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ABSTRACT

Lane segment topology reasoning constructs a comprehensive road network by
capturing the topological relationships between lane segments and their seman-
tic types. This enables end-to-end autonomous driving systems to perform road-
dependent maneuvers such as turning and lane changing. However, the limitations
in consistent positional embedding and temporal multiple attribute learning in ex-
isting methods hinder accurate road network reconstruction. To address these
issues, we propose TopoStreamer, an end-to-end temporal perception model for
lane segment topology reasoning. Specifically, TopoStreamer introduces three
key improvements: streaming attribute constraints, dynamic lane boundary posi-
tional encoding, and lane segment denoising. The streaming attribute constraints
enforce temporal consistency in both centerline and boundary coordinates, along
with their classifications. Meanwhile, dynamic lane boundary positional encoding
enhances the learning of up-to-date positional information within queries, while
lane segment denoising helps capture diverse lane segment patterns, ultimately
improving model performance. Additionally, we assess the accuracy of exist-
ing models using a lane boundary classification metric, which serves as a crucial
measure for lane-changing scenarios in autonomous driving. On the OpenLane-
V2 dataset, TopoStreamer demonstrates considerable improvements over state-of-
the-art methods, achieving substantial performance gains of +3.0% mAP in lane
segment perception and +1.7% OLS in centerline perception tasks. Our code will
be released.

1 INTRODUCTION

(a)

(b)

Insufficient road information for planning

Fine-grained road information for planning

•Centerlines

•Lane boundaries

•Pedestrian crossings

•Topology

•Pedestrian crossings

•Lane dividers

•Road boundaries

Figure 1: Comparsion between current streaming-based map
learning methods (Yuan et al., 2024) and our TopoStreamer.
TopoStreamer delivers more fine-grained road information
through streaming perception of lane segments, which is vital
for planning.

Perception serves as a crucial compo-
nent in end-to-end autonomous driving (Li
et al., 2024b; Yang et al., 2025b), provid-
ing essential road priors for planning. Ex-
isting HD map learning and lane topol-
ogy reasoning methods primarily focus
on frame-by-frame detection (Li et al.,
2023b; Liao et al., 2022). This approach
fails to account for instance consistency
across consecutive frames, making it sus-
ceptible to missed detections due to oc-
clusions and high-speed movements (Yuan
et al., 2024). Such limitations significantly
hinder continuous and smooth decision-
making and maneuvers. To compre-
hensively leverage temporal information,
streaming-based methods (Yuan et al.,
2024; Wang et al., 2024b; Wu et al., 2025)
propose memory-based temporal propagation to establish long-term frame associations. Specifi-
cally, these approaches leverage the ego-vehicle pose to predict the probable positions of road in-
stances in subsequent frames. However, these methods fail to capture sufficient road information for
planning. This inspired us to introduce a temporal mechanism in lane topology reasoning, which

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

we can leverage perception and topology reasoning results from previous frames to predict cur-
rent frame outcomes and capture fine-grained road information for planning (Jia et al., 2025). Fig.
1 demonstrates the comparison between our method and current streaming-based learning meth-
ods(Yuan et al., 2024). To the best of our knowledge, achieving this objective presents two primary
challenges: (1) Consistent positional embedding. Current streaming-based methods exhibit defi-
ciencies in their positional embedding design for stream queries. Furthermore, certain lane topol-
ogy reasoning approaches (Li et al., 2023a;b) suffer from inconsistency between reference points
and positional embedding updates. (2) Temporal multiple attribute learning for lane segments.
Topology reasoning between lanes is highly sensitive to the precise localization of lane segments
(Fu et al., 2025a) and projection errors make it challenging to maintain consistent localization and
category of lane segments across temporal propagation.

To address the aforementioned challenges, we propose TopoStreamer, a novel temporal perception
framework for lane segment topology reasoning. To strengthen positional embedding consistency,
we augment the heads-to-regions mechanism (Li et al., 2023b) through dynamic explicit positional
encoding across successive decoder layers. This design progressively injects updated positional in-
formation to enhance query updating with latest spatial learning. Furthermore, we introduce multiple
streaming attribute constraints and a lane segment denoising module to reinforce temporal coherence
and enable the learning of diverse patterns in lane segments. We also propose a new metric to eval-
uate the lane boundary classification accuracy, a measure for autonomous vehicle lane-changing
decision-making systems.

Contributions: (1) We present TopoStreamer, a novel temporal lane segment perception method
for lane topology reasoning in autonomous driving. (2) Three novel modules have been proposed,
including streaming attribute constraints for lane segments in temporal propagation, a dynamic lane
boundary positional encoding module to enhance positional learning, and a lane segment denoising
module for the learning of diverse patterns in lane segments. (3) Extensive experiments conducted
on lane segment benchmark OpenLane-V2 (Wang et al., 2024a) demonstrate SOTA performance of
TopoStreamer in lane topology reasoning.

