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Abstract

Molecular property prediction is gaining increasing attention due to its diverse
applications. One task of particular interests and importance is to predict quantum
chemical properties without 3D equilibrium structures. This is practically favorable
since obtaining 3D equilibrium structures requires extremely expensive calculations.
In this work, we design a deep graph neural network to predict quantum properties
by directly learning from 2D molecular graphs. In addition, we propose a 3D
graph neural network to learn from low-cost conformer sets, which can be obtained
with open-source tools using an affordable budget. We employ our methods to
participate in the 2021 KDD Cup on OGB Large-Scale Challenge (OGB-LSC),
which aims to predict the HOMO-LUMO energy gap of molecules. Final evaluation
results reveal that we are one of the winners with a mean absolute error of 0.1235
on the holdout test set. Our implementation is available as part of the MoleculeX
package (https://github.com/divelab/MoleculeX).

1 Introduction

Molecular property prediction is of great importance in many applications, such as chemistry, drug
discovery, and material science. Many molecular properties, such as the energy and the shape
of molecules, could be computed by quantum mechanical simulation methods, such as Density
Functional Theory (DFT). However, such methods are computationally expensive. To be specific,
it takes several hours to run the DFT computation for a small molecule since it requires geometry
optimization to obtain 3D equilibrium structures. Therefore, it is highly desired if we could predict
such quantum chemical properties without 3D equilibrium structures of molecules.

Recently, graph deep learning methods have been developed for molecular property prediction [4, 25,
27, 22, 24]. As molecules can be naturally treated as graphs by viewing atoms as nodes and bonds as
edges, these methods leverage various graph neural networks (GNNs) [2, 4, 1, 12, 23, 26] to learn from
2D molecular graphs and achieve great success. Nevertheless, these approaches only employ shallow
graph neural networks, thus limiting the expressive power and the receptive fields of the models. In
addition, the existing methods only focus on 2D molecular graphs without explicitly considering
3D information, which is crucial for determining quantum chemical properties. Hence, it remains
challenging to incorporate useful 3D information with an affordable budget since 3D equilibrium
structures are usually unavailable and time-consuming to obtain. While there is another line of
research that predicts quantum chemical properties given 3D equilibrium structures [21, 13, 19, 9], it
is orthogonal to our work since 3D equilibrium structures are not available in this work.
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Motivated by the above two challenges, we propose a deeper 2D graph neural network on 2D
molecular graphs and a 3D graph neural network on low-cost conformer sets to predict quantum
chemical properties. Specifically, we leverage the recent advanced deep graph neural networks,
namely DeeperGCN [16] and DAGNN [18], to construct our 2D model. For the 3D model, we
obtain the conformer sets using RDKit [15], which takes less than 0.05 seconds for a molecule on
average. Afterwards, we deploy a 3D GNN to learn from the conformer sets. Our intuition is to
utilize the imprecise but descriptive 3D information contained in the conformer sets to improve the
prediction performance for quantum chemical properties. To show the effectiveness of our proposed
approach, we conduct experiments on PCQM4M-LSC dataset [7], included in the 2021 KDD Cup
on OGB Large-Scale Challenge1, to predict the HOMO-LUMO energy gap of molecules without
given 3D equilibrium structures. The results show that our methods achieve remarkable prediction
performance.

2 Methodology

We consider a molecular graph G = (V, E ,X,E,A), where node set V = {1, 2, · · · , n} denotes
atoms and edges E ⊆ V × V are given by bonds or by connecting atoms considering certain cutoff
distance. Without losing generality, we consider each node and edge is associated with a feature
vector. To be specific, X ∈ R|V|×d is the node feature matrix, where each row xi ∈ Rd represents the
d-dimensional feature vector of atom i. E ∈ R|E|×p denotes the edge feature matrix and each row is
a p-dimensional feature vector of an edge. We use eij ∈ Rp to denote the feature vector of the edge
from atom i to j. The connectivity of the graph is described by the adjacency matrix A ∈ Rn×n.

2.1 Deeper 2D Model on 2D Molecular Graphs

We aim to construct a deep graph neural network, which can bring us large receptive fields and pow-
erful expressivity. Our model is developed based on the recent progress on deep GNNs, particularly,
DeeperGCN [16] and DAGNN [18]. The details of the main components are described below.

