

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOPOSTREAMER: TEMPORAL LANE SEGMENT TOPOLOGY REASONING IN AUTONOMOUS DRIVING

Anonymous authors

Paper under double-blind review

ABSTRACT

Lane segment topology reasoning constructs a comprehensive road network by capturing the topological relationships between lane segments and their semantic types. This enables end-to-end autonomous driving systems to perform road-dependent maneuvers such as turning and lane changing. However, the limitations in consistent positional embedding and temporal multiple attribute learning in existing methods hinder accurate road network reconstruction. To address these issues, we propose TopoStreamer, an end-to-end temporal perception model for lane segment topology reasoning. Specifically, TopoStreamer introduces three key improvements: streaming attribute constraints, dynamic lane boundary positional encoding, and lane segment denoising. The streaming attribute constraints enforce temporal consistency in both centerline and boundary coordinates, along with their classifications. Meanwhile, dynamic lane boundary positional encoding enhances the learning of up-to-date positional information within queries, while lane segment denoising helps capture diverse lane segment patterns, ultimately improving model performance. Additionally, we assess the accuracy of existing models using a lane boundary classification metric, which serves as a crucial measure for lane-changing scenarios in autonomous driving. On the OpenLane-V2 dataset, TopoStreamer demonstrates considerable improvements over state-of-the-art methods, achieving substantial performance gains of **+3.0% mAP** in lane segment perception and **+1.7% OLS** in centerline perception tasks. Our code will be released.

1 INTRODUCTION

Perception serves as a crucial component in end-to-end autonomous driving (Li et al., 2024b; Yang et al., 2025b), providing essential road priors for planning. Existing HD map learning and lane topology reasoning methods primarily focus on frame-by-frame detection (Li et al., 2023b; Liao et al., 2022). This approach fails to account for instance consistency across consecutive frames, making it susceptible to missed detections due to occlusions and high-speed movements (Yuan et al., 2024). Such limitations significantly hinder continuous and smooth decision-making and maneuvers. To comprehensively leverage temporal information, streaming-based methods (Yuan et al., 2024; Wang et al., 2024b; Wu et al., 2025) propose memory-based temporal propagation to establish long-term frame associations. Specifically, these approaches leverage the ego-vehicle pose to predict the probable positions of road instances in subsequent frames. However, these methods fail to capture sufficient road information for planning. This inspired us to introduce a temporal mechanism in lane topology reasoning, which

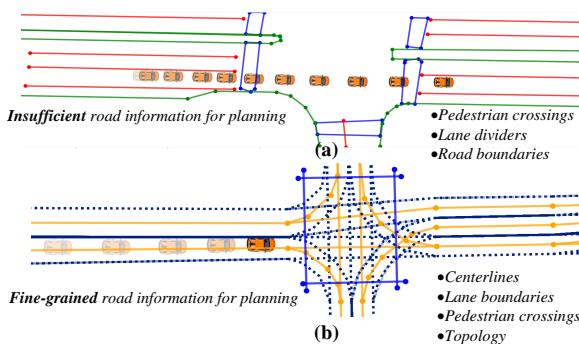


Figure 1: Comparison between current streaming-based map learning methods (Yuan et al., 2024) and our TopoStreamer. TopoStreamer delivers more fine-grained road information through streaming perception of lane segments, which is vital for planning.

we can leverage perception and topology reasoning results from previous frames to predict current frame outcomes and capture fine-grained road information for planning (Jia et al., 2025). Fig. 1 demonstrates the comparison between our method and current streaming-based learning methods (Yuan et al., 2024). To the best of our knowledge, achieving this objective presents two primary challenges: **(1) Consistent positional embedding.** Current streaming-based methods exhibit deficiencies in their positional embedding design for stream queries. Furthermore, certain lane topology reasoning approaches (Li et al., 2023a;b) suffer from inconsistency between reference points and positional embedding updates. **(2) Temporal multiple attribute learning for lane segments.** Topology reasoning between lanes is highly sensitive to the precise localization of lane segments (Fu et al., 2025a) and projection errors make it challenging to maintain consistent localization and category of lane segments across temporal propagation.

To address the aforementioned challenges, we propose TopoStreamer, a novel temporal perception framework for lane segment topology reasoning. To strengthen positional embedding consistency, we augment the heads-to-regions mechanism (Li et al., 2023b) through dynamic explicit positional encoding across successive decoder layers. This design progressively injects updated positional information to enhance query updating with latest spatial learning. Furthermore, we introduce multiple streaming attribute constraints and a lane segment denoising module to reinforce temporal coherence and enable the learning of diverse patterns in lane segments. We also propose a new metric to evaluate the lane boundary classification accuracy, a measure for autonomous vehicle lane-changing decision-making systems.

Contributions: (1) We present TopoStreamer, a novel temporal lane segment perception method for lane topology reasoning in autonomous driving. (2) Three novel modules have been proposed, including streaming attribute constraints for lane segments in temporal propagation, a dynamic lane boundary positional encoding module to enhance positional learning, and a lane segment denoising module for the learning of diverse patterns in lane segments. (3) Extensive experiments conducted on lane segment benchmark OpenLane-V2 (Wang et al., 2024a) demonstrate SOTA performance of TopoStreamer in lane topology reasoning.

2 RELATED WORK

2.1 HD MAP AND LANE TOPOLOGY REASONING

Traditional high-definition (HD) map reconstruction primarily relies on SLAM-based methods (Zhang et al., 2014; Shan & Englot, 2018), which incur substantial costs in manual annotation and map updates. With recent advancements in bird’s-eye view (BEV) perception and detection frameworks, offering improved efficiency and performance, the research focus has shifted towards vectorized HD map learning approaches. HDMapNet (Li et al., 2022b) generates HD semantic maps from multi-modal sensor data. However, extra post-processing is required to obtain vectorized representations. To generate vectorized map directly, VectorMapNet (Liu et al., 2023) predicts map elements as a set of polylines. The MapTR series (Liao et al., 2022; 2023) propose precise map element modeling and stabilizes learning via a hierarchical query-based anchor initialization mechanism. Unlike online HD map methods that primarily focus on drivable boundaries, our method concentrate on lane topology reasoning to perceive drivable trajectories (centerlines) and their topological relationships. STSU (Can et al., 2021) predicts an ordered lane graph to represent the traffic flow in the BEV. Subsequent research (Wu et al., 2023; Li et al., 2023a) has explored centerline topology using diverse model architectures on the OpenLane-V2 benchmark. To address endpoint misalignment issues in topology prediction, TopoLogic introduces dual constraints: distance-aware and similarity-aware optimization objectives. LaneSegNet (Li et al., 2023b) proposes lane segment perception to enhance the complete description of map. TopoPoint (Fu et al., 2025b) proposes Point-Lane interaction to learn accurate endpoints for reasoning. However, aforementioned methods overlook the potential benefits of temporal consistency for lane perception. In this work, we propose temporal-aware lane segment learning.

2.2 TEMPORAL 3D OBJECT DETECTION

In open-world scenarios, single-frame 3D detection faces challenges stemming from inaccurate pose estimation, occlusion, and adverse weather conditions. To overcome these limitations, recent ad-

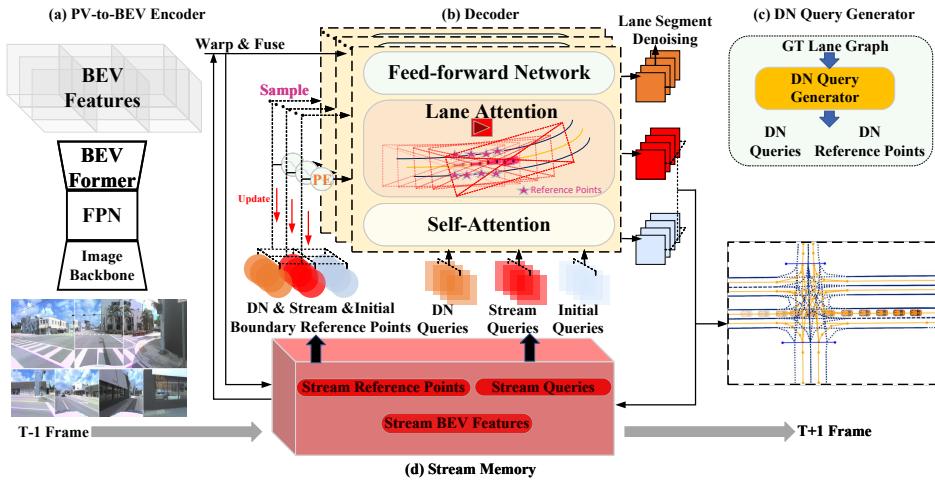


Figure 2: The overall architecture of TopoStreamer. It consists of four main components: **part (a)** PV-to-BEV encoder for extracting BEV features from multi-view images, **part (b)** transformer-based decoder enhanced with a dynamic lane boundary positional encoding module to improve up-to-date positional information learning, **part (c)** DN query generator for lane segment denoising, and **part (d)** stream memory that enables temporal propagation.

vancements have incorporated long-term memory to store different feature. BEVFormer2 (Yang et al., 2023) and BEVDet4D (Huang & Huang, 2022) stack BEV features from historical frames. Sparse4D (Lin et al., 2022) and PETRv2 (Liu et al., 2022) design sparse fusion on images feature to avoid dense perspective transformation. StreamPETR (Wang et al., 2023) and Sparse4Dv3 (Lin et al., 2023) propagate historical information in query feature frame by frame. The temporal detection also shows impressive results in HD map learning. StreamMapNet (Yuan et al., 2024) proposes a streaming-based framework to warp and fuse the BEV features, and top-k reliable queries are selected to propagate. MapTracker (Chen et al., 2024) propose a tracking-based temporal fusion framework. It fuses the BEV and query features with distance strides to ensure extended-range consistency. SQD-MapNet proposes a denoising method for map elements to address the issue of information loss at the boundaries of BEV grid. Different from these methods, our distinctive contribution lies in the introduction of customized enhancements specifically designed for the more complex task of lane segment perception. This not only facilitates comprehensive road network understanding but also addresses the critical gap in positional embedding (PE) modeling within existing temporal map learning methods.

