
Real-Time Out-of-Distribution Failure Prevention
via Multi-Modal Reasoning

Milan Ganai1, Rohan Sinha1,†, Christopher Agia1,†, Daniel Morton1, Marco Pavone1,2

1Stanford University, 2NVIDIA Research

{mganai,rhnsinha,cagia,dmorton,pavone}@stanford.edu

Fig. 1: We introduce FORTRESS, a framework for robots in open-world environments to avoid out-of-distribution (OOD)
failures. When nominal plans become unreliable, our approach uses multi-modal reasoning to rapidly generate semantically
safe fallback paths that prevent OOD failures. For instance, FORTRESS enables our quadrotor drone (on left) to identify
safe building roofs for landing, avoiding hazards like burning buildings, and allows the ANYmal robot (on right) to intuit
semantically unsafe areas like chemical spills.

Abstract—Foundation models can provide robust high-level
reasoning on appropriate safety interventions in hazardous sce-
narios beyond a robot’s training data, i.e. out-of-distribution
(OOD) failures. However, due to the high inference latency
of Large Vision and Language Models, current methods rely
on manually defined intervention policies to enact fallbacks,
thereby lacking the ability to plan generalizable, semantically safe
motions. To overcome these challenges we present FORTRESS,
a framework that generates and reasons about semantically
safe fallback strategies in real time to prevent OOD failures.
At a low frequency in nominal operations, FORTRESS uses
multi-modal reasoners to identify goals and anticipate failure
modes. When a runtime monitor triggers a fallback response,
FORTRESS rapidly synthesizes plans to fallback goals while
inferring and avoiding semantically unsafe regions in real time.
By bridging open-world, multi-modal reasoning with dynamics-
aware planning, we eliminate the need for hard-coded fallbacks
and human safety interventions. FORTRESS outperforms on-the-
fly prompting of slow reasoning models in safety classification
accuracy on synthetic benchmarks and real-world ANYmal robot
data, and further improves system safety and planning success
in simulation and on quadrotor hardware for urban navigation.
Website can be found at https://milanganai.github.io/fortress/.

Index Terms—Multi-modal Reasoning, Semantic Safety, OOD
Reliability

†
Equal contribution.

I. INTRODUCTION

Across various industries, autonomous robots [15, 8, 49,
25, 68, 20, 64] are expanding their deployment regions from
structured, localized settings to unstructured, open-world en-
vironments [18]. In the process, they increasingly encounter
out-of-distribution (OOD) failure scenarios—situations that
differ significantly from the system’s design assumptions and
training data, leading to degraded performance, unsafe be-
havior, or even complete system malfunction [44, 61]. To
ensure the reliability and safety of autonomous robots in
expanding operations, it is crucial to: adaptively identify goals
for fallback strategies, accurately discern unsafe regions where
entering could lead to OOD failures, and quickly generate
executable fallback plans that are semantically safe.

Pre-trained foundation models, like Large Language Models
(LLMs) and Vision-Language Models (VLMs) [9], can under-
stand OOD scenarios [19, 61] and reason in a zero-shot man-
ner about high-level semantically appropriate responses [63].
However, these high-level descriptions of safety interventions
can be misleading: while a model might suggest a drone to
“land in a parking lot” to avoid a large firetruck, this could
lead to semantically unsafe plans that crash into people or land
on a building on fire. These models are inherently dynamics-
agnostic, and attempts to integrate them [21] into end-to-
end control pipelines can compromise robustness [51, 52].
Moreover, the models’ high inference latency [33] renders

https://milanganai.github.io/
https://rohansinha.nl/
http://agiachris.github.io/
https://danielpmorton.github.io/
https://profiles.stanford.edu/marco-pavone
https://www.stanford.edu/
https://www.nvidia.com/en-us/research/

"Point to rooftops"

Query Reasoner

Calibrate Semantic Safety

3D keypoints
via depth data

Query VLM

"Construction"

Safe
Data"High Temperature"

Embedding
space Semantic

Safety Cost
Functions

Goal
Coordinates

Fallback Triggered

Low-frequency reasoning during nominal operation Rapid online fallback planning

Construction

High Temp. Goal"Suggest failure modes"

Fig. 2: Overview of FORTRESS: Our proposed framework prevents OOD failures by reasoning about concrete goal locations
based on semantic descriptions of fallback strategies, anticipating failure modes, and constructing cost functions that identify
semantically unsafe regions at a low frequency during the nominal trajectory. When a safety response is triggered, the algorithm
rapidly produces semantically safe fallback plans.

them unsuitable for real-time querying for granular planning
in safety-critical moments. Approaches resort to rigid, hard-
coded fallback regions [63] and human interventions for
safety [58], which are impractical in open-world environments
where potential failure scenarios are vast. The challenge is to
use foundation model reasoning for real-time generation of
semantically safe and dynamics-feasible fallback plans.

We demonstrate how to leverage foundation models to iden-
tify fallback goals, anticipate failures, and infer semantically
dangerous regions. By preparing slow reasoning in advance,
we expedite the generation of semantically safe fallback plans.
Particularly, we introduce FORTRESS, a framework for OOD
Failure Prevention in Real Time by Generating and Reasoning
about Fallback Strategies (overview in Fig. 2). FORTRESS
is a multitiered, slow-fast hierarchical approach: At a low
frequency or offline, the algorithm (i) uses VLMs to translate
abstract semantic strategies into physical fallback goal sug-
gestions and (ii) constructs cost functions to quickly identify
semantically unsafe state spaces, entering which can result in
OOD failures, by calibrating embedding models with failure
modes from foundation model reasoners. Once a runtime
monitor triggers a response, FORTRESS (iii) rapidly infuses
semantic safety into fallback motion plans.

II. RELATED WORKS

Safe control for autonomous systems has been studied
through various formal methods [42, 24, 16]. Hamilton–Jacobi
(HJ) reachability can provide worst-case reach-avoid guaran-
tees [7, 13, 22], and Control Barrier Functions (CBFs) certify
control invariance [4]. They can be used as online safety filters
to monitor system behavior and invoke corrective controls
when violations are imminent [31, 14, 65]. However, these
tools need explicitly defined environment models and failure
regions, which are not always available in open-world settings.

Foundation models [9, 21], including LLMs and VLMs,
have enabled semantic planning in robotics [2, 60], with
applications in quadrotors [59, 12], manipulation [35, 32],
and vehicles [23]. However, the models’ high latency hinders
real-world deployment [33]. One approach [58] mitigates
this by feeding language constraints to a fast VLM object

detector [48] and updating online safety filters [6, 29], but
constraints are obtained from human intervention.

Real-time recovery planning helps ensure safety in au-
tonomous systems once a response is triggered. Current
methods include game-theoretic autonomous vehicle trajec-
tory repair [72], LLM-based semantic trajectory fixes [40],
satisfiable modulo theory and reachability analysis for traffic-
rule-compliant repairs [41], and perception-failure detection
with a trained safety monitor that triggers learned recovery
plans [10]. However, these approaches only offer localized
trajectory repairs and lack real-time generation of new fallback
goals and paths, a crucial capability when the nominal path
and goal suddenly become unsafe in open-world environments.

Furthermore, real-world systems face OOD scenarios that
significantly deviate from training distributions. Some methods
to improve system robustness include training for distribution-
ally robust optimization [39, 27] and model adaptation [11,
30]. Recent research works investigate OOD detection [57, 56,
43, 36] paired with fallback controllers [26, 62, 55]. Founda-
tion models employed in a zero-/few-shot manner [73] can
understand semantic anomalies [19] and enable closed-loop
failure detection [19, 1] along with fallback set selection [63].
However, these rely on handcrafted policies or static fallback
sets, which are inadequate in preventing OOD failures.

Despite significant advances in robotics planning and con-
trol, existing methods fall short in dynamic, open-world con-
ditions. By relying on precise environment models, human
interventions, and rigid fallback plans and/or goals, they leave
a critical gap in unstructured settings when the nominal path’s
deployment becomes unsafe. We need systems that adaptively
generate real-time fallback strategies, ensuring recoveries are
semantically safe in uncertain real-world environments.

III. PROBLEM FORMULATION

We investigate robots with known discrete-time system
dynamics given by xt+1 = f(xt, ut), for state x ∈ X ⊂ Rn

and control u ∈ U ⊂ Rm. While we can control the robot’s
motion in its physical space, we aim to imbue understanding
of semantic safety in the responses to OOD failures not
captured in the robot’s state – like avoiding a roof on fire. To
build semantic awareness, we assume access to safe semantic

descriptions Ωs := {ωi}Ni=1—for example, state descriptions
with “buildings in city” for drones or “trees on median strip”
for autonomous vehicles. This is practical since systems have
vast descriptions of logs from successful deployments and
training data. We also assume we have a set of semantic de-
scriptions of high-level fallback strategies Σ := {σ1, σ2, . . . },
like “empty flat roofs” for drone landing or “vacant road
shoulders” for vehicle parking. While engineers or language
models can easily generate these general strategy descriptions
from prior data, we aim to realize the physical execution of
such strategies. The robot has function nearby(x, l) that
returns a state description of all concepts within distance l
of coordinate x, which onboard RGBD cameras and pre-
trained object detectors (like OWL-ViT [47], OWLv2 [48],
and YOLOv8 [66]) can rapidly provide. We also have cost
functions θc to capture collision hazards, where θc(x) > 0 if
and only if x is within distance lc of a physical obstacle, which
can be obtained from depth sensors. Following [63, 14, 65],
we assume that the robot is equipped with a runtime monitor,
which is a system that raises an alarm when it detects
anomalies or potential hazards in the robot’s environment. The
monitor’s alarm prompts us to reevaluate the robot’s plan and
identify an appropriate response.

