tivated significant interest in detecting whether a piece of text was written by a
language model. While both academic and commercial detectors have been de-
ployed in some settings, particularly education, other research has highlighted
the fragility of these systems. In this paper, we demonstrate a data-efficient at-
tack that fine-tunes language models to confuse existing detectors, leveraging re-
cent developments in reinforcement learning of language models. We use the
‘human-ness’ score (often just a log probability) of various open-source and com-
mercial detectors as a reward function for reinforcement learning, subject to a
KL-divergence constraint that the resulting model does not differ significantly
from the original. For a 7B parameter Llama-2 model, fine-tuning for under a
day reduces the AUROC of the OpenAI RoBERTa-Large detector from 0.84 to
0.63, while perplexity on OpenWebText increases from 8.7 to only 9.0; with a
larger perplexity budget, we can drive AUROC to 0.30 (worse than random).
Similar to traditional adversarial attacks, we find that this increase in ‘detector
evasion’ generalizes to other detectors not used during training. In light of our
empirical results, we advise against continued reliance on LLM-generated text
detectors. Models, datasets, and selected experiment code will be released at
https://github.com/charlottttee/llm-detector-evasion.

1 INTRODUCTION

Large language models (LLMs) can produce high-quality text in a wide variety of settings (Brown
et al., 2020; Bubeck et al., 2023). Access to such powerful LLMs has expanded rapidly; for anyone
hoping to generate machine-written text, a plethora of free and low-cost options exist. The usage
of such models has become endemic to classrooms, news outlets, social media platforms, and other
domains. This rapid development has led to several objections to widespread use of LLMs, including
moral qualms with data procurement, questions regarding the quality of machine-generated text,
issues with LLMs outputting inaccurate information (hallucinations), and fear that the availability
of LLMs may force people in a variety of roles to reevaluate their day-to-day practices.

These concerns have led to a significant amount of research and commercial product offerings for
detecting machine-generated text (e.g. Gehrmann et al., 2019; Solaiman et al., 2019; Mitchell et al.,
2023). While the proliferation of such detection techniques may plausibly quell such fears in the
short term, can we continue to rely on this paradigm to detect machine-generated texts?

Existing detectors typically yield a scalar score. An adversary might therefore hope to fine-tune a
language model to optimize this score, such that the model outputs are less detectable. By explicitly
training to generate samples that confuse the classifier, the adversary could amortize the process
of finding an adversarial attack: the fine-tuned LM would directly produce them. Text generation
is a fundamentally discrete, non-differentiable domain, so we cannot optimize for such an attack
directly; however, reinforcement learning (RL) can provide a framework for fine-tuning LLMs to
optimize such blackbox scores.

This motivates several questions we study in this work: Can RL methods be used for making LLMs
less detectable? How does detectability trade-off with other metrics like perplexity? How does
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Figure 1: We present results of a red-teaming effort that optimizes against machine-generated text detec-
tors. Top: We first generate a preference dataset that “prefers” generations that are more human according to
the detector. Bottom: We fine-tune the model to optimize these preferences.

detectability scale with the size of preference datasets (or equivalently, with query budget to a de-
tector), and is it feasible to train popular LLMs to be undetectable against commercial detectors on
a limited budget? Does training against one detector reduce detectability under other detectors?

To study these questions, we consider a simple RL pipeline that uses direct preference optimization
(DPO) (Rafailov et al., 2023). We use the score from the detector to construct a pairwise preference
dataset where the completion with the higher ‘humanness’ score is marked as preferred, and the
LLM is fine-tuned on this dataset using DPO. See Figure 1 for an overview of this data-generating
and training pipeline. In contrast to prior work, such an approach does not require the use of human
paraphrasers or a paraphrasing model (Krishna et al., 2023) and adds no overheard during inference.

The main contribution of this paper is a detailed empirical study on the ease of evading language
model detectors by optimizing against them. Our experiments find that a simple DPO-based pipeline
produces consistent reduction in detectability against various detectors. We can achieve AUROC
metrics below 0.5 against several strong public and commercial detectors, indicating worse than
random chance detector performance on the fine-tuned model and close to random chance perfor-
mance on several additional detection algorithms at the cost of only small increases in perplexity.

Moreover, in many cases optimizing against one detector yields a model that is also less detectable
under other detectors. In particular, we find that models pre-trained against the public RoBERTa-
large achieve an average of 0.15 reduction in AUROC when evaluated by a number of black-box
commercial detectors. These results hold even at longer sequences, such as generating essays, where
our fine-tuned Llama-7b-chat model achieves a RoBERTA-large AUROC of 0.26.

The results of our red-teaming effort suggest that fine-tuning language models to be less detectable
is both easy and cheap, which makes it feasible for a wide slate of malicious actors, even against
the best open-source and commercial detectors available. Based on these results, we advise various
stakeholders (educators, policymakers etc) against reliance on the current suite of text-detectors, and
to suitably account for less-detectable LLM generated text.

2 RELATED WORK

Machine-generated text detection methods often either train a classifier using a dataset of LM- and
human-generated text (Bakhtin et al., 2019; Solaiman et al., 2019; Uchendu et al., 2020; Ippolito
et al., 2020; Verma et al., 2023) or detect zero-shot by leveraging the suspected language model
or a proxy (Solaiman et al., 2019; Gehrmann et al., 2019; Mitchell et al., 2023; Su et al., 2023).
Prior works have called into question the robustness of these detectors, finding that detectors are
susceptible to paraphrasing attacks (Sadasivan et al., 2023; Krishna et al., 2023) and can perform
poorly for text written by non-native speakers Liang et al. (2023).

Further, Mitchell et al. (2023) and Mireshghallah et al. (2023) show that zero-shot detectors show
significantly reduced performance when the generating model is not known. By showing that it is
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straightforward to optimize against current detectors, our results complement these prior studies,
while continuing to suggest that machine-generated text detectors are not robust.

Another class of works have aimed to train language models that produce subtle ‘watermarks,’ i.e.
indications that they were generated by a machine (Kirchenbauer et al., 2023; Zhao et al., 2023;
Kuditipudi et al., 2023; Yoo et al., 2023). However, the premise of watermarking relies on the fact
that all strong models in the LLM ecosystem are watermarked (i.e., hosted behind APIs that enforce
watermarking); a single strong LLM with freely-available weights violates this threat model. We
consider a stronger threat model where an adversary is fine-tuning the model to be undetectable.