2 RELATED WORK

2.1 HD MAP AND LANE TOPOLOGY REASONING

Traditional high-definition (HD) map reconstruction primarily relies on SLAM-based methods
(Zhang et al., 2014; Shan & Englot, 2018), which incur substantial costs in manual annotation
and map updates. With recent advancements in bird’s-eye view (BEV) perception and detection
frameworks, offering improved efficiency and performance, the research focus has shifted towards
vectorized HD map learning approaches. HDMapNet (Li et al., 2022b) generates HD semantic maps
from multi-modal sensor data. However, extra post-processing is required to obtain vectorized rep-
resentations. To generate vectorized map directly, VectorMapNet (Liu et al., 2023) predicts map
elements as a set of polylines. The MapTR series (Liao et al., 2022; 2023) propose precise map
element modeling and stabilizes learning via a hierarchical query-based anchor initialization mech-
anism. Unlike online HD map methods that primarily focus on drivable boundaries, our method
concentrate on lane topology reasoning to perceive drivable trajectories (centerlines) and their topo-
logical relationships. STSU (Can et al., 2021) predicts an ordered lane graph to represent the traffic
flow in the BEV. Subsequent research (Wu et al., 2023; Li et al., 2023a) has explored centerline
topology using diverse model architectures on the OpenLane-V2 benchmark. To address endpoint
misalignment issues in topology prediction, TopoLogic introduces dual constraints: distance-aware
and similarity-aware optimization objectives. LaneSegNet (Li et al., 2023b) proposes lane seg-
ment perception to enhance the complete description of map. TopoPoint (Fu et al., 2025b) proposes
Point-Lane interaction to learn accurate endpoints for reasoning. However, aforementioned methods
overlook the potential benefits of temporal consistency for lane perception. In this work, we propose
temporal-aware lane segment learning.

2.2 TEMPORAL 3D OBJECT DETECTION

In open-world scenarios, single-frame 3D detection faces challenges stemming from inaccurate pose
estimation, occlusion, and adverse weather conditions. To overcome these limitations, recent ad-
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Figure 2: The overall architecture of TopoStreamer. It consists of four main components: part (a) PV-to-BEV
encoder for extracting BEV features from multi-view images, part (b) transformer-based decoder enhanced
with a dynamic lane boundary positional encoding module to improve up-to-date positional information learn-
ing, part (c) DN query generator for lane segment denoising, and part (d) stream memory that enables temporal
propagation.

vancements have incorporated long-term memory to store different feature. BEVFormerv2 (Yang
et al., 2023) and BEVDet4D (Huang & Huang, 2022) stack BEV features from historical frames.
Sparse4D (Lin et al., 2022) and PETRv2 (Liu et al., 2022) design sparse fusion on images feature
to avoid dense perspective transformation. StreamPETR (Wang et al., 2023) and Sparse4Dv3 (Lin
et al., 2023) propagate historical information in query feature frame by frame. The temporal detec-
tion also shows impressive results in HD map learning. StreamMapNet (Yuan et al., 2024) proposes
a streaming-based framework to warp and fuse the BEV features, and top-k reliable queries are
selected to propagate. MapTracker (Chen et al., 2024) propose a tracking-based temporal fusion
framework. It fuses the BEV and query features with distance strides to ensure extended-range
consistency. SQD-MapNet proposes a denoising method for map elements to address the issue of
information loss at the boundaries of BEV grid. Different from these methods, our distinctive con-
tribution lies in the introduction of customized enhancements specifically designed for the more
complex task of lane segment perception. This not only facilitates comprehensive road network
understanding but also addresses the critical gap in positional embedding (PE) modeling within
existing temporal map learning methods.

2.3 QUERY DENOISING

Adding noise and performing denoising during training has been proven to accelerate the training
process and enhance the model’s capabilities in both classification and regression. DN-DETR (Li
et al., 2022a) introduces a denoising part apart from matching part as auxiliary supervision. DINO
(Zhang et al., 2022) introduces a contrastive training to distinguish hard DN samples. SQD-MapNet
(Wang et al., 2024b) proposes a stream query denoising to address the issue of map element trun-
cation at boundaries caused by pose changes. To learn a comprehensive road network, we predict
multiple attributes into a single lane segment query. To predict these attributes accurately, we design
a tailored denoising learning strategy specifically for lane segments.

3 METHOD

Given surrounding multi-view images I, our goal is to predict 3D position, class attributes and
topology of lane segments. Each lane segment is composed of a centerline Lc = (P,C ) , a left lane
boundary Ll = (P,T ), and a right lane boundary Lr = (P,T ). P denotes an ordered set of points
P = {(xi, yi, zi)}|Mi=1, where M is a preset number of points. In fact, we can obtain the boundary
coordinates simply by predicting an offset and applying it to the centerline coordinates. C indicates
the lane segment class, which includes categories such as road lines and pedestrian crossings. T
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denotes the boundary class, which can be dashed, solid, or non-visible. The connectivity topology
is indicated by an adjacency matrix A (Can et al., 2021).

Table 1: Meaning of the notations in TopoStreamer

Notation Meaning

Lc,Ll,Lr Center, left boundary and right boundary lines
Fbev,Fpe,Fcontent BEV feature, positional embedding, and content embedding

Q Queries
D,S, I Denoising (DN), stream and initialized

t Time stamp T
RB,RC Boundary and center reference points
C ,T Lane segment class and boundary class
M,A BEV semantic mask and adjacency matrix

P = {(xi, yi, zi)} An ordered set of points that forms a lane
Ψ Transformation matrix

3.1 OVERALL ARCHITECTURE

The overall architecture of TopoStreamer is illustrated in Fig. 2. For clarity, some main notations in
NLPF are displayed in Tab. 1. First, the surrounding multi-view images are processed by the PV-to-
BEV encoder (Li et al., 2022c; He et al., 2016; Lin et al., 2017a) to generate BEV features Fbev ∈
RH×W×C , where C, H, W represent the number of feature channels, height, and width, respectively.
These current BEV features are then fused with past BEV features. A DN query generator provides
denoising (DN) queries QD ∈ RN×C , DN center reference points RD

C ∈ RN×10×3, and DN
boundary reference points RD

B ∈ RN×10×3. Next, a transformer-based decoder (Zhu et al., 2020)
refines the DN, stream, and initialized queries {QD,QS,QI}. The BEV features, along with DN,
stream, and initialized boundary reference points {RD

B ,RS
B,R

I
B}, are subsequently fed into the

lane attention (Li et al., 2023b) along with the corresponding queries for further processing. A
dynamic lane boundary positional encoding module encodes these boundary reference points into
positional embeddings Fpe ∈ RN×10×C , injecting positional information into the queries layer
by layer. Meanwhile, the DN, stream, and initialized center reference points {RD

C ,RS
C,R

I
C} are

utilized for prediction refinement (Zhu et al., 2020). The updated DN queries are used for lane
segment denoising, while the stream and initialized queries are employed by the prediction heads to
generate the lane graph. Additionally, past BEV features, queries and reference points are stored in
a stream memory, enabling temporal propagation.

