
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PRL: PROMPTS FROM REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective prompt engineering remains a central challenge in fully harnessing the
capabilities of LLMs. While well-designed prompts can dramatically enhance
performance, crafting them typically demands expert intuition and a nuanced un-
derstanding of the task. Moreover, the most impactful prompts often hinge on subtle
semantic cues, ones that may elude human perception but are crucial for guiding
LLM behavior. In this paper, we introduce PRL (Prompts from Reinforcement
Learning), a novel RL-based approach for automatic prompt generation. Unlike
previous methods, PRL can produce novel few-shot examples that were not seen
during training. Our approach achieves state-of-the-art performance across a range
of benchmarks, including text classification, simplification, summarization, and
GSM8K. On the classification task, it surpasses prior methods by 2.58% over APE
and 1.00% over EvoPrompt. Additionally, it improves the average ROUGE scores
on the summarization task by 4.32 over APE and by 2.12 over EvoPrompt and
the SARI score on simplification by 6.93 over APE and by 6.01 over EvoPrompt.
On the GSM8K mathematical reasoning benchmark, PRL further improves ac-
curacy by 2.72% over APE and by 4.53% over EvoPrompt. We will make our
implementation publicly available upon acceptance.

Prompt
Generator

Prompt
EvaluatorReward

Reasoning

Task Score

Up
da

te
θ

Method Gen. Ref. Few-
shot

Manual Instr. ✗ ✗ ✗

APE ✓ ✗ ✗

EvoPrompt ✓ ✓ ✗

APO ✓ ✓ ∼∼
PRL ✓ ✓ ✓

✓ supported ✗ not supported ∼∼ limited

Figure 1: Left: Our RL-based prompt optimization cycle (overview). Right: Comparison of prompt-
engineering methods. PRL automates both prompt generation and refinement and, uniquely, syn-
thesizes novel task-specific few-shot examples. The yellow tilde (∼∼) for APO indicates limited
few-shot support—its examples are drawn from training data, which restricts performance—whereas
PRL creates new instances not seen during training.

1 INTRODUCTION

Prompt engineering has emerged as a key technique for enhancing the performance of LLMs (Sahoo
et al., 2024; Chen et al., 2023). By crafting precise input prompts, LLMs can be guided to perform
complex tasks without requiring additional fine-tuning. However, the effectiveness of a prompt
often hinges on subtle phrasing. As shown by Razavi et al. (2025), even minor rewordings can
significantly alter model predictions, underscoring the fragility of prompt-based control. Moreover,
the DeepSeek-R1 paper Guo et al. (2025) states that even a model as large as DeepSeek-R1, with 671
billion parameters, is sensitive to prompts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Few-shot prompting, in which a prompt includes a small set of input-output examples, is another
widely used approach to guide LLMs. While often beneficial, Reynolds & McDonell (2021) demon-
strate that zero-shot prompting can sometimes outperform few-shot approaches, suggesting that the
usefulness of examples may depend on task familiarity or pretraining exposure. These findings col-
lectively highlight the challenge of designing effective prompts and motivate the need for automated,
task-specific prompt optimization.

Recent work has explored automatic prompt generation (Zhang et al., 2022) and refinement (Guo
et al., 2023; Pryzant et al., 2023). Existing methods, with the partial exception of (Pryzant et al.,
2023), fail to integrate tailored few-shot examples. We propose PRL, a RL-based prompt optimization
algorithm based on reinforcement learning. PRL is capable of automatically determining whether
few-shot examples should be included and if so, to create them to maximize task performance.
Interestingly, the incorporation of few-shot examples is spontaneously emerging during the prompt
generation training and is not explicitly encouraged. Additionally, PRL incorporates a reasoning
phase prior to prompt generation, where the model first produces a rationale to guide its final output.
We additionally mitigate training instability and noisy feedback with a prompt selection strategy that
improves robustness in the limited data setting.

Contributions. This paper makes the following contributions:

• We propose PRL, to our knowledge the first RL-based prompt optimization method capable of
generating and selecting novel task-specific few-shot examples.

• We demonstrate the effectiveness of PRL across text classification, summarization, simplification
and mathematical reasoning tasks.

• We show that integrating explicit reasoning before answer generation significantly boosts perfor-
mance, echoing findings by Guo et al. (2025).

