
000 PRL: PROMPTS FROM REINFORCEMENT LEARNING

001

002

003

004 **Anonymous authors**

005 Paper under double-blind review

006 ABSTRACT

007

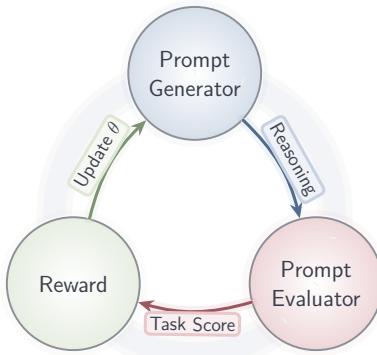
008

009 Effective prompt engineering remains a central challenge in fully harnessing the
010 capabilities of LLMs. While well-designed prompts can dramatically enhance
011 performance, crafting them typically demands expert intuition and a nuanced un-
012 derstanding of the task. Moreover, the most impactful prompts often hinge on subtle
013 semantic cues, ones that may elude human perception but are crucial for guiding
014 LLM behavior. In this paper, we introduce PRL (Prompts from Reinforcement
015 Learning), a novel RL-based approach for automatic prompt generation. Unlike
016 previous methods, PRL can produce novel few-shot examples that were not seen
017 during training. Our approach achieves state-of-the-art performance across a range
018 of benchmarks, including text classification, simplification, summarization, and
019 GSM8K. On the classification task, it surpasses prior methods by 2.58% over APE
020 and 1.00% over EvoPrompt. Additionally, it improves the average ROUGE scores
021 on the summarization task by 4.32 over APE and by 2.12 over EvoPrompt and
022 the SARI score on simplification by 6.93 over APE and by 6.01 over EvoPrompt.
023 On the GSM8K mathematical reasoning benchmark, PRL further improves ac-
024 curacy by 2.72% over APE and by 4.53% over EvoPrompt. We will make our
025 implementation publicly available upon acceptance.

026

027

028



Method	Gen.	Ref.	Few-shot
Manual Instr.	✗	✗	✗
APE	✓	✗	✗
EvoPrompt	✓	✓	✗
APO	✓	✓	✗
PRL	✓	✓	✓

✓ supported ✗ not supported ✘ limited

040 Figure 1: Left: Our RL-based prompt optimization cycle (overview). Right: Comparison of prompt-
041 engineering methods. PRL automates both prompt generation and refinement and, uniquely, syn-
042 thesizes novel task-specific few-shot examples. The yellow tilde (✗) for APO indicates *limited*
043 few-shot support—its examples are drawn from training data, which restricts performance—whereas
044 PRL creates new instances not seen during training.

045

046

1 INTRODUCTION

048 Prompt engineering has emerged as a key technique for enhancing the performance of LLMs (Sahoo
049 et al., 2024; Chen et al., 2023). By crafting precise input prompts, LLMs can be guided to perform
050 complex tasks without requiring additional fine-tuning. However, the effectiveness of a prompt
051 often hinges on subtle phrasing. As shown by Razavi et al. (2025), even minor rewordings can
052 significantly alter model predictions, underscoring the fragility of prompt-based control. Moreover,
053 the DeepSeek-R1 paper Guo et al. (2025) states that even a model as large as DeepSeek-R1, with 671
billion parameters, is sensitive to prompts.

054 Few-shot prompting, in which a prompt includes a small set of input-output examples, is another
055 widely used approach to guide LLMs. While often beneficial, Reynolds & McDonell (2021) demon-
056 strate that zero-shot prompting can sometimes outperform few-shot approaches, suggesting that the
057 usefulness of examples may depend on task familiarity or pretraining exposure. These findings col-
058 lectively highlight the challenge of designing effective prompts and motivate the need for automated,
059 task-specific prompt optimization.

060 Recent work has explored automatic prompt generation (Zhang et al., 2022) and refinement (Guo
061 et al., 2023; Pryzant et al., 2023). Existing methods, with the partial exception of (Pryzant et al.,
062 2023), fail to integrate tailored few-shot examples. We propose PRL, a RL-based prompt optimization
063 algorithm based on reinforcement learning. PRL is capable of automatically determining whether
064 few-shot examples should be included and if so, to create them to maximize task performance.
065 Interestingly, the incorporation of few-shot examples is spontaneously emerging during the prompt
066 generation training and is not explicitly encouraged. Additionally, PRL incorporates a reasoning
067 phase prior to prompt generation, where the model first produces a rationale to guide its final output.
068 We additionally mitigate training instability and noisy feedback with a prompt selection strategy that
069 improves robustness in the limited data setting.

070 **Contributions.** This paper makes the following contributions:

- 071 • We propose PRL, to our knowledge the first RL-based prompt optimization method capable of
072 generating and selecting novel task-specific few-shot examples.
- 073 • We demonstrate the effectiveness of PRL across text classification, summarization, simplification
074 and mathematical reasoning tasks.
- 075 • We show that integrating explicit reasoning before answer generation significantly boosts perfor-
076 mance, echoing findings by Guo et al. (2025).
- 077 • We provide detailed ablation studies to evaluate the impact of each component.
- 078 • Our results suggest that RL-based optimization naturally leads to the emergence of few-shot
079 prompting behavior.

082 2 RELATED WORK

084 **Prompt Engineering** enhances model performance without retraining, offering a cost-effective
085 solution. Chain-of-Thought (CoT) prompting (Wei et al., 2022) improves reasoning by including
086 intermediate steps. Tree-of-Thought (ToT) (Yao et al., 2023) extends this by exploring multiple
087 reasoning paths, while Program-of-Thoughts (Chen et al., 2022) and Graph-of-Thoughts (Besta et al.,
088 2024) further enrich prompts using programmatic and graph structures.

089 Few-shot prompting (Brown et al., 2020) improves performance by embedding task examples in
090 prompts, proving effective in areas like puzzle solving and evidence extraction (Xu et al., 2023;
091 Greenblatt, 2024; Sivarajkumar et al., 2024). However, such examples can sometimes hurt per-
092 formance (Reynolds & McDonell, 2021), making their use highly task-dependent. Our method
093 automatically learns whether and how to include few-shot examples based on task performance.

095 **Automated Prompt Engineering** improves task performance by replacing manual prompt design
096 with automated methods. The work most closely related to ours is RL Prompt Deng et al. (2022),
097 which also uses RL to automatically generate prompts. However, the authors only learn a small
098 policy network and are restricted to short prompts of at most five tokens. Additionally, these prompts
099 are ungrammatical gibberish text, hence lack interpretability. Moreover, their pipeline is more
100 complex and involves reward stabilization. The Automatic Prompt Engineer (APE) Zhou et al. (2022)
101 generates prompt candidates from input-output examples and filters them based on performance. As
102 no gains were observed from in-sample refinement, APE remains a pure generation method. Pryzant
103 et al. (2023) introduced Automatic Prompt Optimization (APO), which iteratively improves prompts
104 using natural language critiques, simulating gradient descent. APO includes few-shot examples in its
105 prompt, but is restricted to examples seen during training. It enhances efficiency via minibatching,
106 beam search, and bandit selection. Guo et al. (2023) proposed EvoPrompt, which evolves a population
107 of prompts with LLMs and evolutionary operators, achieving strong results without needing model
gradients. PRL is, to our knowledge, the only method that can create novel few-shot examples not
seen during training.

