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ABSTRACT

Vision-language (VL) learning requires extensive visual perception capabilities,
such as fine-grained object recognition and spatial perception. Recent works typ-
ically rely on training huge models on massive datasets to develop these capabil-
ities. As a more efficient alternative, this paper proposes a new framework that
Transfers the knowledge from a hub of Vision Experts (ToVE) for efficient VL
learning, leveraging pre-trained vision expert models to promote visual percep-
tion capability. Specifically, building on a frozen CLIP encoder that provides vi-
sion tokens for image-conditioned language generation, ToVE introduces a hub of
multiple vision experts and a token-aware gating network that dynamically routes
expert knowledge to vision tokens. In the transfer phase, we propose a “resid-
ual knowledge transfer” strategy, which not only preserves the generalizability of
the vision tokens but also allows detachment of low-contributing experts to im-
prove inference efficiency. Further, we explore to merge these expert knowledge
to a single CLIP encoder, creating a knowledge-merged CLIP that produces more
informative vision tokens without expert inference during deployment. Experi-
ment results across various VL tasks demonstrate that the proposed ToVE achieves
competitive performance with two orders of magnitude fewer training data.

1 INTRODUCTION

The integration of visual perception with language processing, referred to as vision-language (VL)
learning, is a critical frontier in multi-modal research. Compared to standalone language processing,
it is a comprehensive super-set that necessitates additional visual perception capability. Many VL
tasks, such as image captioning (Lin et al., 2014) and visual question answering (VQA) (Antol
et al., 2015), require the model to be capable of content understanding, fine-grained recognition,
and spatial perception. Recent works have predominantly relied on massive datasets (sometimes
over billions of image-text pairs) with large-scale model architectures (Wang et al., 2022a; Li et al.,
2023a; Wang et al., 2023) to develop these capabilities from scratch. However, the dependency on a
massive dataset presents significant challenges, particularly in specialized domains such as medical
imaging where acquiring vast amounts of data is not feasible.

To achieve efficient VL learning, one direct approach is to train from scratch using a small-scale
dataset and model architectures. However, the overall visual perceptual capabilities of these mod-
els exhibits a significant degradation due to insufficient learning of diverse visual perceptual skills.
Although some studies (Dai et al., 2022; Liu et al., 2024b) have attempted to address this issue by
transferring the image-text pre-trained CLIP (Radford et al., 2021) to VL tasks, recent findings indi-
cate that CLIP’s visual perception capability is also limited (Li et al., 2022a; Tong et al., 2024). As
illustrated in Figure 1, the recent advanced efficient Vision-Language Model (VLM) equipped with
CLIP, Prismer-Z (Liu et al., 2024b), struggles with spatial reasoning and fine-grained perception,
often misinterpreting spatial relationships and failing to differentiate between visually distinct ob-
jects. Moreover, in tasks such as image captioning, this model is prone to visual hallucinations,
wherein it incorrectly imagines details about an image. Given the availability of numerous pre-
trained vision models from public repositories, our intuition is that ”why not fully utilizing these
vision experts and transfer their knowledge to enhance the visual perception capability?” As
shown in Figure 2, different experts exhibit distinct vision properties for the same inputs, and each
can contribute uniquely when their knowledge is transferred to VL learning (Geman et al., 1992).
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Ques%on: Is the car below the
parking meter ?

Answer：
Prismer-Z: Yes. ToVE: No. ✅❌

Prismer-Z: A white cake with 
penguins on top of it.

ToVE: A three 9ered cake with 
a bunch of li=le figurines on 
top of it.

😕

🧐

Figure 1: The comparison between
Prismer-Z and the proposed ToVE
on Novel Object Caption (NoCaps)
and Vision Spatial Reasoning (VSR).

Image Depth Normal CLIP EVADINO

Figure 2: Different vision experts can provide rich visual
knowledge so that we can transfer these knowledge to VL
learning, and efficiently improve visual perception capabil-
ity with small-scale data.

To this end, we propose a VLM that Transfers the knowledge from a hub of Vision Experts (ToVE)
for efficient VL learning. Building on recent VLM designs (Liu et al., 2024b; Li et al., 2023a), where
a frozen CLIP image encoder provides vision tokens for image-conditioned language generation,
we establish a model hub that includes multiple domain-specific vision experts and a token-aware
gating network that dynamically routes ”expert knowledge” into every vision token. To preserve
the generalizability of the vision tokens from CLIP, we develop a ”residual knowledge transfer”
strategy when transferring the knowledge to vision tokens. Since the experts are not coupled in the
ToVE framework, we can selectively detach experts with minimal contributions to enhance inference
efficiency based on their average gating weights across the dataset. Further, since the knowledge
from vision experts acts as a complement or calibration for the vision tokens, we merge the expert
knowledge to the vanilla CLIP vision encoder via the proposed ”knowledge merging” approach. This
approach eliminates the need for expert inference, significantly boosting inference efficiency while
maintaining robust vision perception capabilities in VL tasks. In summary, our main contributions
are as follows:

· Token-aware Knowledge Transfer from Vision Experts. Compared with previous works relying
on large-scale models and datasets to develop the vision capabilities required by VL tasks from
scratch, we construct a model hub from readily available vision experts, transferring their knowledge
to VL tasks for efficient learning. The proposed ToVE can dynamically route the optimal vision
knowledge to respective vision tokens and adopts a residual transfer strategy to enhance the original
vision tokens while maintaining their generalizability. Consequently, ToVE can achieve competitive
performance with two orders of magnitude less training data.

· Pluggable Vision Experts and Knowledge Merging. Since the vision experts in ToVE are not
coupled and their knowledge serves to complement or calibrate each vision token, this allows us to
selectively detach the low-contributing experts to improve inference efficiency. Furthermore, with
the vision tokens enriched with expert knowledge, we introduce a ”knowledge merging” approach
to adapt this knowledge into a single vision encoder. This approach eliminates the need for vision
expert inference while achieving promising performance without any vision experts.