We address the challenge of generating semantically safe
fallback plan responses. In open-world environments, novel
semantically unsafe concepts, with descriptions referred to as
Ωd, can appear anywhere. For example, while “person” and
“ladder” are individually safe, “person on a ladder” poses a
“Worker Injury” hazard for the ANYmal robot, as illustrated in
Fig. 4. These unsafe concepts may be related or even unrelated
to what triggered the fallback. Robots generally have limited
access to data on experiencing and responding to failure. So
if a robot encounters state descriptions in Ωd, these would be
considered OOD failures relative to our training data, Ωs.

Objective: We aim to design an algorithm to identify,
plan, and execute semantically safe fallback behaviors when
anomalous conditions render the robot’s original task unsafe.
The robot must:

M1: Be prepared with relevant concrete fallback strategy
goal locations from semantic strategy idea set Σ especially
when the original nominal path is infeasible,

M2: Bootstrap its understanding of semantically unsafe
states x where nearby(x, l) ∈ Ωd, which would result in
OOD failures, using our plentiful safe state descriptions Ωs,

M3: Rapidly generate plans implementing a fallback strat-
egy while satisfying semantic safety and physical constraints.

IV. PROPOSED APPROACH

We describe our framework FORTRESS, which generates
and reasons about semantically safe fallback strategies to
prevent OOD failures (Fig. 2). Our algorithm has three key
components: (i) constructing physical fallback goal locations
from abstract semantic strategy ideas (§ IV-A), (ii) rapidly
inferring semantically unsafe regions (§ IV-B), and (iii) em-
ploying foundation model reasoning with worst-case analysis
to rapidly generate semantically safe fallback plans (§ IV-C).

Fig. 3: For a drone agent in the CARLA simulator, FORTRESS
identifies goal locations for semantic fallback strategy de-
scription “empty, horizontal building roofs” using VLMs like
Molmo. VLMs produce safe goals, but sometimes they also
generate unsafe ones (e.g. near people) and are not dynamics-
aware (e.g. tight landing spots require complex maneuvering).

A. Generating potential fallback strategy sets (M1)
A crucial aspect in executing fallback strategies is gen-

erating clear goals for contingency plans when the original
plan’s goal is unattainable. We leverage the abstract semantic
fallback characteristics Σ defined in § III. These fallback goals
serve various purposes, such as waiting for external dangers to
subside, recalibrating perception systems, enabling controlled
hardware/software maintenance, providing extra time to re-
assess the environment, creating more robust mitigation strate-
gies, or receiving human intervention. To transform semantic
descriptions into physical fallback goal locations, we utilize
the general-purpose reasoning of VLMs. In particular, we
employ the VLM Molmo trained on the PixMo dataset [17] to
analyze a robot’s scene image with a query based on a strategy
description σi ∈ Σ. The VLM outputs pixel coordinates for
potential fallback points (shown in Fig. 3), which are then
converted into 3D global coordinates using depth information
and camera intrinsics, to form a set of goal locations Gi. VLM
queries can incur several seconds of latency, depending on
model size and token limits. Therefore we propose mitigating
delays during critical moments by preemptively querying the
VLM at a low frequency during normal operations (see Table I
for times) to identify potential fallback locations, caching
their corresponding 3D global coordinates, and loading these
locations immediately when a fallback response is needed.

B. Reasoning about Semantic Safety Constraints (M2)
Another key contribution is an approach for rapid and

efficient reasoning to identify semantically unsafe state spaces.
While the robot has access to many descriptions of safe, nom-
inal data Ωs, it faces the challenge of identifying semantically
unsafe regions that are naturally OOD compared with Ωs.
We propose to anticipatively enumerate a set of high-level
failure modes Φ (e.g. “Near Human,” “Turbulence,” “High
Temperature”). Then, we construct functions that determine
the safety of a description semantically by measuring if a new
state description is anomalously close to a high-level failure
mode ϕ ∈ Φ, relative to the safe observations in Ωs. Our
approach is based on the insight that despite the potentially

Fig. 4: FORTRESS employs foundation model reasoners to
anticipate failure modes. It then calibrates thresholds in the
embedding model space to determine if new state descriptions
more similar to failure modes than safe data Ωs. During safety-
critical moments, the semantic safety cost functions rapidly
identify physical unsafe state regions during an ANYmal
robot’s deployment. FORTRESS differentiates the safety of
a ladder from a person standing on one, anticipating worker
injuries without encountering failures in Ωs.

infinite variations in details of dangerous scenarios, most
semantically unsafe scenarios are associated with a limited
number of abstract, anticipated modes.

One approach to anticipate the abstract semantic failure
modes that the environment may produce is manually identify-
ing them, but this does not scale and adapt well to novel OOD
settings. We propose using pre-trained foundation models
to reason about failure modes capturing broad classes of
potential semantically unsafe scenarios a robot may encounter
in an environment. We create a structured prompt which has
a general description of the environment, an image (if the
reasoning model can process them), and a query for a list
of relevant semantic failure modes. We extract the phrases of
failure modes set Φ from the response (left side of Fig. 4).
This step of forecasting failure modes morally corresponds
to the Failure Mode and Effects Analysis stage of describing
potential failures in a system for robust risk assessment [53].

To quantify the relationship of state description ω to some
failure mode ϕ ∈ Φ, we leverage semantic understanding
capabilities of a text embedding model Embed. During the
nominal trajectory or offline, we construct a set of safe
embedding vectors Es := {Embed(ωs),∀ωs ∈ Ωs} from
safe state observation set Ωs and obtain each failure mode’s
embedding eϕ := Embed(ϕ). We use cosine similarity-based
function sim(ei, eϕ) := 1 − ei·eϕ

||ei|| ||eϕ|| to measure semantic
affinity of state description embedding vector ei to ϕ. We
identify if a state description is significantly closer to failure
mode ϕ compared with safe data Ωs and therefore is unsafe,
by calibrating a threshold ∆ϕ using conformal prediction on

the α ∈ (0, 1) quantile of safe data:

∆ϕ := sup
{
δ ∈ R :

∣∣{es ∈ Es : sim(es, eϕ) ≥ δ}
∣∣

N
≥ (1−α)

}
,

(1)
which is the maximum real scalar that lower bounds at least
⌈(1− α)N⌉ safe data similarity scores.

To determine which regions are semantically safe or haz-
ardous for the robot, we construct cost functions with physical
awareness of the state space. With function nearby (§ III)
and failure mode ϕ, we propose semantic safety cost functions
that analyze concepts within radius lϕ of state x:

θϕ(x) := ∆ϕ − sim(Embed(nearby(x, lϕ)), eϕ), (2)

where the robot at x is hazardous if θϕ(x) > 0. Intuitively, any
state description’s embedding within ∆ϕ semantic similarity
of failure mode embedding eϕ is classified as semantically
unsafe (right part of Fig 4). We use the notation h ∈ Φ ∪ {c}
to indicate all failure modes and the collision hazard.

C. Reasoning about Safe Plans (M3)
FORTRESS’s third component is generating a semantically

safe path to a goal. We propose a control theoretic optimiza-
tion framework that reasons about worst-case failure modes
with the tools we developed in previous sections to generate
semantically safe fallback plans to prevent OOD failures.

We construct a Reach-Avoid problem of entering a region
Bρ(g) := {x : ||x − g|| ≤ ρ} (a ball of radius ρ centered
around some goal g from § IV-A) while avoiding semantically
unsafe regions in the state space. We leverage semantic safety
cost functions from (2) for all failure modes in Φ. We obtain
trajectory plan τ = x{1:T} with horizon T that starts at
the robot’s current location b and reaches goal location g by
solving the following where N≤T indicates the set {1, 2, ...T}:

τ∗ = argmin
τ

max
h∈Φ∪{c}

max
x∈τ

θh(x)

s.t. x1 = b

∃k ∈ N≤T , {xi|k ≤ i ≤ T} ⊆ Bρ(g)

∃u ∈ U ,∀j ∈ N≤T−1 xj+1 = f(xj , u),

(3)

where τ∗ is the optimal trajectory. We define Θ∗ :=
maxh∈Φ∪{c} maxx∈τ∗ θh(x) as the minimaximax objective
value. This optimization ensures the trajectory remains se-
mantically and physically safe (i.e. θh(x) ≤ 0) if possible
by minimizing worst-case influences of failures along the
trajectory. The first constraint forces the trajectory to start at
the robot’s current location, the second requires the trajectory
will reach and remain indefinitely near the goal, and the
third guarantees the trajectory is dynamically feasible. This
optimization structure is related to HJ reachability’s [5] game-
theoretic optimization by scoping out the “adversary’s” strate-
gies and considering worst-case bounded “disturbances” that
the environment may produce (i.e. potential hazards Φ∪{c}).