GENConv. Most modern GNNs follow a message passing scheme [4, 1]. To be specific, we iteratively
update the node representation by aggregating information, a.k.a., message, from neighboring
nodes. GENConv [16] also follows such a mechanism. The key characteristic of GENConv is the
SoftMax_Agg aggregation function. The forward computation of one GENConv layer for each node i
is formulated as

mji = ReLU(xj + eji) + ϵ, j ∈ Ni

x′
i = MLP

(
xi + SoftMax_Aggβ ({mji : j ∈ Ni})

)
SoftMax_Aggβ(·) =

∑
j∈Ni

exp (βmji)∑
k∈Ni

exp (βmki)
·mji,

(1)

where mji represents the message from atom j to atom i. ϵ is a small positive constant. ReLU(·) [14]
is the activation function and MLP(·) denotes a multi-layer perceptron. Note that β is a learnable
scalar parameter and initialized as 1. As shown in the above equations, in GENConv, we firstly con-
struct messages from neighboring nodes and then aggregate them to obtain the updated representation
x′
i for each node i.

DeeperGCN Layer. Based on GENConv block, DeeperGCN Layer [16] is proposed by further
introducing skip connections [5] and the pre-activation technique [6]. Therefore, the resulting
DeeperGCN Layer consists of the following components: Normalization → Activation → GENConv
→ Addition. We apply BatchNorm (BN) [10] as the normalization and ReLU as the activation
function.

Virtual Node. Virtual node is found to be effective across various graph-level tasks [4, 8]. Generally,
we can augment a graph with a virtual node that communicates with all other nodes, thus better
capturing the global or long-range information. The feature of the virtual node is denoted as g and
initialized as a zero-values vector. In each layer, the virtual node feature is updated as

g′ = MLP (Readoutsum ({xi, i ∈ V}) + g) , (2)

1https://ogb.stanford.edu/kddcup2021/
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where Readoutsum(·) represents the summation readout function.

DAGNN. We apply L DeeperGCN Layers and incorporate the virtual node technique to learn the
node representations. We denote the resulting node representation matrix as Z ∈ R|V|×f , where f is
the number of hidden dimensions. As shown by [17], the performance could be further improved if
we deploy a diffusion algorithm on the resulting node representations Z. In our work, we choose
DAGNN [18], which is demonstrated to be effective and can adaptively balance the information from
various receptive fields for each node. In the original DAGNN, there are three main steps, including
transformation, propagation, and adaptive adjustment. An MLP is used for transformation in the
orginal DAGNN. In this work, we remove this transformation step since we can regard the previous
DeeperGCN Layers as the transformation. Hence, we deploy K steps of propagation and the adaptive
adjustment mechanism to integrate the information of different receptive fields.

Afterwards, we apply a summation readout function to derive a graph-level representation, and
then use a linear transformation W ∈ Rf×1 to make prediction for the desired molecular quantum
property. Formally, it can be written as

ŷ = Readoutsum ({yi, i ∈ V})W ∈ R. (3)
In our 2D model, we have L DeeperGCN Layers and K steps of propagation in DAGNN, thereby
making the depth, or receptive field, to be (L+K). The overall architecture of our deeper 2D model
is illustrated in Figure 2, Appendix A.

2.2 3D Model on Low-Cost Conformer Sets
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Figure 1: An illustration of the proposed ConfDSS
Layer. Details are described in Section 2.2.

Although it is natural to view a molecule as a 2D
graph defined by atoms and bonds in chemistry,
quantum mechanical simulation methods still re-
quire the precise 3D structure of a molecule. In
particular, the Hamiltonian and the wave func-
tions defining the state of a quantum system
are functions of 3D atomic coordinates and are
sensitive to small perturbations. While the 3D
equilibrium structure of a molecule, from which
we compute the quantum properties, is very ex-
pensive to obtain, 3D atomic coordinates that are
close to equilibrium can be efficiently generated
with open-source software [3]. However, we em-
pirically observe that using only one randomly
sampled conformer as input leads to unexpected
prediction results. Thus, we propose to sam-
ple multiple conformers for each molecule and
leverage a 3D GNN to learn from the set of con-
formers. Intuitively, the idea is consistent with the fact that molecules are intrinsically flexible objects
with fluctuating 3D structures. Therefore, learning from a set of conformers can reduce the variance
in the input space.

Conformer Generation. We generate mutliple conformers for each molecule with RDKit [15] and
prune similar conformers with an RMSD cutoff R = 0.5Å.