2.3 QUERY DENOISING

Adding noise and performing denoising during training has been proven to accelerate the training process and enhance the model’s capabilities in both classification and regression. DN-DETR (Li et al., 2022a) introduces a denoising part apart from matching part as auxiliary supervision. DINO (Zhang et al., 2022) introduces a contrastive training to distinguish hard DN samples. SQD-MapNet (Wang et al., 2024b) proposes a stream query denoising to address the issue of map element truncation at boundaries caused by pose changes. To learn a comprehensive road network, we predict multiple attributes into a single lane segment query. To predict these attributes accurately, we design a tailored denoising learning strategy specifically for lane segments.

3 METHOD

Given surrounding multi-view images \mathbf{I} , our goal is to predict 3D position, class attributes and topology of lane segments. Each lane segment is composed of a centerline $\mathbf{L}^c = (\mathbf{P}, \mathcal{C})$, a left lane boundary $\mathbf{L}^l = (\mathbf{P}, \mathcal{T})$, and a right lane boundary $\mathbf{L}^r = (\mathbf{P}, \mathcal{T})$. \mathbf{P} denotes an ordered set of points $\mathbf{P} = \{(x_i, y_i, z_i)\}_{i=1}^M$, where M is a preset number of points. In fact, we can obtain the boundary coordinates simply by predicting an offset and applying it to the centerline coordinates. \mathcal{C} indicates the lane segment class, which includes categories such as road lines and pedestrian crossings. \mathcal{T}

denotes the boundary class, which can be dashed, solid, or non-visible. The connectivity topology is indicated by an adjacency matrix \mathbf{A} (Can et al., 2021).

Table 1: Meaning of the notations in TopoStreamer

Notation	Meaning
$\mathbf{L}^c, \mathbf{L}^l, \mathbf{L}^r$	Center, left boundary and right boundary lines
$\mathbf{F}_{bev}, \mathbf{F}_{pe}, \mathbf{F}_{content}$	BEV feature, positional embedding, and content embedding
\mathbf{Q}	Queries
$\mathbf{D}, \mathbf{S}, \mathbf{I}$	Denoising (DN), stream and initialized
t	Time stamp T
$\mathbf{R}_B, \mathbf{R}_C$	Boundary and center reference points
C, T	Lane segment class and boundary class
\mathbf{M}, \mathbf{A}	BEV semantic mask and adjacency matrix
$\mathbf{P} = \{(x_i, y_i, z_i)\}$	An ordered set of points that forms a lane
Ψ	Transformation matrix

3.1 OVERALL ARCHITECTURE

The overall architecture of TopoStreamer is illustrated in Fig. 2. For clarity, some main notations in NLPF are displayed in Tab. 1. First, the surrounding multi-view images are processed by the PV-to-BEV encoder (Li et al., 2022c; He et al., 2016; Lin et al., 2017a) to generate BEV features $\mathbf{F}_{bev} \in \mathbb{R}^{H \times W \times C}$, where C, H, W represent the number of feature channels, height, and width, respectively. These current BEV features are then fused with past BEV features. A DN query generator provides denoising (DN) queries $\mathbf{Q}^D \in \mathbb{R}^{N \times C}$, DN center reference points $\mathbf{R}_C^D \in \mathbb{R}^{N \times 10 \times 3}$, and DN boundary reference points $\mathbf{R}_B^D \in \mathbb{R}^{N \times 10 \times 3}$. Next, a transformer-based decoder (Zhu et al., 2020) refines the DN, stream, and initialized queries $\{\mathbf{Q}^D, \mathbf{Q}^S, \mathbf{Q}^I\}$. The BEV features, along with DN, stream, and initialized boundary reference points $\{\mathbf{R}_B^D, \mathbf{R}_B^S, \mathbf{R}_B^I\}$, are subsequently fed into the lane attention (Li et al., 2023b) along with the corresponding queries for further processing. A dynamic lane boundary positional encoding module encodes these boundary reference points into positional embeddings $\mathbf{F}_{pe} \in \mathbb{R}^{N \times 10 \times C}$, injecting positional information into the queries layer by layer. Meanwhile, the DN, stream, and initialized center reference points $\{\mathbf{R}_C^D, \mathbf{R}_C^S, \mathbf{R}_C^I\}$ are utilized for prediction refinement (Zhu et al., 2020). The updated DN queries are used for lane segment denoising, while the stream and initialized queries are employed by the prediction heads to generate the lane graph. Additionally, past BEV features, queries and reference points are stored in a stream memory, enabling temporal propagation.

3.2 TEMPORAL PROPAGATION FOR LANE SEGMENT

Since lane segments remain stationary in geodetic coordinate while ego-vehicle poses change relative to them, we can utilize the detection results from the previous frame combined with the vehicle’s ego-motion to establish reference positions for subsequent frame predictions (Yuan et al., 2024). First, we warp the BEV features from the past frame to fuse with the BEV features from the current frame by a Gated Recurrent Unit (GRU) (Chung et al., 2014):

$$\tilde{\mathbf{F}}_{bev}^t = \text{GRU}(\text{Warp}(\mathbf{F}_{bev}^{t-1}, \Psi), \mathbf{F}_{bev}^t) \quad (1)$$

where Ψ denotes transformation matrix between two frames. Then the BEV features are stored in the stream memory for fusion in the next frame.

For query propagation across consecutive frames, we implement a learnable transformation through a MLP, which adaptively maps the top-k highest confidence queries from the previous frame to the current frame’s coordinate system. Then, we can obtain the stream queries:

$$\mathbf{Q}_t^S = \text{MLP}(\text{Concat}(\mathbf{Q}_{t-1}, \Psi)) + \mathbf{Q}_{t-1} \quad (2)$$

where $\text{Concat}(\cdot)$ denotes the concatenate function and \mathbf{Q}_{t-1} can be the stream and initialized queries from t-1 frame. DN queries and DN reference points are excluded from temporal propagation.

216 **Streaming Attribute Constraints.** Conventional approaches (Yuan et al., 2024; Wang et al., 2024b; 217 Chen et al., 2024) typically apply transformation loss to the converted coordinates to facilitate the 218 learning of coordinate transformation. Since lane segments inherently possess multiple attributes, 219 maintaining their temporal consistency requires more sophisticated constraints than simple coordinate 220 transformation loss. To address this, we develop a comprehensive set of streaming attribute 221 constraints. We employ MLPs to predict lane segment coordinate $\tilde{\mathbf{L}}_t = \text{Concat}(\tilde{\mathbf{L}}_t^c, \tilde{\mathbf{L}}_t^l, \tilde{\mathbf{L}}_t^r)$ lane 222 segment class \tilde{C}_t , boundary class \tilde{T}_t and BEV semantic mask $\tilde{\mathbf{M}}_t$ from stream queries \mathbf{Q}_t^S . Then, 223 the streaming attribute constraints are represented as:

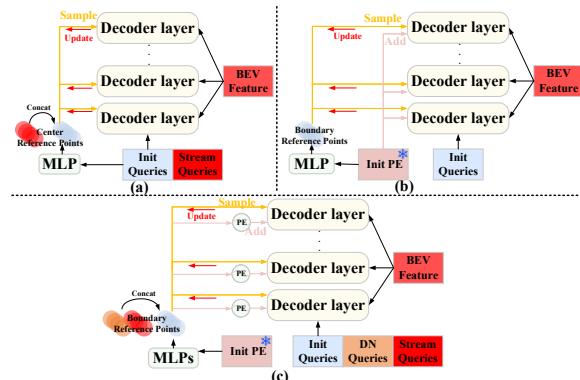
$$\begin{aligned} \mathcal{L}_{\text{coord}}^{\text{Stream}} &= \mathcal{L}_{\text{L1}}(\tilde{\mathbf{L}}_t, \mathbf{L}_t) \\ \mathcal{L}_{\text{cls}}^{\text{Stream}} &= \mathcal{L}_{\text{Focal}}(\tilde{C}_t, C_t) + \mathcal{L}_{\text{CE}}(\tilde{T}_t, T_t) \\ \mathcal{L}_{\text{mask}}^{\text{Stream}} &= \mathcal{L}_{\text{CE}}(\tilde{\mathbf{M}}_t, \mathbf{M}_t) + \mathcal{L}_{\text{Dice}}(\tilde{\mathbf{M}}_t, \mathbf{M}_t) \\ \mathcal{L}_{\text{Stream}} &= \mathcal{L}_{\text{coord}}^{\text{Stream}} + \mathcal{L}_{\text{cls}}^{\text{Stream}} + \mathcal{L}_{\text{mask}}^{\text{Stream}} \end{aligned} \quad (3)$$

231 where, for brevity, we omit the weights for each loss term. \mathbf{L}_t , T_t , C_t and \mathbf{M}_t are GT annotations 232 transformed from T-1 frame to T frame. More details can be found in appendix.