We employ a combination of motion planning and path
tracking to find an approximate solution to optimization of (3)
and compute the executable controls. We use Rapidly ex-
ploring Random Trees (RRT) [37] to plan a trajectory to
the goal region using the cost functions θh(x) to guide and
invalidate unsafe states during the search procedure. Then, we

Fig. 5: Increasing Failure Coverage from Prompting Reasoners: We prompt Gemini 2.0 Flash, Claude 3.7 Sonnet, and
DeepSeek-R1 reasoners to anticipate 1 to 50 failure modes and calibrate cost functions based on eight embedding models to
classify if semantically unsafe drone descriptions are closer to failure modes than the distance from the safe drone data to
these modes. We use AUROC as a metric for classifiers’ performance. Results for more reasoning models are in appendix.

employ Model Predictive Control (MPC) or Linear Quadratic
Regulator (LQR) to obtain controls for tracking the RRT plan.
By inflating the distance thresholds lh, h ∈ Φ ∪ {c} for the
cost functions outlined in § IV-B and ensuring the incremental
distance of the planner is small enough to account for the error
of the path tracking algorithm, we can leverage results similar
to [28, 45] and prove the executed trajectory will align with
safety and reachability requirements (theorem in appendix).

Once entering the goal region Bρ(g), the robot executes
controls to ensure control invariance of the fallback set (e.g.
initiate landing, hovering in place, etc). If the planner cannot
identify a safe trajectory (i.e. Θ∗ > 0), we iterate through
strategies σi ∈ Σ from § IV-A, selecting a new goal from
Gi and recomputing the optimization of (3), until a safe
trajectory is produced (i.e., Θ∗ ≤ 0). During planning, we can
log which hazards in Φ∪{c} prevented the implementation of
any fallback strategy, providing interpretable explanations for
why certain strategies in Σ could not be executed.

V. EXPERIMENTS

We conduct various experiments to test three hypotheses of
our approach FORTRESS:

H1: By reasoning about the safety of a scene using text
embedding models and a limited set of failure modes, we can
identify OOD failures (i.e. semantically unsafe descriptions)
more accurately than on-the-fly prompting of slow foundation
models reasoning about safety of a description.

H2: FORTRESS can leverage foundation model reasoners
to anticipate failure modes that semi-monotonically improve
classification accuracy using embedding-based cost functions.

H3: By performing rapid constraints and planning compu-
tation when requested for a fallback plan, we can generate
fallback plans in real time that have improved planning success
and safety compared to baseline approaches that hard-code
fallbacks and/or perform naı̈ve object avoidance.

A. Embedding classification
We test H1 by measuring the accuracy of our approach in

extracting semantic safety constraints. In particular, we create

synthetic datasets in several domains such as aerial vehicle
drone taxis, self-navigating maritime vessels, and autonomous
vehicles. We compile synthetic training data for semantic state
descriptions Ωtrain

s that have safe collections of environments
and concepts for each domain that robots are known to handle
in their nominal operations safely. We also construct safe
description test data Ωtest

s different from those in training
data, as well as dangerous description test data Ωtest

d that
contain unsafe collections. We evaluate and calibrate eight text
embedding models for classification: MiniLM (22M) [71],
Mistral (7B) [69, 34], MPNet (110M) [67, 54], Multilingual-
E5 (560M) [70], OpenAI Text Embedding Large [50], Qwen2
(7B) [38], Salesforce (SFR) Embedding Mistral (7B) [46], and
Voyage AI’s voyage-3-large [3].

In the first set of experiments, we define around 10 high-
level descriptions of failure modes for each domain. These
descriptions are kept concise to cover a wide range of potential
unsafe scenarios. We calibrate thresholds for each model and
domain using the safe dataset Ωtrain

s . We present accuracy
results on the total testing dataset Ωtest

s ∪ Ωtest
d for the

Autonomous Boat and Vehicle synthetic datasets in Table II.
We additionally compare with an ablation that considers only
a single mode “Safe” and prompting (slow) reasoning models.
The results demonstrate that for each domain, FORTRESS’s
approach can achieve a balanced accuracy performance higher
than 0.90, effectively distinguishing between safe and unsafe
scenes. The other approaches perform poorly since they reason
about semantic safety too abstractly (i.e. with 1 mode “Safe”)
or too fine-grained (i.e. reasoning models can over-extrapolate
from scene descriptions).

B. Accuracy of Proactively Anticipating Failure Modes
We verify H2 by exploring automating failure mode genera-

tion by querying LLM with a prompt that specifies the robot’s
setting and asks for potential failure modes to anticipate.
Effectively, we employ reasoning models to scope out the
“adversarial” strategies. Note that this querying process can be
performed during the execution of the nominal trajectory of the
robot when it enters a new deployment region or offline if the

Fig. 6: Planning rates of FORTRESS versus AESOP [63] and
Safe-Lang [58] for a drone in CARLA sim. We augment base-
lines with our VLM goal identification for fair comparison.

environment is already known. Fig. 5 shows results of querying
various reasoning models for up to 50 failure modes and
measuring the performance of the classification performance
of the calibrated embedding model cost functions. By querying
models for more failure modes, we observe the Area Under
the Receiver Operating Characteristic (AUROC) curves, which
capture semantic safety classification performance, generally
improve and stabilize. OpenAI and Voyage AI embedding
models achieve increases in accuracy, with AUROC values
above 0.9, outperforming those generated from manual failure
modes. Overall, FORTRESS can effectively identify failure
modes to improve coverage of semantically unsafe OOD
failure descriptions and avoid suggestions of spurious modes
that exacerbate false positive rates.

We also test the classification accuracy of our approach on
data we collect from deploying an ANYmal robot (Fig. 4) in
a room under construction1. We feed a prompt and an image
of the environment to Claude 3.7 Sonnet and extract around
10 failure modes. We calibrate thresholds on a deployment
with relatively safe and manageable concepts detected with
an object detector (e.g. ladders, paint cans, and boxes), and
measure semantic safety detection rate when deploying the
ANYmal near both safe concepts and unsafe ones (e.g. person
on a ladder, caution tape, and cables). We present results in
the rightmost column group of Table II and in the appendix.

C. Safe Fallback Planning in Real Time
We measure the success and safety of the generated plans

for a single fallback strategy of landing on buildings in the
CARLA simulation and hardware experiments on a drone to
validate H3. In CARLA (Fig. 3), we create an agent with
the dynamics of a drone to navigate over an urban landscape
with firetrucks, people, cars, traffic cones, etc. We compare our
approach with recovery planning based on AESOP [63], which
does not avoid semantically unsafe regions in its fallback
stage, and adapting Safe-Lang [58] to have a VLM identify
unsafe regions for its naı̈ve avoidance approach. In Fig. 6,
FORTRESS improves the success rate and safety of generated
fallback plans due to its nuanced reasoning that can accurately
demarcate semantically safe and unsafe regions.

1ANYmal demo video https://www.youtube.com/watch?v=xU-egPQjkFo

Computation Times for FORTRESS on Drone Hardware
Component Mean Time (s) STD Dev. (s)

Query Molmo for Goal points 5.82 0.13
Query 2.0 Flash for Failure Modes 3.68 0.33

Query 3.7 Sonnet for Failure Modes 15.65 0.51
Query R1 for Failure Modes 12.76 1.22

Calibrate Voyage AI Embeddings 3.91 0.08
Calibrate OpenAI Embeddings 5.43 0.19

Safety Reasoning Inference 0.011 0.006
Reach-Avoid Planner 1.28 0.55

TABLE I: Component times of FORTRESS algorithm during
quadrotor drone hardware deployment with Jetson Nano. Px4
manages the communication interface, and motion capture
sensors enable drone localization. The first grouping of rows
is computations done at a low frequency during nominal
trajectory or offline; the second grouping is executed during
the safety-critical moment when the response is needed.

We also deploy our framework on drone hardware2 to
test whether FORTRESS can operate in real-world settings:
FORTRESS determines fallback goals for strategy of landing
on building roofs, extract semantic safety constraints like High
Temperature and Construction, and rapidly generate semanti-
cally safe plans seen in Fig. 1. We measure each component of
our approach on Jetson Nano hardware shown in Table I. The
safe embedding reasoner and the reach-avoid planner operate
rapidly and therefore are deployed instantaneously once the
runtime monitor has triggered a fallback response. While our
fallback strategy identification and safety calibration modules
that query the multi-modal reasoners take longer, we perform
these operations at a low frequency during nominal operations
(see § IV-A & IV-B), caching potential locations and semantic
safety functions and loading when needed. More details on
hardware experiments are in appendix.