ConfDSS Layer. Inspired by [20], we propose the ConfDSS Layer, as illustrated in Figure 1, to learn
from generated conformer sets. Each conformer can be regarded as a set of nodes where each node is
associated with a feature vector and a 3D coordinate. Both the input and the output of the ConfDSS
Layer are a set of such conformers. Generally, in each ConfDSS Layer, we apply 3D GNN blocks to
learn from individual conformers. In addition, as suggested by [20], a 2D GNN block is deployed to
their aggregated graph.

For individual conformers, in order to capture the 3D information, we do not use the graph topology
information given by bonds. Instead, we construct a spatial graph where edges are defined between
atom pairs closer than a cutoff distance. Individual conformers are then processed by SchNet
interaction blocks [21], which can consider the 3D information contained in the conformers. Skip
connections are applied after the SchNet blocks. The parameters of the SchNet interaction blocks are
shared across conformers.
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Note that the topology information and edge features of the aggregated graph are still defined by
bonds. The node features of the aggregated graph are obtained by performing set-level max pooling
over the node features of the conformer set. The aggregated graph has the same number of nodes
as each conformer. A GIN layer [26] is then applied to the aggregated graph. Afterwards, we add
the node features from the aggregated graph back to the node features of each output conformers to
explicitly incorporate the set-level information into each conformer. Similar to our 2D model, we
also incorporate the virtual node technique in the ConfDSS layer.

3D Model. As shown in Figure 3, Appendix B, the final 3D model is composed of 5 ConfDSS
Layers follwed by the ReLU activation. For the input of the first ConfDSS layer, all conformers
share the same set of node features and become different in latter layers due to their different 3D
coordinates. The final output conformer set is aggregated into a single feature vector representing the
input molecule by performing conformer-level readout and set-level max pooling. Finally, we apply
an MLP to this feature vector for prediction.

3 Experiments

Table 1: Results on PCQM4M-LSC in terms
of MAE [eV] on the validation set. The re-
sults of baselines are obtained from [7]. *
represents that the MAE is computed on the
molecules that have conformers generated by
RDKit. There are around 0.1% molecules in
the original validation set, for which RDKit
cannot generate conformers. The result is still
convincing since the proportion of missing data
is negligible.

Method #Params Validation
GCN 2.0M 0.1684
GCN-Virtual 4.9M 0.1510
GIN 3.8M 0.1536
GIN-Virtual 6.7M 0.1396

Our 2D model 34.1M 0.1278
Our 3D model 9.0M 0.1295∗

Our 2D model without DAGNN 34.1M 0.1350

Dataset and setup. We evaluate our methods
on PCQM4M-LSC [7], which is collected for
graph-level quantum chemical property predic-
tion, specifically, HOMO-LUMO energy gap pre-
diction without given 3D equilibrium structures.
It contains over 3.8M molecules in total. The
training/validation/test split of PCQM4M-LSC is
80%/10%/10% and the labels of the test set are not
publicly available. For comparing with baselines,
we train our model on the given training set and
compare the performance on the standard validation
set, given that the results are shown to be consis-
tent across the validation set and the hidden test
set [7]. The implementation details are described in
Appendix C.

Baselines. Following [7], we consider GCN [12],
GIN [26], GCN-Virtual, and GIN-Virtual as base-
lines. The last two models denotes the variants with adding the virtual node.

Results. The results obtained by training on the given training set and then evaluating on the standard
validation set are shown in Table 1. Both our 2D and 3D models outperform baselines with obvious
margins. These demonstrate the effectiveness of developing deep and large models and incorporating
low-cost descriptive 3D information for large-scale quantum property prediction. We also conduct
an ablation study to investigate the improvement of including DAGNN. We construct a model by
removing DAGNN from our 2D model. As shown in Table 1, we observe that the performance
degrades a lot without DAGNN. This shows the surprising improvement of incorporating DAGNN,
considering that there are only f , i.e., 600 in our setting, learnable parameters in this DAGNN
component.

To participate in the 2021 KDD Cup on OGB large-Scale Challenge, we submit the ensemble results
of multiple models trained on our new splits. The details are included in Appendix D.

4 Conclusion

To predict molecular quantum chemical properties without known 3D equilibrium structures, in this
work, we propose a deeper 2D GNN to endow us larger receptive fields and more expressivity on
2D molecular graphs. In addition, to explicitly consider 3D information, we propose a 3D GNN to
learn from low-cost conformer sets, which can be obtained in an affordable budget. We perform
experiments on the 2021 KDD Cup on OGB Large-Scale Challenge, in which the task is to predict
the HOMO-LUMO energy gap of molecules. The results demonstrate that our proposed 2D and 3D
methods are effective. We also repartition the available data and adopt ensemble strategy to further
improve the prediction performance, which is shown to be helpful according to our experiments.
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Appendix

A. An Illustration of Our 2D Model
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Figure 2: An illustration of our deeper 2D model. Details are described in Section 2.1.