• We provide detailed ablation studies to evaluate the impact of each component.
• Our results suggest that RL-based optimization naturally leads to the emergence of few-shot

prompting behavior.

2 RELATED WORK

Prompt Engineering enhances model performance without retraining, offering a cost-effective
solution. Chain-of-Thought (CoT) prompting (Wei et al., 2022) improves reasoning by including
intermediate steps. Tree-of-Thought (ToT) (Yao et al., 2023) extends this by exploring multiple
reasoning paths, while Program-of-Thoughts (Chen et al., 2022) and Graph-of-Thoughts (Besta et al.,
2024) further enrich prompts using programmatic and graph structures.

Few-shot prompting (Brown et al., 2020) improves performance by embedding task examples in
prompts, proving effective in areas like puzzle solving and evidence extraction (Xu et al., 2023;
Greenblatt, 2024; Sivarajkumar et al., 2024). However, such examples can sometimes hurt per-
formance (Reynolds & McDonell, 2021), making their use highly task-dependent. Our method
automatically learns whether and how to include few-shot examples based on task performance.

Automated Prompt Engineering improves task performance by replacing manual prompt design
with automated methods. The work most closely related to ours is RLPrompt Deng et al. (2022),
which also uses RL to automatically generate prompts. However, the authors only learn a small
policy network and are restricted to short prompts of at most five tokens. Additionally, these prompts
are ungrammatical gibberish text, hence lack interpretability. Moreover, their pipeline is more
complex and involves reward stabilization. The Automatic Prompt Engineer (APE) Zhou et al. (2022)
generates prompt candidates from input-output examples and filters them based on performance. As
no gains were observed from in-sample refinement, APE remains a pure generation method. Pryzant
et al. (2023) introduced Automatic Prompt Optimization (APO), which iteratively improves prompts
using natural language critiques, simulating gradient descent. APO includes few-shot examples in its
prompt, but is restricted to examples seen during training. It enhances efficiency via minibatching,
beam search, and bandit selection. Guo et al. (2023) proposed EvoPrompt, which evolves a population
of prompts with LLMs and evolutionary operators, achieving strong results without needing model
gradients. PRL is, to our knowledge, the only method that can create novel few-shot examples not
seen during training.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

πgenerator
θ

o1

on

p1

pn

πeval
�

πeval
�

r1

rn

Update θ

� Predictions ù Prompts � Evaluation ✓ Rewards

Figure 2: Training scheme of PRL. First, the Prompt Generator πgenerator
θ generates a set of outputs

o1, . . . , on (reasoning + generated prompt) from which the corresponding prompts p1, . . . , pn are
extracted. Each prompt is then evaluated by the Evaluation Model πeval (a language model with
frozen parameters), which produces corresponding answers. These answers, along with the outputs
from the Prompt Generator, are used to compute rewards r1, . . . , rn. Finally, the rewards are used to
update the parameters of the Prompt Generator through RL.

3 METHOD

Our method comprises the following components:

• Prompt Generator: A trainable language model that generates prompts with help of a reasoning
process, see the prompt formats in Appendix B.

• Evaluation Model: A frozen LLM that produces an answer based on the generated prompt.
• Prompt Selection: We learn the prompt generator through RL with a reward incorporating both

formatting and task performance. We choose the best overall prompt by regularly querying the
prompt generator model for prompt candidates and evaluate those.

We now provide a detailed description of each component of our method.

Reward Function Our reward signal is composed of two parts: formatting rewards for the Prompt
Generator and task performance rewards for the evaluation model.

Prompt Generator Reward: We assess the format of the Prompt Generator’s output using the following
scheme:

• A reward of rtoken
4 is assigned for the correct usage of each of the four key tokens: <think>,

</think>, <answer>, and </answer>, provided that each token appears exactly once. If all
tokens are used correctly, the model receives the full token reward of rtoken. This encourages the
model to output both a reasoning trace and a final answer, each clearly marked and occurring only
once.

• An additional reward of rstructure is granted if the generated response exactly matches the required
structure: <think> reasoning trace </think> <answer> final answer </answer>. This
structural reward ensures that the model produces a well-formed response consisting of a reasoning
trace followed by a final answer and nothing beyond this expected format.

Evaluation Model Reward: To assess the utility of the prompts, we assign:

• A reward of rformat is assigned if the Evaluation Model’s response follows the required format. This
reward is applicable only when the output must adhere to a specific structure, such as selecting a
predefined class; otherwise, rformat is set to 0.