3.2 TEMPORAL PROPAGATION FOR LANE SEGMENT

Since lane segments remain stationary in geodetic coordinate while ego-vehicle poses change rela-
tive to them, we can utilize the detection results from the previous frame combined with the vehicle’s
ego-motion to establish reference positions for subsequent frame predictions (Yuan et al., 2024).
First, we warp the BEV features from the past frame to fuse with the BEV features from the current
frame by a Gated Recurrent Unit (GRU) (Chung et al., 2014):

F̃
t

bev = GRU(Warp(Ft−1
bev ,Ψ),Ft

bev) (1)

where Ψ denotes transformation matrix between two frames. Then the BEV features are stored in
the stream memory for fusion in the next frame.

For query propagation across consecutive frames, we implement a learnable transformation through
a MLP, which adaptively maps the top-k highest confidence queries from the previous frame to the
current frame’s coordinate system. Then, we can obtain the stream queries:

QS
t = MLP(Concat(Qt−1,Ψ)) + Qt−1 (2)

where Concat(·) denotes the concatenate function and Qt−1 can be the stream and initialized queries
from t-1 frame. DN queries and DN reference points are excluded from temporal propagation.
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Streaming Attribute Constraints. Conventional approaches (Yuan et al., 2024; Wang et al., 2024b;
Chen et al., 2024) typically apply transformation loss to the converted coordinates to facilitate the
learning of coordinate transformation. Since lane segments inherently possess multiple attributes,
maintaining their temporal consistency requires more sophisticated constraints than simple coordi-
nate transformation loss. To address this, we develop a comprehensive set of streaming attribute
constraints. We employ MLPs to predict lane segment coordinate L̃t = Concat(L̃c

t , L̃
l
t, L̃

r
t ) lane

segment class C̃t, boundary class T̃t and BEV semantic mask M̃t from stream queries QS
t . Then,

the streaming attribute constraints are represented as:

LStream
coord = LL1(L̃t,Lt)

LStream
cls = LFocal(C̃t,Ct) + LCE(T̃t,Tt)

LStream
mask = LCE(M̃t,Mt) + LDice(M̃t,Mt)

LStream = LStream
coord + LStream

cls + LStream
mask

(3)

where, for brevity, we omit the weights for each loss term. Lt, Tt, Ct and Mt are GT annotations
transformed from T-1 frame to T frame. More details can be found in appendix.

Lossless Streaming Supervision. Existing approaches (Yuan et al., 2024; Wang et al., 2024b)
utilize GT annotations from the past frame, transformed via pose estimation, to supervise the trans-
formation loss for the subsequent frame. However, this method inevitably leads to information loss
at BEV boundary regions as shown in (Wang et al., 2024b). To address this limitation, we track the
unique IDs of positive instances matched through Hungarian assignment for stream queries, thereby
providing lossless supervision. This is made possible by OpenLane-V2’s provision of unique in-
stance IDs. For datasets that do not provide IDs, we can also use mask matching (Chen et al., 2024)
to identify ID associations across frames.

3.3 DYNAMIC LANE BOUNDARY PE
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Figure 3: Comparison of PE: (a) current streaming-based
approaches (Yuan et al., 2024), (b) recent single-frame detec-
tion methods (Li et al., 2023b), and (c) our proposed method.

As shown in Fig. 3, current tempo-
ral approaches (Yuan et al., 2024; Wang
et al., 2024b; Chen et al., 2024) neglect the
learning of positional embeddings, leading
to inaccurate spatial localization. Further-
more, a critical updating inconsistency ex-
ists in recent single-frame detection meth-
ods (Li et al., 2023b;a). Because the
initialized positional embeddings remain
static, while the reference points are up-
dated layer by layer. In the temporal prop-
agation process, when some initial queries
are substituted with stream queries, com-
bining them with static PE could result
in incompatible feature integration due to
mismatches. The static PE refers to the PE
that is not updated between layers during
the forward pass. Furthermore, existing
methods (Liu et al., 2024) primarily focus on injecting positional encoding (PE) for the centerline.
However, in lane segment recognition, this centerline-based PE injection can diminish the focus on
positions within the boundary lines, which contradicts our goal of predicting multiple attributes for
the entire lane segment area. To address these problems, we enhance the heads-to-regions sampling
module (Li et al., 2023b) by a dynamic lane boundary PE modeling. We apply point-wise positional
encoding (Liu et al., 2024) to the boundary reference points to generate positional embeddings. We
duplicate the queries to align with the number of boundary reference points. After the self-attention,
we combine the positional embeddings with the corresponding queries. Subsequently, the queries
interact with and BEV features through lane attention (LA) (Li et al., 2023b) with boundary refer-
ence points sampling. Finally, a MLP is used to merge the duplicated queries. This process can be
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represented as:

Fpe = {PE(PB
i )}

Q̃ = MLP(LA(Duplicate(SA(Q)) + Fpe, F̃bev,RB))
(4)

where Q̃ denotes the updated queries by this layer. Then, the reference points are refined through
offset adjustments to enable more precise sampling. This refinement facilitates the injection of more
accurate positional embeddings into the queries in subsequent decoder layers, thereby enhancing
the learning of precise lane segment localization. For more implementation details regarding the
decoder process, please refer to the appendix.