2 RELATED WORK

Vision-language Learning. Vision-language (VL) learning represents the integration of visual and
language processing capabilities. This field typically follows a dual-phase approach: pre-training
and task-specific fine-tuning. During the pre-training phase, models are trained on image-text pairs,
enabling them to learn visual perception aligned with the texts, thereby enhancing performance in
downstream VL tasks. Fine-tuning involves transferring this model knowledge to specific VL tasks,
such as image captioning (Lin et al., 2014) and visual question answering (VQA) (Antol et al.,
2015). Notably, the pre-training phase is data-intensive, often requiring billions of image-text pairs
to achieve satisfactory performance (Wang et al., 2022a; Alayrac et al., 2022; Wang et al., 2023).
Recent advancements have seen some studies propose efficient training methods that offer improved
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performance even with smaller models and fewer data requirements, such as Prismer (Liu et al.,
2024b), MAMO (Zhao et al., 2023), and EVE (Chen et al., 2024a). The work closest to ours is Pris-
mer (Liu et al., 2024b), which requires more data and additional training of a ”Resampler” (Alayrac
et al., 2022) to learn to implicitly synthesize expert knowledge into auxiliary vision tokens. In con-
trast, we aim to transfer the vision knowledge from the vision experts to the original vision tokens.
The transfer phase is explicit and interpretable, with a token-aware gating network that dynamically
routes expert knowledge to these vision tokens.

Conditional Computation. The process of knowledge transfer from vision experts is close to con-
ditional computation (Yang et al., 2019; Chen et al., 2020; Han et al., 2021). Recent works intro-
duce the idea into mixture-of-experts (MoE) (Riquelme et al., 2021; Fedus et al., 2022; Wang et al.,
2024) within Transformer architectures (Vaswani et al., 2017), where multiple Feed Forward Net-
works (FFNs) serve as experts and a gating network selectively activates these experts to process
the given input tokens. Different from these models which create mixture-of-experts from learnable
FFNs with random initializations, we seek to transfer the knowledge from diverse, pre-trained vision
experts to VL learning. Furthermore, MoE models typically prioritize load balancing (Fedus et al.,
2022) to ensure the full utilization of each expert, while our approach focuses on adaptively learning
the optimal assignment of experts to efficiently transfer the vision knowledge for various VL tasks.

Learning from Models. Given the abundance of pre-trained models (referred to as experts) trained
on diverse datasets, learning from models aims to leverage the knowledge gained from existing
models to enhance model performance, rather than training from scratch with raw data. Traditional
methodologies, such as fine-tuning and knowledge distillation, are frequently used but often fail
to fully utilize the knowledge from existing models. To address their limitations, various model
merging techniques have been developed to amalgamate or edit the weights from different homoge-
neous models, such as model soup (Wortsman et al., 2022), task arithmetic (Ilharco et al., 2022), and
DARE (Yu et al., 2023). Recent efforts have also explored the ensemble of multiple heterogeneous
models to tackle tasks such as classification (Shu et al., 2022), domain adaptation (Li et al., 2022c),
and language generation (Jiang et al., 2023). These approaches typically collect models from sim-
ilar tasks and ensemble them at the task level. In contrast, we leverage vision experts from distinct
domains, transferring their extensive and diverse vision knowledge to VL learning. In ToVE, we
develop a ”residual knowledge transfer” strategy to dynamically transfer optimal expert knowledge
for each vision token, thereby enhancing vision token representations.

3 METHODOLOGY

3.1 THE OVERALL FRAMEWORK

The ToVE framework, as illustrated in Figure 3, integrates a CLIP (Radford et al., 2021) vision
encoder Evis, a fine-grained gating network G, a model hub withK vision experts {E1,E2, ...,EK}
sourced from public repositories, and a language decoder Dlang. For each image, its vision tokens are
encoded by Evis, and are then sent to the gating network G to obtain the optimal assignment of expert
knowledge at the token level. The expert knowledge is fused and transferred to the vision tokens
via the proposed residual knowledge transfer strategy. After that, the knowledge-enhanced vision
tokens are sent to the language model through cross-attention to condition the language generation.

3.2 TRANSFER KNOWLEDGE FROM A HUB OF VISION EXPERTS

Expert Token Projector. Since the vision experts vary in all the aspects including tasks, datasets,
learning paradigms, and the network architectures, expert token projectors are required to align these
experts within a unified embedding space before the knowledge transfer phase. The projector is a
multi-layer perceptron network (MLP) with a GeLU (Hendrycks & Gimpel, 2016) non-linearity,
where the first layer is expert-specific and the second layer is shared among all vision experts.
Specifically, given the k-th (k ≤ K) vision expert Ek, its projector is parameterized as: ψk =
[ψk1 ;ψ2], where ψk1 denotes the weights of the first layer specific to Ek and ψ2 denotes the weights
of the second layer shared across experts. The projection function of can be delineated as Hψk

∈
A : Rdk → Rdlang , where dk is the token dimension of the expert Ek and dlang is the token dimension
of the language model Dlang.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

DINO

EVA

Depth

…

MLP 🔥

MLP 🔥

MLP 🔥

…

Shared
M
LP

CLIP❄

Token-aware
Ga+ng Network

MLP 🔥

Token-aware
Expert Knowledge

+

🔥

Language
Model

Adapter

❄

❄

❄

🔥❄

Rou+ng
weigh&ng

sum

𝜆

Vision Encoder

Vision Tokens

A cat sits on a desk next 
to a keyboard. </s> CLIP❄

Ga+ng Network

…
Expert 1 Expert K

Image-condi+oned genera+on
Rou+ng:

CLIP❄

Ga+ng Network

…
Expert 1 Expert K

Model Hub

Vision
Tokens

<s> A cat sits on a desk next 
to a keyboard.

casual
a.en&on mask

text outputM
LP
🔥

Figure 3: The overall framework of ToVE. The vision tokens processed by the vision encoder
Evis are assigned expert knowledge through the gating network, then enhanced with a “residual
knowledge transfer” strategy before interacting with the language model. For the gating network, it
dynamically assigns the optimal expert knowledge to each vision token for VL learning.