• A reward of ralignment is granted if the model’s response is factually correct or aligned with the
intended task objective. This reward is typically based on task-specific metrics such as accuracy or
any other evaluation criterion that reflects successful performance.

These rewards are task-specific and will be discussed in detail in the experimental section for each
respective task.

The overall reward function R is the sum of all elementary applicable rewards rtoken, rstructure, rformat
and ralignment.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Prompt Generator is a language model designed to refine a given base prompt. First, it generates
a reasoning trace about the refinement process, followed by the production of the final prompt (an
example is shown in Appendix B). During training, the Prompt Generator learns task semantics and
produces suitable prompts, potentially incorporating examples for few-shot prompting.

At each training step, the Prompt Generator produces a set of outputs o1, . . . , on from which candidate
prompts p1, . . . , pn are extracted. These prompts are then passed to the Evaluation Model, which
generates answers conditioned on each prompt. We denote the Prompt Generator as πgenerator

θ .

Evaluation Model. The Evaluation Model assesses the quality of each prompt generated by the
Prompt Generator by evaluating its performance on a randomly sampled subset of the training data.
For each prompt, a reward is computed for every observation based on its effectiveness, and these
rewards are averaged to obtain a final score for the prompt. The Evaluation Model is implemented as
a frozen language model, used exclusively for inference. We denote the Evaluation Model as πeval.

Remark 1. We have chosen to freeze the evaluation model, since then our method can in principle be
used with closed-source LLMs. It also conforms to the setting of existing work that did not finetune
the LLM executing the prompt.

Optimization After obtaining a reward for each prompt, we optimize the Prompt Generator using
the Group Relative Policy Optimization (GRPO) update rule (Shao et al., 2024). A key advantage
of GRPO is that it eliminates the need for a separate critic network, significantly reducing memory
consumption during the reinforcement learning process. The illustration of this process can be found
in Figure 2.

Prompt Selection As the prompt generator evolves during training and each version generates
multiple prompts, we obtain a large selection of candidate prompts. We sample in a regular interval a
number of prompts and test them on the validation set and keep the overall best one according to the
task metric used. The full algorithm is showcased in the Appendix A.

4 EXPERIMENTS

Experimental Setup We test the performance of PRL on four task types: classification, sum-
marization, simplification, and GSM8K mathematical reasoning. As Prompt Generator and
Evaluation Model we choose Qwen2.5-7B-Instruct (Yang et al. (2024)). Each model is trained
separately for each task and dataset. Unless otherwise specified, all experiments are conducted over
48 hours using two NVIDIA A100 GPUs (40 GB each). We fine-tune our models using GRPO
(Zhao et al. (2024)) with parameters ϵ = 0.2, β = 0.04 and weight decay equal to 0.1. We also use
Low-Rank Adaptation (LoRA) (Hu et al. (2022)) with a learning rate of 1×10−6, setting α = 32 and
rank r = 8. During training, we sample n = 4 prompts per iteration and perform Prompt Selection
every 100 iterations.

To ensure fair comparison during Prompt Selection, we adopt the same scoring function as EvoPrompt
and use an identical validation dataset during the prompt selection process. Across all tasks we use
reward parameters rtoken = rstructure = 0.75, unless otherwise stated. The rewards rformat and ralignment
are task-specific and will be defined below.

Baseline Methods We benchmark PRL against both human-written task-specific prompts and a
range of general-purpose prompt engineering algorithms.

• MI (Manual Instruction) (Zhang et al., 2022): Manually crafted instructions to fine-tune
large language models, aiming to enhance their performance on specific tasks through human-
written prompts.

• NI (Natural Instruction) (Mishra et al., 2021): NI comprises a diverse set of 61 NLP
tasks, each accompanied by human-authored instructions. It is designed to evaluate models’
abilities to generalize across tasks by understanding and following natural language instructions.

• APE (Automatic Prompt Engineer) (Zhou et al., 2022): APE introduces a framework
for automatically generating and selecting prompts. It leverages large language models to create
candidate instructions and selects the most effective ones based on performance evaluations.

• APO (Automatic Prompt Optimization) (Pryzant et al., 2023): APO presents a
method for optimizing prompts by iteratively refining them using feedback mechanisms. It

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

treats prompt optimization as a gradient-free problem, employing techniques like beam search to
enhance prompt effectiveness.