108
109
110
111
112
113
114
115
116
117

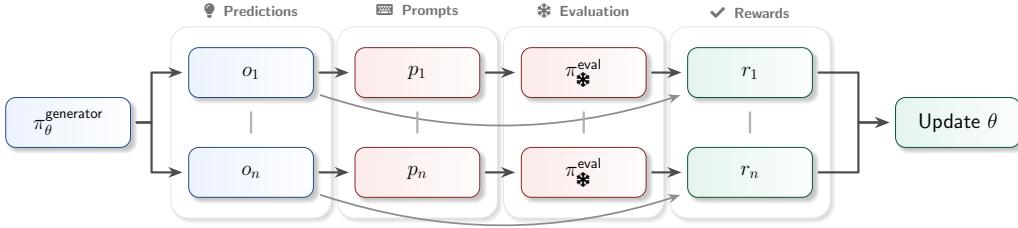


Figure 2: Training scheme of PRL. First, the Prompt Generator $\pi_{\theta}^{\text{generator}}$ generates a set of outputs o_1, \dots, o_n (reasoning + generated prompt) from which the corresponding prompts p_1, \dots, p_n are extracted. Each prompt is then evaluated by the Evaluation Model $\pi_{\text{eval}}^{\text{eval}}$ (a language model with frozen parameters), which produces corresponding answers. These answers, along with the outputs from the Prompt Generator, are used to compute rewards r_1, \dots, r_n . Finally, the rewards are used to update the parameters of the Prompt Generator through RL.

3 METHOD

Our method comprises the following components:

- **Prompt Generator:** A trainable language model that generates prompts with help of a reasoning process, see the prompt formats in Appendix B.
- **Evaluation Model:** A frozen LLM that produces an answer based on the generated prompt.
- **Prompt Selection:** We learn the prompt generator through RL with a reward incorporating both formatting and task performance. We choose the best overall prompt by regularly querying the prompt generator model for prompt candidates and evaluate those.

We now provide a detailed description of each component of our method.

Reward Function Our reward signal is composed of two parts: formatting rewards for the Prompt Generator and task performance rewards for the evaluation model.

Prompt Generator Reward: We assess the format of the Prompt Generator's output using the following scheme:

- A reward of $\frac{r_{\text{token}}}{4}$ is assigned for the correct usage of each of the four key tokens: <think>, </think>, <answer>, and </answer>, provided that each token appears exactly once. If all tokens are used correctly, the model receives the full token reward of r_{token} . This encourages the model to output both a reasoning trace and a final answer, each clearly marked and occurring only once.
- An additional reward of $r_{\text{structure}}$ is granted if the generated response exactly matches the required structure: <think> reasoning trace </think> <answer> final answer </answer>. This structural reward ensures that the model produces a well-formed response consisting of a reasoning trace followed by a final answer and nothing beyond this expected format.

Evaluation Model Reward: To assess the utility of the prompts, we assign:

- A reward of r_{format} is assigned if the Evaluation Model's response follows the required format. This reward is applicable only when the output must adhere to a specific structure, such as selecting a predefined class; otherwise, r_{format} is set to 0.
- A reward of $r_{\text{alignment}}$ is granted if the model's response is factually correct or aligned with the intended task objective. This reward is typically based on task-specific metrics such as accuracy or any other evaluation criterion that reflects successful performance.

These rewards are task-specific and will be discussed in detail in the experimental section for each respective task.

The overall reward function R is the sum of all elementary applicable rewards r_{token} , $r_{\text{structure}}$, r_{format} and $r_{\text{alignment}}$.

162 **Prompt Generator** is a language model designed to refine a given base prompt. First, it generates
163 a reasoning trace about the refinement process, followed by the production of the final prompt (an
164 example is shown in Appendix B). During training, the Prompt Generator learns task semantics and
165 produces suitable prompts, potentially incorporating examples for few-shot prompting.

166 At each training step, the Prompt Generator produces a set of outputs o_1, \dots, o_n from which candidate
167 prompts p_1, \dots, p_n are extracted. These prompts are then passed to the Evaluation Model, which
168 generates answers conditioned on each prompt. We denote the Prompt Generator as $\pi_\theta^{\text{generator}}$.
169

170 **Evaluation Model.** The *Evaluation Model* assesses the quality of each prompt generated by the
171 Prompt Generator by evaluating its performance on a randomly sampled subset of the training data.
172 For each prompt, a reward is computed for every observation based on its effectiveness, and these
173 rewards are averaged to obtain a final score for the prompt. The Evaluation Model is implemented as
174 a frozen language model, used exclusively for inference. We denote the Evaluation Model as π^{eval} .
175

176 **Remark 1.** *We have chosen to freeze the evaluation model, since then our method can in principle be
177 used with closed-source LLMs. It also conforms to the setting of existing work that did not finetune
the LLM executing the prompt.*

178 **Optimization** After obtaining a reward for each prompt, we optimize the Prompt Generator using
179 the Group Relative Policy Optimization (GRPO) update rule (Shao et al., 2024). A key advantage
180 of GRPO is that it eliminates the need for a separate critic network, significantly reducing memory
181 consumption during the reinforcement learning process. The illustration of this process can be found
182 in Figure 2.

183 **Prompt Selection** As the prompt generator evolves during training and each version generates
184 multiple prompts, we obtain a large selection of candidate prompts. We sample in a regular interval a
185 number of prompts and test them on the validation set and keep the overall best one according to the
186 task metric used. The full algorithm is showcased in the Appendix A.
187

188 4 EXPERIMENTS 189

190 **Experimental Setup** We test the performance of PRL on four task types: **classification**, **sum-
191 marization**, **simplification**, and **GSM8K mathematical reasoning**. As Prompt Generator and
192 Evaluation Model we choose Qwen2.5-7B-Instruct (Yang et al. (2024)). Each model is trained
193 separately for each task and dataset. Unless otherwise specified, all experiments are conducted over
194 48 hours using two NVIDIA A100 GPUs (40 GB each). We fine-tune our models using GRPO
195 (Zhao et al. (2024)) with parameters $\epsilon = 0.2$, $\beta = 0.04$ and weight decay equal to 0.1. We also use
196 Low-Rank Adaptation (LoRA) (Hu et al. (2022)) with a learning rate of 1×10^{-6} , setting $\alpha = 32$ and
197 rank $r = 8$. During training, we sample $n = 4$ prompts per iteration and perform Prompt Selection
198 every 100 iterations.

199 To ensure fair comparison during Prompt Selection, we adopt the same scoring function as EvoPrompt
200 and use an identical validation dataset during the prompt selection process. Across all tasks we use
201 reward parameters $r_{\text{token}} = r_{\text{structure}} = 0.75$, unless otherwise stated. The rewards r_{format} and $r_{\text{alignment}}$
202 are task-specific and will be defined below.
203

204 **Baseline Methods** We benchmark PRL against both human-written task-specific prompts and a
205 range of general-purpose prompt engineering algorithms.