Token-aware Expert Knowledge Ensemble. The representation of each vision token is distinct,
carrying distinct knowledge (e.g., foreground objects, depth, spatial positions) for complex VL
tasks. This necessitates a specialized strategy to transfer unique expert knowledge to each to-
ken. To achieve this, we introduce a token-aware gating network parameterized as θ, with a routing
function defined as Gθ ∈ A : Rdvis → RK , where dvis denotes the length of the vision tokens.
For each vision token tivis ∈ Rdvis , the gating network takes it as input and computes its routing
score ri = [r1, r2, ..., rk] ∈ RK for each expert. Different from previous MOE works (Riquelme
et al., 2021; Fedus et al., 2022) that activates the expert with the top-1 routing score, we argue that
knowledge from a single expert domain is insufficient, and, in fact, the gating network can adap-
tively learn the assignment of these experts. Therefore, we propose to apply an ensemble of the
tokens tik derived from the K vision experts to produce the expert knowledge for each vision to-
ken. Specifically, for the vision token tivis, we normalize its routing score ri by softmax function
Softmax(r)j = erj/

∑K
k=1 e

rk , imposing a relative competition among the vision experts. That
is, the final ensemble weight of expert knowledge is computed as wi = Softmax(ri + ϵ), where
we empirically add a small noise ϵ sampled independently ϵ ∼ N (0, 1

K2 ) entry-wise to improve
the exploratory behavior of the gating network and the robustness of the model. Finally, the expert
knowledge token for tivis can be computed as:

tiexp =
K∑
k=1

[
wk ·Hψk

(tik)
]
, for i = 1, 2, . . . , N, (1)

where N is the total number of vision tokens.

Residual Knowledge Transfer. Transferring expert knowledge into vision tokens can be achieved
via two common strategies: (a) directly integrating texp into vision token via addition; (b) appending
texp as the auxiliary vision tokens; The former strategy preserves the count of vision tokens but may
lead to an over-reliance on expert knowledge, potentially overwhelming the generalizable vision
tokens from CLIP. In contrast, the latter strategy introduces additional computational burden and
increases the complexity of learning from these auxiliary expert tokens. To address the above lim-
itations, we introduce a residual knowledge transfer method, inspired by the residual architectures
employed in modern foundation models (He et al., 2016; Devlin et al., 2018). For each vision token
tivis, its expert knowledge tiexp is transferred via a residual addition, which is defined as follows:

t̃ivis = tivis + λ×Mϕ(t
i
exp), (2)

where Mϕ(·) denotes a two-layer MLP function : A : Rdlang → Rdlang , parameterized by ϕ =
[ϕ1;ϕ2]. Here, λ is the coefficient to reconcile the proportion of expert knowledge transferred into
original vision tokens. By incorporating expert knowledge as a residual addition term adjusted by λ
and an MLP function, rather than a direct alteration of the existing CLIP vision tokens, this strategy

4
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seamlessly integrates expert knowledge into the vision-language learning process, maintaining both
the generalizability of the CLIP vision tokens and computational efficiency of the model.

Pluggable Vision Experts. From our analysis in Section 4.4, there is a positive correlation between
the average ensemble scores w and the experts’ contributions. Since ToVE does not couple expert
knowledge in the transfer phase, it is easy to detach low-contributing experts from the architecture
to improve the inference efficiency. Suppose we choose the top-k̃ contributing experts E (|E| < K)
for inference, the routing scores ri of the detached vision experts are set to −∞:

ri = f k̃topk

(
Gθ(t

i
vis)

)
,where f k̃topk

(
Gθ(t

i
vis)

)
k
=

{
Gθ(t

i
vis)k if Ek ∈ E

−∞ otherwise
. (3)

After applying the softmax function, only the ensemble weight of top-k̃ contributing experts will
be maintained and reconciled. Experts not included in E do not need to participate in the inference
process. This operation allows the flexibility to detach any number of experts without additional
training, achieving a balance between computational resources and model performance.

3.3 VISION-LANGUAGE LEARNING OF TOVE

Language Modeling Pre-training. Based on an image-text pair dataset {I,T} ∈ D, ToVE is
pre-trained with a unified language modeling loss without image-text contrastive and image-text
matching losses commonly employed in other works (Li et al., 2021; 2022b). The loss of ToVE is
formulated as follows:

Llm(ψ, ϕ, θ) = E(I,T)∼D ℓ
(
Dlang(t̃vis, p),T

)
, (4)

where t̃vis is the knowledge-transferred vision tokens of image I, ℓ is the cross-entropy function
between the predictions from the language decoder and the actual text description (i.e., caption) of
the images, and p is the prompt (i.e., prefix) of the language model. Llm ensures the alignment
between the knowledge-transferred vision tokens and text generation, leading the framework to
explore optimal fusion configurations across diverse vision experts.

Enhancing Exploration of Vision Experts. When optimizing solely with Llm, the gating network
Gθ(·) is prone to overfit and fall into a local minimum by trivially assigning ensemble weights to
a few specific vision experts. One main reason is that different experts have distinct domain knowl-
edge, and vary in the difficulty of transferring their knowledge to the vision tokens through Hψ . This
issue makes ToVE difficult to explore other potentially valuable vision knowledge. Thus, to ensure
the sufficient learning of Hψ before exploring the optimal routing of the vision experts, we employ
an auxiliary load balancing loss Laux(θ) on the gating network Gθ, followed by (Shazeer et al.,
2017; Lepikhin et al., 2020; Fedus et al., 2022). The specifics of this implementation are detailed in
Appendix A.3. During the training phase, the vision experts can gradually provide effective knowl-
edge to vision tokens, hence, we set a relaxing coefficient α with a cosine schedule to progressively
reduce Laux to learn the optimal routing of vision experts: αt = α0 × 0.5 ×

(
1 + cos

(
π × t

T

))
,

where αt represents the coefficient at any given training epoch t, T is the total training epochs, and
α0 is the initial coefficient at the training start.

Language
Model

❄

CLIP MLPs🔥

Experts

Adapter
❄

🔥

distillation❄

Vision Encoder

merge

A cat sits on a desk next 
to a keyboard. </s> 

Image-condi3oned genera3on

text output

<s> A cat sits on a desk next 
to a keyboard.

CLIP MLPs❄ ❄

💪
casual

a8en9on mask

Figure 4: The overview of expert knowledge
merging. The CLIP vision encoder enables the
merging of expert knowledge into itself by pre-
dicting the knowledge-transferred vision tokens as
an auxiliary learning target.

Learning Objective. With the incorporation of
language modeling loss and the load balancing
loss, the final optimization problem becomes:

arg min
(θ,ψ,ϕ)

Llm + α · Laux. (5)

Our ToVE framework simultaneously explores
the knowledge transfer to vision tokens and
vision-language learning, which can be trained
in an end-to-end manner.