VI. DISCUSSION AND CONCLUSION

We present FORTRESS, a framework that prevents OOD
failures by bridging open-world reasoning with dynamics-
aware planning and control to generate fallback strategies. At
a low frequency in nominal operations or offline, FORTRESS
uses foundation models to identify fallback goals, anticipate
failure modes, and calibrate semantic safety reasoners, caching
the goals and semantic cost functions to mitigate latency in
safety-critical moments. At runtime, it adaptively synthesizes
fallback plans via reach-avoid analysis guided by these goals
and semantic constraints. We validate our semantic safety
reasoners’ detection of potential OOD failures on synthetic
maritime and vehicle datasets as well as real-world data from
an ANYmal robot. We deploy FORTRESS on drone hardware
and in simulation, with improved planning success and safety.

ACKNOWLEDGMENTS

We thank the Stanford Robotics Center for their assistance
with experiments using the ANYmal robot. This work is
supported by the NASA University Leadership Initiative, Torc
Robotics, and Toyota Research Institute. DM is supported by
a NASA Space Technology Graduate Research Opportunity.

2Drone demo video at https://www.youtube.com/watch?v=a0XZgwoNLos

(Best) Embed. Boat (Synthetic) Vehicle (Synthetic) ANYmal (HARDWARE)

Method Model TPR TNR Bal. Acc. TPR TNR Bal. Acc. TPR TNR Bal. Acc.

Voyage AI 0.97 0.97 0.97 0.81 0.98 0.89 0.59 0.87 0.7310 modes Qwen2 0.78 0.66 0.72 0.65 0.90 0.78 0.82 0.98 0.90(Ours) OpenAI 0.72 0.90 0.81 0.83 0.98 0.90 0.51 0.82 0.66

Voyage AI 0.34 0.78 0.56 0.05 0.96 0.50 0.02 0.98 0.501 mode Qwen2 0.92 0.10 0.51 0.05 1.00 0.53 0.65 0.60 0.63“Safe” OpenAI 0.61 0.47 0.54 0.25 0.86 0.55 0.15 0.97 0.56

GPT-4o N/A - prompting 0.79 0.73 0.76 1.00 0.23 0.61 0.89 0.40 0.64
o3-mini N/A - prompting 0.79 0.87 0.83 0.73 0.93 0.83 0.95 0.80 0.87
o4-mini N/A - prompting 0.72 0.79 0.76 0.88 0.85 0.86 1.00 0.70 0.85

TABLE II: Accuracy of our approach for calibrating embedding model-based cost functions to detect semantically unsafe descriptions on synthetic datasets
and data collected from ANYmal hardware exploring a room under construction. Performance metrics are measured with True Negative Rate (TNR), True
Positive Rate (TPR), and Balanced Accuracy. Results are shown for FORTRESS with 10 failure modes, ablation baselines that compute similarity distance to
1 mode called “Safe,” and on-the-fly prompting of slow reasoning models.

APPENDIX A
LIMITATIONS

Our proposed framework currently has limitations that open
several promising avenues for future work. Although we
currently write semantic fallback strategies for robots and
environments, extensions could develop methods that automat-
ically extract semantic descriptions, infer the relevant fallback
goals, and adapt them across diverse robotic platforms and
operation settings. Non-static fallback strategy goals can also
be investigated depending on the robot and environment, such
as merging into a different lane with moving traffic in the au-
tonomous vehicle setting. Furthermore, our mapping of seman-
tically unsafe regions to static, fixed-radius avoidance regions
could be extended to handle dynamic or context-dependent
constraints such as adaptive avoid boundaries, dynamic ob-
stacles, terrain-specific factors including varying surface fric-
tion, or environmental disturbances like wind to enable more
nuanced reasoning about when and how failures arise. These
semantic fallback goals and failures can be retrieved from rule
books with high-level specifications on handling the presence
of semantically unsafe situations (e.g. a handbook on aviation,
naval, and traffic regulations). Finally, while in this paper we
focus on preventing OOD failures, future work can expand
on our framework for diagnosis and fallback strategies that
manage the safety and recovery of robots actively experiencing
failures (e.g. recovery with minimal damage during a collision
or from a fire).

APPENDIX B
NOTATION

Notation Description

x Robot State
X State Set
u Control action
U Control Set
f Dynamics
Ωs Set of safe, nominal semantic state descriptions
N number of descriptions in of Ωs

Ωd Set of semantically unsafe semantic state descriptions
ω a semantically unsafe semantic state description
Σ Set of semantic description of fallback strategies
σi ith semantic description of in Σ
Gi set of 3D goal coordinates from querying for strategy σi from VLM
g a 3D goal coordinate
Φ Set of semantic failure modes
ϕ a failure mode
lϕ physical distances to keep from failure mode ϕ and physical objects
lc physical distances to keep from failure mode ϕ and physical objects
nearby(x, l) function that returns state description of concepts in

radius l around x
θc(x) collision hazard cost function returning positive iff x is

within lc of physical obstacle
Embed(ω) function Text embedding model producing a vector

from description ω
Es Set of embeddings vectors of descriptions in Ωs

eϕ embedding vector of failure ϕ
sim(ei, eϕ) similarity cost function based on cosine similarity of

vectors ei and eϕ
∆ϕ failure embedding similarity threshold calibrated for ϕ

on safe data Ωs

α quantile for threshold
θϕ(x) semantic safety cost function detecting if state x is in

region that could experience ϕ
Φ ∪ {c} all failure modes and the collision hazard (used in representing

cost funcs. and dists.)
ρ radius around goal coordinate determining reach region
Bρ(g) ball of radius ρ around goal g
b beginning location where fallback response was triggered
τ trajectory plan
T horizon/steps in trajectory
x{1:T} sequence of states {x1, x2, ...xT }
N≤T set of natural numbers from 1 to T
Ωtrain

s training/calibrating set of safe, nominal semantic state descriptions
Ωtest

s testing set of safe, nominal semantic state descriptions
Ωtest

d testing/validating set of unsafe/failure semantic state descriptions
Λ inverse covariance matrix of safe embedding vector set Es

APPENDIX C
EVALUATION OF SEMANTIC SAFETY COST FUNCTIONS

A. Additional Experiments

We perform a more comprehensive analysis on our se-
mantically safety cost functions to extract OOD failures.
Specifically, we present ROC curves for multiple datasets and
calibrate various embedding models. Different classification
accuracies are given by varying the quantile threshold alpha
in calibration defined in § IV-B. Our benchmarks include
synthetic datasets for autonomous drones, boats, and vehicles.
We also present results on real-world data we collected from
ANYmal robot deployments.

Our approach with cosine similarity: For the main
FORTRESS classifier, we construct failure modes per domain
and use cosine similarity in the embedding space to measure
proximity to each mode (see Fig. 7). For the ANYmal dataset,
we query Claude Sonnet 3.7 and extract 10 failure modes.

Our approach with Mahalanobis: We also explore alterna-
tive similarity measures and implement a variant inspired by
the Mahalanobis distance. We compute the inverse covariance
matrix Λ of the safe dataset embeddings Es. Given a new scene
embedding et, the similarity distance function to embedding
failure eϕ is given by:

simmahalanobis(et, eϕ) :=
√

(et − eϕ)⊤Λ(et − eϕ). (4)

Using this similarity metric, we calibrate the corresponding
threshold ∆mahalanobis

ϕ for our cost function. The results of
the classification performance for the models on the various
datasets are shown in Fig. 8. The curves for Mahalanobis
distance do not show a significant improvement in accuracy
compared with just cosine similarity.

Ablation with single mode: As an ablation baseline, we
employ a single mode called “Safe.” We compute the cosine
similarity between each scene embedding and the “Safe”
embedding, and classify scenes with closer similarity (i.e.
lower sim values) as safe (opposite of our failure mode
decision rule in (1)). Results in Fig. 9.

B. Prompts for Embedding Models

For autonomous drones:

I am the runtime monitor for a vision-
based autonomous vertical takeoff and
landing (VTOL) drone operating as an
urban air taxi. My job is to analyze
the observations of the VTOL and

identify whether certain points along
the VTOL’s trajectory are prone to

failure rendering the VTOL unable to
handle them as part of its nominal
operations. The VTOL’s observations
take the form of object detections
generated by an onboard perception
pipeline.

Scene Description: The surroundings of
the VTOL include:

${CONCEPT_LIST}

For autonomous boats:

I am the runtime monitor for a vision-
based autonomous boat transporting
cargo. My job is to analyze the
observations of the boat and identify
whether certain points along the

boat’s trajectory are prone to
failure rendering the boat unable to
handle them as part of its nominal
operations. The autonomous boat’s
observations take the form of object
detections generated by an onboard
perception pipeline.

Scene Description: The surroundings of
the boat include:

${CONCEPTS_LIST}

For autonomous vehicles:

I am the runtime monitor for a vision-
based autonomous vehicle operating as
an urban ground taxi cab. My job is

to analyze the observations of the
vehicle and identify whether certain
points along the vehicle’s trajectory
are prone to failure rendering the

autonomous vehicle unable to handle
them as part of its nominal
operations. The vehicle’s
observations take the form of object
detections generated by an onboard
perception pipeline.

Scene Description: The surroundings of
the autonomous vehicle include:

${CONCEPTS_LIST}

For ANYmal robot:

Fig. 7: ROC curves using around 10 failure modes with varying percentile α thresholds on autonomous drones, boats, and
vehicle environments using cosine similarity on 8 embedding models.