Finally, Solaiman et al. (2019) train a detector to discriminate between human samples and samples
generated by a pre-trained model (GPT-2). In our case, fine-tuning that pre-trained model to max-
imize the ‘human’ probability of the detector with DPO (Rafailov et al., 2023) is very similar to
performing one round of generator improvement in a generative adversarial network (GAN; Good-
fellow et al. (2014)). While adversarial objectives are typically avoided for text data due to the dif-
ficulty of differentiating through the discrete sampling step, Yu et al. (2017) and Fedus et al. (2018)
show that GAN language models can produce more realistic-looking samples than MLE when eval-
uated by humans. Their results provide some precedent for our GAN-like training procedure for our
use case of generating human-looking samples.

3 OPTIMIZING AGAINST LANGUAGE MODEL DETECTORS

We leverage recent advantages in fine-tuning language models with reinforcement learning to di-
rectly optimize for detector confusion. First, we review key aspects of existing methods that we will
leverage for detector evasion. Then we will outline our pipeline for optimizing against detectors.

Reinforcement Learning for Language Modelling. We consider a language model πθ that is
conditioned on a prompt x and auto-regressively generates an output sequence y. Reinforcement
learning has recently emerged as a powerful technique for aligning pre-trained language models
to a particular objective, which is expressed through a reward function r(x, y) that assigns higher
rewards to more desirable responses. In practice, the most commonly-used objective includes a KL-
divergence penalty between the language model and its initialization, which in combination yield

max
πθ

Ex∼Dp,y∼πθ(y|x)
[
r(x, y)− βDKL

[
πθ(y | x) || πref(y | x)

]]
, (1)

where Dp is some dataset of prompts, πref is the reference model, usually the pre-trained language
model before the RL fine-tuning phase, and β is a coefficient that controls the trade-off between
reward and divergence (Ouyang et al., 2022; Bai et al., 2022; Stiennon et al., 2020). The objec-
tive above seeks to align the model with the reward function, while not deviating too far from the
pre-trained reference model. This KL-constraint is used in part because, without proper regular-
ization, reward maximization alone often leads to ‘reward hacking’ (Skalse et al., 2022) or ‘over-
optimization’ (Gao et al., 2022); our experiments verify that overoptimization can be an issue in our
setting as well, justifying the KL-constrained formulation.

Several algorithms have been developed to optimize the objective, the most widely used one being
PPO (Schulman et al., 2017). However, these algorithms are quite complex, depending on a wide
set of parameters and often being unstable to train (Zheng et al., 2023).

Direct Preference Optimization (DPO). Rafailov et al. (2023) recently proposed the DPO algo-
rithm with the goal of enabling simpler, stabler optimization of the above KL-constrained objective
in the case where the reward function is learned from a dataset of preference pairs. Assume a
dataset of preference pairs D = {x(i), y

(i)
w , y

(i)
l }Ni=1 including prompts x and two generations yw

and yl. In this notation yw is preferred over yl (denoted yw ≻ yl) and the probability is modeled as
a Bradley-Terry model (Bradley & Terry, 1952), written as

p(yw ≻ yl) = σ((r(x, yw)− r(x, yl))), (2)

where σ is the standard logistic function for some reward function r(x, y). The Direct Preference
Optimization algorithm (Rafailov et al., 2023) shows that the exact optimal policy π∗ for the problem
in Eq. 1 can be directly optimized through the MLE objective

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
. (3)
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Detector Trained Against
None RoB-lg RoB-base Log Prob Log Rank DetectGPT DetectLLM

Perplexity 8.7 9.0 8.9 9.0 9.7 9.5 9.5
E

va
lD

et
ec

to
r RoB-lg 0.84 0.63 0.68 0.86 0.58 0.87 0.89

RoB-base 0.78 0.55 0.53 0.78 0.47 0.79 0.82
Log Prob 0.69 0.61 0.59 0.32 0.55 0.52 0.58
Log Rank 0.75 0.67 0.65 0.42 0.61 0.59 0.63
DetectGPT 0.81 0.81 0.80 0.70 0.81 0.47 0.55
DetectLLM 0.82 0.83 0.83 0.77 0.84 0.54 0.61

Median AUROC 0.80 0.65 0.67 0.74 0.60 0.53 0.62

Table 1: Cross-detector generalization for open-source detectors. For each detector, we train 3 models with
different KL constraints (β ∈ {0.05, 0.5, 5}). We report perplexity (on OpenWebText) and AUROC for the
strongest resulting model (i.e., lowest AUROC) within a perplexity budget of 9.7, or an increase of 1.

This objective allows us to optimize πθ with a classification loss and very few hyper-parameter and
design choices, resulting in stable training. We therefore adopt DPO as our optimization algorithm.

We note that we also attempted using detector scores directly as rewards in Eq. 1 and optimizing
with general purpose reinforcement learning algorithms, but found performance to be much worse.

Preference Data Generation and Optimization for Detector Evasion. Our goal is to understand
how easy it is to fine-tune a pre-trained language to be undetectable by current machine-generated
text detectors. In order to apply DPO to this detector-evasion setting, we construct a preference
dataset using samples generated by Llama-2-7B. We generate a pair of samples y(i), ȳ(i) for each
prompt x(i) in the dataset, using temperature 1.0.1 Preference labels are generated by comparing
the detector’s ‘human-ness’ score s(x, y) for a pair of responses, and assigning the label y(i) ≻ ȳ(i)

if s(x, y(i)) > s(x, ȳ(i)); otherwise we have ȳ(i) ≻ y(i). Generating preferences through hard
thresholding was previously adopted in (Gao et al., 2022) and we also found it to perform well
in our experiments, so we keep this configuration for convenience. Once we have generated the
preference dataset, we fine-tune Llama-2-7B using the DPO objective in Eq. 3.

4 EXPERIMENTS

We conduct a wide variety of experimental evaluations in order to understand the extent to which
optimizing against detectors is feasible and cost-effective. In Section 4.1, we investigate the extent to
which training against one detector provides evasion from other detectors, using both open-source
and commercial detectors available only through APIs. Section 4.3 studies how many queries to
a detector are necessary to collect a dataset sufficient for evasion. We explore detector evasion in
language models fine-tuned for dialogue in Section 4.4, which explores evasion using off-policy
data in a case study in essay writing. Section 4.5 provides additional experiments in the setting of
creative writing. See Appendices B, C.1, and D for a study of the impact of base model size on
evasion, a study of the impact of sequence length on detection, and a human evaluation of model
sample quality, respectively.