3.4 LANE SEGMENT DENOISING

The accuracy of topology prediction is highly dependent on the quality of lane detection. For in-
stance, when noise causes misalignment between the endpoints of two lane segments that should
be connected, it can significantly compromise the reliability of topological relationship inference.
To address this, we introduce a denoising mechanism (Li et al., 2022a; Wang et al., 2024b) during
training, which enables the model to learn from various noisy patterns. These noise patterns often
lead to fragmented lane segments and positional shifts, thereby reducing the likelihood of correct
topological associations. By learning to denoise, the model can recover the original positions and
connectivity of lane segments, ultimately improving both detection robustness and topology infer-
ence performance. A detailed denoising example is provided in the supplementary material. In
contrast to object or HD map detection (Li et al., 2022a; Wang et al., 2024b), which separately pre-
dicts bounding boxes or polylines along with their categories, lane segment perception involves a
more complex set of attributes. These encompass centerlines, boundary coordinates, segment types,
and downstream topological relationships. Consequently, our design of the denoising queries and
objective loss function comprehensively accounts for this multifaceted nature.

Centerline LabelCenterline LabelCenterline Label Boundary LabelBoundary LabelBoundary Label

Label Noising Label Noising
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Figure 4: DN query for lane segment denoising.

Fig. 4 illustrates the generation of DN queries
for lane segment perception. Initially, noise is
introduced to the ground truth (GT) data. Then,
the DN queries are obtained through content
and positional embedding:

FD
pe = MLP({PE(RC)})

FD
content = MLP(Concat(Emb(C ),Emb(T )))

QD = MLP(Concat(FD
pe,FD

content))

(5)

where Emb denotes embedding mapping oper-
ation.

Subsequently, we introduce a set of denois-
ing losses to rectify noisy coordinates, cate-
gory misclassifications, and topological errors
arising from coordinate deviations in the DN
queries. The denoising losses include L1 loss
for position regression, cross-entropy and focal
loss (Lin et al., 2017b) for classification and ad-
jacency matrix prediction:

Ldenoise = LDN
coord + LDN

cls + LDN
topo (6)

where, for brevity, we omit the weights for each loss term. Details of DN losses can be found
in appendix. This module enhances the learning of diverse patterns in lane segments, specifically
correcting erroneous predictions caused by temporal projection errors.

3.5 TRAINING LOSS

The overall loss function in TopoStreamer is defined as follows:

L = α1Lls + α2Lstream + α3Ldenoise (7)
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Table 2: Comparison with the state-of-the-arts on OpenLane-V2 benchmark on lane segment. All models adopt
ResNet-50 as the backbone network and are trained for 24 epochs. †: Our enhanced model employ GeoDist
strategy from TopoLogic (Fu et al., 2025a).

Method Venue Temporal mAP ↑ APls ↑ APped ↑ TOPlsls ↑ Accb ↑ FPS
MapTR (Liao et al., 2022) ICLR23 No 27.0 25.9 28.1 - - 14.5

MapTRv2 (Liao et al., 2023) IJCV24 No 28.5 26.6 30.4 - - 13.6
TopoNet (Li et al., 2023a) Arxiv23 No 23.0 23.9 22.0 - - 10.5

LaneSegNet (Li et al., 2023b) ICLR24 No 32.6 32.3 32.9 25.4 45.9 14.7
TopoLogic (Fu et al., 2025a) NIPS24 No 33.2 33.0 33.4 30.8 - -

Topo2Seq (Yang et al., 2025a) AAAI25 No 33.6 33.7 33.5 26.9 48.1 14.7
StreamMapNet (Yuan et al., 2024) WACV24 Yes 20.3 22.1 18.6 13.2 33.2 14.1
SQD-MapNet (Wang et al., 2024b) ECCV24 Yes 26.0 27.1 24.9 16.6 39.4 14.1

TopoStreamer (ours) - Yes 36.6 35.0 38.1 28.5 50.0 13.6
TopoStreamer† (ours) - Yes 36.5 35.1 37.8 30.1 50.2 13.2

where the lane segment loss Lls supervises predicted lane segments through Hungarian matching
(Li et al., 2023b), while Lstream and Ldenoise are loss specifically optimized for lane segments
streaming and denoising. α1, α2 and α3 are hyperparameters.

4 EXPERIMENTS

We evaluate our method on multi-view lane topology benchmark OpenLane-V2 (Wang et al.,
2024a). Since lane segment labels are exclusively available in subsetA, our validation is primar-
ily conducted on this subset. The results on subsetB can be found in appendix.

4.1 DATASETS AND METRICS

Table 3: Comparison with the state-of-the-arts on OpenLane-V2 bench-
mark on centerline perception. All models adopt ResNet-50 as the back-
bone network and are trained for 24 epochs. Unlike other methods,
TopoFormer⋆ adopts a staged training strategy that utilizes a pretrained
lane detector for topology reasoning training. While this leads to better
detection performance, it offers only slight advantage in topology pre-
diction.

Method Venue Temporal OLS ↑DETl ↑TOPll ↑
VectorMapNet (Liu et al., 2023) ICML23 No 13.8 11.1 2.7

STSU (Can et al., 2021) ICCV21 No 14.9 12.7 2.9
MapTR (Liao et al., 2022) ICLR23 No 21.0 17.7 5.9
TopoNet (Li et al., 2023a) Arxiv23 No 30.8 28.6 10.9
Topo2D (Li et al., 2024a) Arxiv24 No 38.2 29.1 26.2

TopoMLP (Wu et al., 2023) ICLR24 No 37.4 28.3 21.7
LaneSegNet (Li et al., 2023b) ICLR24 No 40.7 31.1 25.3
TopoLogic (Fu et al., 2025a) NIPS24 No 39.4 29.9 23.9

Topo2Seq (Yang et al., 2025a) AAAI25 No 42.7 33.5 27.0
TopoFormer⋆ (Lv et al., 2025) CVPR25 No 42.1 34.7 24.7

StreamMapNet (Yuan et al., 2024) WACV24 Yes 28.8 21.7 12.9
SQD-MapNet (Wang et al., 2024b) ECCV24 Yes 33.9 27.2 16.4

TopoStreamer (ours) - Yes 44.4 35.2 28.8

OpenLane-V2 (Wang et al.,
2024a) is a widely-used dataset
for lane topology reasoning. Its
subsetA, re-annotated from Ar-
goverse 2 (Wilson et al., 2023),
provides enhanced details on
traffic signals, centerlines, lane
boundaries, and their topolog-
ical relationships. This sub-
set includes over 20,000 training
frames and more than 4,800 val-
idation frames, with each frame
comprising 7 camera images at a
resolution of 2048 × 1550.