233 **Lossless Streaming Supervision.** Existing approaches (Yuan et al., 2024; Wang et al., 2024b) 234 utilize GT annotations from the past frame, transformed via pose estimation, to supervise the 235 transformation loss for the subsequent frame. However, this method inevitably leads to information loss 236 at BEV boundary regions as shown in (Wang et al., 2024b). To address this limitation, we track the 237 unique IDs of positive instances matched through Hungarian assignment for stream queries, thereby 238 providing lossless supervision. This is made possible by OpenLane-V2’s provision of unique 239 instance IDs. For datasets that do not provide IDs, we can also use mask matching (Chen et al., 2024) 240 to identify ID associations across frames.

243 3.3 DYNAMIC LANE BOUNDARY PE

244 As shown in Fig. 3, current temporal 245 approaches (Yuan et al., 2024; Wang 246 et al., 2024b; Chen et al., 2024) neglect the 247 learning of positional embeddings, leading 248 to inaccurate spatial localization. Furthermore, 249 a critical updating inconsistency exists in 250 recent single-frame detection methods 251 (Li et al., 2023b;a). Because the 252 initialized positional embeddings remain 253 static, while the reference points are 254 updated layer by layer. In the temporal 255 propagation process, when some initial 256 queries are substituted with stream queries, 257 combining them with static PE could result 258 in incompatible feature integration due to 259 mismatches. The static PE refers to the PE 260 that is not updated between layers during 261 the forward pass. Furthermore, existing 262 methods (Liu et al., 2024) primarily focus on 263 injecting positional encoding (PE) for the centerline. 264 However, in lane segment recognition, this centerline-based PE injection can diminish the focus on 265 positions within the boundary lines, which contradicts our goal of predicting multiple attributes for 266 the entire lane segment area. To address these problems, we enhance the heads-to-regions sampling 267 module (Li et al., 2023b) by a dynamic lane boundary PE modeling. We apply point-wise positional 268 encoding (Liu et al., 2024) to the boundary reference points to generate positional embeddings. We 269 duplicate the queries to align with the number of boundary reference points. After the self-attention, 270 we combine the positional embeddings with the corresponding queries. Subsequently, the queries 271 interact with and BEV features through lane attention (LA) (Li et al., 2023b) with boundary reference 272 points sampling. Finally, a MLP is used to merge the duplicated queries. This process can be



273 **Figure 3:** Comparison of PE: (a) current streaming-based 274 approaches (Yuan et al., 2024), (b) recent single-frame 275 detection methods (Li et al., 2023b), and (c) our proposed 276 method.

270 represented as:

$$\begin{aligned} \mathbf{F}_{pe} &= \{\text{PE}(\mathbf{P}_i^B)\} \\ \tilde{\mathbf{Q}} &= \text{MLP}(\text{LA}(\text{Duplicate}(\text{SA}(\mathbf{Q}))) + \mathbf{F}_{pe}, \tilde{\mathbf{F}}_{bev}, \mathbf{R}_B) \end{aligned} \quad (4)$$

275 where $\tilde{\mathbf{Q}}$ denotes the updated queries by this layer. Then, the reference points are refined through
276 offset adjustments to enable more precise sampling. This refinement facilitates the injection of more
277 accurate positional embeddings into the queries in subsequent decoder layers, thereby enhancing
278 the learning of precise lane segment localization. For more implementation details regarding the
279 decoder process, please refer to the appendix.

280

3.4 LANE SEGMENT DENOISING

282 The accuracy of topology prediction is highly dependent on the quality of lane detection. For instance,
283 when noise causes misalignment between the endpoints of two lane segments that should
284 be connected, it can significantly compromise the reliability of topological relationship inference.
285 To address this, we introduce a denoising mechanism (Li et al., 2022a; Wang et al., 2024b) during
286 training, which enables the model to learn from various noisy patterns. These noise patterns often
287 lead to fragmented lane segments and positional shifts, thereby reducing the likelihood of correct
288 topological associations. By learning to denoise, the model can recover the original positions and
289 connectivity of lane segments, ultimately improving both detection robustness and topology inference
290 performance. A detailed denoising example is provided in the supplementary material. In
291 contrast to object or HD map detection (Li et al., 2022a; Wang et al., 2024b), which separately pre-
292 dicted bounding boxes or polylines along with their categories, lane segment perception involves a
293 more complex set of attributes. These encompass centerlines, boundary coordinates, segment types,
294 and downstream topological relationships. Consequently, our design of the denoising queries and
295 objective loss function comprehensively accounts for this multifaceted nature.

296 Fig. 4 illustrates the generation of DN queries
297 for lane segment perception. Initially, noise is
298 introduced to the ground truth (GT) data, then,
299 the DN queries are obtained through content
300 and positional embedding:

$$\begin{aligned} \mathbf{F}_{pe}^D &= \text{MLP}(\{\text{PE}(\mathbf{R}_C)\}) \\ \mathbf{F}_{content}^D &= \text{MLP}(\text{Concat}(\text{Emb}(C), \text{Emb}(T))) \\ \mathbf{Q}^D &= \text{MLP}(\text{Concat}(\mathbf{F}_{pe}^D, \mathbf{F}_{content}^D)) \end{aligned} \quad (5)$$

306 where Emb denotes embedding mapping operation.
307

308 Subsequently, we introduce a set of denoising
309 losses to rectify noisy coordinates, cate-
310 gory misclassifications, and topological errors
311 arising from coordinate deviations in the DN
312 queries. The denoising losses include L1 loss
313 for position regression, cross-entropy and focal
314 loss (Lin et al., 2017b) for classification and ad-
315 jacency matrix prediction:

$$\mathcal{L}_{denoise} = \mathcal{L}_{coord}^{DN} + \mathcal{L}_{cls}^{DN} + \mathcal{L}_{topo}^{DN} \quad (6)$$

316 where, for brevity, we omit the weights for each loss term. Details of DN losses can be found
317 in appendix. This module enhances the learning of diverse patterns in lane segments, specifically
318 correcting erroneous predictions caused by temporal projection errors.

320

3.5 TRAINING LOSS

322 The overall loss function in TopoStreamer is defined as follows:

$$\mathcal{L} = \alpha_1 \mathcal{L}_{ls} + \alpha_2 \mathcal{L}_{stream} + \alpha_3 \mathcal{L}_{denoise} \quad (7)$$

324 **Table 2:** Comparison with the state-of-the-arts on OpenLane-V2 benchmark on lane segment. All models adopt
325 ResNet-50 as the backbone network and are trained for 24 epochs. \dagger : Our enhanced model employ GeoDist
326 strategy from TopoLogic (Fu et al., 2025a).

Method	Venue	Temporal	mAP \uparrow	AP _{ls} \uparrow	AP _{ped} \uparrow	TOP _{lsls} \uparrow	Acc _b \uparrow	FPS
MapTR (Liao et al., 2022)	ICLR23	No	27.0	25.9	28.1	-	-	14.5
MapTRv2 (Liao et al., 2023)	IJCV24	No	28.5	26.6	30.4	-	-	13.6
TopoNet (Li et al., 2023a)	Arxiv23	No	23.0	23.9	22.0	-	-	10.5
LaneSegNet (Li et al., 2023b)	ICLR24	No	32.6	32.3	32.9	25.4	45.9	14.7
TopoLogic (Fu et al., 2025a)	NIPS24	No	33.2	33.0	33.4	30.8	-	-
Topo2Seq (Yang et al., 2025a)	AAAI25	No	33.6	33.7	33.5	26.9	48.1	14.7
StreamMapNet (Yuan et al., 2024)	WACV24	Yes	20.3	22.1	18.6	13.2	33.2	14.1
SQD-MapNet (Wang et al., 2024b)	ECCV24	Yes	26.0	27.1	24.9	16.6	39.4	14.1
TopoStreamer (ours)	-	Yes	36.6	35.0	38.1	28.5	50.0	13.6
TopoStreamer\dagger (ours)	-	Yes	36.5	35.1	37.8	30.1	50.2	13.2

337 where the lane segment loss \mathcal{L}_{ls} supervises predicted lane segments through Hungarian matching
338 (Li et al., 2023b), while \mathcal{L}_{stream} and $\mathcal{L}_{denoise}$ are loss specifically optimized for lane segments
339 streaming and denoising. α_1 , α_2 and α_3 are hyperparameters.

4 EXPERIMENTS

343 We evaluate our method on multi-view lane topology benchmark OpenLane-V2 (Wang et al.,
344 2024a). Since lane segment labels are exclusively available in **subsetA**, our validation is primarily
345 conducted on this subset. The results on subsetB can be found in appendix.