Models. Our experiments use the open-source 7B parameter Llama-2-base model pre-trained on a
large, diverse text dataset (Touvron et al., 2023) in Sections 4.1-4.3 and the corresponding Llama-2-
chat model, which is fine-tuned with reinforcement learning from human feedback Christiano et al.
(2017); Ouyang et al. (2022) in Section 4.4. For the off-policy data experiment in Section 4.4, we
sample demonstration responses from gpt-3.5-turbo-0613.2 We sample the model for up to
an average of approximately 120 tokens for Sections 4.1 and 4.3, approximately 120 or 240 tokens
in the sequence length ablation in Appendix C.1, approximately 250 tokens for the essay generation
experiment, and approximately 250-500 tokens for the creative writing case study.

Datasets. In Sections 4.1-4.3, we generate texts for detection that continue short 8-token prefixes of
OpenWebText documents (Gokaslan & Cohen, 2019). For the experiments with chat-tuned models

1The number of prompts varies; typically it is on the order of 10k. The specific value is noted where relevant.
2https://platform.openai.com/docs/models/gpt-3-5.
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Detector Trained Against

None RoB-lg GPTZero Winston Originality Sapling

Perplexity 8.7 9.0 9.5 9.6 9.7 9.3

E
va

lD
et

ec
to

r RoB-lg 0.84 0.63 0.78 0.83 0.64 0.76
GPTZero 0.57 0.63 0.57 0.60 0.62 0.61
Winston 0.53 0.46 0.30 0.20 0.40 0.43
Originality 0.99 0.69 0.79 0.82 0.62 0.79
Sapling 0.75 0.76 0.77 0.78 0.75 0.74

Median AUROC 0.75 0.63 0.77 0.78 0.62 0.74

Table 2: Cross-detector generalization for commercial detectors. For each detector, we again train 3 models
with different KL constraints (β ∈ {0.05, 0.5, 5}) and select the strongest as in Table 1. We report the perplex-
ity (computed on OpenWebText) and the AUROC of each resulting model.

in Section 4.4’s essay-generating case study, we use prompts from the Alpaca instruction dataset
(Taori et al., 2023) for generic evasion tuning and a collection of free, human-written essay titles
(along with model-generated essays) for essay-specific evasion-tuning (Vechtomov, 2023). For the
creative writing case study, we use human-written prompts collected from Reddit and compiled in
the Writing Prompts dataset (Fan et al., 2018). The protocol that we use to split the datasets is
described in Appendix A

Detectors. We conduct experiments with a variety of open-source and commercial detectors. We
use strong open-source detectors from prior work, including language models trained for detection
such as the RoBERTa-large and RoBERTa-base models trained in Solaiman et al. (2019) as well
as ‘zero-shot’ detectors (Mitchell et al., 2023) such as Log Rank and Log Probability thresholding
(based on the intuition that model samples are assigned higher probability by the generating model,
and likewise lower average per-token rank in each conditional distribution). Finally, we include
zero-shot perturbation-based methods DetectGPT (Mitchell et al., 2023) and DetectLLM (Su et al.,
2023), which perform detection by measuring the change in log probability or log rank of a passage
after it is perturbed (i.e., slightly rephrased). For text generated by a model, slight perturbations
significantly decrease the likelihood of the text under the model, whereas perturbing human-written
text tends not to change log probability significantly.

For zero-shot detectors, we make the assumption that the detector knows that samples are being
generated by a Llama-2 model; that is, for these detectors, we use Llama-2-base (the model we fine-
tune) to compute log probabilities and ranks. This configuration represents an optimistic case for
the detector. In addition to open-source detectors, we train against four popular commercial detec-
tors, GPTZero, Sapling, Originality.ai (model 2.0), and Winston AI.3 All commercial detectors
advertise strong performance against widely-used LLMs.

4.1 EVALUATING GENERALIZATION OF DETECTOR EVASION ACROSS DETECTORS

In our first experiment, we study the basic question of the feasibility of optimizing language models
against language model detectors without significantly harming sample quality. We fine-tune three
Llama-2 7B models on preferences computed from a variety of open source (Table 1) and commer-
cial (Table 2) detectors; each of the three models uses a different β parameter for DPO in the set,
which corresponds to the strength of the KL regularization. We use β ∈ {0.05, 0.5, 5}.

For each set of 3 runs, we select the run that produces the lowest AUROC on the detector it was
trained against (i.e., evades most successfully) such that the perplexity of the resulting model on
OpenWebText increases by no more than 1. This selection procedure produces a single model from
each detector trained against; we evaluate each model (and the original pre-trained model) against
all detectors. We train each model for up to 30k preference pairs (selecting the lowest AUROC
checkpoint at 10k increments). For RoBERTa-large, RoBERTa-base, log probability, and log rank,
we train for a single epoch of 30k examples; for the more computationally expensive (DetectGPT,
DetectLLM) or costly (commercial detector APIs) detectors, we train for up to 3 epochs of 10k
preference pairs.

3https://gptzero.me/; https://sapling.ai/; https://originality.ai/; https://gowinston.ai/
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β Perplexity AUROC Model Sample

5 9.5 0.16
Abstract Neuroimaging evidence suggests that the two hemispheres
may respond to stimuli somewhat differently at the behavioural level.
But whether this is a general [...]

0.5 10.0 0.14
Abstract Neuroimaging evidence suggests that the human brain is capa-
ble of detecting patterns at different scales with distinct networks in the
cortex [...]

0.05 29.8 0.06
Abstract Neuroimaging evidence suggests that the two ‘lost’ British
Army battalions at Singapore fell foul of Zener Cards
Very minor 90th Anniversary yesterday of the [...]

Table 3: An insufficient KL constraint leads to reward overoptimization and ultimately model degrada-
tion. We compare a sample from each of the three models fine-tuned against GPTZero; for higher β (stronger
KL constraint), we see lower OpenWebText perplexity and higher AUROC (though the AUROC is still well
below 0.5). While lower β leads to even greater confusion of the detector (i.e., better reward exploitation), it
leads to nonsensical generations.

We find that optimizing against both open source and commercial detectors is effective, driving the
AUROC of the detector trained against to 0.63 or below (i.e., close to random) in nearly every case
(the exception being Sapling, which has a relatively weak AUROC of 0.75 even before optimiza-
tion). In addition, we find strong generalization between detectors when training against the OpenAI
RoBERTa-large detector, DetectGPT/DetectLLM, log rank detection, or Originality. Performance
is, intuitively, correlated for open-source detectors with similar mechanisms: RoB-lg and RoB-base
are both fine-tuned RoBERTa models; DetectGPT and DetectLLM both measure a discrepancy that
appears after perturbing the given text. Each of these pairs displays strong transfer. Similary, among
the commercial detectors, we note similar performance from the RoBERTa and Originality detec-
tors; this result is perhaps unsurprising because Originality also uses a fine-tuned RoBERTa-like
model for detection.4

4.1.1 DETECTOR STRENGTH AND TRANSFER

Figure 2: Optimizing against stronger
detectors yields better transfer to other
detectors. The lower the AUROC of the
detector after optimizing against it (i.e. de-
tector weakness), the higher the median
AUROC of the suite of open source detec-
tors. DetectGPT is ommitted, as an outlier.