• EvoPrompt (Guo et al., 2023): EvoPrompt applies evolutionary algorithms to optimize discrete
prompts for large language models. It evolves a population of prompts through selection, muta-
tion, and crossover operations to discover high-performing prompts without requiring gradient
information.
– DE (Differential Evolution): This variant employs differential evolution strategies

to explore the prompt space.
– GA (Genetic Algorithm): This approach utilizes genetic algorithms to evolve prompts

by simulating natural selection processes, including selection, crossover and mutation to
optimize prompt quality over successive generations.

We present a comparison of various methods in Figure 1 (right). To ensure a fair comparison, we
utilize the Qwen2.5-7B-Instruct model across all methods, serving both as the prompt generator and
the Evaluation Model. Due to the crucial differences between PRL and RLPrompt (Deng et al., 2022),
which made the latter impossible to reproduce fairly, we did not include RLPrompt in this section.
However, we compared the prompts produced by the two methods. Details on reproduction and the
comparison with RLPrompt are provided in Appendix E.

Classification For this task, we evaluate our method on a variety of datasets, including:

• Binary sentiment classification: SST-2 (Socher et al. (2013)), MR (Pang & Lee (2005)), CR (Hu
& Liu (2004)). These datasets involve classifying whether the semantic meaning of a sentence is
positive or negative.

• Multiclass sentiment classification: SST-5 (Socher et al. (2013)) requires classifying a sentence
into one of five sentiment categories: terrible, bad, okay, good, or great. This is more
challenging than binary sentiment classification as it involves recognizing more nuanced emotional
intensities.

• Question classification: TREC Voorhees & Tice (2000)) requires to categorize a question into
one of six classes: Description, Entity, Expression, Human, Location, or Number.
This task evaluates the model’s understanding of the semantic type of the question.

• News classification: AG’s News (Zhang et al. (2015)) requires to clasify news articles into one of
four topics: World, Sports, Business, or Tech.

• Subjectivity classification: SUBJ (Pang & Lee (2004)) asks to determine whether a sentence is
subjective or objective.

Table 1: Accuracy on classification tasks, averaged over three runs. Colours mark the best (red),
second-best (orange) and third-best (yellow) numbers in each column; minor differences (≤ 0.05)
are treated as ties. The right-most column shows the mean accuracy of each method across the seven
datasets.

Method / Dataset SST-2 CR MR SST-5 AG’s News TREC Subj Avg
MI 92.70 87.25 87.40 52.31 82.29 69.20 57.95 75.59
NI 95.77 91.50 90.85 51.90 83.43 66.60 68.10 78.31

APO 93.71±0.25 93.48±0.24 89.97±1.37 53.94±0.29 83.73±0.31 71.30±1.90 69.80±5.96 79.42
APE 91.23±0.66 92.87±0.02 89.90±0.94 49.37±5.66 82.58±1.20 77.07±1.61 73.92±1.39 79.56
GA 94.65±1.04 92.75±0.40 90.45±0.72 53.76±1.13 82.24±1.00 79.20±2.83 74.93±3.12 81.14
DE 93.29±0.34 93.38±0.19 89.98±0.24 55.25±0.37 82.18±1.04 76.47±0.38 73.08±4.95 80.52

PRL (–PS) (ours) 95.98±0.19 92.17±0.02 90.72±0.05 54.80±1.10 83.84±0.33 72.00±0.86 66.98±2.86 79.50
PRL (ours) 96.32±0.04 92.83±0.24 91.27±0.05 56.21±0.15 84.36±0.08 77.07±2.36 76.90±0.95 82.14

We apply a unified reward function across all classification tasks, with reward parameters set as
rformat = ralignment = 1. The component rformat is specifically awarded when the Evaluation Model’s
output is a valid label, i.e. one that belongs to the task’s set of permissible labels.

For example, in binary sentiment classification, a reward of +1 is given if the output is either
positive or negative. This encourages the Prompt Generator to produce prompts that guide
the Evaluation Model toward correct, task-appropriate responses.

The scoring function f used in all classification tasks is accuracy. We set the number of test prompts
to ntest = 10. For most tasks we sample a subset of 100 samples of our training set. For CR and AG’s

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

News, due to longer average sentence lengths (which increases training and evaluation time), we
reduce this to 30 samples.