4.1 DATASETS AND METRICS

349 **OpenLane-V2** (Wang et al.,
350 2024a) is a widely-used dataset
351 for lane topology reasoning. Its
352 subsetA, re-annotated from Ar-
353 goverse 2 (Wilson et al., 2023),
354 provides enhanced details on
355 traffic signals, centerlines, lane
356 boundaries, and their topolog-
357 ical relationships. This sub-
358 set includes over 20,000 training
359 frames and more than 4,800 val-
360 idation frames, with each frame
361 comprising 7 camera images at a
362 resolution of 2048×1550 .

363 **Metrics.** We evaluate our model
364 on two tasks: lane segment
365 and centerline perception. The
366 lane quality are evaluated under
367 Chamfer distance and Frechet
368 distance under a preset thresh-
369 olds of $\{1.0, 2.0, 3.0\}$ meters.

370 For lane segment, mAP computed as average of AP_{ls} and AP_{ped}. AP_{ls} and AP_{ped} are used to
371 estimate the quality of lane segment of road lines and pedestrian crossing, respectively. TOP_{lsls}
372 measures the performance of topology reasoning. We design a new metric Acc_b to evaluate lane
373 boundary classification accuracy, which can be referred in appendix. The metrics in centerline per-
374 ception are similar with those in lane segment. OLS (Wang et al., 2024a) is calculated between
375 DET_t and TOP_{ll}.

4.2 EXPERIMENTAL SETTINGS

377 We adopt a pre-trained ResNet-50 (He et al., 2016), FPN (Lin et al., 2017a) and BevFormer (Li et al.,
378 2022c) to encode the images to BEV features. The BEV grid is 200×100 , which the perception

346 **Table 3:** Comparison with the state-of-the-arts on OpenLane-V2 bench-
347 mark on centerline perception. All models adopt ResNet-50 as the back-
348 bone network and are trained for 24 epochs. Unlike other methods,
349 TopoFormer* adopts a staged training strategy that utilizes a pretrained
350 lane detector for topology reasoning training. While this leads to better
351 detection performance, it offers only slight advantage in topology pre-
352 diction.

Method	Venue	Temporal	OLS \uparrow	DET _t \uparrow	TOP _{ll} \uparrow
VectorMapNet (Liu et al., 2023)	ICML23	No	13.8	11.1	2.7
STSU (Can et al., 2021)	ICCV21	No	14.9	12.7	2.9
MapTR (Liao et al., 2022)	ICLR23	No	21.0	17.7	5.9
TopoNet (Li et al., 2023a)	Arxiv23	No	30.8	28.6	10.9
Topo2D (Li et al., 2024a)	Arxiv24	No	38.2	29.1	26.2
TopoMLP (Wu et al., 2023)	ICLR24	No	37.4	28.3	21.7
LaneSegNet (Li et al., 2023b)	ICLR24	No	40.7	31.1	25.3
TopoLogic (Fu et al., 2025a)	NIPS24	No	39.4	29.9	23.9
Topo2Seq (Yang et al., 2025a)	AAAI25	No	42.7	33.5	27.0
TopoFormer* (Lv et al., 2025)	CVPR25	No	42.1	34.7	24.7
StreamMapNet (Yuan et al., 2024)	WACV24	Yes	28.8	21.7	12.9
SQD-MapNet (Wang et al., 2024b)	ECCV24	Yes	33.9	27.2	16.4
TopoStreamer (ours)	-	Yes	44.4	35.2	28.8

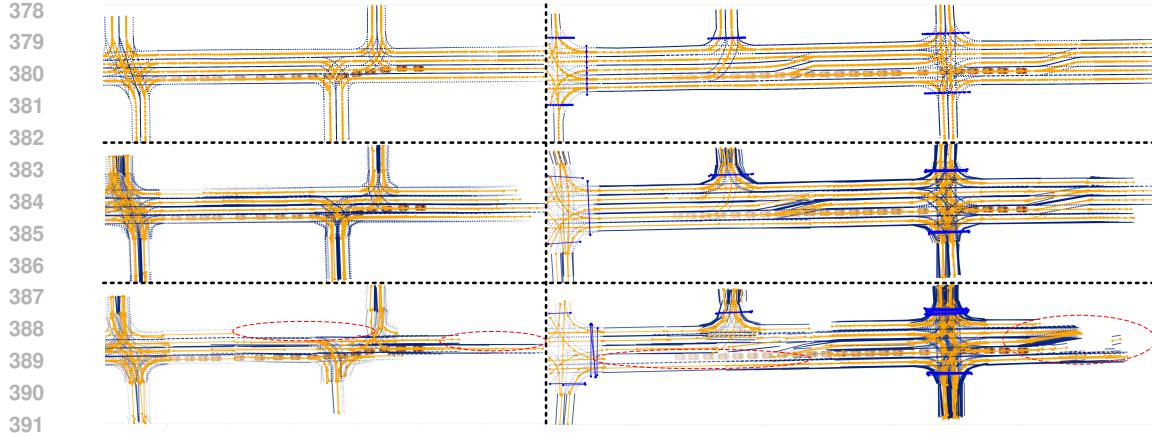


Figure 5: The temporally accumulated perception results are compared across GT, our TopoStreamer, and SQD-MapNet (Wang et al., 2024b). The images from top to bottom correspond to GT, TopoStreamer, and SQD-MapNet. Missing detections are highlighted with red color. For better viewing, zoom in on the image.

range is $\pm 50m \times \pm 25m$. Our decoder is based on Deformable DETR, with the cross-attention replaced by lane attention (Li et al., 2023b). The number of layer is 6. We use 200 queries, with 30% allocated for temporal propagation. The centerline, left boundary line, and right boundary line are each represented as individual sets of 10 ordered points in our predictions. We select 8 boundary reference points (4 from the left boundary and 4 from the right) to generate PE. The number of DN groups is dynamically adjusted based on batch instances, while DN queries are fixed at 240. Positional noise is introduced via box shifting (Wang et al., 2024b) with a factor of 0.2, and labels have a 50% flip probability. Training is conducted for 24 epochs with a batch size of 8 on NVIDIA V100 GPUs, with the first 12 epochs using single-frame input to stabilize streaming training. The initial learning rate is 2×10^{-4} with a cosine annealing schedule during training. AdamW (Kingma & Ba, 2015) is adopted as optimizer. The values of $\alpha_1, \alpha_2, \alpha_3$ are set to 1.0, 0.3 and 1.0, respectively. The confidence threshold for the adjacency matrix is set at 0.5, and all visualized segments must exceed a threshold of 0.3.

We re-train StreamMapNet (Wang et al., 2024b) and SQD-MapNet (Wang et al., 2024b), both of which predict 10 points for the left and right boundaries. The centerline is obtained by calculating the average positions of two boundaries.

4.3 MAIN RESULTS

Results on Lane Segment The results for lane segment are shown in Tab. 2. Compared with single-frame detection methods, we outperforms LaneSegNet by 4.0% mAP, 3.1% TOP_{lsls} and 4.1% Acc_b , and exceeds Topo2Seq by 3.0% mAP. This shows the effectiveness of our streaming design for lane segment. Compared with temporal detection methods, we achieve a remarkable improvement of 10.6% mAP, 11.9% TOP_{lsls} and 10.6% Acc_b . They exhibit limitations in detecting more fragmented lane segments, as they fail to account for multiple attributes and PE design.

Results on Centerline Perception The results of centerline perception are shown in Tab. 3. Compared with TopoFormer, our method achieve superior OLS (**44.4** v.s. 42.1) and topology reasoning capacity (**28.8** v.s. 24.7). This is attributed to the integration of auxiliary denoising training, PE design, and multi-attribute constraints in temporal detection.

4.4 MODEL ANALYSIS

Ablation Studies for Streaming Attribute Constraints. The results are shown in Tab. 4a. The baseline implementation, corresponding to the first row, incorporates the DBPE module into the streaming framework while excluding both the streaming attribute constraints and lane segment denoising components. Introducing class constraint in streaming can achieve a considerable improvement in lane boundary classification. Subsequently, the progressive integration of mask and coordinate constraints leads to enhanced detection capability and improved topology reasoning per-

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

Table 4: Ablation study results on losses.

$\mathcal{L}_{tranloss}$	$\mathcal{L}_{cls}^{Stream}$	$\mathcal{L}_{mask}^{Stream}$	$\mathcal{L}_{coord}^{Stream}$	mAP	TOP _{lsls}	Acc _b
	✓			33.8	26.1	47.8
				34.7	26.3	49.0
	✓			34.0	26.5	49.2
	✓	✓		35.1	27.0	49.2
	✓	✓	✓	35.6	27.8	49.5

(a) Ablation studies on streaming attribute constraints and transformation loss (Yuan et al., 2024).