- 206 • MI (Manual Instruction) (Zhang et al., 2022): Manually crafted instructions to fine-tune
207 large language models, aiming to enhance their performance on specific tasks through human-
208 written prompts.
- 209 • NI (Natural Instruction) (Mishra et al., 2021): NI comprises a diverse set of 61 NLP
210 tasks, each accompanied by human-authored instructions. It is designed to evaluate models'
211 abilities to generalize across tasks by understanding and following natural language instructions.
- 212 • APE (Automatic Prompt Engineer) (Zhou et al., 2022): APE introduces a framework
213 for automatically generating and selecting prompts. It leverages large language models to create
214 candidate instructions and selects the most effective ones based on performance evaluations.
- 215 • APO (Automatic Prompt Optimization) (Pryzant et al., 2023): APO presents a
method for optimizing prompts by iteratively refining them using feedback mechanisms. It

216 treats prompt optimization as a gradient-free problem, employing techniques like beam search to
 217 enhance prompt effectiveness.

218 • **EvoPrompt** (Guo et al., 2023): EvoPrompt applies evolutionary algorithms to optimize discrete
 219 prompts for large language models. It evolves a population of prompts through selection, mutation,
 220 and crossover operations to discover high-performing prompts without requiring gradient
 221 information.

222 – **DE (Differential Evolution)**: This variant employs differential evolution strategies
 223 to explore the prompt space.

224 – **GA (Genetic Algorithm)**: This approach utilizes genetic algorithms to evolve prompts
 225 by simulating natural selection processes, including selection, crossover and mutation to
 226 optimize prompt quality over successive generations.

227 We present a comparison of various methods in Figure 1 (right). To ensure a fair comparison, we
 228 utilize the Qwen2.5-7B-Instruct model across all methods, serving both as the prompt generator and
 229 the Evaluation Model. Due to the crucial differences between PRL and RL Prompt (Deng et al., 2022),
 230 which made the latter impossible to reproduce fairly, we did not include RL Prompt in this section.
 231 However, we compared the prompts produced by the two methods. Details on reproduction and the
 232 comparison with RL Prompt are provided in Appendix E.

233

234 **Classification** For this task, we evaluate our method on a variety of datasets, including:

235 • **Binary sentiment classification**: SST-2 (Socher et al. (2013)), MR (Pang & Lee (2005)), CR (Hu
 236 & Liu (2004)). These datasets involve classifying whether the semantic meaning of a sentence is
 237 positive or negative.

238 • **Multiclass sentiment classification**: SST-5 (Socher et al. (2013)) requires classifying a sentence
 239 into one of five sentiment categories: terrible, bad, okay, good, or great. This is more
 240 challenging than binary sentiment classification as it involves recognizing more nuanced emotional
 241 intensities.

242 • **Question classification**: TREC Voorhees & Tice (2000) requires to categorize a question into
 243 one of six classes: Description, Entity, Expression, Human, Location, or Number.
 244 This task evaluates the model’s understanding of the semantic type of the question.

245 • **News classification**: AG’s News (Zhang et al. (2015)) requires to clasify news articles into one of
 246 four topics: World, Sports, Business, or Tech.

247 • **Subjectivity classification**: SUBJ (Pang & Lee (2004)) asks to determine whether a sentence is
 248 subjective or objective.

249

250 Table 1: Accuracy on classification tasks, averaged over three runs. Colours mark the best (red),
 251 second-best (orange) and third-best (yellow) numbers in each column; minor differences (≤ 0.05)
 252 are treated as ties. The right-most column shows the mean accuracy of each method across the seven
 253 datasets.

Method / Dataset	SST-2	CR	MR	SST-5	AG’s News	TREC	Subj	Avg
MI	92.70	87.25	87.40	52.31	82.29	69.20	57.95	75.59
NI	95.77	91.50	90.85	51.90	83.43	66.60	68.10	78.31
APO	93.71 \pm 0.25	93.48 \pm 0.24	89.97 \pm 1.37	53.94 \pm 0.29	83.73 \pm 0.31	71.30 \pm 1.90	69.80 \pm 5.96	79.42
APE	91.23 \pm 0.66	92.87 \pm 0.02	89.90 \pm 0.94	49.37 \pm 5.66	82.58 \pm 1.20	77.07 \pm 1.61	73.92 \pm 1.39	79.56
GA	94.65 \pm 1.04	92.75 \pm 0.40	90.45 \pm 0.72	53.76 \pm 1.13	82.24 \pm 1.00	79.20 \pm 2.83	74.93 \pm 3.12	81.14
DE	93.29 \pm 0.34	93.38 \pm 0.19	89.98 \pm 0.24	55.25 \pm 0.37	82.18 \pm 1.04	76.47 \pm 0.38	73.08 \pm 4.95	80.52
PRL (-PS) (ours)	95.98 \pm 0.19	92.17 \pm 0.02	90.72 \pm 0.05	54.80 \pm 1.10	83.84 \pm 0.33	72.00 \pm 0.86	66.98 \pm 2.86	79.50
PRL (ours)	96.32 \pm 0.04	92.83 \pm 0.24	91.27 \pm 0.05	56.21 \pm 0.15	84.36 \pm 0.08	77.07 \pm 2.36	76.90 \pm 0.95	82.14

261

262 We apply a unified reward function across all classification tasks, with reward parameters set as
 263 $r_{\text{format}} = r_{\text{alignment}} = 1$. The component r_{format} is specifically awarded when the Evaluation Model’s
 264 output is a valid label, i.e. one that belongs to the task’s set of permissible labels.

265

266 For example, in binary sentiment classification, a reward of +1 is given if the output is either
 267 positive or negative. This encourages the Prompt Generator to produce prompts that guide
 268 the Evaluation Model toward correct, task-appropriate responses.

269

270 The scoring function f used in all classification tasks is accuracy. We set the number of test prompts
 271 to $n_{\text{test}} = 10$. For most tasks we sample a subset of 100 samples of our training set. For CR and AG’s

270 News, due to longer average sentence lengths (which increases training and evaluation time), we
271 reduce this to 30 samples.

272 We present our results in Table 1, where our method achieves state-of-the-art performance on all
273 classification datasets. Notably, on the subjectivity classification task, our approach improves accuracy
274 by 19% compared to the manual prompt baseline.

275 Figure 3 presents a comparison of the manual prompt, the PRL-generated prompt, and the EvoPrompt-
276 generated prompt for the SUBJ classification task. As shown, the prompt generated by PRL is more
277 detailed and explicit, providing clearer guidance for the model. Moreover, it is automatically tailored
278 with task-specific few-shot examples, which contributes to its superior performance.