3.4 REDUCE ALL EXPERTS INTO ONE

As more experts are integrated into the model
hub, the computation load is increasingly inten-
sified. Therefore, inspired by distillation tech-
niques that bridge the gap between training and
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Model Pre-train
(# pairs) CIDEr SPICE

SimVLMHUGE 1.8B (600×) 101.4 -
BLIP† 129M (43×) 113.2 14.8
BLIP-2†

OPT2.7b 4M (1.3×) 111.9 14.5
PrismerLARGE 12.7M (4.2×) 107.9 14.8
PrismerBASE 12.7M (4.2×) 87.5 13.0
VinVL† 5.7M (1.9×) 95.5 13.5
OSCAR† 4M (1.9×) 80.9 11.3

ToVE (no experts) 3M 92.1 13.3
ToVE-Lite 3M 104.1 14.4
ToVE 3M 110.2 14.9

Table 1: Zero-shot caption performance on
Novel Object Caption (NoCaps). ”†”: the model
is fine-tuned on COCO caption dataset, and then
conduct zero-shot caption test on NoCaps.

Models VSR POPE-R POPE-A

MiniGPT-4 50.7 78.9 71.4
LLaVA 56.3 68.7 67.0
BLIP-2V-7B 50.0 - -
InstructBLIPV-7B 54.3 89.3 78.5

Prismer-Z (12.7M) 63.2 84.9 81.2
Prismer-Z∗ (3M) 55.3 81.7 80.5
ToVE-Lite (3M) 65.9 86.6 81.9
ToVE (3M) 67.7 87.4 82.5

Table 2: Zero-shot performance on VSR and
POPE. Both Prismer-Z and ToVE are fine-
tuned on VQAv2, and tested in a zero-shot
manner. ∗: the results are reproduced by us (us-
ing the same dateset as ToVE). V-7B: Vicuna-
7B (Zheng et al., 2024); Accuracy is adopted
on VSR, and F1-score is adopted on POPE.

inference (Gou et al., 2021), we propose to merge the expert knowledge to the CLIP vision en-
coder, dubbed ”expert knowledge merging”. The proposed ”residual knowledge transfer” strategy is
essential for effective knowledge merging, as it transfers the expert knowledge to the vision tokens
without significantly altering the original representations. That is, there is a small representation gap
g := t̃vis − tvis between the original vision tokens and the knowledge-transferred vision token, and
the learning target of ”expert knowledge merging” is to minimize this gap g. As depicted in Figure
4, we maintain the language modeling loss while simultaneously merging the expert knowledge to
the vision encoder through the l2-norm loss:

Ltransfer = E(I,T)∼D [ℓ (Dlang(tvis, p),T) + ∥ t̃vis − tvis︸ ︷︷ ︸
g

∥2] , (6)

where t̃vis and tvis denote the original and the knowledge-transferred vision tokens, respectively.
In this transfer stage, only the CLIP vision encoder with its MLPs are online updated, while other
components in ToVE remain frozen. In inference stage, only the knowledge-merged CLIP provides
the vision token for language generation.

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

ToVE utilizes ViT (Dosovitskiy et al., 2020) pre-trained by CLIP (Radford et al., 2021) as the frozen
vision encoder, and RoBERTa (Liu et al., 2019) as the frozen language decoder, following the prac-
tice in (Liu et al., 2024b). Both of them have 12 (base-size) Transformer blocks. In the pre-training
stage, the image resolution is set to 256 × 256. We use random resized cropping and horizontal
flipping for data augmentation. The pre-training dataset is composed of two in-domain datasets
(i.e., COCO (Lin et al., 2014) and Visual Genome (Krishna et al., 2017)) and one web dataset (i.e.,
CC3M (Sharma et al., 2018)). The web dataset is filtered and re-captioned by a pre-trained image
captioner (Li et al., 2022b). In the fine-tuning stage, the image resolution is increased to 480× 480,
and the load balancing loss is not employed to further exploit the optimal expert assignment to spe-
cific VL tasks. To enhance the model’s capability to process knowledge-transferred vision tokens,
lightweight MLP adaptors (Houlsby et al., 2019) are integrated within each transformer layer of the
language model. More training details are provided in Appendix A.8.

4.2 VISION EXPERTS IN THE MODEL HUB

Low-level Vision Experts. ToVE is equipped with three low-level vision experts from the domains
of depth (Ranftl et al., 2021), surface normal (Bae et al., 2021), and edge (Poma et al., 2020). These
predicted labels are conducted patch embedding operations through randomly initialized convolu-
tional layers. Specifically, we employ five convolutional layers with a small [3× 3] kernel to encode

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Pre-train
(# pairs)

COCO NoCaps
B@4 S Out Overall

LEMON 200M 40.3 23.3 107.9 106.8
BLIP 129M 39.4 - 105.7 110.0
BLIP 14M 38.6 - 102.4 105.1
Prismer-Z 12.7M 39.7 24.1 105.8 107.5
Prismer 12.7M 40.1 24.1 111.7 109.1
GIT 10M 40.4 23.0 89.6 96.6
VinVL 8.9M 38.2 23.6 83.8 94.3
OSCAR 6.5M 36.5 23.1 77.6 81.1

ToVE-Lite 3M 39.5 24.1 108.2 106.7
ToVE 3M 40.3 24.5 113.1 112.5

Table 3: Fine-tuned caption performance on
COCO (Karpathy split) and NoCaps (validation
set). These are all base-size models. CIDEr is
adopted on NoCaps. B@4: BLEU-4; S: SPICE.

Model Pre-train
(# pairs) test-dev test-std

BEiT3 3.1B 77.7 -
BLIP 129M 78.2 78.2
Prismer 12.7M 76.8 77.0
OSCAR 8.9M 73.2 73.4
MAMO 4M 76.1 76.2
MaskVLM 4M 75.5 -
ALBEF 4M 74.5 74.7
Triple 4M 74.9 74.9

ToVE-Lite 3M 74.1 74.0
ToVE 3M 75.4 75.8

Table 4: Fine-tuned VQA performance on
VQA v2 (test set). These are all base-size
VLM models. Accuracy is adopted to evalu-
ate the VQA performance.

their respective expert knowledge. The details of these vision experts and encoding convolution
layers can be viewed in Appendix A.2.

Embedding Vision Experts. We include two embedding vision experts, i.e., DINO (Caron
et al., 2021) and EVA (Fang et al., 2023), trained from self-supervised and image-text contrast-
ing paradigms, respectively. Compared to the low-level vision experts, we utilize their patch tokens
as the vision knowledge. To align the number of tokens with the vision encoder (i.e., CLIP) for
knowledge transfer, we apply an interpolation operation to their patch tokens. The details of these
vision experts can be viewed in Appendix A.2.