\mathcal{L}_{dqd}	\mathcal{L}_{cls}^{DN}	\mathcal{L}_{topo}^{DN}	\mathcal{L}_{coord}^{DN}	mAP	TOP _{lsls}	Acc _b
	✓			33.8	26.1	47.8
		✓		35.2	27.2	49.6
	✓	✓		35.1	27.0	49.5
	✓	✓	✓	35.7	27.9	49.7
	✓	✓	✓	36.3	28.0	49.8

(b) Ablation studies on lane segment denoising and dynamic query denoising (Wang et al., 2024b).

formance. The transformation loss in StreamMapNet (Yuan et al., 2024) only propagates and constrains the coordinates of line during temporal propagation. In contrast, our stream attribute constraints transfer and enforce the consistency of centerlines, boundary coordinates, types and semantic masks. This plays a crucial role in the temporal detection of lane segments with multiple attributes. Consequently, compared to the transformation loss, our stream attribute constraints achieve an improvement of 0.9% in mAP and 1.5% in TOP_{lsls}.

Ablation Studies for Lane Segment Denoising.

The results are presented in Tab. 4b. The baseline implementation remains consistent with Tab. 4a. Incorporating class denoising for content information in queries enhances performance in both detection and lane boundary classification, highlighting the importance of content learning in perception. Additionally, topology denoising enhances the robustness of topological reasoning against coordinate noise, while coordinate denoising boosts detection performance. Existing denoising methods only denoise center coordinates and categories. Our method extends this by also denoising additional attributes like boundary lines and topological relations for lane segments. This yields a performance gain of 1.1% mAP and 0.8% TOP_{lsls} compared to dynamic query denoising.

Module Ablations. The first row in Tab. 5 presents our baseline (BL) model, LaneSegNet. LaneSegNet injects static PE into the queries. With the introduction of dynamic lane boundary PE (DBPE), the model exhibits a slight improvement. Further enhancement is achieved by incorporating lane segment denoising (LSDN). These results demonstrate that the incorporation of dynamic lane boundary PE and lane segment denoising effectively improves the overall performance of the per-frame detection model. Comparing row 6 with row 2, when the baseline model is adapted to the streaming paradigm and supervised with streaming attribute constraints, considerable improvements are observed (35.6% v.s. 33.5% in mAP, 27.8% v.s. 26.1% in TOP_{lsls}, and 49.5% v.s. 47.2% in Acc_b). However, substituting DBPE with either initial static PE or no PE at all adversely impacts performance, particularly resulting in a 2% reduction in mAP. **Compared with centerline PE (CPE) (Liu et al., 2024), our DBPE achieves an improvement of 2.1 mAP. This demonstrates that injecting positional encoding via boundary points is particularly beneficial for recognizing areal lane segments, especially in detecting pedestrian crossings.** Finally, the addition of denoising leads to optimal performance. However, as demonstrated in the row 7, the model exhibits a significant decline in detection performance when the unique IDs of positive instances are not tracked within streaming attribute constraints to ensure lossless supervision.

4.5 QUALITATIVE RESULTS

As shown in Fig. 5, 6 and 7, TopoStreamer is capable of predicting a complete road network with clearly lane boundaries, accurate topology connections, and temporal consistency. Additional qualitative results are provided in the appendix.

5 CONCLUSION

In this paper, we propose TopoStreamer, a temporal lane segment perception model for lane topology reasoning. Specifically, we incorporate three novel modules into an end-to-end network. The

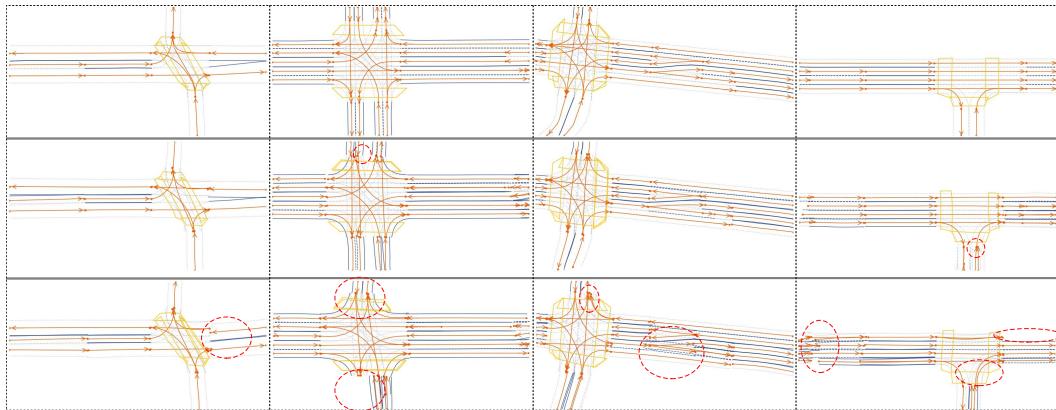
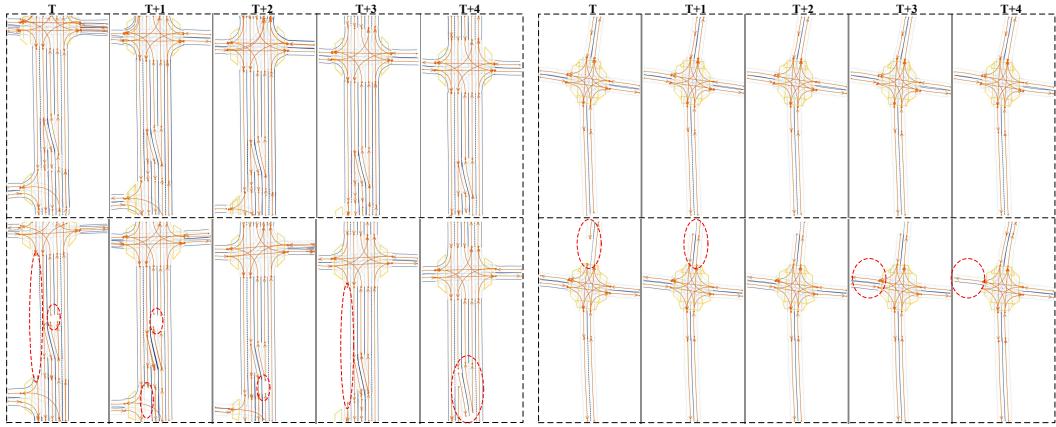


Figure 6: Qualitative results under different road structures. The images from top to bottom correspond to GT, our TopoStreamer, and LaneSegNet(Li et al., 2023b). For better viewing, zoom in on the image.



(a) Results when the ego vehicle is moving.

(b) Results when the ego vehicle is stationary.

Figure 7: Visualization of topology predictions across consecutive 5 frames. The results of TopoStreamer are shown on the top, and the results of LaneSegNet (Li et al., 2023b) are shown on the bottom. For better viewing, zoom in on the images. This demonstrates TopoStreamer’s capability for accurate detection with temporal consistency.

streaming attribute constraints ensure the temporal consistency of both centerline and boundary coordinates, along with their classifications. Meanwhile, dynamic lane boundary positional encoding enhances the up-to-date positional information learning in queries, and lane segment denoising facilitates the learning of diverse patterns within lane segments. Furthermore, we evaluate the accuracy of existing models on our newly proposed lane boundary classification metric, which serves as a crucial measure of lane-changing scenarios in autonomous driving. Experimental results on the OpenLane-V2 dataset demonstrate the strong performance of our model and the effectiveness of our proposed designs.

REFERENCES

Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Structured bird’s eye-view traffic scene understanding from onboard images. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15661–15670, 2021.

Jiacheng Chen, Yuefan Wu, Jiaqi Tan, Hang Ma, and Yasutaka Furukawa. Maptracker: Tracking with strided memory fusion for consistent vector hd mapping. In *European Conference on Computer Vision*, pp. 90–107. Springer, 2024.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.

540 Yanping Fu, Wenbin Liao, Xinyuan Liu, Hang Xu, Yike Ma, Yucheng Zhang, and Feng Dai. Topo-
 541 logic: An interpretable pipeline for lane topology reasoning on driving scenes. *Advances in*
 542 *Neural Information Processing Systems*, 37:61658–61676, 2025a.

543

544 Yanping Fu, Xinyuan Liu, Tianyu Li, Yike Ma, Yucheng Zhang, and Feng Dai. Topopoint:
 545 Enhance topology reasoning via endpoint detection in autonomous driving. *arXiv preprint*
 546 *arXiv:2505.17771*, 2025b.

547

548 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 549 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 550 770–778, 2016.

551

552 Junjie Huang and Guan Huang. Bevdet4d: Exploit temporal cues in multi-camera 3d object detec-
 553 tion. *arXiv preprint arXiv:2203.17054*, 2022.

554

555 Xiaosong Jia, Junqi You, Zhiyuan Zhang, and Junchi Yan. Drivetransformer: Unified transformer
 556 for scalable end-to-end autonomous driving. *arXiv preprint arXiv:2503.07656*, 2025.

557

558 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

559

560 Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
 561 detr training by introducing query denoising. In *Proceedings of the IEEE/CVF conference on*
 562 *computer vision and pattern recognition*, pp. 13619–13627, 2022a.

563

564 Han Li, Zehao Huang, Zitian Wang, Wenge Rong, Naiyan Wang, and Si Liu. Enhancing 3d lane
 565 detection and topology reasoning with 2d lane priors. *arXiv preprint arXiv:2406.03105*, 2024a.

566

567 Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map construction and
 568 evaluation framework. In *2022 International Conference on Robotics and Automation (ICRA)*,
 569 pp. 4628–4634. IEEE, 2022b.