279 The remaining prompts for other classification tasks are included in Appendix C. As illustrated, all of
280 these prompts incorporate few-shot examples, emphasizing the critical role of few-shot prompting in
281 text classification. Interestingly, the examples generated by PRL do not appear in the training set,
282 indicating that the model is able to synthesize relevant and task-aligned examples autonomously. This
283 is in contrast to APO, which also can incorporate few-shot examples, but which are always selected
284 from the training set. Specifically, few-shot examples in APO are selected from training samples
285 which were incorrectly classified.

286 **Remark 2.** *In EvoPrompt (Guo et al., 2023) the task accuracy is computed by extracting the
287 corresponding word for the classification from the full response. Hence, even when additional text is
288 generated and hence the output does not strictly conform to the desired format, often a classification
289 can still be obtained. In our work we train and evaluate all baselines by only accepting a response
290 that is comprised of a single word denoting the classification. For summarization and simplification
291 tasks we do not modify the EvoPrompt training and evaluation process.*

PRL	
In this task, you will classify the sentiment of movie review sentences as ‘positive’ or ‘negative’. Examples: “The movie was thrilling and exciting” → positive; “The plot was boring and predictable” → negative. Return only the label.	
Acc.: 96.38	
<hr/>	
Manual Instruction	EvoPrompt (GA)
Please perform Sentiment Classification. Given the sentence, assign a label from [‘negative’, ‘positive’]. Return the label only.	Rephrase the movie-review snippet and assign a sentiment label from [‘positive’, ‘negative’]. Provide only the label.
Acc.: 92.70	Acc.: 95.83

304 Figure 3: Comparison of a manual instruction, the best PRL prompt, and the best EvoPrompt prompt
305 along with their accuracies on SST-2 task.

306 **Summarization** We evaluate PRL on a summarization task, where the model is required to extract
307 and condense the most important information from a given text. The objective is to generate a concise
308 summary that preserves key content while omitting irrelevant or redundant details.

309 Our experiments are conducted on the
310 SAMSUM dataset (Gliwa et al., 2019),
311 which comprises English-language chat
312 dialogues resembling real-life messenger
313 conversations. These dialogues were syn-
314 synthetically generated by linguists to reflect
315 informal, everyday exchanges and are ac-
316 companied by manually written abstrac-
317 tive summaries. To assess summarization
318 performance, we adopt the widely used
319 ROUGE metrics (Lin (2004)), reporting scores for the following variants:

320 Table 2: Text summarization results.

Method	ROUGE-1	ROUGE-2	ROUGE-L
MI	32.76	10.39	28.97
APE	37.12 ± 2.02	12.97 ± 0.74	33.32 ± 1.68
GA	39.69 ± 1.76	14.47 ± 1.00	35.84 ± 1.63
DE	33.91 ± 4.04	12.53 ± 1.47	31.05 ± 3.79
PRL	42.47 ± 0.83	16.17 ± 0.24	37.73 ± 0.36

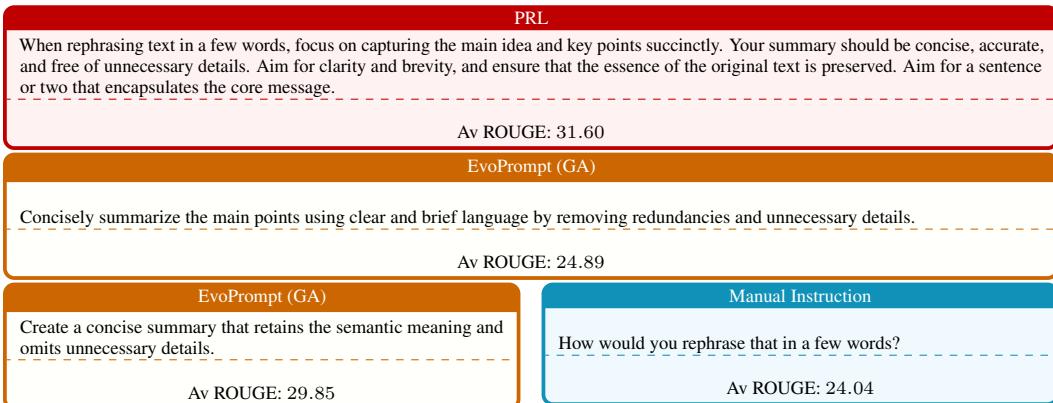
321 • **ROUGE-1:** Measures the overlap of individual words (unigrams) between the generated summary
322 and the reference summary, focusing on content selection.
323 • **ROUGE-2:** Measures the overlap of consecutive word pairs (bigrams), capturing the ability of the
324 model to preserve local coherence and phrasing.

324 • **ROUGE-L**: Measures the longest common subsequence of words between the generated and
 325 reference summaries, evaluating the overall fluency and structure alignment.
 326

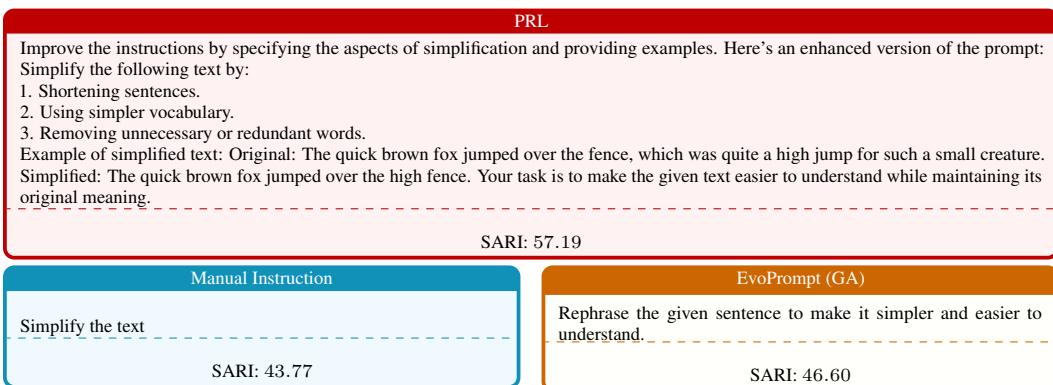
327 For this task, we set $r_{\text{format}} = 0$, as summarization does not involve selecting from a fixed label set.
 328 Instead, we use $r_{\text{alignment}}$, which computes the reward based on the average of the three ROUGE
 329 metrics.

330 The results, shown in Table 2, indicate that PRL significantly outperforms all baseline methods on the
 331 summarization task. Interestingly, PRL consistently opts to generate prompts without incorporating
 332 few-shot examples.

333 We include the generated prompts in Figure 4, along with the corresponding average ROUGE scores.
 334 Notably, the two prompts produced by EvoPrompt are nearly identical in structure and wording,
 335 yet they yield significantly different results. This underscores how seemingly minor variations in
 336 prompt phrasing that are semantically equivalent to humans can lead to substantial differences in
 337 LLM performance.



352 Figure 4: Comparison of averaged ROUGE metrics based on prompts generated by PRL, EvoPrompt,
 353 and Manual Instruction for the summarization task. This figure highlights the importance of precise
 354 prompt design: although the two prompts generated by EvoPrompt on two different seeds are
 355 superficially similar, they result in significantly different performance. In contrast, the PRL prompt is
 356 both more effective and better aligned with the task objective.