B. An Illustration of Our 3D Model
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Figure 3: An illustration of our 3D model. Details are described in Section 2.2.

C. Implementation Details

We follow OGB [8, 7] to initialize the node features and edge features for molecular graphs. To be
specific, each node is associated with a 9-dimensional feature, including atom type, chirality, etc..
Each edge has a 3-dimensional feature, containing bond type, stereochemistry, and conjugation. For
our 2D model, we adopt L = 16 DeeperGCN Layers and set K = 5 in DAGNN. We set the number
of hidden dimensions to be 600. We apply dropout to the MLP in Eq. (2) with 0.25 dropout rate. We
train the model with the Adam optimizer [11] for 100 epochs. The initial learning rate is 0.001 and
decays to 25% every 30 epochs. For our 3D model, we train the model with the Adam optimizer for
60 epochs. We also use 0.001 as the initial learning, but it decays to 10% every 40 epochs. We use up
to 20 conformers for each molecule during training and 40 conformers per molecule for prediction.
The training batch size is set to 256 for both our 2D and 3D models. Our implementation is available
as part of the MoleculeX2 software package under the BasicProp/kddcup2021 folder.

2https://github.com/divelab/MoleculeX
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Table 2: Results on PCQM4M-LSC in terms of validation MAE [eV] on the 5 new splits. As the
results in Table 1, results of our 3D model are still computed on the molecules that have conformers
generated by RDKit. If a molecule do not have available conformers, we ignore the 3D model
prediction in the ensemble model.

Method 1st split 2nd split 3rd split 4th split 5th split

Our 2D model

0.1217 0.1181 0.1201 0.1222 0.1192
0.1191 0.1188 0.1186 0.1181 0.1194
0.1176 0.1190 0.1191 0.1188 0.1183
0.1190 0.1185 0.1192 0.1194 0.1198

Our 3D model 0.1214 0.1208 0.1216 0.1222 0.1214

Ensemble 0.1117 0.1113 0.1120 0.1111 0.1114

D. Experiments for the 2021 KDD Cup on OGB large-Scale Challenge,

New splits. Notably, we observe that it is useful to include more available data for training. Hence,
we consider using the original validation set for training. On the other hand, model selection is also
necessary because the performance could fluctuate over different training epochs. Therefore, we
randomly divide the original validation set into 5 sets. Each of them could be used for validation, and
the rest are added into the training set. In this case, we can obtain 5 different 88%/2%/10% splits.
For improving performance on the hidden test set, we can train multiple models on these 5 splits
and use the ensemble of the predictions of these models on test set. In this case, we can leverage all
the available data, including the original training and validation set, for training, while conducting
model selection at the same time using the new 2% validation set on the corresponding split. The
reason why we divide the original validation set into 5 sets is that the variance brought by the random
division is small enough and the numerical result in terms of MAE is similar to the original validation
set for a given trained model. For example, a GIN-virtual model trained on the original training set
achieves 0.1396 MAE on the original validation set and 0.1393 ∼ 0.1413 MAE on random 20% of
the original validation set.

Results. As discussed above, we obtain 5 new splits by moving partial validation data to training set.
We train multiple models on such 5 splits and evaluate them on their corresponding validation sets.
To be specific, we train 4 2D models and 1 3D model on each split. The results are summarized in
Table 2. According to the results of individual models, we can observe that the improvement owned
to more training data is remarkable, compared to the results of our 2D and 3D model in Table 1.
In addition, we evaluate the ensemble of predictions obtained by multiple 2D and 3D models on
validation set for each split. We find that the ensemble improves the performance obviously, and
we also observe that the ensemble of different models outperforms the ensemble of several identical
models if the number of used models is the same, which indicates that the 2D and 3D models capture
different and complementary information for predicting the HUMO-LOMO energy gap.

For predicting the hidden test set, we ensemble the predictions of the multiple models, including
4 2D models and 1 3D model, on each split. Afterwards, we take the average over the predictions
obtained from all 5 splits. The MAE of our final prediction on the whole hidden test set is 0.1235,
evaluated by the OGB team.
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