570

571 Tianyu Li, Li Chen, Huijie Wang, Yang Li, Jiazh Yang, Xiangwei Geng, Shengyin Jiang, Yuting
 572 Wang, Hang Xu, Chunjing Xu, et al. Graph-based topology reasoning for driving scenes. *arXiv*
 573 *preprint arXiv:2304.05277*, 2023a.

574

575 Tianyu Li, Peijin Jia, Bangjun Wang, Li Chen, Kun Jiang, Junchi Yan, and Hongyang Li. Lane-
 576 segnet: Map learning with lane segment perception for autonomous driving. *arXiv preprint*
 577 *arXiv:2312.16108*, 2023b.

578

579 Yingyan Li, Lue Fan, Jiawei He, Yuqi Wang, Yuntao Chen, Zhaoxiang Zhang, and Tieniu
 580 Tan. Enhancing end-to-end autonomous driving with latent world model. *arXiv preprint*
 581 *arXiv:2406.08481*, 2024b.

582

583 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai.
 584 Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotempo-
 585 ral transformers. In *European conference on computer vision*, pp. 1–18. Springer, 2022c.

586

587 Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and
 588 Chang Huang. Maptr: Structured modeling and learning for online vectorized hd map construc-
 589 tion. *arXiv preprint arXiv:2208.14437*, 2022.

590

591 Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian Zhang, Wenyu Liu, Chang Huang, and
 592 Xinggang Wang. Maptrv2: An end-to-end framework for online vectorized hd map construction.
 593 *arXiv preprint arXiv:2308.05736*, 2023.

594

595 Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
 596 Feature pyramid networks for object detection. In *Proceedings of the IEEE conference on com-
 597 puter vision and pattern recognition*, pp. 2117–2125, 2017a.

598

599 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 600 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 601 2980–2988, 2017b.

594 Xuewu Lin, Tianwei Lin, Zixiang Pei, Lichao Huang, and Zhizhong Su. Sparse4d: Multi-view 3d
 595 object detection with sparse spatial-temporal fusion. *arXiv preprint arXiv:2211.10581*, 2022.
 596

597 Xuewu Lin, Zixiang Pei, Tianwei Lin, Lichao Huang, and Zhizhong Su. Sparse4d v3: Advancing
 598 end-to-end 3d detection and tracking. *arXiv preprint arXiv:2311.11722*, 2023.
 599

600 Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and Hang Zhao. Vectormapnet: End-to-end
 601 vectorized hd map learning. In *International Conference on Machine Learning*, pp. 22352–22369.
 602 PMLR, 2023.
 603

603 Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun. Petr: Position embedding transformation
 604 for multi-view 3d object detection. In *European conference on computer vision*, pp. 531–548.
 605 Springer, 2022.
 606

606 Zihao Liu, Xiaoyu Zhang, Guangwei Liu, Ji Zhao, and Ningyi Xu. Leveraging enhanced queries
 607 of point sets for vectorized map construction. In *European Conference on Computer Vision*, pp.
 608 461–477. Springer, 2024.
 609

610 Changsheng Lv, Mengshi Qi, Liang Liu, and Huadong Ma. T2sg: Traffic topology scene graph for
 611 topology reasoning in autonomous driving. In *Proceedings of the Computer Vision and Pattern
 612 Recognition Conference*, pp. 17197–17206, 2025.
 613

613 Tixiao Shan and Brendan Englot. Lego-loam: Lightweight and ground-optimized lidar odome-
 614 try and mapping on variable terrain. In *2018 IEEE/RSJ International Conference on Intelligent
 615 Robots and Systems (IROS)*, pp. 4758–4765. IEEE, 2018.
 616

616 Huijie Wang, Tianyu Li, Yang Li, Li Chen, Chonghao Sima, Zhenbo Liu, Bangjun Wang, Peijin Jia,
 617 Yuting Wang, Shengyin Jiang, et al. Openlane-v2: A topology reasoning benchmark for unified
 618 3d hd mapping. *Advances in Neural Information Processing Systems*, 36, 2024a.
 619

620 Shihao Wang, Yingfei Liu, Tiancai Wang, Ying Li, and Xiangyu Zhang. Exploring object-centric
 621 temporal modeling for efficient multi-view 3d object detection. In *Proceedings of the IEEE/CVF
 622 international conference on computer vision*, pp. 3621–3631, 2023.
 623

623 Shuo Wang, Fan Jia, Weixin Mao, Yingfei Liu, Yucheng Zhao, Zehui Chen, Tiancai Wang, Chi
 624 Zhang, Xiangyu Zhang, and Feng Zhao. Stream query denoising for vectorized hd-map construc-
 625 tion. In *European Conference on Computer Vision*, pp. 203–220. Springer, 2024b.
 626

627 Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khan-
 628 delwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemel Pontes, et al. Ar-
 629 goverse 2: Next generation datasets for self-driving perception and forecasting. *arXiv preprint
 630 arXiv:2301.00493*, 2023.
 631

631 Dongming Wu, Jiahao Chang, Fan Jia, Yingfei Liu, Tiancai Wang, and Jianbing Shen. Topomlp:
 632 An simple yet strong pipeline for driving topology reasoning. *arXiv preprint arXiv:2310.06753*,
 633 2023.
 634

635 Kuang Wu, Chuan Yang, and Zhanbin Li. Interactionmap: Improving online vectorized hdmap
 636 construction with interaction. In *Proceedings of the Computer Vision and Pattern Recognition
 637 Conference*, pp. 17176–17186, 2025.
 638

638 Chenyu Yang, Yuntao Chen, Hao Tian, Chenxin Tao, Xizhou Zhu, Zhaoxiang Zhang, Gao Huang,
 639 Hongyang Li, Yu Qiao, Lewei Lu, et al. Bevformer v2: Adapting modern image backbones to
 640 bird’s-eye-view recognition via perspective supervision. In *Proceedings of the IEEE/CVF Con-
 641 ference on Computer Vision and Pattern Recognition*, pp. 17830–17839, 2023.
 642

642 Yiming Yang, Yueru Luo, Bingkun He, Erlong Li, Zhipeng Cao, Chao Zheng, Shuqi Mei, and Zhen
 643 Li. Topo2seq: Enhanced topology reasoning via topology sequence learning. In *Proceedings of
 644 the AAAI Conference on Artificial Intelligence*, volume 39, pp. 9318–9326, 2025a.
 645

646 Zhenjie Yang, Yilin Chai, Xiaosong Jia, Qifeng Li, Yuqian Shao, Xuekai Zhu, Haisheng Su, and
 647 Junchi Yan. Drivemoe: Mixture-of-experts for vision-language-action model in end-to-end au-
 tonomous driving. *arXiv preprint arXiv:2505.16278*, 2025b.
 648

648 Tianyuan Yuan, Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Streammapnet: Streaming
649 mapping network for vectorized online hd map construction. In *Proceedings of the IEEE/CVF*
650 *Winter Conference on Applications of Computer Vision*, pp. 7356–7365, 2024.

651

652 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
653 Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. *arXiv*
654 *preprint arXiv:2203.03605*, 2022.

655 Ji Zhang, S Singh, et al. Lidar odometry and mapping in real-time. In *robotics: science and systems*,
656 volume 2, pp. 1–9, 2014.

657

658 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
659 Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 STREAMING ATTRIBUTE CONSTRAINTS.**
705

706 **Stream memory.** To facilitate temporal fusion, we introduce several memory modules, including
707 stream query memory, stream BEV memory, and stream reference point memory, which store the
708 predictions from the preceding frame. Specifically, for the detection results in the frame at timestamp
709 $T-1$, we rank the queries based on their classification confidence scores and select the top-K queries
710 for temporal propagation. In our implementation, K is set to 66, corresponding to the top 30% of
711 queries. These selected queries, along with their associated centerline reference points and boundary
712 reference points, are stored in their respective memory banks. Additionally, the BEV feature of the
713 scene at $T-1$ is also stored in a memory. When processing the frame at timestamp T , the stored queries
714 and their corresponding centerline reference points and boundary reference points are retrieved and
715 undergo the following transformation by using transformation matrix:

$$717 \quad \mathbf{Q}_t^S = \text{MLP}(\text{Concat}(\mathbf{Q}_{t-1}, \Psi)) + \mathbf{Q}_{t-1} \quad (1)$$

$$718 \quad \mathbf{R}_B^S = \text{Norm}(\text{Concat}(\Psi \cdot \tilde{\mathbf{L}}_{t-1}^c, \Psi \cdot \tilde{\mathbf{L}}_{t-1}^l, \Psi \cdot \tilde{\mathbf{L}}_{t-1}^r))$$

719 where $\text{Norm}(\cdot)$ denotes the normalization operation applied to the coordinates.