We present our results in Table 1, where our method achieves state-of-the-art performance on all
classification datasets. Notably, on the subjectivity classification task, our approach improves accuracy
by 19% compared to the manual prompt baseline.

Figure 3 presents a comparison of the manual prompt, the PRL-generated prompt, and the EvoPrompt-
generated prompt for the SUBJ classification task. As shown, the prompt generated by PRL is more
detailed and explicit, providing clearer guidance for the model. Moreover, it is automatically tailored
with task-specific few-shot examples, which contributes to its superior performance.

The remaining prompts for other classification tasks are included in Appendix C. As illustrated, all of
these prompts incorporate few-shot examples, emphasizing the critical role of few-shot prompting in
text classification. Interestingly, the examples generated by PRL do not appear in the training set,
indicating that the model is able to synthesize relevant and task-aligned examples autonomously. This
is in contrast to APO, which also can incorporate few-shot examples, but which are always selected
from the training set. Specifically, few-shot examples in APO are selected from training samples
which were incorrectly classified.

Remark 2. In EvoPrompt (Guo et al., 2023) the task accuracy is computed by extracting the
corresponding word for the classification from the full response. Hence, even when additional text is
generated and hence the output does not strictly conform to the desired format, often a classification
can still be obtained. In our work we train and evaluate all baselines by only accepting a response
that is comprised of a single word denoting the classification. For summarization and simplification
tasks we do not modify the EvoPrompt training and evaluation process.

PRL
In this task, you will classify the sentiment of movie review sentences as ‘positive’ or ‘negative’. Examples:
“The movie was thrilling and exciting” → positive;
“The plot was boring and predictable” → negative.
Return only the label.

Acc.: 96.38

Manual Instruction
Please perform Sentiment Classification. Given the sentence, as-
sign a label from [‘negative’, ‘positive’]. Return the label only.

Acc.: 92.70

EvoPrompt (GA)

Rephrase the movie-review snippet and assign a sentiment label
from [‘positive’, ‘negative’]. Provfide only the label.

Acc.: 95.83

Figure 3: Comparison of a manual instruction, the best PRL prompt, and the best EvoPrompt prompt
along with their accuracies on SST-2 task.

Summarization We evaluate PRL on a summarization task, where the model is required to extract
and condense the most important information from a given text. The objective is to generate a concise
summary that preserves key content while omitting irrelevant or redundant details.

Table 2: Text summarization results.

Method ROUGE-1 ROUGE-2 ROUGE-L
MI 32.76 10.39 28.97

APE 37.12±2.02 12.97±0.74 33.32±1.68
GA 39.69±1.76 14.47±1.00 35.84±1.63
DE 33.91±4.04 12.53±1.47 31.05±3.79

PRL 42.47±0.83 16.17±0.24 37.73±0.36

Our experiments are conducted on the
SAMSUM dataset (Gliwa et al., 2019),
which comprises English-language chat
dialogues resembling real-life messenger
conversations. These dialogues were syn-
thetically generated by linguists to reflect
informal, everyday exchanges and are ac-
companied by manually written abstrac-
tive summaries. To assess summarization
performance, we adopt the widely used
ROUGE metrics (Lin (2004)), reporting scores for the following variants:

• ROUGE-1: Measures the overlap of individual words (unigrams) between the generated summary
and the reference summary, focusing on content selection.

• ROUGE-2: Measures the overlap of consecutive word pairs (bigrams), capturing the ability of the
model to preserve local coherence and phrasing.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

• ROUGE-L: Measures the longest common subsequence of words between the generated and
reference summaries, evaluating the overall fluency and structure alignment.

For this task, we set rformat = 0, as summarization does not involve selecting from a fixed label set.
Instead, we use ralignment, which computes the reward based on the average of the three ROUGE
metrics.

The results, shown in Table 2, indicate that PRL significantly outperforms all baseline methods on the
summarization task. Interestingly, PRL consistently opts to generate prompts without incorporating
few-shot examples.

We include the generated prompts in Figure 4, along with the corresponding average ROUGE scores.
Notably, the two prompts produced by EvoPrompt are nearly identical in structure and wording,
yet they yield significantly different results. This underscores how seemingly minor variations in
prompt phrasing that are semantically equivalent to humans can lead to substantial differences in
LLM performance.

PRL
When rephrasing text in a few words, focus on capturing the main idea and key points succinctly. Your summary should be concise, accurate,
and free of unnecessary details. Aim for clarity and brevity, and ensure that the essence of the original text is preserved. Aim for a sentence
or two that encapsulates the core message.