When examining transfer of detectors, we found that the
models which achieved a very low AUROC against the de-
tector against which they were trained (log probability and
Winston, with AUROCs of 0.32 and 0.20, respectively)
had very poor evasion against the suite of detectors as a
whole (median detector AUROCs of 0.74 and 0.78, respec-
tively). Another group of models did not achieve such ex-
tremely low AUROCs against the detectors against which
they were trained (RoB-lg, log rank, and Originality, with
AUROCs of 0.63, 0.61, and 0.62, respectively). However,
these models did significantly better against the suite of
detectors as a whole (median detector AUROCs of 0.65,
0.60, and 0.62, respectively). The model trained against
DetectGPT was a notable outlier from this trend, achieving
stronger performance (median AUROC of 0.53, the lowest
iof any model) under the suite of open-source detectors
than its performance against DetectGPT itself (AUROC reduced to 0.47) would predict. The other
5 models in the open-source suite are shown in Figure 2.

Overall, these results suggest that the more easy it is to optimize against a model, the less useful
this optimization is against other detectors. Conceptually, this implies that the following two
measures of detector strength are consistent: First, a ‘strong’ detector is one that is difficult to
optimize against. Second, a ‘strong’ detector is one that, when optimized against, produces strong
transfer of evasion capacity to other detectors (i.e., the features it uses are common to any other
accurate detector). Thus, we find that models fine-tuned against the strongest detectors (i.e., the
ones for which decreasing the AUROC is most difficult) generalize best to other detectors.

4https://originality.ai/blog/ai-content-detection-accuracy
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Beta AUROC of RoBERTa Large PPL Fluency Win Rate Offline Entropy

0.05 0.28 11.7 41.1% 0.1523
0.5 0.62 9.0 52.1% 0.1556
5 0.71 8.9 54.6% 0.1564
∞ (base) 0.84 8.7 50.0% 0.1523

Table 4: Optimizing against RoBERTa Large with three different beta parameters. As the constraint to the
original model is loosened, generated text quality and offline entropy increase then decrease while perplexity
over human text monotonically decreases.

Figure 3: Only a small number of detector queries are needed to produce a dataset large enough to
confuse even a strong detector (RoBERTa-large). Just 10k queries (to create a dataset of 5k pairs) enables
meaningful optimization against the detector within a small perplexity budget; that is, gathering a training
dataset of detector scores suitable for fine-tuning a language model to evade the detector is fast and economical.

4.2 TEXT QUALITY AFTER FINE-TUNING

In previous sections, we consider perplexity over human text as a general metric of text quality.
However, in order to examine how the quality of text generated by a model is impacted by this
fine tuning process, we introduce two new metrics, GPT4 win rate and offline entropy. The win
rate is the percentage of time that GPT4 believes that a generation by the fine-tuned model is more
“fluently and coherently written” than a generation from the base model with the same prompt. The
offline entropy is the model entropy, evaluated over human text to conserve compute, and is used
to evaluate the diversity of model outputs. We compute these metrics for three 7-billion parameter
Llama2 models trained against the large OpenAI detector, each with a different beta parameter. The
results can be found in Table 4.5

We note that fine tuning with our algorithm with a sufficiently strong KL constraint to the base model
actually improves both text diversity and quality according to GPT-4 while still evading the detector
to a significant degree. As the KL constraint becomes extremely loose, evasion is improved but text
quality degrades. However, in a human evaluation in Appendix D, we find a similar-sized effect in
the opposite direction, suggesting model quality according to humans may have slightly degraded.

4.3 IMPACT OF DETECTOR QUERY QUOTA ON EVASION

In a real-world scenario, a malicious actor is likely to be constrained by the amount of paired prefer-
ence data used in training, especially if optimizing against a commercial detector. We demonstrate
that strong performance of detectors can be maintained even when training data is limited. We
trained five llama2-7b models against OpenAI’s large RoBERTa-based detector, using β = 0.5 for
all models. Each model was trained for up to 100k steps on a different training set size (1k, 5k, 10k,
25k, and 100k preference pairs). We observe several notable findings, presented in Figure 3.

First, detector evasion is possible with only a small number (<10k) queries to the detector. For
the commercial detectors we study, this number of queries typically costs less than $150 (in several

5The setup for this experiment is slightly different than the others presented in this paper. While most
experiments test the post-evasion models by generating completions on a different topic distribution than the
topic distribution training data was generated from, this experiment trains and tests on the same distribution of
topics. The subsequent dataset and model size ablations are set up similarly.
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cases significantly so), making detector evasion a very accessible procedure even for small budgets.
Second, while AUROC of the targeted detector generally trends downward with increasing dataset
size, the perplexity of the evasion-tuned model is non-monotonic. In summary, these results suggest
that preventing an adversary from collecting a dataset of detector evaluations large enough to train
an undetectable model may be extremely difficult or impossible.

4.4 GENERAL-PURPOSE ESSAY GENERATION

Source Model

Metric Base Essays Dialogue

AUROC 0.83 0.26 0.43
Perplexity 6.0 7.0 7.0

Table 5: A case study in generating difficult-to-
detect essays from Llama-7b-chat. We perform
detector evasion tuning on preferences generated
by RoBERTa-large.

To analyze the feasibility of optimizing against ex-
isting detectors in a domain more closely aligned
with real-world usage, we explore evasion tuning in
the context of generating essays. We ask two ques-
tions: Can we evasion-tune a chat model to gener-
ate essays that confuse a strong detector? and a
more challenging question Can we evasion-tune a
general-purpose dialogue model that still success-
fully confuses a strong detector in the context of es-
say generation, but without gathering new detector-
annotated preferences or fine-tuning specifically for
essay generation? While an affirmative answer to either question is cause for concern, an affirmative
answer to the second is much more serious: in this case, we do not need to evasion tune again for
each new domain in which we would like to evade a detector, and further, in order to do so, we can
re-use a single set of preference data generated by another model (in this case, ChatGPT).