4.3 RESULTS ON VISION-LANGUAGE TASKS

Zero-shot Performance on Novel Object Captioning. By adopting a unified language model-
ing objective to pre-train ToVE, it can naturally generate descriptions for images without requiring
fine-tuning, thereby enabling zero-shot generalization. In Table 1, we compare ToVE against sev-
eral prior arts, including SimVLM (Wang et al., 2022b), BLIP/BLIP2 (Li et al., 2022b; 2023a),
VinVL (Zhang et al., 2021), OSCAR (Li et al., 2020), and Prismer (Liu et al., 2024b). Despite using
fewer data pairs and smaller models, ToVE consistently demonstrates superior zero-shot captioning
abilities. For instance, under a model scale similar to PrismerBASE, ToVE achieves a CIDEr score
of 110.2 and a SPICE score of 14.9, surpassing PrismerBASE by a large margin (+22.7 in CIDEr)
while utilizing an approximately 4× smaller pre-training dataset. For the variant of ToVE after
expert knowledge merging, dubbed “ToVE-Lite,” it outperforms the baseline model without any ex-
pert participation by a CIDEr score of +12.0, attaining 95.6% of the original ToVE’s performance.
Additionally, the zero-shot performance of ToVE models often exceeds the fine-tuned performance
of certain other VLMs, such as LEMON and BLIP. More results can be viewed in Appendix A.5.

Fine-tuned Performance on COCO Caption, NoCaps, and VQAv2. We summarize the fine-
tuned captioning and VQA evaluations in Table 3 and Table 4, respectively. With a smaller training
dataset, ToVE demonstrates strong results for both COCO and NoCaps benchmarks while using
fewer image-text pairs. Especially for NoCaps, with out-domain samples with novel objects, we
make significant improvements over the prior arts, with a CIDEr of 113.1. In VQA, We additionally
compare ToVE against several prior arts, BEiT3 (Wang et al., 2023), MAMO (Zhao et al., 2023),
MaskVLM (Kwon et al., 2023), (Li et al., 2021), and Triple (Yang et al., 2022). ToVE also achieves
comparable performance with the prior arts. This indicates that the knowledge transfer from various
vision experts is primarily responsible for good robustness and generalization.

Vision Perception Capabilities. We evaluate the VLM’s vision capabilities using the Visual Spa-
tial Reasoning (VSR) (Liu et al., 2023) and POPE (Li et al., 2023b) benchmarks. VSR evaluates the
reasoning about the relative positions of different objects, while POPE evaluates the ”object hallu-
cination” issue. From Table 2, when the dataset is scaled down from 12.7M to 3M, we can observe
the recent efficient VLM, Prismer-Z (Liu et al., 2024b), shows a marked decline (-7.9% in VSR) in
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Image Depth Normal Edge DINO EVA

FoVE: A snowboarder gliding 
down a snowy slope.

FoVE: A clock tower 
underneath a cloudy sky.

FoVE: A person is holding a 
red bird.

GT: A man flying through the 
air while riding a skateboard.

GT: The infamous big ben clock 
tower underneath a cloudy sky.

GT: A red bird being fed from 
a person's hand.

Caption Results

Figure 6: Visualization of ToVE’s routing maps and the corresponding caption results on COCO
caption without fine-tuning. Brighter patches indicate higher activation of the corresponding expert.

visual perception capabilities with smaller datasets, with a more severe issue of object hallucination.
Conversely, when transferring the knowledge from vision experts to VL, ToVE significantly out-
performs Prismer-Z with the same 3M dataset (+12.4% in VSR), with improvements in mitigating
object hallucination (+2.0% in POPE-A). Additionally, our comparison with recent multi-modal
large language models (including MiniGPT-4 (Zhu et al., 2023), LLaVA (Liu et al., 2024a), and
InstructBLIPV-7B (Dai et al., 2024)) demonstrates that VLMs with large-scale pre-training generally
has better visual perception capabilities. Notably, ToVE shows a substantial advantage over current
MLLMs, especially in vision spatial reasoning.

4.4 ANALYSIS OF TOVE

 ensemble weight 
 COCO     Nocaps

Edge Depth Normal DINO EVANone

collapse

Figure 5: Impact of iteratively re-
moving vision experts on zero-shot
caption performance.

Visualization of the routing maps from the Gating Net-
work G. As presented in Figure 6, we visualize the routing
maps of the images from the COCO caption dataset as de-
termined by ToVE’s gating network. It showcases the gat-
ing network’s adeptness in learning instance-dependent fu-
sion weights at the patch level, crucial for transferring the
most beneficial vision knowledge from the vision experts to
the vision tokens. For the low-level experts (columns 2-4),
a consistent pattern is observable across their routing maps,
where they predominantly enhance the areas around objects.
This pattern indicates that these experts significantly enrich
the CLIP tokens with low-level information, such as depth
perception around objects, edges, and surface orientations,
which bolsters the model’s ability to perceive fine details. In
contrast, for the embedding experts (columns 5-6), we notice
distinct patterns in knowledge contributions: DINO primar-
ily enhances the patch tokens associated with the main ob-
jects in the captions, whereas EVA contributes significantly
to the understanding of the image backgrounds. More rout-
ing maps can be viewed in Appendix A.4.

Pluggable Vision Experts. In Section 3.2, we explore the strategy of detaching less-contributing
experts to enhance inference efficiency. It is built on a positive correlation between the ensemble
scores w and the performance benefits contributed by these vision experts. Based on the average
ensemble scores, interpreted as ”contribution,” counted during the training phase, we iteratively
remove experts in descending order of their average contributions. As depicted in Figure 5, it is
observed that the performance declines noticeably as experts with increasingly significant contribu-
tions are removed. The model exhibits higher sensitivity to the in-domain dataset, COCO caption,
compared to that on a hold-out dataset, NoCaps. Upon the complete removal of all experts, we notice
a model collapse where the model fails in normal language generation. We attribute this collapse to
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Tasks Baseline Depth Edge Normal DINO EVA ToVE

COCO 116.8 120.7 121.1 120.3 128.9 130.6 132.8
NoCaps 92.1 98.2 96.3 98.7 105.1 109.1 110.2

VQAv2 70.0 70.2 70.1 70.1 72.9 74.4 75.8
VSR 54.8 59.8 60.1 61.0 65.3 63.8 67.7
POPE-R 80.7 85.9 86.4 86.3 85.8 85.7 87.4
POPE-A 80.3 80.7 80.8 81.2 82.0 80.8 82.5

Table 5: VL performance of the variants equipped with different
vision experts. Baseline: the ablated variant without transferring
any vision experts to VL learning.