Av ROUGE: 31.60

EvoPrompt (GA)

Concisely summarize the main points using clear and brief language by removing redundancies and unnecessary details.

Av ROUGE: 24.89

EvoPrompt (GA)

Create a concise summary that retains the semantic meaning and
omits unnecessary details.

Av ROUGE: 29.85

Manual Instruction

How would you rephrase that in a few words?

Av ROUGE: 24.04

Figure 4: Comparison of averaged ROUGE metrics based on prompts generated by PRL, EvoPrompt,
and Manual Instruction for the summarization task. This figure highlights the importance of precise
prompt design: although the two prompts generated by EvoPrompt on two different seeds are
superficially similar, they result in significantly different performance. In contrast, the PRL prompt is
both more effective and better aligned with the task objective.

PRL
Improve the instructions by specifying the aspects of simplification and providing examples. Here’s an enhanced version of the prompt:
Simplify the following text by:
1. Shortening sentences.
2. Using simpler vocabulary.
3. Removing unnecessary or redundant words.
Example of simplified text: Original: The quick brown fox jumped over the fence, which was quite a high jump for such a small creature.
Simplified: The quick brown fox jumped over the high fence. Your task is to make the given text easier to understand while maintaining its
original meaning.

SARI: 57.19

Manual Instruction

Simplify the text

SARI: 43.77

EvoPrompt (GA)

Rephrase the given sentence to make it simpler and easier to
understand.

SARI: 46.60

Figure 5: Comparison of SARI metric for prompts generated by PRL, EvoPrompt and Manual
Instruction for the simplification task.

Simplification We evaluate PRL on the sentence simplification task using the ASSET dataset
(Alva-Manchego et al., 2020). ASSET is a crowdsourced corpus designed to assess the performance
of simplification models across multiple rewriting operations, including lexical paraphrasing, sentence
splitting, deletion, and reordering. Each of the original sentences is accompanied by human-written

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

simplifications, providing a rich set of references for evaluating model outputs. This multi-reference
setup enables more robust and comprehensive evaluation of simplification systems.

To evaluate simplification quality, we adopt the SARI metric Xu et al. (2016), which compares the
system output against both the original sentence and a set of reference simplifications. SARI assesses
the quality of words that are added, deleted, and kept by the system. It has been shown to correlate
well with human judgments of simplicity.

Table 3: Task simplifica-
tion results.

Method SARI
MI 43.77

APE 45.33±0.83
GA 46.25±0.47
DE 45.79±0.35

PRL 52.26±3.51

We set rformat = 0 for this task, as there is no fixed output format to
enforce. For the alignment reward, we use the SARI metric. For the final
scoring function, we also use the SARI score.

The results are presented in Table 3. Our baselines perform on average
comparable to a manually written prompt. Generated prompts from PRL,
EvoPrompt, and Manual Instruction are provided in Figure 5. For this
task baselines generated comparatively simple prompts which fail to
provide sufficient guide the model’s output. In contrast, the PRL prompt
is precise, comprehensive, includes a well-constructed example and leads
to a substantial performance improvement.

GSM8K To ascertain robustness of our method w.r.t. other types of
problems, we have tested PRL and the other baselines on the mathematical reasoning and problem-
solving benchmark dataset GSM8K Cobbe et al. (2021). The experiment, including training, was
performed under two evaluation protocols: (1) the answer is considered correct only when the LLM
output matches exactly the correct integer, and (2) the answer is considered correct if the correct
integer appears anywhere in the LLM output. The second protocol allows the evaluator model to
engage in intermediate reasoning steps. We see in Table 4 that our method generalizes across problem
domains yielding also SoTA results for reasoning based problems.

Interestingly, across all of our experiments, the results generally differ from those reported in the
original EvoPrompt paper, which claimed that the differential evolution (DE) variant of prompt
generation outperforms the genetic algorithm (GA) variant. In contrast, across all four types of tasks
we observe that the GA variant consistently yields superior accuracy compared to DE. We attribute
this discrepancy to the use of different underlying language models in our reproduction study. These
findings suggest that the relative effectiveness of EvoPrompt’s evolutionary strategies is sensitive to
the choice of the base model.

Table 4: Results on GSM8K. Super-
scripts (1) and (2) indicate the evaluation
protocol.