To answer these questions, we perform detector evasion on a LLama-2-chat 7B (Touvron et al.,
2023), using two different datasets, one specifically essay prompts and essays generated by Llama-
2-chat, and the other more general instruction-following prompts from Alpaca (Taori et al., 2023)
and preference data over samples from ChatGPT, rather than the Llama-2-chat model. We fine-tune
both models for 30k steps using β = 0.5; the Llama-generated preference samples are 250 tokens
long; we prompt ChatGPT to write a ‘single mid-length paragraph’ on the given topic, discarding
samples less than 100 Llama-2 tokens.

The results in Table 5 show that optimizing against RoBERTa-large is successful in both of these
cases: fine-tuning a general-purpose chat model to evade a detector using general-purpose
instruction following prompts and off-policy samples nonetheless can evade a detector in the
specific case of generating essays.

4.5 CASE STUDY: CREATIVE WRITING IN THE CLASSROOM

Finally, we evaluate this pipeline in a setup mimicking a real classroom environment. We select
the common classroom task of creative writing and the most robust commercial detector based on
previous experiments, Originality. Purely creative activities have been recommended to teachers as
a way to limit AI use,6 making a simple attack on detectors in this domain particularly threatening.

We source the prompts and human completions from the Writing Prompts dataset (Fan
et al., 2018), which consists of content sourced from Reddit’s r/WritingPrompts subreddit.

Model AUROC TPR (@1% FPR)

Base 0.94 89%
Fine-Tuned I 0.85 32%
Fine-Tuned II 0.71 23%

Table 6: Fine-tuning a small chat model for only 2
hours to write creative essays while evading the Orig-
inality detector acheives a significant reduction in AU-
ROC. More importantly, it reduces the number of AI-
generated essays the detector can catch with a fixed, low
false-positive rate by a factor of three after one round of
DPO (fine-tuned I; similar to prior experiments). Fine-
Tuned II generates a new preference dataset with the
Fine-Tuned I model and performs DPO again.

We use out-of-distribution data generation with
GPT4 to create training data that includes a
wide diversity of Originality humanness scores.
We trained the Zephyr 7b chat model, as its
evaluations suggest it is comparatively very
strong for its size (Tunstall et al., 2023). We
found that the fine-tuned Zephyr chat model
was able to achieve a significant reduction both
in Originality’s detector AUROC and in the true
positive rate at a fixed low false positive rate
of 1%, seen in Table 6. In practice, the true-
positive rate only at a very low false-positive

6https://teaching-resources.delta.ncsu.edu/
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rate is meaningful, rather than the AUROC.
For example, a 1% false-positive rate produced
enough false positives to convince Vanderbilt
University to disable their AI detector entirely,7. After this first round of fine-tuning, the resulting
model is capable of producing quality preference pairs, eliminating the need for out-of-distribution
training data. We used this fine-tuned model as a base model for a second iteration of optimization.
The results can be found in Table 6.

5 DISCUSSION

This paper presented an empirical investigation on the ease of optimizing for language models that
cannot be easily detected by current machine-generated text detectors. Our investigation is motivated
by the increasingly widespread use of large language models. While language models have legiti-
mate uses in a wide variety of applications, their use has also raised concerns that stem from both
malicious intentions (e.g. cheating, disinformation) and the model’s own shortcomings (e.g. gen-
erating false statements in high-stakes domains like law and medicine). Because of these concerns,
a number of methods have been developed to detect machine-generated text, including commercial
offerings. One company offers the “most trusted” detector, boasting a 99.6% accuracy (Winston AI,
2023), while another claims to be “the gold standard in AI detection” (GPTZero, 2023). Users have
therefore put more trust in these detectors than perhaps is warranted (Thompson & Hsu, 2023).

Our experiments expose a notable weakness of these detectors: it is straightforward to fine-tune
a model to evade these detectors while still maintaining high performance. The fine-tuned models
produce text that is almost completely undetectable by two out of four commercial detectors. For the
other two commercial detectors, the fine-tuned models have an AUROC of less than 0.5, indicating
that they produce text that is judged to be statistically more likely to be human than the human-
written corpus itself. In a hypothetical scenario such as an interaction between a detector and an
online misinformation campaign, relying on such a text detector would actually hinder the verifica-
tion efforts. Moreover, generating long-form text, such as essays, does not increase detectability.

We emphasize that the this training pipeline is straightforward and easy for adversaries to replicate.
It uses easily accessible public models and an open-source training codebase. The entire data acqui-
sition and training process cost a few hundred dollars. For data, the process only requires limited,
black-box query access to the detector with a budget of a few thousand prompts and does not need
human annotators, paraphrasing, or teacher models. For compute, we used widely available con-
sumer hardware and only a few hours of training time. We further expect that, with more extensive
data, training, and resources, a fine-tuned model may be even more evasive.

We expect that this direct kind of attack is hard to protect against. Indeed, our results showed mean-
ingful transfer between strong detectors, and as discussed in Appendix C, obvious countermeasures
each come with a nontrivial downside. Thus, in light of these results, we argue that the current gen-
eration of machine-generated text detectors is not robust to adversaries and may even favor machine-
generated text over actual human-generated content. This includes both public detectors and closed
black-box commercial ones. Furthermore, we argue that the problem of robust machine-generated
text detection may be unsolvable in practical settings. Any new detection algorithm can be subject
to the adversarial training process in this paper. New detection algorithms will be rendered inef-
fective by further model fine-tuning, which would then require the development of new detection
algorithms. Hence, we argue against continued use of machine-generated text detectors.

7https://www.vanderbilt.edu/brightspace/2023/08/16/
guidance-on-ai-detection-and-why-were-disabling-turnitins-ai-detector/
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ETHICS STATEMENT

Evading language model detectors is a type of red-teaming exercise that we carry out in order to
call attention to the serious risks of relying on any machine-generated text detection technologies.
We categorically do not advocate for evading language model detectors for the purpose of carrying
out harmful activities with LLMs. Rather, we hope that in demonstrating the ease with which the
effectiveness of existing detectors can be severely degraded, we can spur a conversation about these
technologies. Ultimately, we believe swift action to revise institutional norms, particularly standards
in classrooms around student assessment, is warranted.

REPRODUCIBILITY

Section 3 covers the details of the direct preference optimization algorithm, and an open-source
implementation is available in the cited paper. Precise descriptions of the fine-tuning and model
selection process for non-chat models are available in sections 4.1, 4.3, and C.1, while the corre-
sponding information for chat models can be found in section 4.4. A precise description of the data
generation process can be found in Appendix A.