372 Figure 5: Comparison of SARI metric for prompts generated by PRL, EvoPrompt and Manual
 373 Instruction task.

374 **Simplification** We evaluate PRL on the sentence simplification task using the ASSET dataset
 375 (Alva-Manchego et al., 2020). ASSET is a crowdsourced corpus designed to assess the performance
 376 of simplification models across multiple rewriting operations, including lexical paraphrasing, sentence
 377 splitting, deletion, and reordering. Each of the original sentences is accompanied by human-written

378 simplifications, providing a rich set of references for evaluating model outputs. This multi-reference
379 setup enables more robust and comprehensive evaluation of simplification systems.
380

381 To evaluate simplification quality, we adopt the SARI metric Xu et al. (2016), which compares the
382 system output against both the original sentence and a set of reference simplifications. SARI assesses
383 the quality of words that are added, deleted, and kept by the system. It has been shown to correlate
384 well with human judgments of simplicity.

385 We set $r_{\text{format}} = 0$ for this task, as there is no fixed output format to
386 enforce. For the alignment reward, we use the SARI metric. For the final
387 scoring function, we also use the SARI score.

388 The results are presented in Table 3. Our baselines perform on average
389 comparable to a manually written prompt. Generated prompts from PRL,
390 EvoPrompt, and Manual Instruction are provided in Figure 5. For this
391 task baselines generated comparatively simple prompts which fail to
392 provide sufficient guide the model’s output. In contrast, the PRL prompt
393 is precise, comprehensive, includes a well-constructed example and leads
394 to a substantial performance improvement.

395 **GSM8K** To ascertain robustness of our method w.r.t. other types of
396 problems, we have tested PRL and the other baselines on the mathematical reasoning and problem-
397 solving benchmark dataset GSM8K Cobbe et al. (2021). The experiment, including training, was
398 performed under two evaluation protocols: (1) the answer is considered correct only when the LLM
399 output matches exactly the correct integer, and (2) the answer is considered correct if the correct
400 integer appears anywhere in the LLM output. The second protocol allows the evaluator model to
401 engage in intermediate reasoning steps. We see in Table 4 that our method generalizes across problem
402 domains yielding also SoTA results for reasoning based problems.

403 Interestingly, across all of our experiments, the results generally differ from those reported in the
404 original EvoPrompt paper, which claimed that the differential evolution (DE) variant of prompt
405 generation outperforms the genetic algorithm (GA) variant. In contrast, across all four types of tasks
406 we observe that the GA variant consistently yields superior accuracy compared to DE. We attribute
407 this discrepancy to the use of different underlying language models in our reproduction study. These
408 findings suggest that the relative effectiveness of EvoPrompt’s evolutionary strategies is sensitive to
409 the choice of the base model.

410
411 **Ablation Study: Influence of Prompt Selection** We
412 analyze the impact of the Prompt Selection process on
413 overall performance. In the ablation setting, instead of
414 selecting the best prompt iteratively during training, we
415 simply report the final prompt at the end of training. To
416 do so after training we sample n_{test} prompts to choose the
417 best one according to the validation set. This comparison
418 is performed across all classification tasks.

419 The results, shown in Table 1, demonstrate that Prompt
420 Sampling not only improves final performance but also
421 enhances training efficiency. By selecting strong prompts
422 throughout the training process, Prompt Selection leads to
423 both better and faster results. We believe this phenomenon arises from two main factors. First, the
424 use of reinforcement learning to train our LLMs, which always has significant variance. Second, our
425 method is vulnerable to overfitting due to the limited number of samples in the training dataset.

426
427 **Ablation Study: Influence of Reasoning** To investigate the role of explicit reasoning in our
428 method, we conduct an ablation study based on the prompt design illustrated in Appendix B. In the
429 standard setup, the model is instructed to perform a reasoning process before producing the final
430 answer. To evaluate the effect of removing this step, we modify the prompt to omit the reasoning
431 phase and instead directly request the model to generate the answer within `<answer> </answer>`
tokens.

Table 3: Task simplification results.

Method	SARI
MI	43.77
APE	45.33 \pm 0.83
GA	46.25 \pm 0.47
DE	45.79 \pm 0.35
PRL	52.26 \pm 3.51

Table 4: Results on GSM8K. Super-
scripts ⁽¹⁾ and ⁽²⁾ indicate the evaluation
protocol.

Method	Accuracy ⁽¹⁾	Accuracy ⁽²⁾
MI	22.20	78.20
APE	27.17 \pm 0.65	83.43 \pm 1.98
GA	26.38 \pm 1.10	81.62 \pm 1.38
DE	26.38 \pm 1.10	79.52 \pm 0.45
PRL	29.30 \pm 0.05	86.15 \pm 0.55

432 We perform this experiment on the SUBJ dataset, training two identical models, except for either using
433 or or omitting reasoning. This difference leads to a substantial drop in accuracy, from 75.05 (± 1.63)
434 with reasoning to 60.12 (± 1.62) without reasoning, showing the importance of explicit reasoning in
435 our approach.
436

437 **Ablation Study: PRL on Larger Models** It is commonly observed that larger, more powerful
438 models are less sensitive to prompt variations. To investigate this phenomenon, we use Qwen2-
439 {7B|14B|32B}-Instruct as the Evaluation Models, while keeping Qwen2-7B-Instruct as the Prompt
440 Generator. For this experiment we utilize 6 A100 GPUs for the 32B model and 4 A100 GPUs for the
441 14B model.
442

443 We compare the performance using the base
444 prompt against prompts generated by PRL on
445 the MR dataset. The results, presented in Ta-
446 ble 5, show that all model sizes benefit from
447 PRL, demonstrating two key findings: (i) Even
448 larger LLMs remain vulnerable to prompt varia-
449 tion. (ii) PRL is capable of effectively tailoring
450 prompts for both smaller and larger models, sig-
451 nificantly improving their performance.
452

453 **Ablation Study: PRL Beyond Qwen** We test
454 the cross model robustness of PRL using LLaMA 3.1-8B- Instruct AI@Meta (2024). First, we assess
455 prompt portability: prompts learned by PRL and benchmark methods with Qwen2.5-7B- Instruct
456 are applied unchanged to LLaMA-3.1-8B Instruct for summarization. As shown in Table 6, these
457 prompts transfer well and remain competitive with strong baselines, indicating that PRL produces
458 prompts that generalize beyond the backbone used to train them. Second, motivated by obser-
459 vations of potential spurious gains when training with Qwen under weak reward signals Shao et al. (2025), we
460 retrain the prompt generator on LLaMA-3.1-8B Instruct (reported as PRL-LLaMA in Table 6). The
461 resulting prompts achieve equal or better ROUGE 1/2 than the Qwen trained counterpart. Together,
462 these findings suggest that PRL’s improvements are not an artifact of a particular model family: PRL
463 trained prompts both transfer across architectures and train effectively on alternative backbones.
464