Metrics. We evaluate our model
on two tasks: lane segment
and centerline perception. The
lane quality are evaluated under
Chamfer distance and Frechet
distance under a preset thresh-
olds of {1.0, 2.0, 3.0} meters.
For lane segment, mAP computed as average of APls and APped. APls and APped are used to
estimate the quality of lane segment of road lines and pedestrian crossing, respectively. TOPlsls

measures the performance of topology reasoning. We design a new metric Accb to evaluate lane
boundary classification accuracy, which can be referred in appendix. The metrics in cenerline per-
ception are similar with those in lane segment. OLS (Wang et al., 2024a) is calculated between
DETl and TOPll.

4.2 EXPERIMENTAL SETTINGS

We adopt a pre-trained ResNet-50 (He et al., 2016), FPN (Lin et al., 2017a) and BevFormer (Li et al.,
2022c) to encode the images to BEV features. The BEV grid is 200 × 100, which the perception
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Figure 5: The temporally accumulated perception results are compared across GT, our TopoStreamer, and
SQD-MapNet (Wang et al., 2024b). The images from top to bottom correspond to GT, TopoStreamer, and
SQD-MapNet. Missing detections are highlighted with red color. For better viewing, zoom in on the image.

range is ± 50m × ± 25m. Our decoder is based on Deformable DETR, with the cross-attention
replaced by lane attention (Li et al., 2023b). The number of layer is 6. We use 200 queries, with
30% allocated for temporal propagation. The centerline, left boundary line, and right boundary line
are each represented as individual sets of 10 ordered points in our predictions. We select 8 boundary
reference points (4 from the left boundary and 4 from the right) to generate PE. The number of
DN groups is dynamically adjusted based on batch instances, while DN queries are fixed at 240.
Positional noise is introduced via box shifting (Wang et al., 2024b) with a factor of 0.2, and labels
have a 50% flip probability. Training is conducted for 24 epochs with a batch size of 8 on NVIDIA
V100 GPUs, with the first 12 epochs using single-frame input to stabilize streaming training. The
initial learning rate is 2×10−4 with a cosine annealing schedule during training. AdamW (Kingma &
Ba, 2015) is adopted as optimizer. The values of α1, α2, α3 are set to 1.0, 0.3 and 1.0, respectively.
The confidence threshold for the adjacency matrix is set at 0.5, and all visualized segments must
exceed a threshold of 0.3.

We re-train StreamMapNet (Wang et al., 2024b) and SQD-MapNet (Wang et al., 2024b), both of
which predict 10 points for the left and right boundaries. The centerline is obtained by calculating
the average positions of two boundaries.

4.3 MAIN RESULTS

Results on Lane Segment The results for lane segment are shown in Tab. 2. Compared with single-
frame detection methods, we outperforms LaneSegNet by 4.0% mAP, 3.1% TOPlsls and 4.1% Accb,
and exceeds Topo2Seq by 3.0% mAP. This shows the effectiveness of our streaming design for lane
segment. Compared with temporal detection methods, we achieve a remarkable improvement of
10.6% mAP, 11.9% TOPlsls and 10.6% Accb. They exhibit limitations in detecting more fragmented
lane segments, as they fail to account for multiple attributes and PE design.

Results on Centerline Perception The results of centerline perception are shown in Tab. 3. Com-
pared with TopoFormer, our method achieve superior OLS (44.4 v.s. 42.1) and topology reasoning
capacity (28.8 v.s. 24.7). This is attributed to the integration of auxiliary denoising training, PE
design, and multi-attribute constraints in temporal detection.

4.4 MODEL ANALYSIS

Ablation Studies for Streaming Attribute Constraints. The results are shown in Tab. 4a. The
baseline implementation, corresponding to the first row, incorporates the DBPE module into the
streaming framework while excluding both the streaming attribute constraints and lane segment
denoising components. Introducing class constraint in streaming can achieve a considerable im-
provement in lane boundary classification. Subsequently, the progressive integration of mask and
coordinate constraints leads to enhanced detection capability and improved topology reasoning per-
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Table 4: Ablation study results on losses.

Ltranloss LStream
cls LStream

mask LStream
coord mAP TOPlsls Accb

33.8 26.1 47.8
✓ 34.7 26.3 49.0

✓ 34.0 26.5 49.2
✓ ✓ 35.1 27.0 49.2
✓ ✓ ✓ 35.6 27.8 49.5

(a) Ablation studies on streaming attribute constraints and
transformation loss (Yuan et al., 2024).

Ldqd LDN
cls LDN

topo LDN
coord mAP TOPlsls Accb

33.8 26.1 47.8
✓ 35.2 27.2 49.6

✓ 35.1 27.0 49.5
✓ ✓ 35.7 27.9 49.7
✓ ✓ ✓ 36.3 28.0 49.8

(b) Ablation studies on lane segment denois-
ing and dynamic query denoising (Wang et al.,
2024b).

formance. The transformation loss in StreamMapNet (Yuan et al., 2024) only propagates and con-
strains the coordinates of line during temporal propagation. In contrast, our stream attribute con-
straints transfer and enforce the consistency of centerlines, boundary coordinates, typesand semantic
masks. This plays a crucial role in the temporal detection of lane segments with multiple attributes.
Consequently, compared to the transformation loss, our stream attribute constraints achieve an im-
provement of 0.9% in mAP and 1.5% in TOPlsls.