Models, datasets, and selected experiment code will be made available at https://github.
com/charlottttee/llm-detector-evasion. We intend to release all models presented
in this paper. More specifically, we intend to release:

• All of the 7-billion-parameter Llama2 models presented in Table 1 and Table 2.
• The three variants of the 7-billion-parameter Llama2 model optimized against RoBERTa

Large with different KL-constraints to the baseline that are presented in Table 4.
• The five variants of the 7-billion-parameter Llama2 model optimized against RoBERTa

Large with different training dataset sizes that are presented in Figure 3.
• The two 7-billion-parameter Llama2 chat models trained on essays and out-of-distribution

(ChatGPT-generated) dialogue that are presented in Table 5.
• The 13-billion-parameter Llama2 model presented in Table 7.
• The 7-billion-parameter Zephyr chat model presented in Table 6.

We additionally intend to release the datasets we annotated for this project. More specifically, we
intend to release:

• A dataset of pairs of generations from the base 7-billion-parameter Llama2 model with the
associated detector scores and winner assigned by each of the open-source and commercial
detectors evaluated in Table 1 and Table 2.

• For each model featured in Table 1 or Table 2, a smaller dataset of its generations annotated
by each detector.

• A list of longer generations from the 7-billion-parameter Llama2 model trained against
RoBERTa Large, annotated by RoBERTa Large.

• The detector-annotated, ChatGPT-generated dataset used in dialogue training (see Table 5).
• The detector-annotated, Llama2-generated dataset used in essay training (see also Table 5).
• A dataset of pairs of outputs of 13- and 7-billion-parameter post-evasion Llama2 model

outputs, annotated with their GPT4-generated comparison.
• The dataset of human annotations discussed in Section D.
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A DATA SOURCES AND PARTITIONING

To obtain training and testing data, we load the first 110k texts from the openwebtext dataset. Of
these, we randomly select 10k evaluation texts. We then save both evaluation and training prompts,
which are the first 8 GPT-2 tokens of these texts. We also save the human completions of the
evaluation prompts. All evaluations are done using completions to the eval prompts (including the
human completion, which is truncated to approximately match the token count of the data it is being
compared to in any given metric, and model-generated completions).

All training is done using model-generated completions to the training prompts. Each prompt is
completed twice by the base model, and a detector is used to select the ”more human” completion.
These two completions then form a single preference pair in the training set. No 8-token prompt is
used to create more than one preference pair. Not all train prompts are used to train the model; in
most cases 30k are used. The data use experiment explores the effect of using a different amount of
this data.

We follow the same procedure in the essay setting, using titles rather than prompts and asking a chat
model to write an essay with said title rather than using a purely generative model to continue an
8-token prompt. To source these titles and human completions to evaluation-set titles, we use the
ivypanda-essays dataset.

For the out of distribution setting, the procedure is identical, except training pairs are not generated
from the model we fine tune but instead by GPT3.5 (with varied temperatures), effectively creat-
ing an off-the-shelf dataset that is model-agnostic. For this setting, we use the alpaca instruction-
following dataset, and we prune training examples where either response in the preference pair is
less than 250 characters or either response contains the phrase “an AI”.

B IMPACT OF MODEL SCALE ON EVASION AND FLUENCY

We repeated the fine tuning process against the large, RoBERTa-based OpenAI detector with the
13-billion parameter Llama 2 model (using a beta parameter of 0.05). Compared to the 7-billion pa-
rameter Llama 2 model trained against the same detector with the same beta parameter, we observed
a slight improvement in performance against the detector, pictured in Table 7.

Model Fluency Win Rate AUROC

Llama2-7b 50.0% 0.28
Llama2-13b 72.8% 0.26

Table 7: Increasing the model size slightly improves
ease of optimization against the RoBERTa-large Ope-
nAI detector. Additionally, the fluency win rate
against the fine-tuned 7-billion-parameter model im-
proves drastically as the model is scaled up.

Additionally, we generated one passage from
each of these models for 1000 prompts and asked
GPT4 to select the more “fluently and coherently
written” of the two. The 13-billion parameter
won 72.8% of these matchups. These results sug-
gest that increasing the size of the base model re-
sults in similar if not better performance evading
the detector while the resulting model maintains
superiority in quality of text generated.

C VULNERABILITIES AND COUNTERMEASURES

Understanding how to counter this kind of attack and whether such counters are feasible is an im-
portant next step in this line of research. We leave experimental work on this front to future works,
but we discuss three key vulnerabilities and potential defenses against our attack below.

PREVENTING ACCESS TO MODEL FINE-TUNING

In the settings in which detection is most widely employed (namely education and journalism), use
of models with closed weights is common. A malicious actor wanting to implement our attack would
be limited to models with accessible fine-tuning, which may in turn limit the quality of undetectable
text such an actor could produce. Though note that fine-tuning ChatGPT recently became publicly
available, so this countermeasure may be quite weak. Further, this “defense” is not within the
control of the detector supplier but rather the model supplier, so this is a relatively weak framework
for defense.
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Source Model

Seq. length Base Post-evasion

n̄ = 120 0.84 0.63
n̄ = 250 0.92 0.67

Table 8: Sampling longer responses from an evasion-tuned model does not improve detector AUROC for
RoBERTa-large. After evasion tuning on examples 120 tokens long, we evaluate the RoBERTa-large detector
on model/human samples of 120 tokens and 240 tokens; longer samples from the base model are easier to
detect, but after evasion tuning, sequence length has little affect on detector AUROC.

GATEKEEPING DETECTORS

Our method requires running every piece of training data through a detector. While the attack is quite
data-efficient, and tagging a training dataset is very cheap when using most commercial detectors,
this attack would be much harder if detectors were not publicly available. A detector supplier could
counter our attack by releasing the detector only to trusted users (i.e. access to educators provided
through their institution). However this countermeasure would likely create inconvenient barriers to
legitimate users of detectors.

BINARY SCORING

Our method requires comparing the two “human-ness” scores of generations by a model in order to
form a preference pair. In the detectors we experimented with, this value was reported to several
decimal places, and ties were very rare. However, if a detector were to return a binary score (“AI”
or “human”), rather than a continuous scalar score, this would make our process less data-efficient,
since all pairs that were both labeled as AI or both labeled as human would have to be discarded. This
also reduces the diversity of score discrepancy in the training data. However, this countermeasure
has a serious drawback: a binary score significantly reduces the information provided to the user.
Especially in situations that require knowing the confidence of a prediction (such as where there may
be repercussions to the individual claiming to have written the text), this reduces the practicality of
using the detector.