720 The stored BEV feature of the scene at $T-1$ is also retrieved from memory, transformed, and then
721 fused with the BEV feature extracted from the current frame (T):
722

$$724 \quad \tilde{\mathbf{F}}_{bev}^t = \text{GRU}(\text{Warp}(\mathbf{F}_{bev}^{t-1}, \Psi), \mathbf{F}_{bev}^t) \quad (2)$$

725 By doing so, our stream memories effectively integrates historical information, thereby enhancing
726 the detection performance for the current frame.
727

728 We employ MLPs to predict lane segment coordinate, lane segment class, boundary class and BEV
729 mask from stream queries \mathbf{Q}_t^S :

$$730 \quad \tilde{\mathbf{L}}_t^c = \text{MLP}_{reg}(\mathbf{Q}_t^S) + \text{InSigmoid}(\mathbf{R}_C^S)$$

$$731 \quad \tilde{\mathbf{L}}_t^c = \text{Denorm}(\text{sigmoid}(\tilde{\mathbf{L}}_t^c))$$

$$733 \quad offset = \text{MLP}_{offset}(\mathbf{Q}_t^S)$$

$$734 \quad \tilde{\mathbf{L}}_t^l = \tilde{\mathbf{L}}_t^c + offset, \tilde{\mathbf{L}}_t^r = \tilde{\mathbf{L}}_t^c - offset$$

$$735 \quad \tilde{\mathbf{L}}_t = \text{Concat}(\tilde{\mathbf{L}}_t^c, \tilde{\mathbf{L}}_t^l, \tilde{\mathbf{L}}_t^r) \quad (3)$$

$$737 \quad \tilde{C}_t = \text{MLP}_{cls}(\mathbf{Q}_t^S)$$

$$738 \quad \tilde{T}_t = \text{MLP}_{bcls}(\mathbf{Q}_t^S)$$

$$740 \quad \tilde{\mathbf{M}}_t = \text{Sigmoid}(\text{MLP}_{mask}(\mathbf{Q}_t^S) \otimes \tilde{\mathbf{F}}_{bev}^t)$$

741 where InSigmoid refers to the inverse sigmoid function, while Denorm stands for denormalize. Then,
742 the streaming attribute constraints are represented as:
743

$$744 \quad \mathcal{L}_{coord}^{Stream} = \mathcal{L}_{L1}(\tilde{\mathbf{L}}_t, \mathbf{L}_t)$$

$$745 \quad \mathcal{L}_{cls}^{Stream} = \kappa_1 \mathcal{L}_{Focal}(\tilde{C}_t, C_t) + \kappa_2 \mathcal{L}_{CE}(\tilde{T}_t, T_t)$$

$$746 \quad \mathcal{L}_{mask}^{Stream} = \kappa_3 \mathcal{L}_{CE}(\tilde{\mathbf{M}}_t, \mathbf{M}_t) + \kappa_4 \mathcal{L}_{Dice}(\tilde{\mathbf{M}}_t, \mathbf{M}_t)$$

$$748 \quad \mathcal{L}_{Stream} = \kappa_5 \mathcal{L}_{coord}^{Stream} + \kappa_6 \mathcal{L}_{cls}^{Stream} + \kappa_7 \mathcal{L}_{mask}^{Stream} \quad (4)$$

750 where the values of $\kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5, \kappa_6$, and κ_7 are 1.5, 0.01, 1.0, 1.0, 0.025, 1.0 and 3.0. \mathbf{L}_t , T_t ,
751 C_t and \mathbf{M}_t are GT annotations transformed from $T-1$ frame to T frame.

752 **A.2 LANE SEGMENT DENOISING**
753

754 Lane segment denoising applies controlled noise to annotations and then removes it, thereby im-
755 proving the model’s capability to learn the diverse patterns present in lane segments. In the lane

756 segment denoising, we predict position, classification and adjacency matrix from denoising (DN)
 757 queries \mathbf{Q}^D as follows:
 758

$$\begin{aligned}
 759 \quad \tilde{\mathbf{L}}^c &= \text{MLP}_{reg}(\mathbf{Q}^D) + \text{InSigmoid}(\mathbf{R}_C^D) \\
 760 \quad \tilde{\mathbf{L}}^c &= \text{Denorm}(\text{sigmoid}(\tilde{\mathbf{L}}^c)) \\
 761 \quad offset &= \text{MLP}_{offset}(\mathbf{Q}^D) \\
 762 \quad \tilde{\mathbf{L}}^l &= \tilde{\mathbf{L}}_t^c + offset, \tilde{\mathbf{L}}^r = \tilde{\mathbf{L}}_t^c - offset \\
 763 \quad \tilde{\mathbf{L}} &= \text{Concat}(\tilde{\mathbf{L}}_t^c, \tilde{\mathbf{L}}^l, \tilde{\mathbf{L}}^r) \\
 764 \quad \tilde{C} &= \text{MLP}_{cls}(\mathbf{Q}^D) \\
 765 \quad \tilde{T} &= \text{MLP}_{bcls}(\mathbf{Q}^D) \\
 766 \quad \mathbf{Q}^{D'} &= \text{MLP}_{pre}(\mathbf{Q}^D), \mathbf{Q}^{D''} = \text{MLP}_{suc}(\mathbf{Q}^D) \\
 767 \quad \tilde{\mathbf{A}} &= \text{Sigmoid}(\text{MLP}_{topo}(\text{Concat}(\mathbf{Q}^{D'}, \mathbf{Q}^{D''}))) \\
 768 \\
 769 \\
 770 \\
 771
 \end{aligned} \tag{5}$$

772 Then, the denoising loss function is defined as:
 773

$$\begin{aligned}
 774 \quad \mathcal{L}_{coord}^{DN} &= \mathcal{L}_{L1}(\tilde{\mathbf{L}}, \mathbf{L}) \\
 775 \quad \mathcal{L}_{cls}^{DN} &= \beta_1 \mathcal{L}_{Focal}(\tilde{C}, C) + \beta_2 \mathcal{L}_{CE}(\tilde{T}, T) \\
 776 \quad \mathcal{L}_{Topo}^{DN} &= \mathcal{L}_{Focal}(\tilde{\mathbf{A}}, \mathbf{A}) \\
 777 \quad \mathcal{L}_{denoise} &= \lambda_1 \mathcal{L}_{coord}^{DN} + \lambda_2 \mathcal{L}_{cls}^{DN} + \lambda_3 \mathcal{L}_{topo}^{DN}
 \end{aligned} \tag{6}$$

778 where the hyperparameters are defined as: $\beta_1 = 1.5$, $\beta_2 = 0.01$, $\lambda_1 = 0.025$, $\lambda_2 = 1.0$ and
 779 $\lambda_3 = 5.0$. Some examples of lane segment denoising are shown in Fig. 2. For better visualization,
 780 we only display the denoising results of the centerlines. It can be observed that the added noise
 781 disrupts the connectivity of the road network. Through the denoising process, the original positions
 782 and connectivity relationships are effectively restored. This enhances the model’s ability to predict
 783 both the positional and connectivity topology of lane segments.
 784

786 A.3 TOTAL LOSS FUNCTION

787 The overall loss function in TopoSteamer is defined as:
 788

$$\mathcal{L} = \alpha_1 \mathcal{L}_{ls} + \alpha_2 \mathcal{L}_{stream} + \alpha_3 \mathcal{L}_{denoise} \tag{7}$$

789 where $\alpha_1 = 1.0$, $\alpha_2 = 0.3$ and $\alpha_3 = 1.0$, respectively. The lane segment loss is defined as:
 790

$$\mathcal{L}_{ls} = \omega_1 \mathcal{L}_{vec} + \omega_2 \mathcal{L}_{seg} + \omega_3 \mathcal{L}_{cls} + \omega_4 \mathcal{L}_{type} + \omega_5 \mathcal{L}_{topo} \tag{8}$$

791 where $\mathcal{L}_{seg} = \omega_6 \mathcal{L}_{ce} + \omega_7 \mathcal{L}_{dice}$ consists of a Cross-Entropy loss and a Dice loss used to supervise
 792 the BEV semantic mask., and the hyperparameters are defined as: $\omega_1 = 0.025$, $\omega_2 = 3.0$, $\omega_3 = 1.5$,
 793 $\omega_4 = 0.01$, $\omega_5 = 5.0$, $\omega_6 = 1.0$ and $\omega_7 = 1.0$. \mathcal{L}_{vec} is the L1 loss computed between the predicted
 794 vectorized lanes and the ground truth lanes. The classification losses \mathcal{L}_{cls} and \mathcal{L}_{type} are used for
 795 lane segment classification. \mathcal{L}_{topo} is a focal loss applied to supervise the topological relationship
 796 prediction. It is worth noting that the weighting strategies for the losses related to different lane
 797 segment attributes in both streaming attribute constraints and lane segment denoising are consistent
 798 with the loss configurations in LaneSegNet.
 799

800 A.4 STREAMING TRAINING

801 We adopt the streaming training strategy for temporal fusion. For each training sequence, we ran-
 802 domly divide it into 2 splits at the start of each training epoch to foster more diverse data sequences.
 803 During inference, we use the entire sequences. Suppose a batch contains N samples, each from a
 804 different scene, read in chronological order. Temporal fusion is performed by determining whether
 805 the current data and the previously read data belong to the same scene.
 806

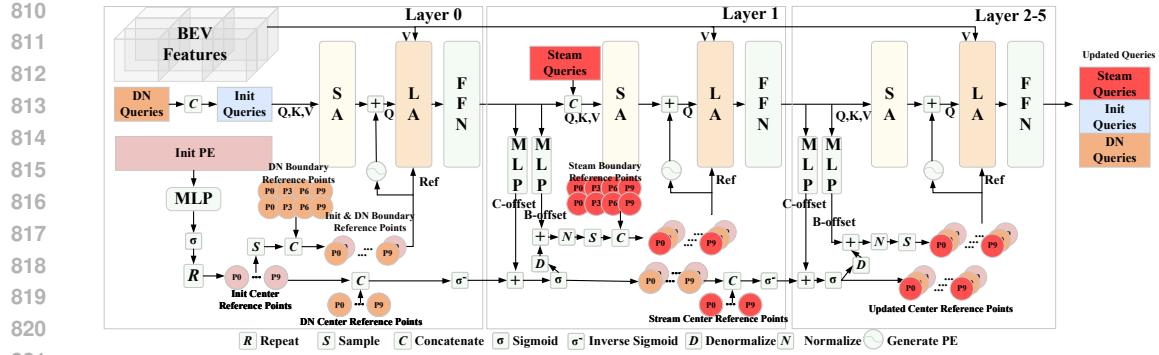


Figure 1: The detailed architecture of decoder.