Baseline

lambda
Figure 7: Ablation study on λ.

the substantial discrepancy between the vision tokens without expert knowledge and the input space
of the language model. We also conduct a similar experiment on the VQAv2 benchmark, the results
can be viewed in Appendix A.6.

5 ABLATION STUDIES

Different Vision Experts Transferred to VL Learning. We evaluate the performance of each vi-
sion expert transferred to VL tasks. As shown in Table 5, we observe that each vision expert yields
performance gains compared to the baseline without any vision experts. Specifically, the low-level
experts significantly enhance visual perception capabilities, although their improvement in VQA,
which requires strong multi-modal reasoning, is relatively marginal. On the other hand, the embed-
ding experts contribute more substantially across all VL tasks, consistent with our average ensemble
scores shown in Figure 5. DINO improves visual perception capabilities, demonstrating significant
gains in VSR and POPE. Conversely, EVA promotes content understanding, showing notable per-
formance improvements in captioning and VQA tasks. Also, we further compare the results of using
EVA as the base vision encoder, the discussions can be viewed in Appendix A.10. After transferring
the knowledge from all experts, ToVE can achieve significant performance enhancements across all
VL tasks compared to the baseline without any experts, possessing both stronger visual perception
and content understanding capabilities.

λ in Residual Knowledge Fusion. λ controls the proportion of transferring vision expert knowledge
to the vision tokens. As depicted in Figure 7, our experiments demonstrate that a relatively small
λ results in superior performance compared to a larger one. For in-domain COCO captions, the
proportion of expert knowledge fusion yields a relatively marginal impact. However, for NoCaps,
which requires the model’s generalizability on the novel objects, the model performance sharply
declines (from 110.2 to 35.9) as λ increases beyond 0.1. This underscores the inherent strong gen-
eralization capabilities of CLIP for VL tasks. An excessive fusion of expert knowledge, in turn,
diminishes its generalizability. Therefore, only a modest complement of expert knowledge is req-
uisite for achieving satisfactory results.

Ablation Strategies NoCaps COCO

Transfer
Direct addition 26.8 126.3
Concatenation 108.2 130.4
Residual addition 110.2 132.8

Merging
L2-norm 10.5 45.6
LM 96.2 118.7
LM + L2-norm 106.7 128.6

Table 6: Ablation study on knowledge transfer
and merging strategies.

Knowledge Transfer and Merging. In knowl-
edge transfer strategies, we evaluate three ap-
proaches: (A1) direct addition of the expert
knowledge tokens to the vision tokens, (A2)
concatenation with the vision tokens, and (A3)
residual addition to the vision tokens (ours). We
observe that A1 results in poor performance on
NoCaps, which can be considered a special case
where λ is set to 1.0, as discussed in ”λ in resid-
ual knowledge fusion”. While A3 slightly un-
derperforms in comparison to residual addition
(A3), it does not deteriorate the generality of
the CLIP model as A1 does.

In knowledge merging strategies, we evaluate three approaches: (B1) direct distillation between
the original vision tokens and the tokens with fused expert knowledge using L2-norm loss, (B2)
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language modeling to align the vision tokens with the input space of the language model that accepts
the knowledge-transferred vision tokens, and (B3) a combination of language modeling and L2-
norm distillation (ours). The results manifest that B1 yields poor distillation performance, indicating
a significant gap between the language model and the distilled CLIP. Although B2 can directly
optimize the gap between the distilled CLIP and the language model, we can observe that combining
language modeling with L2-norm (B3) achieves the optimal performance.

6 CONCLUSION

This paper proposes the ToVE framework for efficient vision-language learning by transferring
knowledge from a hub of pre-trained vision experts. It utilizes a gating network with a resid-
ual knowledge transfer strategy to dynamically route expert knowledge to vision tokens, ensuring
enhanced visual perception while preserving generalizability through residual knowledge transfer.
This method allows for the selective detachment of low-contributing experts to improve inference
efficiency. Additionally, we introduced a knowledge merging approach to merge expert knowledge
into a single vision encoder. Experiments across various VL tasks demonstrate ToVE’s competi-
tive performance with significantly less training data, excelling in zero-shot captioning and visual
spatial reasoning tasks. The visualization of gating network outputs and the analysis of pluggable vi-
sion experts highlight the effectiveness of transferring diverse vision knowledge to VL tasks, which
presents a promising alternative to large-scale models and datasets.
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A APPENDIX

A.1 MODEL ARCHITECTURE

Table 7 provides an overview of the architecture details for both ToVE-Lite and ToVE models. The
vision encoder in both models utilizes a ViT-B/16 backbone with 12 layers. The language decoder
is based on RoBERTaBASE, also with 12 layers and a width of 768. For the ToVE-Lite model, the
total number of trainable parameters is 91 million, with a total parameter count of 260 million when
including non-trainable parameters. The ToVE model, which incorporates five vision experts, has
103 million trainable parameters. The total parameter count for the ToVE model, including the
combined 1 billion parameters from the vision experts, sums up to 1.2B. These details illustrate
the comprehensive design and the scalable nature of our models, accommodating varying levels of
complexity and inference capabilities.

Model Type
Vision Encoder Language Decoder Trainable

Params.

Total

Params.Backbone Layers Backbone Layers Width

ToVE-Lite ViT-B/16 12 RoBERTa BASE 12 768 91M 260M

ToVE ViT-B/16 12 RoBERTa BASE 12 768 103M 1.2B

Table 7: ToVE-Lite and ToVE architecture details. We detail the backbone, number of layers, and
width for each architecture size, as well as the trainable and total parameters. For data inference, we
include the total parameters, which encompass five vision experts with a combined parameter size
of 1B in our ToVE model.