Table 5: Ablation study on different modules in our method.
Method mAP APls APped TOPlsls Accb
BL(w. Static PE) 32.6 32.3 32.9 25.4 45.9
+DBPE 33.5 32.6 34.3 26.1 47.2
+DBPE+LSDN 34.5 32.9 36.1 26.7 47.6
+Stream+Static PE 33.8 32.8 34.8 26.3 47.7
+Stream w/o PE 33.5 32.0 34.9 27.1 48.3
+Stream+DBPE 35.6 34.7 36.5 27.8 49.5
+Stream+DBPE+LSDN w/o IDTrack 34.4 33.6 36.2 28.0 49.5
+Stream+CPE((Liu et al., 2024))+LSDN 34.5 34.0 35.0 28.1 49.7
+Stream+DBPE+LSDN 36.6 35.0 38.1 28.5 50.0

Ablation Studies for Lane Segment De-
noising. The results are presented in
Tab. 4b. The baseline implementation re-
mains consistent with Tab. 4a. Incorpo-
rating class denoising for content informa-
tion in queries enhances performance in
both detection and lane boundary classifi-
cation, highlighting the importance of con-
tent learning in perception. Additionally,
topology denoising enhances the robustness of topological reasoning against coordinate noise, while
coordinate denoising boosts detection performance. Existing denoising methods only denoise cen-
ter coordinates and categories. Our method extends this by also denoising additional attributes like
boundary lines and topological relations for lane segments. This yields a performance gain of 1.1%
mAP and 0.8% TOPlsls compared to dynamic query denoising.

Module Ablations. The first row in Tab. 5 presents our baseline (BL) model, LaneSegNet. Lane-
SegNet injects static PE into the queries. With the introduction of dynamic lane boundary PE
(DBPE), the model exhibits a slight improvement. Further enhancement is achieved by incorpo-
rating lane segment denoising (LSDN). These results demonstrate that the incorporation of dynamic
lane boundary PE and lane segment denoising effectively improves the overall performance of the
per-frame detection model. Comparing row 6 with row 2, when the baseline model is adapted to
the streaming paradigm and supervised with streaming attribute constraints, considerable improve-
ments are observed (35.6% v.s. 33.5% in mAP, 27.8% v.s. 26.1% in TOPlsls, and 49.5% v.s. 47.2%
in Accb). However, substituting DBPE with either initial static PE or no PE at all adversely im-
pacts performance, particularly resulting in a 2% reduction in mAP. Compared with centerline PE
(CPE) (Liu et al., 2024), our DBPE achieves an improvement of 2.1 mAP. This demonstrates that
injecting positional encoding via boundary points is particularly beneficial for recognizing areal lane
segments, especially in detecting pedestrian crossings. Finally, the addition of denoising leads to op-
timal performance. However, as demonstrated in the row 7, the model exhibits a significant decline
in detection performance when the unique IDs of positive instances are not tracked within streaming
attribute constraints to ensure lossless supervision.

4.5 QUALITATIVE RESULTS

As shown in Fig. 5, 6 and 7, TopoStreamer is capable of predicting a complete road network
with clearly lane boundaries, accurate topology connections, and temporal consistency. Additional
qualitative results are provided in the appendix.

5 CONCLUSION

In this paper, we propose TopoStreamer, a temporal lane segment perception model for lane topol-
ogy reasoning. Specifically, we incorporate three novel modules into an end-to-end network. The
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Figure 6: Qualitative results under different road structures. The images from top to bottom correspond to GT,
our TopoStreamer, and LaneSegNet(Li et al., 2023b). For better viewing, zoom in on the image.

T T+1 T+2 T+3 T+4

(a) Results when the ego vehicle is moving.

T T+1 T+2 T+3 T+4

(b) Results when the ego vehicle is stationary.

Figure 7: Visualization of topology predictions across consecutive 5 frames. The results of TopoStreamer are
shown on the top, and the results of LaneSegNet (Li et al., 2023b) are shown on the bottom. For better viewing,
zoom in on the images. This demonstrates TopoStreamer’s capability for accurate detection with temporal
consistency.

streaming attribute constraints ensure the temporal consistency of both centerline and boundary co-
ordinates, along with their classifications. Meanwhile, dynamic lane boundary positional encoding
enhances the up-to-date positional information learning in queries, and lane segment denoising facil-
itates the learning of diverse patterns within lane segments. Furthermore, we evaluate the accuracy
of existing models on our newly proposed lane boundary classification metric, which serves as a
crucial measure of lane-changing scenarios in autonomous driving. Experimental results on the
OpenLane-V2 dataset demonstrate the strong performance of our model and the effectiveness of our
proposed designs.
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A APPENDIX

A.1 STREAMING ATTRIBUTE CONSTRAINTS.

Stream memory. To facilitate temporal fusion, we introduce several memory modules, including
stream query memory, stream BEV memory, and stream reference point memory, which store the
predictions from the preceding frame. Specifically, for the detection results in the frame at timestamp
T-1, we rank the queries based on their classification confidence scores and select the top-K queries
for temporal propagation. In our implementation, K is set to 66, corresponding to the top 30% of
queries. These selected queries, along with their associated centerline reference points and boundary
reference points, are stored in their respective memory banks. Additionally, the BEV feature of the
scene at T-1 is also stored in a memory. When processing the frame at timestamp T, the stored queries
and their corresponding centerline reference points and boundary reference points are retrieved and
undergo the following transformation by using transformation matrix:

QS
t = MLP(Concat(Qt−1,Ψ)) +Qt−1

RS
B = Norm(Concat(Ψ · L̃

c

t−1,Ψ · L̃
l

t−1,Ψ · L̃
r

t−1))
(1)

where Norm(·) denotes the normalization operation applied to the coordinates.