Fig. 8: ROC curves using around 10 failure modes with varying percentile α thresholds on autonomous drones, boats, and
vehicle environments using Mahalanobis distance calibrated on cosine similarity on 8 embedding models.

I am the runtime monitor for a vision-
based autonomous quadruped ANYmal
robot operating in a construction
area. My job is to analyze the
observations of the quadruped and
identify whether certain points along
the quadruped’s trajectory are prone
to failure for the robot or danger

caused to the environment. The
quadruped ANYmals’s observations

take the form of object detections
generated by an onboard perception
pipeline.

Scene Description: The surroundings of
the quadruped include:

${CONCEPTS_LIST}

C. Baseline implementation of on-the-fly prompting of slow
reasoning models

As shown in Table II of the main paper, we also compare our
approach with on-the-fly prompting of the reasoning models.
In particular, we directly query the foundation model reasoners
with a structured prompt to analyze whether or not a scene
is safe. This would theoretically be queried during the safety

critical moment to understand the semantically unsafe regions,
so we term this as on-the-fly prompting. Table II in the main
paper and Table III below show that simply querying the
reasoning models results in poor accuracy and is much slower
(> 50×) than FORTRESS in analyzing semantic safety. An
example prompt is:

Fig. 9: ROC curves using only the “Safe” Mode with varying percentile α thresholds on autonomous drones, boats, and vehicle
environments using cosine similarity on 8 embedding models.

I am the runtime monitor for a vision-
based autonomous vertical takeoff and
landing (VTOL) drone operating as an
urban air taxi. My job is to analyze
the observations of the VTOL and

identify whether certain points along
the VTOL’s trajectory are prone to

failure rendering the VTOL unable to
handle them as part of its nominal
operations. The VTOL’s observations
take the form of object detections
generated by an onboard perception
pipeline.

Scene Description: The surroundings of
the VTOL include:

${CONCEPT_LIST}
Is this situation safe for the agent?

Respond in the following format:
Answer: {Yes/No}

APPENDIX D
REASONING MODELS FOR FAILURE MODE GENERATION

Reasoning Model Mean Time (s) STD Dev. (s)
GPT-4o 0.49 0.03
o3-mini 3.23 0.86
o4-mini 2.68 0.72

TABLE III: Inference times of on-the-fly prompting of reasoning models.

Fig. 10: Increasing number of failure modes (1 to 50) taken from prompting Llama 4 Scout, OpenAI GPT-4o, and Mercury
reasoners with Area under ROC curve as the measure of classifier model performance queried with eight different embedding
models for cost functions over five seeds on the autonomous drone synthetic dataset.

Fig. 11: Increasing number of failure modes (1 to 50) taken from prompting o1, o3-mini, and o4-mini which are part of
OpenAI’s reasoning model series with Area under ROC curve as the measure of classifier model performance queried with
eight different embedding models for cost functions over five seeds on the autonomous drone synthetic dataset.

We present results for querying foundation model reasoners
for failure modes given scene descriptions and calibrating all
the embedding model cost functions with cosine similarity to
the failure modes. We present the accuracy of the embedding
model cost functions incrementally increasing from 1 to 50
failure modes from each reasoner. We use Area under the ROC
curve as the classification performance metric. We present the
results on Llama 4 Scout, OpenAI GPT-4o, and Mercury in
Fig. 10 and OpenAI reasoning model series in Fig. 11. For
reference, each plot constitutes 8 embedding models × 50
evaluations on varying numbers of failure modes × 5 queries
for failure mode lists from the reasoning models = 2000
calibration experiments for each reasoning model.

Overall, FORTRESS demonstrates strong performance in
leveraging foundation models to anticipate OOD failure modes

and accurately classify the failure, with the OpenAI text
embedding large model consistently achieving over 0.95 AU-
ROC and Multilinguale-E5 and Voyage AI embedding models
sometimes performing over 0.9. It is worth noting that the
AUROC largely holds steady as we include more failure
modes. A significant drop would be anticipated if spurious
suggestions were causing safe descriptions to be misclassified
as unsafe. However, the embedding model cost functions
become gradually more accurate with more failure modes
generated by the reasoners, suggesting that FORTRESS can
employ the reasoners to effectively understand and generate
more failure modes that accurately improve failure coverage.

A query and response from the Llama 4 Scout model look
like:

Query: Given an urban view from a drone
agent, provide concise descriptions
no more than four words of at least
50 general potential external
failures that the drone may encounter
in this environment. Avoid internal

problems/failures of the drone or its
equipment. Examples include Low

Visibility, Near Human, Near Vehicle
in motion, High Temperature,
Unauthorized Access.

Provide in the format:
n. failure

Response: Here are 50 potential external
failures that the drone may

encounter in an urban environment:

1. Low Visibility
2. Near Human
3. Near Vehicle
4. High Temperature
5. Unauthorized Access
6. Power Line Nearby
7. Tall Building Nearby
8. Strong Wind Gust
9. Rainy Weather
10. Snowfall
11. Foggy Conditions
12. Bird Strike
13. Insect Swarm
14. Air Traffic Nearby
15. Emergency Vehicle
16. Pedestrian Crossing
17. Road Construction
18. Bridge Nearby
19. Tunnel Entrance
20. Overhanging Tree
21. Loose Debris
22. Nearby Crane
23. High Voltage Lines
24. Radio Frequency Interference
25. Water Body Nearby
26. Steep Slope
27. Unstable Ground
28. Nearby Fire
29. Toxic Gas Leak
30. Nearby Accident
31. Protests or Riots
32. Large Animal Nearby
33. Narrow Alleyway
34. Billboard or Sign
35. Overhead Wires
36. Construction Site
37. Parked Vehicle
38. Moving Train
39. Boat or Ship
40. Nearby Helicopter
41. Telephone Lines

42. Severe Weather
43. Sandstorm
44. Nearby Explosion
45. Unmarked Obstacle
46. Cycling Pedestrian
47. Dense Vegetation
48. Steep Cliff
49. Water Spray
50. Dense Traffic
Let me know if you’d like me to expand

on this list!

APPENDIX E
CARLA SIMULATION EXPERIMENTS

We also deploy and evaluate FORTRESS in the CARLA
simulator. We model the ego spectator view as a drone agent
observing the city from above the buildings. Some of the
buildings have people, firetrucks, traffic cones, and cars on
their roofs. Given that a runtime monitor has triggered the need
for a fallback response in this situation, we are tasked with
generating and executing a semantically safe fallback plan.

A. Implementation Details of FORTRESS in CARLA:

We first query the VLM Molmo [17] for 2D coordinates.
For the fallback strategy of landing on a building roof, we
might query something like:

Query: point to empty, horizontal
building roofs.

Response: <points x1="32.4" y1="51.2" x2
="38.5" y2="9.5" x3="42.1" y3="24.0"
x4="74.6" y4="8.1" x5="89.5" y5
="20.6" x6="92.4" y6="53.5" x7="97.5"
y7="69.3" alt="empty, horizontal

building roofs">empty, horizontal
building roofs</points>

The response has 2D xy coordinates (that have been nor-
malized to be in the range 0-100) from which we extract the
proposed empty building roof points. They correspond to the
following locations:

From this we can use CARLA’s built-in pose and position
estimates, depth view, and camera intrinsics to construct 3D
global coordinates from these points, which form our goal
points.

For the semantic safety cost function, we employ the
OpenAI text embedding model [50] and calibrated with cosine
similarity (the accuracy of which is displayed on the leftmost
image in Fig. 7).

During runtime, we identify the semantically unsafe regions
in the state space and perform reach-avoid planning to enter
into a 1-meter radius around one of the goals identified
by Molmo while avoiding the unsafe regions. Specifically,
we use open-vocabulary object detectors YOLOv8 [66] and
OWLViT [47] to identify the concepts on the building roofs
and depth maps for their locations. We make lc as 2 meters
and lϕ for all ϕ as 4 meters. We employ an RRT planner
with an incremental step size of 0.5 meters and LQR to
track the planned path. Because the object detectors are not
always accurate from far distances, we perform a cycle of path
tracking at most 15 steps of the RRT plan while querying the
object detectors and replanning a trajectory to the goal from
the anticipated location. In the replanning, stage if we find the
original goal is infeasible (because there is no semantically
safe plan to reach it), we try to plan paths to new nearby
goals identified by the VLM.

B. Implementation Details of Baselines in CARLA

While there are no works we are aware of directly generate
semantically safe fallback plans in real time to prevent OOD
failures, we compare our approach with two baselines by
adapting from adjacently related works AESOP [63] and Safe-
Lang [58].

While AESOP focuses on deciding whether a situation
is OOD and what semantic fallback response is needed, its
fallback planner produces a trajectory to a manually predefined
fallback goal without considering the safety of the plan. We
use this baseline with a few modifications such as augmenting
it with our approach of querying Molmo for fallback goal iden-
tification and employing the same planning. We also include
naı̈ve collision hazard avoidance of keeping 2 meters from
physical objects to highlight the comparative improvements
provided by our semantic safety cost function.