A.2 VISION EXPERTS

The details of the vision experts are provided in Table 8. For low-level vision experts, the expert
labels are initially processed using randomly initialized convolutional layers to encode their respec-
tive vision knowledge. Specifically, we employ five convolutional layers with a small [3× 3] kernel,
which demonstrates superior performance compared to a single layer with a larger kernel, as evi-
denced in the Vision Transformer (Dosovitskiy et al., 2020). For embedding experts, we select their
large-size models. They have a patch size of 14, with input images sized at 224, producing 256 patch
tokens. To achieve the residual knowledge transfer, their token quantity matches that of the vision
encoder, which uses the Base-size model with a patch size of 16 and input images sized at 256.

Task Dataset Model Params. Post-Processing

Depth Estimation MIX-6 DPT (Ranftl et al., 2021) 123M Re-normalised to [−1, 1] and
use convolution layers to
encode the vision knowledge

Surface Normal ScanNet NLL-AngMF (Bae et al., 2021) 72M

Edge Detection BIPED DexiNed (Poma et al., 2020) 35M

Self-supervised LVD-142M DINO-v2 (Caron et al., 2021) 304M The input image size is
resized to 224× 224 and
encoded to 256 tokens.MIM + CLIP Merged-38M EVA-CLIP 02 (Fang et al., 2023) 430M

Table 8: Selected Tasks and Vision Experts with Parameters and Post-Processing Techniques.

A.3 LOAD BALANCING LOSS

To encourage a balanced assignment of vision tokens across different experts, we incorporate an
auxiliary loss into the gating network. This auxiliary loss is beneficial to ensure the sufficient
learning of Hψ before exploring the optimal routing of the vision experts. Its consists of two
parts: Importance loss and Load loss. The importance of the k-th expert is defined as the normalized
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gating routing scores corresponding to the k-th expert, summed over the vision tokens tvis of an
image I:

Impk(tvis) =
∑

tivis∈tvis

Softmax((Gθ(t
i
vis))k. (7)

The importance loss over the vision tokens tvis from an input image I is defined as:

Limp(tvis) =

(
std(Imp(tvis))

mean(Imp(tvis))

)2

. (8)

In addition to the importance loss, we also introduce a load loss to ensure balanced routing results.
The load of an expert k given a vision token tivis ∈ tvis is defined as the probability (frequency) of
routing to expert k, summed over the vision tokens tvis of image I:

Loadk(tvis) =
∑

tivis∈tvis

pk(t
i
vis), (9)

pk(t
i
vis) ≜ P ((Gθ(t

i
vis))k ≥ thresholdk(Gθ(t

i
vis)). (10)

The load loss over the vision tokens tvis from an input image I is defined as:

Lload(tvis) =

(
std(Load(tvis))

mean(Load(tvis))

)2

. (11)

The total auxiliary loss of the gating network is then given by:

Laux =
1

2
(Limp + Lload) . (12)

A.4 ROUTING OF THE GATING NETWORK

Figure 6 provides additional visualizations of the routing maps generated by ToVE’s gating network
for images from the COCO caption dataset. These maps highlight how the gating network assigns
expert knowledge at the patch level. Low-level experts (Depth, Normal, Edge) predominantly en-
hance object-related areas, enriching the CLIP tokens with essential visual information. Embedding
experts (DINO, EVA) show distinct contributions, with DINO focusing on main objects and EVA en-
hancing background understanding. These visualizations demonstrate the gating network’s adaptive
capability in optimizing vision token enhancement.

A.5 VISUALIZATION OF CAPTION AND VQA RESULTS

 ensemble weight 
 VQAv2

Edge Depth Normal DINO EVANone

collapse

Baseline

Figure 8: Impact of sequentially re-
moving vision experts on VQA.

Figure 10 illustrates the performance of ToVE and ToVE-Lite
on zero-shot image captioning tasks using the NoCaps dataset
and fine-tuned VQA tasks on VQAv2. Both models perform
well, but ToVE consistently provides more detailed and con-
textually rich descriptions. For instance, ToVE specifies ”hot
chocolate” instead of just ”coffee” and adds context like ”be-
ing loaded onto a flatbed trailer.” In VQA tasks, ToVE con-
sistently delivers accurate and concise answers, demonstrat-
ing superior visual and language understanding capabilities.
However, it is important to note that ToVE requires higher in-
ference costs due to the integration of multiple vision experts.
In contrast, ToVE-Lite, while slightly less detailed, still per-
forms admirably with lower computational overhead. This
trade-off between performance and inference cost should be
considered when choosing between the two models based on
the specific requirements of the application.
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Image Depth Normal Edge DINO EVA

Figure 9: Visualization of ToVE’s routing maps and the corresponding caption results on COCO
caption without fine-tuning. Brighter patches indicate higher activation of the corresponding expert.

A.6 PLUGGABLE VISION EXPERTS ON VQA

In further analysis, we investigate the impact of sequentially detaching experts on the visual question
answering task using the VQAv2 dataset. The green line in Figure 8 illustrates the performance
trajectory as vision experts are iteratively removed in descending order of their average ensemble
weight, interpreted as their relative contribution. This trend mirrors the observations made on the
image captioning task, underscoring the positive correlation between an expert’s ensemble weight
and its performance utility across diverse vision-language tasks. Notably, the degradation appears
even more severe for VQAv2 compared to the COCO caption benchmark, implying a heightened
reliance on the visual experts for this question answering challenge.

A.7 LOAD BALANCING LOSS AND NOISE ϵ

Ablations NoCaps COCO
Load Balancing 109.9 132.1
Noise 109.4 130.9

Load Balancing + Noise 110.2 132.8

Table 9: Ablation study on Load Balancing
Loss and noise ϵ.

In our exploration of strategies to enhance the effec-
tive use of vision experts, we evaluate the impact of
load balancing loss and the introduction of noise ϵ
in Table 9. The results show that both load balanc-
ing loss alone (C1) and noise ϵ alone (C2) improve
performance. Load balancing loss enhances perfor-
mance on NoCaps to 109.9 and COCO to 132.1 by
promoting balanced expert utilization. Noise ϵ im-
proves performance to 109.4 on NoCaps and 130.9
on COCO by preventing overfitting to specific ex-
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ToVE:
A silver car being loaded onto 
a flatbed trailer.

ToVE-Lite:
The car is on a flatbed trailer.

ToVE: A cup of hot chocolate 
with whipped cream on top.

ToVE-Lite: A cup of coffee 
with whipped cream on top.

ToVE: A military tank driving 
down a street next to trees.