The stored BEV feature of the scene at T-1 is also retrieved from memory, transformed, and then
fused with the BEV feature extracted from the current frame (T):

F̃
t

bev = GRU(Warp(Ft−1
bev ,Ψ),Ft

bev) (2)

By doing so, our stream memories effectively integrates historical information, thereby enhancing
the detection performance for the current frame.

We employ MLPs to predict lane segment coordinate, lane segment class, boundary class and BEV
mask from stream queries QS

t :

L̃c
t = MLPreg(Q

S
t ) + InSigmod(RS

C)

L̃c
t = Denorm(sigmoid(L̃c

t))

offset = MLPoffset(Q
S
t )

L̃l
t = L̃c

t + offset, L̃r
t = L̃c

t − offset

L̃t = Concat(L̃c
t , L̃

l
t, L̃

r
t )

C̃t = MLPcls(Q
S
t )

T̃t = MLPbcls(Q
S
t )

M̃t = Sigmoid(MLPmask(Q
S
t )⊗ F̃

t

bev)

(3)

where InSigmod refers to the inverse sigmoid function, while Denorm stands for denormalize. Then,
the streaming attribute constraints are represented as:

LStream
coord = LL1(L̃t,Lt)

LStream
cls = κ1LFocal(C̃t,Ct) + κ2LCE(T̃t,Tt)

LStream
mask = κ3LCE(M̃t,Mt) + κ4LDice(M̃t,Mt)

LStream = κ5LStream
coord + κ6LStream

cls + κ7LStream
mask

(4)

where the values of κ1, κ2, κ3, κ4, κ5, κ6, and κ7 are 1.5, 0.01, 1.0, 1.0, 0.025, 1.0 and 3.0. Lt, Tt,
Ct and Mt are GT annotations transformed from T-1 frame to T frame.

A.2 LANE SEGMENT DENOISING

Lane segment denoising applies controlled noise to annotations and then removes it, thereby im-
proving the model’s capability to learn the diverse patterns present in lane segments. In the lane
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segment denoising, we predict position, classification and adjacency matrix from denoising (DN)
queries QD as follows:

L̃c = MLPreg(Q
D) + InSigmod(RD

C)

L̃c = Denorm(sigmoid(L̃c))

offset = MLPoffset(Q
D)

L̃l = L̃c
t + offset, L̃r = L̃c

t − offset

L̃ = Concat(L̃c
t , L̃

l, L̃r
t )

C̃ = MLPcls(Q
D)

T̃ = MLPbcls(Q
D)

QD′
= MLPpre(Q

D),QD′′
= MLPsuc(Q

D)

Ã = Sigmoid(MLPtopo(Concat(QD′
,QD′′

)))

(5)

Then, the denoising loss function is defined as:

LDN
coord = LL1(L̃,L)

LDN
cls = β1LFocal(C̃ ,C ) + β2LCE(T̃ ,T )

LDN
Topo = LFocal(Ã,A)

Ldenoise = λ1LDN
coord + λ2LDN

cls + λ3LDN
topo

(6)

where the hyperparameters are defined as: β1 = 1.5, β2 = 0.01, λ1 = 0.025, λ2 = 1.0 and
λ3 = 5.0. Some examples of lane segment denoising are shown in Fig. 2. For better visualization,
we only display the denoising results of the centerlines. It can be observed that the added noise
disrupts the connectivity of the road network. Through the denoising process, the original positions
and connectivity relationships are effectively restored. This enhances the model’s ability to predict
both the positional and connectivity topology of lane segments.

A.3 TOTAL LOSS FUNCTION

The overall loss function in TopoSteamer is defined as:

L = α1Lls + α2Lstream + α3Ldenoise (7)

where α1 = 1.0, α1 = 0.3 and α1 = 1.0, respectively. The lane segment loss is defined as:

Lls = ω1Lvec + ω2Lseg + ω3Lcls + ω4Ltype + ω5Ltopo (8)

where Lseg = ω6Lce + ω7Ldice consists of a Cross-Entropy loss and a Dice loss used to supervise
the BEV semantic mask., and the hyperparameters are defined as: ω1 = 0.025, ω2 = 3.0, ω3 = 1.5,
ω4 = 0.01, ω5 = 5.0, ω6 = 1.0 and ω7 = 1.0. Lvec is the L1 loss computed between the predicted
vectorized lanes and the ground truth lanes. The classification losses Lcls and Ltype are used for
lane segment classification. Ltopo is a focal loss applied to supervise the topological relationship
prediction. It is worth noting that the weighting strategies for the losses related to different lane
segment attributes in both streaming attribute constraints and lane segment denoising are consistent
with the loss configurations in LaneSegNet.

A.4 STREAMING TRAINING

We adopt the streaming training strategy for temporal fusion. For each training sequence, we ran-
domly divide it into 2 splits at the start of each training epoch to foster more diverse data sequences.
During inference, we use the entire sequences. Suppose a batch contains N samples, each from a
different scene, read in chronological order. Temporal fusion is performed by determining whether
the current data and the previously read data belong to the same scene.
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Figure 1: The detailed architecture of decoder.