Safe-Lang, on the other hand, uses human language input to
identify the semantically unsafe regions for the safe fallback
policy/plans and does a simple object avoidance for this.
Since it is impractical for humans to perform descriptive
safety interventions especially in large scale deployments,
we model this using the open-vocabulary object detectors to
identify objects automatically and perform a blanket avoidance
distance of 4 meters. We augment Safe-Lang with our VLM
goal identification since their approach also does not identify
new fallback strategies and goals when the nominal goal is
infeasible.

To ensure a fair comparison of FORTRESS and the base-
lines, we used the same planning and path tracking methods
(i.e. RRT+LQR) for generating controls for the fallback plans.

C. Discussion on Results
The results of all the approaches are shown in Fig. 6 of

the main paper. Since AESOP does not consider semantic
safety, it generates plans that enter into semantically unsafe
regions such as near a firetruck with traffic cones or a rooftop
party with people. Furthermore, while Safe-Lang’s fallback
approach avoids objects identified by the object detector, it
is unable to distinguish between semantically safe and unsafe
concepts and therefore incurs a high no-plan rate (i.e. no safe
plan could be found to reach any fallback strategy goal). Our
approach can reliably generate safe plans successfully with
more than a 90% success rate for the strategy of “landing on
building roofs.” The situations when FORTRESS cannot find
a safe plan to implement are because all building roofs are
occupied by unsafe concepts.

APPENDIX F
REPLANNING WITH DYNAMIC CONCEPTS

We demonstrate an example of how FORTRESS changes
plans and implements a new strategy when circumstances
evolve to ensure both semantic and physical safety of the
fallback. Specifically, we employ a robot with the dynamics
of a double integrator along 3 dimensions. The environment
consists of a human skydiving and a falling box, and we have
two strategies: land on the ground or land on a building. In
this simple example, FORTRESS understands the semantically
unsafe regions in the state space (i.e. skydiving human is
unsafe to be near while the box is relatively safe) as it is
changing and in response adjusts its fallback plans or even
implements a wholly new strategy. In this setting, we use RRT
to replan every 10 steps and MPC for path tracking.

APPENDIX G
DETAILS ON HARDWARE

A. ANYmal Robot Hardware Experiments
We discuss some details on the setup for the experiments

conducted on the ANYmal hardware (Generation D) for
testing the accuracy performance of FORTRESS’s semantic
safety cost function in identifying potential OOD failures.
The setting is a room that is actively under construction. We
first collect some safe, nominal data with represent concepts
that are within the operational capabilities of the ANYmal.
Specifically, we navigate the robot around the room with
objects like boxes, paper scraps, ladders, paint cans, and peo-
ple, which we detect using the OWLv2 [48] open-vocabulary
object detector. We extract around failure modes from query-
ing Claude 3.7 with an image of the environment, such as
Sharp Objects, Unauthorized Access, Chemical Spill, Unstable
Region, Worker Injury, Entanglement, and Slippery region.
Then, after calibrating our semantic safety cost functions using
the Qwen2 text embedding model, we deploy the robot again
but this time we place unsafe objects in the room. As seen in
Fig. 13, this includes a person standing on a ladder (which is
unsafe since the ANYmal may cause the person to fall down),
cables (which can cause the robot to get entangled and trip),
caution tape, and a blue toxic spill. FORTRESS can detect
these semantically unsafe concepts even though no similar
failures existed in the training dataset. Notice how “person”

Fig. 12: Example demonstrating (re)planning of safe fallback plans with moving objects. FORTRESS originally produced a
plan to the first goal point that implemented the strategy of landing on the ground by avoiding the human (skydiver) and
box. However as the human and box descended, the original fallback strategy was physically and semantically infeasible so it
replanned a path to implement the next strategy of landing on a building.

and “ladder” are individually detected as semantically safe
but a “person on a ladder” triggers “Worker Injury” failure
– entering into this unsafe region can result in destabilizing
the person on the ladder and potentially injure them. Full video
at https://www.youtube.com/watch?v=xU-egPQjkFo.

B. Quadrotor Drone Hardware Experiments

We explain our experiments for implementing FORTRESS
on quadrotor drone hardware. We equip our quadrotor with
a Jetson nano for computation and an Intel Realsense D435
camera to stream RGBD data. We use the Optitrack motion
capture system for localization. We deploy the drone in an
environment with buildings and task FORTRESS with pro-
ducing a response of implementing the fallback strategy of
landing on building rooftops. As seen in Fig. 1 of the main
paper, the rooftops consist of various safe and unsafe concepts.
Specifically, for unsafe regions, we have a building with a
ladder and caution tape (depicting a construction), one on
fire, and a rooftop parking lot with two vehicles. Additionally,
there are two buildings that are relatively safe by themselves
such as one with nothing on it and one with a garden
rooftop with grass and trees. As seen in the demo video at
https://www.youtube.com/watch?v=a0XZgwoNLos, the drone
lands on the garden rooftop. FORTRESS successfully identi-
fies that the garden rooftop provides a safe spot to implement
the strategy of landing on a building while the other buildings
are either centers of OOD failures or are very close to them.

To obtain goal points, we query Molmo for rooftop landing
locations as follows:

Query: point to middle of building
rooftop.

Response: <point x="67.1" y="71.1" alt="
middle of building rooftop">middle of
building rooftop</point>

This point corresponds to

Similar to the CARLA setting, we identify the semantically
unsafe regions in the state space by employing the OpenAI
text embedding model calibrated with cosine similarity. We
perform reach avoid planning to enter into a 0.5-meter radius
around the goals identified by Molmo while avoiding the
unsafe regions. We use the OWLv2 [48] open-vocabulary
object detector to identify the concepts on the building roofs
and their locations. We make lc as 0.1 meters and lϕ for all ϕ
as 1.5 meters. We also validate the safety of our fallback goals
by filtering out goal points g when ∃ϕ ∈ Φ where θ̂ϕ(g) > 0.
θ̂ϕ is the same as θϕ except its distance parameter lϕ is inflated
by 0.5 meters. We employ an RRT planner with an incremental
step size of 0.1 meters. We track the plan with interpolation
and publish the interpolated waypoints on ROS2 to the PX4
controller at 100Hz.

APPENDIX H
THEOREM ON SAFELY AND SUCCESSFULLY SOLVING

OPTIMIZATION (3)

Theorem. Let η > 0 be the worst case error bound of the
path tracking control algorithm, and let θ̂h, h ∈ Φ ∪ {c}
be the same formulation as θh except the corresponding
distance thresholds are inflated to l̂h = lh + η′ where
η′ > η, and let X̂ ⊆ X be the set of states where
maxh∈Φ∪{c} θ̂h(x) ≤ 0. Furthermore, suppose a motion
planner is employed in state space X̂ to start from point
b and reach control-invariant region Bρ(g), where ρ > η,
using incremental step planner size of ∆x < min(ρ −
η,minh∈Φ∪{c} 2

√
(η′ − η)2 + 2(lh + η)(η′ − η)) produces a

trajectory τ̂ = [x̂1, x̂2, . . . , x̂k]. Then when the path tracking
control algorithm is used to follow τ̂ , it produces a trajectory
τ∗ = [x∗

1, x
∗
2, . . . , x

∗
k, . . .] that safely and successfully exe-

cutes a fallback strategy (i.e. solves optimization of (3) with
Θ∗ ≤ 0).

Proof: The first and third constraints of (3) are satisfied
trivially with the planner and path tracking control algorithm.
The core proof of the theorem therefore is about guaranteeing

Fig. 13: Examples of OOD failures detected by FORTRESS for deployment of ANYmal hardware in a room under construction.
The green boxes indicate semantically safe concepts for the robot such as a ladder or a person. The other colors show potential
hazards: in the image, the boxes are labeled with what objects are detected and on the legend we list their corresponding
failure modes that have been identified by the semantic safety cost functions.

that planning and path tracking will satisfy the optimization
and second constraint of (3).

For the optimization, the worst case to consider is when
two consecutive waypoints in the safe/valid space X̂ are on
the border of the sphere created by nearby for cost/failure
h ∈ Φ ∪ {c} using the inflated radii – this is the closest that
the waypoints can be to the epicenter of the unsafe region.
In this case, the two waypoints are a distance lh + η′ from
the point/concept/obstacle. The length of the line segment
between the two waypoints is ∆x which is the planning
algorithm’s step size parameter. The robot, and therefore the
line segment, should be at most lh + η close to the failure
point/concept/obstacle since path tracking of the line segment
has worst case error of η. The line segment in the worst case
is tangent to the sphere of radius lh + η and its midpoint is
on a sphere with the same center but with radius lh + η. This
creates a right angle triangle from which we obtain the upper
bound of (∆x)/2 which is the distance from a waypoint to the
midpoint of the line segment: (∆x/2)2+(lh+η′)2 < (lh+η)2.
Intuitively larger ∆x would mean less granular planning and
therefore more error. This inequality can be rearranged to
get ∆x < 2

√
(η′ − η)2 + 2(lh + η)(η′ − η). See the below

diagram for a visualization of the geometry. This constraint
ensures that if a planner plans a path avoiding any state with
positive values from the inflated length cost functions θ̂, then
the path tracking algorithm will generate a trajectory that
avoids states with positive values from the original length cost
functions θ.

l + η

∆x/2∆x/2

l + η′

Furthermore, we need another constraint to ensure that the
path tracking trajectory of the plan reaches and remains in
the goal. Since we assume region Bρ(g) is control invari-
ant, meaning that once we enter it, there are controls that
ensure the robot remains within the region, we only need
to guarantee the plan definitively enters the region. Once
again, since the path tracking error is η, we simply ensure
that the planner’s incremental distance does not miss the
sphere region ρ around goal g. The planner will reach a
point within ∆x of the goal g, and the path tracker will be
at most η from that point. We can ensure the path tracker
enters the goal region using the constraint that η + ∆x < ρ.
Bringing together all the constraints and considering the worst
case failure, we get the upper bound of ∆x < min(ρ −
η,minh∈Φ∪{c} 2

√
(η′ − η)2 + 2(lh + η)(η′ − η)). Ultimately,

this bound of the planning step size ensures that if the
planning algorithm is employed in modified state space X̂
and reaches the goal, then the path tracking algorithm will be
able to produce a safe trajectory (i.e. avoids the semantically
unsafe regions with OOD failures) and implements the fallback
strategy by reaching the fallback goal region.