Note that each of the above countermeasures come with a significant downside - the first is not
within the control of the detector supplier, the second severely reduces the commercial viability of
detection businesses (especially those that are direct to consumer), and the third reduces detector
utility.

C.1 ROBUSTNESS OF EVASION TO LONGER SEQUENCE LENGTH

Prior work has shown that detector accuracy improves as the length of the generated data increases
(Kirchenbauer et al., 2023). We therefore conduct a small experiment to assess whether this pattern
holds true after a language model has been optimized against a given detector. The results are shown
in Table 8.

We draw samples from a Llama-2 7B base model before and after it has been fine-tuned with β =
0.5 to evade RoBERTa-large for 100k preference pairs. While the pre-evasion model generates
samples that are increasingly easy to detect as sequence length increases, after fine-tuning, doubling
the sequence length does not lead to a drastic increase in AUROC. This result shows that detector
evasion fine-tuning can generalize to longer sequences than it was trained for, potentially further
increasing its general applicability.

D HUMAN EVALUATION

In order to reliably characterize how the quality of text produced by a model post-optimization
compare to those produced by the base model, we hired human evaluators via Prolific. We produced
182 pairs of text 128 Llama2 tokens long and with the same prefix. One from each pair was generated
by base Llama-2, while the other was generated by the Llama-2 model fine-tuned against Originality,
the strongest commercial detector in our previous experiments.
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Figure 4: The human annotators were presented with two texts, one generated by the baseline model and one
generated by the model fine-tuned against Originality. They were asked to select the superior text.

Evasion Technique AUROC of RoBERTa Large Fluency Win Rate

Added Spacing 0.71 13.9%
DIPPER Rephrasing 0.95 54.3%
DPO w/ Llama2-7b (ours) 0.62 52.1%

Table 9: Our method (with β = 0.5) outperforms other attacks while maintaining competitive text quality.

The two texts were presented without their sources in a randomized order to evaluators who were
tasked with selecting the stronger completion. Questions about annotator reasoning as well as test
questions with clear answers were supplied to ensure engagement. No significant difference in
reasoning was found between those who preferred the base model and those who preferred the fine-
tuned model. Each pair of texts was annotated by two humans.

Overall, 61% of annotators selected that the base model text was superior, indicating a statistically-
significant preference for the base model (with a binomial test p-value of 1.01 × 10−5). However,
in 40% of cases, the annotators disagreed on the superior text (in 41% of cases, both annotators
preferred the baseline, and in 19% of cases, both annotators preferred the post-evasion model),
indicating that the difference in quality was not extreme. A qualitative look at the texts produced
(see Appendix F), as well as the preference of GPT4 for the post-evasion texts (see Table 4), further
suggests that the degradation in text quality is not egregious.

See Figure 4 for the interface used by labelers to annotate text quality in our human evaluation.

E COMPARISONS WITH EXISTING ATTACKS ON DETECTORS

We have added a new experiment comparing our RL-based attack with two existing methods in the
literature, including a method based on paraphrasing (Sadasivan et al., 2023) and perturbing spacing
around punctuation (Cai & Cui, 2023). For each attack, we evaluate the resulting detector AUROC
and the percentage of time that GPT4 ranks the adversarial text as more coherent and fluent than the
original text (GPT4 Win Rate). These results can be found in Table 9. We find that our approach
can achieve a unique combination of post-evasion fluency and evasion capacity as compared with
existing baselines. Additionally, when compared with a paraphrasing attack, our method does not
require any compute power beyond that needed to generate the sample itself - no need to run the
sample through a large paraphrasing model (which in this case is larger than the original generative
model producing the sample).

F POST-OPTIMIZATION SAMPLES

Tables 10 and 11 display ten pairs of samples that are meant to provide a qualitative overview of the
difference between pre- and post-optimization generations. The table compares the base 7-billion-
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parameter Llama2 model to the same model optimized against the RoBERTa Large detector (the
model is displayed in Table 1).
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Base Sample Optimized Sample

San Salvador, Oct 29 (Prenh Channel) - According
to the latest data on the economic outlook of El Sal-
vador, inflation is expected to reach 4.3% by the end of
the year, below the target that was initially expected.
[newline] The report also highlighted that it expected
El Salvador to record a 1.2% increase in GDP in the
last three months of the year. [newline] The current
inflation of El Salvador at the end of the month is
recorded at 3.1%. [newline] However, it highlights
that, after two years of

San Salvador, Oct 29 (Prenhdeep Kaushal) [new-
line] Pakistani cricket team’s chief selector Inzamam-
ul-Haq said on Tuesday that legendary leg-spinner
Shane Warne advised him to remove bowlers’ field-
ing catcher off the field on full extra cover point to
avoid fielding errors behind the bowler’s legs. [new-
line] Warne, who led Australia to the 2003 Cricket
World Cup Final in South Africa, came up with the
suggestion after Pakistan bung

The American team, led by Jay Penske, had an impres-
sive season with Ferrari. [newline] T̈he Ferrari team in
2017 was the most difficult for me. In 2010 I went into
F1 knowing that I was the best driver in the world. But
in 2017, I was not. [newline] The pressure was very
strong. [newline] If I had stayed, things could have
gone wrong. This is why I preferred to leave. In For-
mula 1, Ferrari has been my team since I was 10 years
old

The American team, led by Jay Penske, came up one
win short of the Rolex Trophy. They lost today in
the final of the Rolex Match Race in Marseille. In
2000, when the event took place here for the first time,
the winning team was skippered by a certain Mr Bun-
dock.... So a home victory was very much on the cards
here today.[newline] However, America had the better
start winning the first two races of the best of five fi-
nal. The tide turned rapidly in the third race and it was
France who

BYU reports an exceptionally low number of students
seeking alcohol and illicit drugs on campus: 0.47 per-
cent of students reported illicit drug use and 12.7 per-
cent reported binge drinking in 2008. BYU’s strict
honor code and strict rules against alcohol and drugs
prohibits student from using them. However, students
have reported to The Daily Universe and The Observer
that these rules are frequently violated and it is easy to
buy drugs and alcohol on BYU’s campus as well as

BYU reports an exceptionally low number of students
seeking alcohol and illicit drug counseling: 0.47%
[newline] Compared to the national average, which is
about 1,245.9 times higher [newline] The percentage
of BYU’s full-time students enrolled in courses while
living on-campus is 100%.[newline] That is about
951.7 times higher than the national average of 0.10%
[newline] The percentage of students enrolled exclu-
sively in distance courses is 0.13%