465 We present two additional ablation study experiments in Appendix D.
466

467 5 CONCLUSIONS & LIMITATIONS

468

469 We have introduced an RL-based algorithm for prompt generation that consistently outperforms other
470 approaches across classification, summarization and simplification tasks.
471

472 Even though we use recent LLMs, bet-
473 ter prompts can still significantly increase
474 task performance, indicating that LLMs
475 are still sensitive to differences in seman-
476 tically equivalent prompts. Interestingly,
477 this holds true even for the largest LLM
478 we have tested on, the Qwen2-32B-instruct
479 model. Additionally, our results under-
480 score that there is no single recipe to gen-
481 erate good prompts across different tasks, as
482 some tasks benefit from few-shot examples
483 or other subtle semantic cues, while others
484 do not. Our approach effectively navigates
485 such delicate prompt crafting issues. In line with current work our prompt generator profits from
486 increased inference time compute by allowing it to reason about effective prompts.
487

488 Currently, improved performance is obtained via a significantly greater computational expense than
489 used by the comparatively simpler related work. Another limitation is that we retrain the prompt
490 generator for each new task. A universal prompt generator is a desideratum.
491

492 Table 5: Comparison of accuracy across different
493 model sizes of the Evaluation Model on the MR
494 dataset.
495

Parameters	7B	14B	32B
MI	87.40	89.20	90.15
PRL	91.27 \pm 0.05	92.03 \pm 0.13	92.52 \pm 0.02

500 Table 6: Task summarization results evaluated using
501 LLaMA.
502

Method	ROUGE-1	ROUGE-2	ROUGE-L
MI	33.33	10.77	27.12
APE	34.12 \pm 3.86	12.90 \pm 2.56	25.72 \pm 3.63
GA	38.73 \pm 2.36	14.69 \pm 1.01	30.38 \pm 2.94
DE	34.25 \pm 3.56	11.57 \pm 2.86	25.43 \pm 3.65
PRL	39.38 \pm 2.82	15.77 \pm 1.56	30.57 \pm 2.80
PRL-LLaMA	43.70 \pm 0.02	16.66 \pm 0.25	37.46 \pm 0.5

486 REFERENCES

487

488 AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.

490 Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lucia
491 Specia. Asset: A dataset for tuning and evaluation of sentence simplification models with multiple
492 rewriting transformations. *arXiv preprint arXiv:2005.00481*, 2020.

493 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
494 Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of thoughts:
495 Solving elaborate problems with large language models. In *Proceedings of the AAAI Conference
496 on Artificial Intelligence*, volume 38, pp. 17682–17690, 2024.

497 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
498 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
499 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

500 Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the potential
501 of prompt engineering in large language models: a comprehensive review. *arXiv preprint
502 arXiv:2310.14735*, 2023.

503 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting:
504 Disentangling computation from reasoning for numerical reasoning tasks. *arXiv preprint
505 arXiv:2211.12588*, 2022.

506 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
507 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
508 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
509 2021.

510 Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
511 Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
512 learning. *arXiv preprint arXiv:2205.12548*, 2022.

513 Bogdan Gliwa, Iwona Mochol, Maciej Bieseck, and Aleksander Wawer. Samsum corpus: A human-
514 annotated dialogue dataset for abstractive summarization. *arXiv preprint arXiv:1911.12237*,
515 2019.

516 Ryan Greenblatt. Getting 50% (sota) on ARC-AGI with GPT-4o,
517 2024. URL <https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt>.

518 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
519 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
520 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

521 Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
522 and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
523 prompt optimizers. *arXiv preprint arXiv:2310.08510*, 2023.

524 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
525 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

526 Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In *Proceedings of the Tenth
527 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 168–177.
528 Association for Computing Machinery, 2004.

529 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
530 Branches Out: Proceedings of the ACL-04 Workshop*, 2004.

531 Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
532 via natural language crowdsourcing instructions. *arXiv preprint arXiv:2104.08773*, 2021.

540 Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summarization
541 based on minimum cuts. In *Proceedings of the 42nd Annual Meeting of the Association for*
542 *Computational Linguistics*, pp. 271–278. Association for Computational Linguistics, 2004.

543 Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
544 with respect to rating scales. In *Proceedings of the 43rd Annual Meeting of the Association for*
545 *Computational Linguistics*, pp. 115–124. Association for Computational Linguistics, 2005.

546 Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
547 optimization with "gradient descent" and beam search. *arXiv preprint arXiv:2305.03495*, 2023.

548 Amirhossein Razavi, Mina Soltangheis, Negar Arabzadeh, Sara Salamat, Morteza Zihayat, and
549 Ebrahim Bagheri. Benchmarking prompt sensitivity in large language models. In *European*
550 *Conference on Information Retrieval*, pp. 303–313. Springer, 2025.

551 Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond
552 the few-shot paradigm. In *Extended abstracts of the 2021 CHI conference on human factors in*
553 *computing systems*, pp. 1–7, 2021.

554 Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
555 A systematic survey of prompt engineering in large language models: Techniques and applications.
556 *arXiv preprint arXiv:2402.07927*, 2024.

557 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
558 Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
559 in rlrv. *arXiv preprint arXiv:2506.10947*, 2025.

560 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, and Junxiao Song. Deepseekmath: Pushing
561 the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*,
562 2024.

563 Sonish Sivarajkumar, Mark Kelley, Alyssa Samolyk-Mazzanti, Shyam Visweswaran, and Yanshan
564 Wang. An empirical evaluation of prompting strategies for large language models in zero-shot
565 clinical natural language processing: algorithm development and validation study. *JMIR Medical*
566 *Informatics*, 12:e55318, 2024.

567 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
568 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
569 treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language*
570 *Processing*, pp. 1631–1642. Association for Computational Linguistics, 2013.

571 Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In *Proceedings of*
572 *the 23rd annual international ACM SIGIR conference on Research and development in information*
573 *retrieval*, pp. 200–207, 2000.

574 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
575 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
576 *neural information processing systems*, 35:24824–24837, 2022.

577 Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statistical
578 machine translation for text simplification. *Transactions of the Association for Computational*
579 *Linguistics*, 4:401–415, 2016.

580 Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B Khalil. Llms and the abstraction
581 and reasoning corpus: Successes, failures, and the importance of object-based representations.
582 *arXiv preprint arXiv:2305.18354*, 2023.

583 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
584 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint*
585 *arXiv:2412.15115*, 2024.

586 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
587 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
588 *information processing systems*, 36:11809–11822, 2023.

594 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
595 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
596 models. *arXiv preprint arXiv:2205.01068*, 2022.

597

598 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
599 classification. In *Advances in Neural Information Processing Systems*, volume 28, 2015.

600 Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
601 Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight
602 infrastructure for fine-tuning, 2024. URL <https://arxiv.org/abs/2408.05517>.

603

604 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
605 Jimmy Ba. Large language models are human-level prompt engineers. In *The Eleventh International
606 Conference on Learning Representations*, 2022.