REFERENCES

[1] Christopher Agia, Rohan Sinha, Jingyun Yang, Ziang
Cao, Rika Antonova, Marco Pavone, and Jeannette Bohg.
Unpacking failure modes of generative policies: Runtime
monitoring of consistency and progress. In Proceedings
of The 8th Conference on Robot Learning, volume 270 of
Proceedings of Machine Learning Research, pages 689–
723. PMLR, 2025.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

[3] Voyage AI. Text embeddings documentation, 2025. URL
https://docs.voyageai.com/docs/embeddings. Accessed:
2025-04-09.

[4] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista,
K. Sreenath, and P. Tabuada. Control barrier functions:
Theory and applications. In European Control Conf.,
2019.

[5] Andrea Bajcsy and Jaime F Fisac. Human-ai safety: A
descendant of generative ai and control systems safety.
arXiv preprint arXiv:2405.09794, 2024.

[6] Andrea Bajcsy, Somil Bansal, Eli Bronstein, Varun
Tolani, and Claire J Tomlin. An efficient reachability-
based framework for provably safe autonomous naviga-
tion in unknown environments. In 2019 IEEE 58th Con-
ference on Decision and Control (CDC), pages 1758–
1765. IEEE, 2019.

[7] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin.
Hamilton-Jacobi reachability: A brief overview and re-
cent advances. In Conf. on Decision and Control, 2017.

[8] BMW Group. Bmw group tests humanoid robots
in car production. Press Release, March 2024.
URL https://www.bmwgroup.com/en/news/general/2024/
humanoid-robots.html.

[9] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S Bern-
stein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, et al. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021.

[10] Kaustav Chakraborty, Zeyuan Feng, Sushant Veer,
Apoorva Sharma, Boris Ivanovic, Marco Pavone, and
Somil Bansal. System-level safety monitoring and re-
covery for perception failures in autonomous vehicles.
arXiv preprint arXiv:2409.17630, 2024.

[11] Annie S Chen, Govind Chada, Laura Smith, Archit
Sharma, Zipeng Fu, Sergey Levine, and Chelsea Finn.
Adapt on-the-go: Behavior modulation for single-life
robot deployment. arXiv preprint arXiv:2311.01059,
2023.

[12] Guojun Chen, Xiaojing Yu, Neiwen Ling, and Lin Zhong.
Typefly: Flying drones with large language model. arXiv
preprint arXiv:2312.14950, 2023.

[13] Mo Chen and Claire J Tomlin. Hamilton–jacobi reacha-
bility: Some recent theoretical advances and applications
in unmanned airspace management. Annual Review of

Control, Robotics, and Autonomous Systems, 1:333–358,
2018.

[14] Yuxiao Chen, Mrdjan Jankovic, Mario Santillo, and
Aaron D Ames. Backup control barrier functions: Formu-
lation and comparative study. In 2021 60th IEEE Confer-
ence on Decision and Control (CDC), pages 6835–6841.
IEEE, 2021.

[15] Stephen Council. Waymo expands to four
more bay area cities. SFGATE, March
2025. URL https://www.sfgate.com/tech/article/
waymo-map-expands-bay-area-20215700.php.

[16] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe
control with learned certificates: A survey of neural
lyapunov, barrier, and contraction methods for robotics
and control. IEEE Transactions on Robotics, 2023.

[17] Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
et al. Molmo and pixmo: Open weights and open data
for state-of-the-art multimodal models. arXiv preprint
arXiv:2409.17146, 2024.

[18] Nick Drummond and Rob Shearer. The open world
assumption. In eSI workshop: the closed world of
databases meets the open world of the semantic web,
volume 15, page 1, 2006.

[19] Amine Elhafsi, Rohan Sinha, Christopher Agia, Edward
Schmerling, Issa AD Nesnas, and Marco Pavone. Se-
mantic anomaly detection with large language models.
Autonomous Robots, 47(8):1035–1055, 2023.

[20] EV Magazine. How autonomous vehicles are
transforming agriculture. EV Magazine, June
2024. URL https://evmagazine.com/articles/
autonomous-vehicles-transform-agriculture.

[21] Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha
Majumdar, Jiankai Sun, Weiyu Liu, Yuke Zhu, Shuran
Song, Ashish Kapoor, Karol Hausman, et al. Foundation
models in robotics: Applications, challenges, and the
future. The International Journal of Robotics Research,
page 02783649241281508, 2023.

[22] Jaime F Fisac, Mo Chen, Claire J Tomlin, and S Shankar
Sastry. Reach-avoid problems with time-varying dy-
namics, targets and constraints. In Hybrid Systems:
Computation and Control. ACM, 2015.

[23] Haoxiang Gao, Zhongruo Wang, Yaqian Li, Kaiwen
Long, Ming Yang, and Yiqing Shen. A survey for
foundation models in autonomous driving. arXiv preprint
arXiv:2402.01105, 2024.

[24] Kunal Garg, Songyuan Zhang, Oswin So, Charles Daw-
son, and Chuchu Fan. Learning safe control for multi-
robot systems: Methods, verification, and open chal-
lenges. Annual Reviews in Control, 57:100948, 2024.

[25] Greek City Times. Greece expands use of
drones for fire response. Greek City Times, June
2024. URL https://greekcitytimes.com/2024/06/24/
greece-expands-drones-for-fire-response/.

[26] Aryaman Gupta, Kaustav Chakraborty, and Somil
Bansal. Detecting and mitigating system-level anomalies
of vision-based controllers. In 2024 IEEE International

https://docs.voyageai.com/docs/embeddings
https://www.bmwgroup.com/en/news/general/2024/humanoid-robots.html
https://www.bmwgroup.com/en/news/general/2024/humanoid-robots.html
https://www.sfgate.com/tech/article/waymo-map-expands-bay-area-20215700.php
https://www.sfgate.com/tech/article/waymo-map-expands-bay-area-20215700.php
https://evmagazine.com/articles/autonomous-vehicles-transform-agriculture
https://evmagazine.com/articles/autonomous-vehicles-transform-agriculture
https://greekcitytimes.com/2024/06/24/greece-expands-drones-for-fire-response/
https://greekcitytimes.com/2024/06/24/greece-expands-drones-for-fire-response/

Conference on Robotics and Automation (ICRA), pages
9953–9959. IEEE, 2024.

[27] Joey Hejna, Chethan Bhateja, Yichen Jiang, Karl Pertsch,
and Dorsa Sadigh. Re-mix: Optimizing data mix-
tures for large scale imitation learning. arXiv preprint
arXiv:2408.14037, 2024.

[28] Sylvia L. Herbert, Mo Chen, SooJean Han, Somil Bansal,
Jaime F. Fisac, and Claire J. Tomlin. Fastrack: A modular
framework for fast and guaranteed safe motion planning.
In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pages 1517–1522, 2017. doi: 10.1109/
CDC.2017.8263867.

[29] Sylvia L Herbert, Somil Bansal, Shromona Ghosh, and
Claire J Tomlin. Reachability-based safety guarantees
using efficient initializations. In Conf. on Decision and
Control, 2019.

[30] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor
Darrell. Cycada: Cycle-consistent adversarial domain
adaptation. In International conference on machine
learning, pages 1989–1998. Pmlr, 2018.

[31] Kai-Chieh Hsu, Haimin Hu, and Jaime F Fisac. The
safety filter: A unified view of safety-critical control
in autonomous systems. Annual Review of Control,
Robotics, and Autonomous Systems, 7, 2023.

[32] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language
models. arXiv preprint arXiv:2307.05973, 2023.

[33] Jason Jabbour and Vijay Janapa Reddi. Generative ai
agents in autonomous machines: A safety perspective.
arXiv preprint arXiv:2410.15489, 2024.

[34] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

[35] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla:
An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[36] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural
information processing systems, 30, 2017.

[37] Steven LaValle. Rapidly-exploring random trees: A new
tool for path planning. Research Report 9811, 1998.

[38] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. Towards general text
embeddings with multi-stage contrastive learning. arXiv
preprint arXiv:2308.03281, 2023.