Method	Venue	Epochs	Temporal	OLS \uparrow	DET _l \uparrow	TOP _u \uparrow
VectorMapNet (Liu et al., 2023)	ICML23	24	No	-	3.5	-
STSU (Can et al., 2021)	ICCV21	24	No	-	8.2	-
MapTR (Liao et al., 2022)	ICLR23	24	No	-	15.2	-
TopoNet (Li et al., 2023a)	Arxiv23	24	No	25.1	24.3	6.7
TopoMLP (Wu et al., 2023)	ICLR24	24	No	36.2	26.6	19.8
LaneSegNet (Li et al., 2023b)	ICLR24	24	No	38.7	27.5	24.9
TopoLogic (Fu et al., 2025a)	NIPS24	24	No	36.2	25.9	21.6
StreamMapNet (Yuan et al., 2024)	WACV24	24	Yes	26.7	18.9	11.9
SQD-MapNet (Wang et al., 2024b)	ECCV24	24	Yes	29.1	21.9	13.3
TopoStreamer (ours)	-	24	Yes	42.6	30.9	29.4

Table 1: Comparison with the state-of-the-arts on OpenLane-V2 subsetB on centerline perception.

A.5 METRIC FOR LANE BOUNDARY CLASSIFICATION

Previous approach (Li et al., 2023b) classify lane boundaries as dashed, solid, or non-visible, but they don't measure how accurate these predictions are. This accuracy is crucial for self-driving cars when making lane-change decisions. To solve this, we introduce a new metric to evaluate lane boundary classification accuracy. We follow the design of Top_{lsls} metric (Wang et al., 2024a). We first build a projection between predictions and ground truth to preserve true positive instances, according to Fréchet distance. Then, we evaluate the accuracy of the left and right boundary types by comparing the predicted types with the GT types.

A.6 DECODER ARCHITECTURE

The detailed architecture of the decoder is shown in Fig. 1. In the first layer of the decoder, we utilize identical initialization (Li et al., 2023b) to produce the initial centerline reference points and boundary reference points from the initial position embedding. The initial queries, combined with DN queries, are fed into the self-attention (SA) and then augmented with the position embedding generated from the initial and DN boundary reference points. The sampling of boundary reference points is based on the heads-to-regions sampling method (Li et al., 2023b). Specifically, sampling is performed at symmetric offset positions on both sides of the centerline reference points. The position embedding is obtained by applying sinusoidal encoding to the coordinates of the reference point. These queries interact with BEV features through lane attention (Li et al., 2023b), employing a heads-to-regions sampling mechanism guided by the boundary reference points. At the outset of layer 1, we predict an updated offset to refine the initial and DN center reference points, along with a boundary offset to determine the boundary reference points by applying it to the center reference points. Meanwhile, in this layer, stream query, stream center reference points and stream boundary reference points are employed to replace the lowest confidence N-k queries and their reference points. Here, N represents the predefined total number of queries, set at 200, while K denotes the number of stream queries, which is 66, accounting for 30% of the total queries. The same updating procedure as in layer 0 is then applied to these queries. The updating process remains consistent and regular across layers 2 to 5.

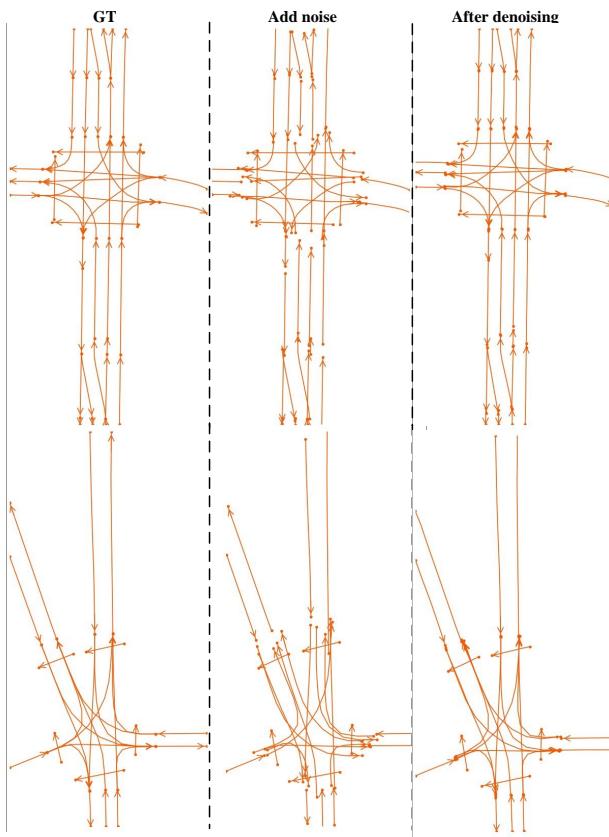


Figure 2: Qualitative results for lane segment denoising.

Top-K	mAP	TOP _{lsls}
10%	34.8	27.9
30%	36.6	28.5
50%	34.3	27.3
75%	32.9	25.1

Number	mAP	TOP _{lsls}
120	35.0	27.4
240	36.6	28.5
360	35.1	27.7

(a) Different numbers of stream queries.

(b) Different numbers of DN queries.

Table 2: Ablation study results.

A.7 EXPERIMENT

We provide comparative experiments on the OpenLane-V2 subset-B benchmark. In fact, this benchmark do not contain lane segment annotations with only centerline annotations. We generate pseudo-labels by augmenting the lane centerlines with a standardized lane width of 4 meters. The results are shown in Tab. 1. We outperforms LaneSegNet by 3.9% OLS, 3.4% DET_l, and 4.5 % TOP_{ll}.

We present additional experiments focusing on the selection of the number of stream queries and DN queries on subset-A. The results of the ablation study investigating the impact of varying numbers of stream queries are presented in Tab. 2a. Optimal performance is attained when 30% of the queries from the preceding frame are selected for temporal propagation. The results of the ablation study about the number of DN queries are shown in Tab. 2b. Setting the number of DN queries to 240 yields the optimal performance.

A.8 DEMO

See the supplementary material vis.gif file for details.

Method	FLOPs	Param
LaneSegNet	639.1G	30.9M
TopoStreamer	652.1G	46.2M

918
919
920
921
922 **Table 3:** Comparison of computational complexity.
923
924
925
926927 **A.9 TRAINING AND TESTING TIMES**928
929 The training and inference times are related to the model and quantity of the GPUs used. Our setup
930 utilizes 4 V100 GPUs, with a training time of approximately 28 hours and an testing time of about
931 40 minutes. Increasing the number of GPUs can accelerate the process, and switching to 4 A100
932 GPUs can reduce the training time to 20 hours.
933934 **A.10 COMPUTATIONAL COMPLEXITY**935
936 The computational complexity comparison against the our baseline model LaneSegNet is shown in
937 Table 3. We use the FLOPs (Floating Point Operations) and the number of parameters (Params)
938 of the model during inference to represent the computational cost. The additional parameters in
939 TopoStreamer, compared to LaneSegNet, are introduced by the temporal fusion and denoising mod-
940 ules. Furthermore, TopoStreamer only results in a marginal increase in FLOPs. The slight drop
941 in FPS of our method is a direct result of the computational overhead introduced by our temporal
942 propagation framework. This modest computational overhead is justified by a performance gain of
943 4.0% in mAP and 3.1% in TOP_{lsls}
944945 **A.11 LIMITATION AND FUTURE WORK**946
947 Current lane topology reasoning methods are affected by the long-tail problem, exhibiting limited
948 detection confidence in regions with excessive curvature or indistinct lane markings. Therefore, we
949 plan to explore the use of Vision-Language Models (VLMs) to address this issue. By leveraging
950 VLMs to interpret road structures and generate Chains of Thought (CoT), we aim to provide prior
951 knowledge for lane topology reasoning and enhance interpretability. Additionally, we will investi-
952 giate integrating road topology with end-to-end autonomous driving systems, using lane topology to
953 constrain vehicle trajectory planning and improve safety.
954955 **A.12 USE OF LLM**956 In this paper, large language model is used only for writing enhancement purposes.
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971