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX - PRL PSEUDO CODE**
649

650 In Algorithm 1 we provide the PRL algorithm.
651

652 **Algorithm 1** PRL
653

654 **Require:** $\pi_\theta^{\text{generator}}$: prompt generator
655 π^{eval} : frozen Evaluation Model
656 T, V : training and validation datasets
657 n, n_{test} : number of prompts during training/Prompt Selection
658 k : number of samples per iteration
659 I : total number of iterations
660 t : Prompt Selection frequency
661 R : reward operator
662 f : scoring function
663 1: $\text{best_score} \leftarrow 0, \text{best_prompt} \leftarrow \text{``"}$
664 2: **for** $i = 1$ to I **do**
665 3: Sample k training samples $D \sim T$
666 4: Generate answers $o_1, \dots, o_n \sim \pi_\theta^{\text{generator}}$
667 5: Extract answers p_1, \dots, p_n from o_1, \dots, o_n
668 6: Compute rewards $r_j = R(\pi^{\text{eval}}, D, p_j, o_j)$ for each $j = 1, \dots, n$
669 7: Update θ using GRPO with rewards $\{r_j\}$
670 8: **if** $i \bmod t = 0$ **then**
671 9: Generate test prompts $p_1, \dots, p_{n_{\text{test}}} \sim \pi_\theta^{\text{generator}}$
672 10: **with** `torch.no_grad()`:
673 11: Compute scores $s_j = f(\pi^{\text{eval}}, V, p_j)$
674 12: Let $j^* = \arg \max_j s_j$
675 13: **if** $s_{j^*} > \text{best_score}$ **then**
676 14: $\text{best_score} \leftarrow s_{j^*}, \text{best_prompt} \leftarrow p_{j^*}$
677 15: **end if**
678 16: **end if**
679 17: **end for**
680 18: **return** best_prompt
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **B APPENDIX - PRL PROMPT FORMAT**
703

704 We present below the prompt format used by PRL. In the system prompt, we instruct the model
705 to generate a reasoning trace enclosed within `<think>` and `</think>` tokens, followed by the final
706 answer encapsulated within `<answer>` and `</answer>` tokens. The user message provides the base
707 prompt that it should refine. The model's objective is to produce the prompt that is better than the
708 best prompt.

System Prompt	User Prompt
A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <code><think></code> and <code><answer></code> tags, respectively, i.e., <code><think></code> reasoning process here <code></think><answer></code> answer here <code></answer></code>	Your task is to refine a base prompt for another model that performs a sentiment classification task. Improve the instructions to enhance the model's performance. The base prompt: In this task, you are given sentences from movie reviews. The task is to classify a sentence as 'positive' if the sentiment of the sentence is positive or as 'negative' if the sentiment of the sentence is negative. Return label 'positive' or 'negative' only without any other text.

717 Figure 6: Prompt used by PRL
718
719

720 **C APPENDIX – PROMPTS FOR CLASSIFICATION**
721

722 This subsection provides the most effective prompts used for the classification task in our method.
723

PRL
In this task, you are to classify the opinion in a given sentence from a review as either subjective or objective. - A subjective sentence expresses personal feelings, opinions, or attitudes. - An objective sentence presents facts that can be verified and are not influenced by personal feelings. Examples: - Subjective: "This movie is the best I've ever seen." (Opinion expressed) - Objective: "The movie won five awards this year." (Fact stated) When classifying, focus only on the opinion, not the facts. Return the label 'subjective' or 'objective' only, without any additional text. Example: Input: "The food was delicious." Output: subjective Acc.: 77.95

734 Figure 7: Best prompt generated by PRL for SUBJ classification task along with accuracy.
735

PRL
In this task, you will classify the sentiment of movie review sentences as 'positive' or 'negative'. Examples: "The movie was thrilling and exciting" -> positive; "The plot was boring and predictable" -> negative. Return only the label: 'positive' or 'negative'. Acc.: 96.38

743 Figure 8: Best prompt generated by PRL for SST2 classification task along with accuracy.
744
745
746
747
748
749
750
751
752
753
754
755

756

757

PRL

758

759

In this task, you are given sentences from movie reviews. Your goal is to classify each sentence as 'positive' or 'negative' based on its sentiment. Pay close attention to the context and nuances in the text, as the sentiment might not be explicitly stated. Examples:

- "The acting was superb, and the plot was engaging." -> positive
- "The movie was so slow and boring that I almost fell asleep." -> negative

Return only the label 'positive' or 'negative' without any additional text.

762

Acc.: 93.00

763

764

Figure 9: Best prompt generated by PRL for CR classification task along with accuracy.

765

766

767

768

PRL

769

770

In this task, you are given a sentence from a movie review. Classify the sentence as 'positive' if the sentiment is positive, or as 'negative' if the sentiment is negative. Provide only the label 'positive' or 'negative' without any additional text. Examples:

- "The acting was superb and the plot was engaging." -> positive
- "The movie was boring and the storyline was predictable." -> negative

772

Acc.: 91.30

773

774

Figure 10: Best prompt generated by PRL for MR classification task along with accuracy.

775

776

777

778

PRL

779

In this task, you are given sentences from movie reviews. Your goal is to classify the sentiment of each sentence as 'terrible', 'bad', 'okay', 'good', or 'great'. Be as accurate as possible. Here are the guidelines for each category:

- 'terrible': The sentence expresses extreme dissatisfaction or negative feelings.
- 'bad': The sentence conveys negative feelings but not as strongly as 'terrible'.
- 'okay': The sentence is neutral or has mixed feelings with no strong positive or negative sentiment.
- 'good': The sentence conveys positive feelings but not as strongly as 'great'.
- 'great': The sentence expresses strong positive feelings or high satisfaction.

Consider the overall tone and specific positive or negative words in the sentence to determine the closest sentiment.

If you are not sure, choose the closest option.

Return the label 'terrible', 'bad', 'okay', 'good', or 'great' only without any additional text.

787

Acc.: 56.38

788

Figure 11: Best prompt generated by PRL for SST-5 classification task along with accuracy.

789

790

791

792

793

PRL

794

In this task, you will be given a news article and asked to classify it into one of the four predefined categories: 'World', 'Sports', 'Business', or 'Tech'.

Follow these detailed instructions to ensure accurate classification

1. Read the article thoroughly to understand its main subject matter.

2. Determine which of the following categories the article's main topic most closely aligns with:

- 'World': articles covering global news, politics, international affairs, etc.
- 'Sports': articles discussing various sports, competitions, athletes, etc.
- 'Business': articles focusing on financial news, corporate activities, markets, etc.
- 'Tech': articles about technology, innovations, companies, gadgets, etc.

3. If the article's content is not clearly related to any of these categories, choose the closest option based on the predominant subject matter.

4. Return the label of the chosen category as a single word without any additional text or explanations, e.g., 'World', 'Sports', 'Business', or 'Tech'.

Example:

Article: "Apple Launches New iPhone Model with Improved Camera Features" Label: Tech

Article: "China and the US Reach a New Trade Agreement" Label: World

Article: "Local Soccer Team Qualifies for the World Cup" Label: Sports

Article: "Oil Prices Drop as OPEC Decides to Cut Production" Label: Business

806

Acc.: 84.42

807

808

Figure 12: Best prompt generated by PRL for AG's News classification task along with accuracy.