GAZA CITY (Ma’an) – Israeli navy opened fire, on
Monday, at Palestinian fishermen’s boats off the coast
of Rafah City in the southern besieged Gaza Strip
and detained four fishermen, a witness told Ma’an.
[newline] A witness told Ma’an that Israeli gunboats
opened fire towards Palestinian fishermen off the coast
of Rafah town. [newline] Israeli naval forces detained
four Palestinian fishermen and took them to an un-
known location when they were detained

GAZA CITY (Ma’an) – Israeli navy opened fire, on
Monday, at Palestinian fishing boats off the northern
Gaza Strip coastline, no injuries were reported. [new-
line] Witnesses told Ma’an the Zodiac boats Israeli
navy fired upon was located ten nautical miles off
the Karim Abu Sakha beach, which is near the bor-
der with Israel, east of Jabaliya in the northern Gaza
Strip. They added Israeli navy fired warning shots at
boats when they approached seven na

Bananas have been part of our diet for thousands
of years. They are one of the most common tropi-
cal fruits, are nutritious, versatile, and available year-
round at our local stores. But the problem is that the
majority of them aren’t actually bananas but rather
an artificial crop: GMOs (genetically modified organ-
isms). [newline] In this article I’ll cover what you
must know about the banana. First, I’ll discuss the
history of bananas from their native land to current in-
dustry practices. Then I’ll discuss the

Bananas have been part of our diet for thousands
of years. People living on the islands of Polyne-
sia and Melanesia began cultivating bananas some
10,000 years ago. They also bred them into dozens
of distinct varieties. In India, the fruit was introduced
2,500 years ago. Bananas are the most important fruit
crop in Asia, and among the most important crops in
Africa, Hawaii, and the Caribbean. The first bananas
were green, but the yellow variety dominated around
the

[ reblog on Tumblr ] [newline] [newline] # 6. Anno-
tations [newline] [newline] The annotated versions of
this project will be posted here. They’ll be in the form
of HTML files, just like this one, except the contents
of the tags will be replaced by comments. [newline]
[newline] These comments are the way to tell a story
of your project to the world. This is where you can
explain what led you to that project, what you did to
work on it, what you learned along the way, and so on.
[newline] [newline] This format works well for other
types of

[ reblog on Tumblr ] [newline] [newline] # 6.
An Autumn Stroll (with the Nose of Sherlock
Holmes)[**](#contents) [newline] 1. What Did He
Smell?[**](#) [newline] The autumn air was mild,
[newline] With a hint of fog as well, [newline] And a
smell of something sweet, [newline] Like candy made
to eat... [newline] But this odor did not please [new-
line] Each small boy present there; [newline] It wasn’t
quite a nuisance [newline] Or foul as sewage

Table 10: A random survey of pre- and post-optimization samples from a Llama-7b model trained against
RoBERTa Large. There does not appear to be a significant qualitative difference between the generated texts.
Continued in Table 11
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Base Sample Optimized Sample

India will deploy the recently bought Rafale jets for
operations in Pakistan and Afghanistan to strike ter-
ror camps in Balochistan, interior minister Chaudhry
Nisar said here on Sunday, two days after India sent
the much-awaited aircraft across. India has been
maintaining that the aircraft was being bought for
“self-defence” and would be deployed at bases in
western coastal airfields. “We bought Rafale jets
from France for operations in Pakistan (Punjab and
Balochistan) and Afghanistan,” said the interior min-
ister. [newline]

India will deploy the recently bought Rafale jets
for operations in Pakistan and not for patrolling its
airspace alone. T̈he deployment of the jets is being
done for operations in Pakistan,ḧe said. India will be
celebrating its 74th Independence day on August 15.
A large military parade is scheduled to mark the occa-
sion, as well as a flypast by the warplanes, which are
India’s first from a major acquisition since 2007. Be-
sides the Rafales that made their debut Saturday, the
parade will

To view this video please enable JavaScript, and
consider upgrading to a web browser that supports
HTML5 video [newline] Posted by: Jake on: Septem-
ber 7, 2017 [newline] In: Entertainment — Technol-
ogy [newline] Since smart phones are becoming an
ubiquitous part of our life, mobile application devel-
opment is becoming increasingly relevant, especially
for businesses. These mobile apps provide easy, in-
stant access to customers and consumers around the
world. [newline] Business owners can easily develop,
deploy and modify mobile apps to reach customers
with their offerings; whether it be

To view this video please enable JavaScript, and
consider upgrading to a web browser that supports
HTML5 video . [newline] We love our pets so much it
is hard to believe that more often than not they are of-
ten kept more like a child than an equal member of the
family. [newline] However to treat them better we all
know our pets and so when they start showing signs
that they are not comfortable, we do all we can to help
them. But there is little we can do about when they
start displaying that their arthritis is starting to take its
toll. [newline] The

Sales are up, and we haven’t even launched, and we’ve
already gotten some favorable feedback. [newline]
I’m sure with a little more tweaking we can make them
even better, but I think we’re off to a great start. [new-
line] I’ll try to post more pictures as our prototypes
continue to improve. Thanks to everyone who has al-
ready purchased! [newline] Bamboo Garden Proto-
types - Bamboo Shades! [newline] We just received
our prototyped Bamboo Garden shades! We are ex-
cited to introduce

Sales are up, and we haven’t started! [newline] It’s of-
ficial: the 2010 Fasig-Tipton Midlantic Fall Yearling
Sale was the best ever. The 325 yearlings sold aver-
aged $54,330 for a sale gross of $15,852,550. Too
good to be true?? [newline] Tuesday the 13th brought
157 yearlings to the auction ring followed by another
168 on Wednesday the 1

Even though PLAYERUNKNOWN’S BATTLE-
GROUNDS has seen its player numbers decline over
the last few weeks, the popular title is far from dead.
According to PUBG, the game continues to generate
a revenue of over $1 million a day. And when
you consider that there hasn’t been a major PUBG
update since December, it’s clear that players are
still spending a lot on microtransactions. To put this
revenue into context, at the height of its popularity
during 2018 PUB

Even though PLAYERUNKNOWN’S BATTLE-
GROUND is still to be released, GameSpot has
found new footage from the game, including in-game
footage and interviews with the makers. After months
of silence regarding the game, PUBG has just given
us a reason to be patient until release. [newline]
PUBG is one of the more hotly anticipated games this
year as it blends three great things in one single game;
First person shooter, battle royale and a sandbox
game. After the massive success Garry’

Table 11: Continuation of Table 10.
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