[39] Fengming Lin, Xiaolei Fang, and Zheming Gao. Distri-
butionally robust optimization: A review on theory and
applications. Numerical Algebra, Control and Optimiza-
tion, 12(1):159–212, 2022.

[40] Yuanfei Lin, Chenran Li, Mingyu Ding, Masayoshi
Tomizuka, Wei Zhan, and Matthias Althoff. Drplanner:

Diagnosis and repair of motion planners for automated
vehicles using large language models. IEEE Robotics
and Automation Letters, 2024.

[41] Yuanfei Lin, Zekun Xing, Xuyuan Han, and Matthias
Althoff. Traffic-rule-compliant trajectory repair via satis-
fiability modulo theories and reachability analysis. arXiv
preprint arXiv:2412.15837, 2024.

[42] Lars Lindemann, Yiqi Zhao, Xinyi Yu, George J Pap-
pas, and Jyotirmoy V Deshmukh. Formal verification
and control with conformal prediction. arXiv preprint
arXiv:2409.00536, 2024.

[43] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan
Li. Energy-based out-of-distribution detection. Advances
in neural information processing systems, 33:21464–
21475, 2020.

[44] Shuo Lu, Yingsheng Wang, Lijun Sheng, Aihua Zheng,
Lingxiao He, and Jian Liang. Recent advances in ood
detection: Problems and approaches. arXiv preprint
arXiv:2409.11884, 2024.

[45] Brandon D Luders, Sertac Karaman, Emilio Frazzoli, and
Jonathan P How. Bounds on tracking error using closed-
loop rapidly-exploring random trees. In Proceedings of
the 2010 american control conference, pages 5406–5412.
IEEE, 2010.

[46] Rui Meng, Ye Liu, Shafiq R Joty, Caiming Xiong, Yingbo
Zhou, and Semih Yavuz. Sfr-embedding-mistral:enhance
text retrieval with transfer learning. Salesforce AI Re-
search Blog, 2024. URL https://www.salesforce.com/
blog/sfr-embedding/.

[47] Matthias Minderer, Alexey Gritsenko, Austin Stone,
Maxim Neumann, Dirk Weissenborn, Alexey Dosovit-
skiy, Aravindh Mahendran, Anurag Arnab, Mostafa De-
hghani, Zhuoran Shen, et al. Simple open-vocabulary
object detection. In European conference on computer
vision, pages 728–755. Springer, 2022.

[48] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby.
Scaling open-vocabulary object detection. Advances
in Neural Information Processing Systems, 36:72983–
73007, 2023.

[49] Oil Review Middle East. Saudi aramco
launches auv for underwater surveying and
inspection. Oil Review Middle East, March
2024. URL https://oilreviewmiddleeast.com/industry/
saudi-aramco-launches-auv-for-underwater-surveying-and-inspection.

[50] OpenAI. New embedding models and api updates.
Blog Post, Jan 2024. URL https://openai.com/index/
new-embedding-models-and-api-updates/.

[51] Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji
Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui
Yu, Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu,
et al. Combined scaling for zero-shot transfer learning.
Neurocomputing, 555:126658, 2023.

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PmLR, 2021.

https://www.salesforce.com/blog/sfr-embedding/
https://www.salesforce.com/blog/sfr-embedding/
https://oilreviewmiddleeast.com/industry/saudi-aramco-launches-auv-for-underwater-surveying-and-inspection
https://oilreviewmiddleeast.com/industry/saudi-aramco-launches-auv-for-underwater-surveying-and-inspection
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/

[53] Marvin Rausand and Arnljot Hoyland. System reliability
theory: models, statistical methods, and applications,
volume 396. John Wiley & Sons, 2003.

[54] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[55] Charles Richter and Nicholas Roy. Safe visual navigation
via deep learning and novelty detection. 2017.

[56] Lukas Ruff, Jacob R Kauffmann, Robert A Vander-
meulen, Grégoire Montavon, Wojciech Samek, Marius
Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A
unifying review of deep and shallow anomaly detection.
Proceedings of the IEEE, 109(5):756–795, 2021.

[57] Mohammadreza Salehi, Hossein Mirzaei, Dan
Hendrycks, Yixuan Li, Mohammad Hossein Rohban,
and Mohammad Sabokrou. A unified survey on
anomaly, novelty, open-set, and out-of-distribution
detection: Solutions and future challenges. arXiv
preprint arXiv:2110.14051, 2021.

[58] Leonardo Santos, Zirui Li, Lasse Peters, Somil Bansal,
and Andrea Bajcsy. Updating robot safety representations
online from natural language feedback. arXiv preprint
arXiv:2409.14580, 2024.

[59] Alessandro Saviolo, Pratyaksh Rao, Vivek Radhakrish-
nan, Jiuhong Xiao, and Giuseppe Loianno. Unifying
foundation models with quadrotor control for visual
tracking beyond object categories. In 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 7389–7396. IEEE, 2024.

[60] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating
situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 11523–11530. IEEE, 2023.

[61] Rohan Sinha, Apoorva Sharma, Somrita Banerjee,
Thomas Lew, Rachel Luo, Spencer M Richards, Yixiao
Sun, Edward Schmerling, and Marco Pavone. A system-
level view on out-of-distribution data in robotics. arXiv
preprint arXiv:2212.14020, 2022.

[62] Rohan Sinha, Edward Schmerling, and Marco Pavone.
Closing the loop on runtime monitors with fallback-safe
mpc. In 2023 62nd IEEE Conference on Decision and
Control (CDC), pages 6533–6540. IEEE, 2023.

[63] Rohan Sinha, Amine Elhafsi, Christopher Agia, Matt
Foutter, Edward Schmerling, and Marco Pavone. Real-
Time Anomaly Detection and Reactive Planning with
Large Language Models. In Proceedings of Robotics:
Science and Systems, Delft, Netherlands, July 2024. doi:
10.15607/RSS.2024.XX.114.

[64] Sixth Tone. Drones take flight to deliver rural china.
Sixth Tone, June 2024. URL https://www.sixthtone.com/
news/1016069.

[65] Oswin So, Zachary Serlin, Makai Mann, Jake Gonzales,
Kwesi Rutledge, Nicholas Roy, and Chuchu Fan. How
to train your neural control barrier function: Learning
safety filters for complex input-constrained systems. In
2024 IEEE International Conference on Robotics and

Automation (ICRA), pages 11532–11539. IEEE, 2024.
[66] Mupparaju Sohan, Thotakura Sai Ram, Rami Reddy, and

Ch Venkata. A review on yolov8 and its advancements.
In International Conference on Data Intelligence and
Cognitive Informatics, pages 529–545. Springer, 2024.

[67] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. Mpnet: Masked and permuted pre-training for
language understanding. Advances in neural information
processing systems, 33:16857–16867, 2020.

[68] UK Civil Aviation Authority. Infrastructure
inspections with drones made easier under new
rules. UK Civil Aviation Authority Newsroom, Oct
2024. URL https://www.caa.co.uk/newsroom/news/
infrastructure-inspections-with-drones-made-easier-under-new-rules/.

[69] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. Improving text em-
beddings with large language models. arXiv preprint
arXiv:2401.00368, 2023.

[70] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. Multilingual e5
text embeddings: A technical report. arXiv preprint
arXiv:2402.05672, 2024.

[71] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained
transformers. Advances in neural information processing
systems, 33:5776–5788, 2020.

[72] Youran Wang, Yuanfei Lin, and Matthias Althoff.
Interaction-aware trajectory repair in compliance with
formalized traffic rules. In The 27th IEEE International
Conference on Intelligent Transportation Systems (IEEE
ITSC 2024), 2024.

[73] Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
Robust fine-tuning of zero-shot models. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7959–7971, 2022.

https://www.sixthtone.com/news/1016069
https://www.sixthtone.com/news/1016069
https://www.caa.co.uk/newsroom/news/infrastructure-inspections-with-drones-made-easier-under-new-rules/
https://www.caa.co.uk/newsroom/news/infrastructure-inspections-with-drones-made-easier-under-new-rules/

	Introduction
	Related Works
	Problem Formulation
	Proposed Approach
	Generating potential fallback strategy sets (M1)
	Reasoning about Semantic Safety Constraints (M2)
	Reasoning about Safe Plans (M3)

	Experiments
	Embedding classification
	Accuracy of Proactively Anticipating Failure Modes
	Safe Fallback Planning in Real Time

	Discussion and Conclusion
	Appendix A: Limitations
	Appendix B: Notation
	Appendix C: Evaluation of Semantic Safety Cost Functions
	Additional Experiments
	Prompts for Embedding Models
	Baseline implementation of on-the-fly prompting of slow reasoning models

	Appendix D: Reasoning Models for Failure Mode Generation
	Appendix E: CARLA Simulation Experiments
	Implementation Details of FORTRESS in CARLA:
	Implementation Details of Baselines in CARLA
	Discussion on Results

	Appendix F: Replanning with Dynamic Concepts
	Appendix G: Details on Hardware
	ANYmal Robot Hardware Experiments
	Quadrotor Drone Hardware Experiments

	Appendix H: Theorem on Safely and Successfully Solving Optimization (3)