ToVE-Lite: A military tank 
driving down the road.

ToVE: A table topped with a 
cup of coffee and a pack of 
starbucks energy drinks.

ToVE-Lite: A table with a bunch 
of drinks and a box of coke.

Q: What does the dispenser on 
the wall give? ToVE: Toilet paper.

Q: What colors are the tile on 
the wall? ToVE: Black and white.

Q: Can the dog drive?
ToVE: No.

Q: What breed is the black dog?
ToVE: Pug.

Q: What is the players number?
ToVE: 22.

Q: Did he hit the ball?
ToVE: Yes.

Q: Where is this animal 
commonly found?
ToVE: Farm.
Q: What color is it's nose?
ToVE: Black.

Figure 10: Visualisation of zero-shot image captioning on NoCaps and fine-tuned VQA results
on VQAv2. ToVE can produce more detailed and semantically coherent captions than ToVE-Lite.
We show a failure case (yellow box) of Nocaps dataset.

perts. Combining both strategies (C3) yields the best results, with 110.2 on NoCaps and 132.8 on
COCO. Without load balancing, the gating network quickly converges to a trivial solution, predomi-
nantly routing to the EVA expert, making results similar to using EVA alone. Thus, the combination
of load balancing and noise ensures a more effective and comprehensive integration of diverse expert
knowledge, leading to more robust and generalized vision-language representations.

A.8 TRAINING DETAILS

All our models are trained using the AdamW optimizer with a weight decay of 0.05. Automated
data augmentation (AutoAug) is applied during both the pre-training and fine-tuning stages. For
pre-training, the learning rate is set to 3e-4 with a total of 10 epochs. During fine-tuning for VQA,
we use a learning rate of 1e-5 and train for 10 epochs. For fine-tuning the captioning model, the
learning rate is 1e-5 with a total of 3 epochs. All experiments can be conducted using PyTorch 2.0
on 8 Nvidia V100 GPUs. To improve training efficiency, we utilize 24 Nvidia V100 GPUs during
our experiments.

A.9 TOVE WITH LLMS

With the rapid advancements in LLMs, numerous LLM-based Vision-Language Models (LVLMs)
have emerged. In this work, we also extend ToVE to language models to explore its potential in the
LVLM domain. Specifically, we implemented ToVE within the LLaVA-1.5 framework (Liu et al.,
2024a) (dubbed as “ToVE Vicuna”) with LLaVA’s training data. During our implementation, we
randomly sampled three-quarters of the dataset and utilized the entire instruction-tuning dataset. In
the ToVE design, we integrated two domain experts—DINO (Caron et al., 2021) and Depth (Ranftl
et al., 2021)—and employed QLoRA (Dettmers et al., 2024) to reduce computational overhead. To
evaluate ToVE Vicuna, we conducted experiments on the MME (perception) (Fu et al., 2023) and
MMStar (perception) (Chen et al., 2024b) benchmarks to validate the improvement in visual capa-
bilities brought by expert knowledge. As shown in Table 10, the results demonstrate a significant
enhancement in perception capabilities through knowledge transfer. For instance, the MME percep-
tion score increased from 1434.5 to 1523.1, while the fine-grained perception subset of MMStar saw
an improvement of 3.6 points. These findings support the potential of ToVE in the LVLM domain.
In the future, we will conduct further exploration in this direction.
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Models (QLoRA) MME p MMStar (Overall) MMStar (Coarse) MMStar (Fine-grained)

LLaVA-1.5-7B 1434.5 34.6 61.6 27.6
ToVE Vicuna 1523.1 35.8 64.0 31.2

Table 10: Performance comparison of ToVE Vicuna and LLaVA baseline on MME and MMStar.

Benchmark CLIP as Encoder EVA as Encoder CLIP + EVA expert

NoCaps 92.1 95.7 109.1
VQAv2 70.0 70.5 74.4
VSR 54.8 51.7 63.8

Table 11: Comparison of performance using different encoders.

A.10 COMPARISON OF BASE VISION ENCODERS

We compared the performance of ToVE when using CLIP and EVA as the base vision encoders, with
results summarized in Table 11. As shown, the two models exhibit comparable performance. Inter-
estingly, we observed a notable improvement when combining CLIP as the vision encoder and EVA
as the expert. We reckon that this enhancement can be attributed to EVA’s capability to effectively
process background representations, as evidenced by Figures 6 and 9. The visualizations illustrate
the gating maps for each vision expert, revealing that EVA’s gating activations predominantly oc-
cur in background regions, while showing minimal activation in subject areas. This observation
suggests that, while low-level experts and DINO primarily focus on visual perceptual knowledge
(as supported by their performance in visual perception tasks), their contributions to understanding
background context remain limited. In contrast, EVA significantly improves semantic comprehen-
sion of these regions for the base vision encoder, thereby enhancing overall model performance.

A.11 LIMITATIONS

Despite its advancements, the ToVE framework has several limitations. It heavily depends on the
availability and quality of pre-trained vision experts, which may not always be available for certain
domains or tasks. The initial integration and training with multiple experts can be computationally
intensive, posing challenges in resource-constrained environments. Estimating the contribution of
each expert relies on empirical methods that might not always yield optimal configurations, poten-
tially affecting performance. While ToVE demonstrates robust generalization within its pre-training
datasets, its effectiveness on completely unseen domains may vary, necessitating additional fine-
tuning. Furthermore, the complexity of integrating multiple experts and dynamic mechanisms adds
to the implementation and debugging challenges, especially for practitioners with limited experience
in multi-modal learning frameworks. Addressing these limitations in future work could involve de-
veloping more adaptive methods for expert integration, optimizing computational efficiency, and
enhancing generalization across diverse tasks and domains.

19


	Introduction
	Related Work
	Methodology
	The Overall Framework
	Transfer Knowledge from a Hub of Vision Experts
	Vision-language Learning of ToVE
	Reduce All Experts into One

	Experiments
	Implement Details
	Vision Experts in the Model Hub
	Results on Vision-Language Tasks
	Analysis of ToVE

	Ablation Studies
	Conclusion
	Appendix
	Model Architecture
	Vision Experts
	Load Balancing Loss
	Routing of the Gating Network
	Visualization of Caption and VQA results
	Pluggable Vision Experts on VQA
	Load Balancing Loss and noise 
	Training Details
	ToVE with LLMs
	Comparison of base vision encoders
	Limitations