Method Venue Epochs Temporal OLS ↑ DETl ↑ TOPll ↑
VectorMapNet (Liu et al., 2023) ICML23 24 No - 3.5 -

STSU (Can et al., 2021) ICCV21 24 No - 8.2 -
MapTR (Liao et al., 2022) ICLR23 24 No - 15.2 -
TopoNet (Li et al., 2023a) Arxiv23 24 No 25.1 24.3 6.7

TopoMLP (Wu et al., 2023) ICLR24 24 No 36.2 26.6 19.8
LaneSegNet (Li et al., 2023b) ICLR24 24 No 38.7 27.5 24.9
TopoLogic (Fu et al., 2025a) NIPS24 24 No 36.2 25.9 21.6

StreamMapNet (Yuan et al., 2024) WACV24 24 Yes 26.7 18.9 11.9
SQD-MapNet (Wang et al., 2024b) ECCV24 24 Yes 29.1 21.9 13.3

TopoStreamer (ours) - 24 Yes 42.6 30.9 29.4

Table 1: Comparison with the state-of-the-arts on OpenLane-V2 subsetB on centerline perception.

A.5 METRIC FOR LANE BOUNDARY CLASSIFICATION

Previous approach (Li et al., 2023b) classify lane boundaries as dashed, solid, or non-visible, but
they don’t measure how accurate these predictions are. This accuracy is crucial for self-driving
cars when making lane-change decisions. To solve this, we introduce a new metric to to evaluate
lane boundary classification accuracy. We follow the design of Toplsls metric (Wang et al., 2024a).
We first build a projection between predictions and ground truth to preserve true positive instances,
according to Fréchet distance. Then, we evaluate the accuracy of the left and right boundary types
by comparing the predicted types with the GT types.

A.6 DECODER ARCHITECTURE

The detailed architecture of the decoder is shown in Fig. 1. In the first layer of the decoder, we
utilize identical initialization (Li et al., 2023b) to produce the initial centerline reference points and
boundary reference points from the initial position embedding. The initial queries, combined with
DN queries, are fed into the self-attention (SA) and then augmented with the position embedding
generated from the initial and DN boundary reference points. The sampling of boundary reference
points is based on the heads-to-regions sampling method (Li et al., 2023b). Specifically, sampling
is performed at symmetric offset positions on both sides of the centerline reference points. The
position embedding is obtained by applying sinusoidal encoding to the coordinates of the reference
point. These queries interact with BEV features through lane attention (Li et al., 2023b), employing
a heads-to-regions sampling mechanism guided by the boundary reference points. At the outset of
layer 1, we predict an updated offset to refine the initial and DN center reference points, along with
a boundary offset to determine the boundary reference points by applying it to the center reference
points. Meanwhile, in this layer, stream query, stream center reference points and stream boundary
reference points are employed to replace the lowest confidence N-k queries and their reference
points. Here, N represents the predefined total number of queries, set at 200, while K denotes the
number of stream queries, which is 66, accounting for 30% of the total queries. The same updating
procedure as in layer 0 is then applied to these queries. The updating process remains consistent and
regular across layers 2 to 5.
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Add noise After denoisingGT

Figure 2: Qualitative results for lane segment denoising.

Top-K mAP TOPlsls

10% 34.8 27.9
30% 36.6 28.5
50% 34.3 27.3
75% 32.9 25.1

(a) Different numbers of stream queries.

Number mAP TOPlsls

120 35.0 27.4
240 36.6 28.5
360 35.1 27.7

(b) Different numbers of DN queries.

Table 2: Ablation study results.

A.7 EXPERIMENT

We provide comparative experiments on the OpenLane-V2 subset-B benchmark. In fact, this bench-
mark do not contain lane segment annotations with only centerline annotations. We generate pseudo-
labels by augmenting the lane centerlines with a standardized lane width of 4 meters. The results
are shown in Tab. 1. We outperforms LaneSegNet by 3.9% OLS, 3.4% DETl, and 4.5 % TOPll.

We present additional experiments focusing on the selection of the number of stream queries and DN
queries on subset-A. The results of the ablation study investigating the impact of varying numbers of
stream queries are presented in Tab. 2a. Optimal performance is attained when 30% of the queries
from the preceding frame are selected for temporal propagation. The results of the ablation study
about the number of DN queries are shown in Tab. 2b. Setting the number of DN queries to 240
yields the optimal performance.

A.8 DEMO

See the supplementary material vis.gif file for details.
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Method FLOPs Param
LaneSegNet 639.1G 30.9M

TopoStreamer 652.1G 46.2M

Table 3: Comparison of computational complexity.

A.9 TRAINING AND TESTING TIMES

The training and inference times are related to the model and quantity of the GPUs used. Our setup
utilizes 4 V100 GPUs, with a training time of approximately 28 hours and an testing time of about
40 minutes. Increasing the number of GPUs can accelerate the process, and switching to 4 A100
GPUs can reduce the training time to 20 hours.

A.10 COMPUTATIONAL COMPLEXITY

The computational complexity comparison against the our baseline model LaneSegNet is shown in
Table 3. We use the FLOPs (Floating Point Operations) and the number of parameters (Params)
of the model during inference to represent the computational cost. The additional parameters in
TopoStreamer, compared to LaneSegNet, are introduced by the temporal fusion and denoising mod-
ules. Furthermore, TopoStreamer only results in a marginal increase in FLOPs. The slight drop
in FPS of our method is a direct result of the computational overhead introduced by our temporal
propagation framework. This modest computational overhead is justified by a performance gain of
4.0% in mAP and 3.1% in TOPlsls

A.11 LIMITATION AND FUTURE WORK

Current lane topology reasoning methods are affected by the long-tail problem, exhibiting limited
detection confidence in regions with excessive curvature or indistinct lane markings. Therefore, we
plan to explore the use of Vision-Language Models (VLMs) to address this issue. By leveraging
VLMs to interpret road structures and generate Chains of Thought (CoT), we aim to provide prior
knowledge for lane topology reasoning and enhance interpretability. Additionally, we will investi-
gate integrating road topology with end-to-end autonomous driving systems, using lane topology to
constrain vehicle trajectory planning and improve safety.

A.12 USE OF LLM

In this paper, large language model is used only for writing enhancement purposes.
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