809

810

PRL

811

Please perform a Question Classification task. Given a question, classify it into one of the following categories:

812

- ****Description****: Questions asking for descriptions or explanations.
- ****Entity****: Questions asking about specific things, objects, or entities.
- ****Expression****: Questions asking about how something is expressed or phrased.
- ****Human****: Questions asking about people, their characteristics, or roles.
- ****Location****: Questions asking about places or geographical locations.
- ****Number****: Questions asking for numerical information or quantities.

813

Return the label 'Description', 'Entity', 'Expression', 'Human', 'Location', or 'Number' only without any additional text. Example:

814

Question: "What is the capital of France?" Label: Location

815

Question: "How do you say 'hello' in Spanish?" Label: Expression

816

Question: "Who is the CEO of Apple?" Label: Human

817

Acc.: 78.60

818

819

820

821

Figure 13: Best prompt generated by PRL for TREC classification task along with accuracy.

822

823

824

D APPENDIX - ADDITIONAL ABLATION STUDY EXPERIMENTS

825

826

Impact of Prompt Sampling Size in Prompt Selection We investigate how the number of prompt samples used during inference in the Prompt Selection technique affects final performance. Specifically, we evaluate PRL on the MR classification dataset while varying the number of sampled prompts: $n_{\text{test}} = 1, 5, 10$, and 15 . Each configuration is run three times, and we report the average accuracy. The results are presented in Table 7.

827

828

829

830

Performance remains stable when using more than five prompt samples, while one prompt only leads to a performance drop. Although the results suggest that five prompts are sufficient for stable performance, we recommend using ten prompts to provide an additional buffer against potential sensitivity in other tasks or datasets.

831

832

833

834

Table 7: Model accuracy vs. number of test samples

n_{test}	1	5	10	15
Accuracy	90.92 ± 0.17	91.25 ± 0.15	91.27 ± 0.11	91.35 ± 0.11

835

836

837

Influence of Few-Shot Examples To ascertain the importance of the automatic inclusion of few-shot examples, we manually remove them from prompt for which PRL provided them and measure performance, see Table 8 for results on a subset of classification tasks where PRL produced few-shot examples. We see that indeed few-shot examples significantly enhance quality.

838

839

840

841

842

843

844

845

Table 8: Accuracy on different datasets with and without few-shot learning.

Dataset	Acc. w/o few-shot	Acc. with few-shot
SUBJ	66.75	77.95
CR	92.40	93.00
SST-2	95.00	96.38
MR	90.95	91.30

846

847

848

E APPENDIX – BENCHMARK RESULTS REPRODUCTION

849

850

851

852

853

854

855

856

To provide a fair comparison with existing benchmarks (APE, APO, and EvoPrompt), we reproduced their results using Qwen2.5-7B-Instruct as both the Prompt Generator and the Evaluation Model, terms named differently in the original papers but are functionally equivalent. The evaluation procedure is identical for all the benchmarks and for PRL, as follows:

857

858

859

860

- For classification tasks, only a response consisting of a single word denoting the correct class is considered a valid answer.
- For summarization and simplification tasks, the entire response generated by the Evaluation Model is used to compute ROUGE/SARI metrics.

864 • For GSM8K task, a response including only the proper integer is considered a valid answer.
 865

866 To ensure that only the label is output by the Evaluation Model, we appended the following instruction
 867 to the end of each prompt in the initial population:

868 Return only label {list of labels} without any other
 869 text.

871 For example, in the case of the SST-5 dataset, the appended sentence was:
 872

873 Return only label 'terrible', 'bad', 'okay', 'good' or
 874 'great' without any other text.

876 In GSM8K task, the instruction to output only correct integer is added to the initial prompt but only
 877 when using the evaluation protocol (1), see paragraph GSM8K.

879 Depending on the benchmark, the initial population consisted of manual prompts (see MI in Baseline
 880 Methods) and/or automatic prompts generated by Qwen, following the prompt generation method
 881 described in (Zhou et al., 2022).

882 **APO** Following the EvoPrompt (Guo et al., 2023) experimental protocol, we ran the APO algorithm
 883 using the manual prompt with the best performance as the initial population. However, unlike the
 884 EvoPrompt authors, we applied the method to all classification tasks, not only binary ones. APO was
 885 not evaluated on text generation tasks (i.e., summarization and simplification), as its optimization
 886 algorithm fundamentally relies on binary feedback (correct vs incorrect), which is incompatible with
 887 continuous scores such as ROUGE or SARI.

888 The default parameter setup provided by (Pryzant et al., 2023) was used for each run.

890
 891 **APE and EvoPrompt** Following (Guo et al., 2023), the development set size was set to 200
 892 for classification tasks and 100 for simplification and summarization tasks. Each run included 10
 893 iterations. The 10 best prompts for each task served as the initial population (selected from automatic
 894 prompts for APE and from both automatic and manual prompts for EvoPrompt).

895 **RLPrompt** A direct adaptation of RLPrompt (Deng et al., 2022) to PRL setting was not feasible,
 896 since it relies on a fundamentally different evaluation paradigm (selecting the token with the highest
 897 probability from a list of predefined verbalizers), much smaller training datasets, and significantly
 898 smaller language models. Instead of retraining RLPrompt on Qwen (which would be meaningless
 899 in our opinion), we compared the prompts generated by PRL with those reported in the RLPrompt
 900 paper, using RLPrompt's own evaluation method. To ensure fairness despite differences in prompt
 901 templates, we evaluated each method with three variants:

902 • sample + prompt; without chat template,
 903 • sample + prompt; with chat template,
 904 • prompt + sample; with chat template

905 and selected the best score. This approach is justified by the RLPrompt authors' claim that its prompts
 906 exhibit inter-model generalizability. Under this setup, PRL surpasses RLPrompt on every task except
 907 SUBJ and achieves a higher average score by 16.5% (see Table 9).

909
 910 Table 9: Accuracy achieved by prompts from RLPrompt and PRL on classification tasks. Red colour
 911 mark the best result. The right-most column shows the mean accuracy of each method across the
 912 seven datasets.

913 Method / Dataset	SST-2	CR	MR	SST-5	AG's News	TREC	Subj	Avg
914 RLPrompt (2 tokens)	65.79	58.65	72.45	40.23	70.42	38.40	68.90	59.26
915 RLPrompt (5 tokens)	82.98	76.20	82.25	27.24	65.07	39.60	74.10	63.92
916 PRL (ours)	95.55	88.60	91.85	56.02	87.39	76.40	67.10	80.42

918
919
920

**F APPENDIX – DISCLOSING STATEMENT ON THE USE OF LARGE LANGUAGE
MODELS**

921
922
923
924

LLMs were used solely as an assistive tool for text formatting and minor language refinement. They did not contribute to research ideation, experimental design or analysis. The authors take full responsibility for the final content of this paper.

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971