Method Accuracy(1) Accuracy(2)

MI 22.20 78.20
APE 27.17±0.65 83.43±1.98
GA 26.38±1.10 81.62±1.38
DE 26.38±1.10 79.52 ±0.45

PRL 29.30±0.05 86.15±0.55

Ablation Study: Influence of Prompt Selection We
analyze the impact of the Prompt Selection process on
overall performance. In the ablation setting, instead of
selecting the best prompt iteratively during training, we
simply report the final prompt at the end of training. To
do so after training we sample ntest prompts to choose the
best one according to the validation set. This comparison
is performed across all classification tasks.

The results, shown in Table 1, demonstrate that Prompt
Sampling not only improves final performance but also
enhances training efficiency. By selecting strong prompts
throughout the training process, Prompt Selection leads to
both better and faster results. We believe this phenomenon arises from two main factors. First, the
use of reinforcement learning to train our LLMs, which always has significant variance. Second, our
method is vulnerable to overfitting due to the limited number of samples in the training dataset.

Ablation Study: Influence of Reasoning To investigate the role of explicit reasoning in our
method, we conduct an ablation study based on the prompt design illustrated in Appendix B. In the
standard setup, the model is instructed to perform a reasoning process before producing the final
answer. To evaluate the effect of removing this step, we modify the prompt to omit the reasoning
phase and instead directly request the model to generate the answer within <answer> </answer>
tokens.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

We perform this experiment on the SUBJ dataset, training two identical models, except for either using
or or omitting reasoning. This difference leads to a substantial drop in accuracy, from 75.05 (±1.63)
with reasoning to 60.12 (±1.62) without reasoning, showing the importance of explicit reasoning in
our approach.

Ablation Study: PRL on Larger Models It is commonly observed that larger, more powerful
models are less sensitive to prompt variations. To investigate this phenomenon, we use Qwen2-
{7B|14B|32B}-Instruct as the Evaluation Models, while keeping Qwen2-7B-Instruct as the Prompt
Generator. For this experiment we utilize 6 A100 GPUs for the 32B model and 4 A100 GPUs for the
14B model.

Table 5: Comparison of accuracy across different
model sizes of the Evaluation Model on the MR
dataset.

Parameters 7B 14B 32B
MI 87.40 89.20 90.15

PRL 91.27±0.05 92.03±0.13 92.52±0.02

We compare the performance using the base
prompt against prompts generated by PRL on
the MR dataset. The results, presented in Ta-
ble 5, show that all model sizes benefit from
PRL, demonstrating two key findings: (i) Even
larger LLMs remain vulnerable to prompt vari-
ation. (ii) PRL is capable of effectively tailoring
prompts for both smaller and larger models, sig-
nificantly improving their performance.

Ablation Study: PRL Beyond Qwen We test
the cross model robustness of PRL using LLaMA 3.1-8B- Instruct AI@Meta (2024). First, we assess
prompt portability: prompts learned by PRL and benchmark methods with Qwen2.5-7B- Instruct
are applied unchanged to LLaMA-3.1-8B Instruct for summarization. As shown in Table 6, these
prompts transfer well and remain competitive with strong baselines, indicating that PRL produces
prompts that generalize beyond the backbone used to train them. Second, motivated by observations
of potential spurious gains when training with Qwen under weak reward signals Shao et al. (2025), we
retrain the prompt generator on LLaMA-3.1-8B Instruct (reported as PRL-LLaMA in Table 6). The
resulting prompts achieve equal or better ROUGE 1/2 than the Qwen trained counterpart. Together,
these findings suggest that PRL’s improvements are not an artifact of a particular model family: PRL
trained prompts both transfer across architectures and train effectively on alternative backbones.

We present two additional ablation study experiments in Appendix D.

5 CONCLUSIONS & LIMITATIONS

We have introduced an RL-based algorithm for prompt generation that consistently outperforms other
approaches across classification, summarization and simplification tasks.

Table 6: Task summarization results evaluated using
LLaMA.

Method ROUGE-1 ROUGE-2 ROUGE-L

MI 33.33 10.77 27.12
APE 34.12±3.86 12.90±2.56 25.72±3.63
GA 38.73±2.36 14.69±1.01 30.38±2.94
DE 34.25±3.56 11.57±2.86 25.43±3.65
PRL 39.38±2.82 15.77±1.56 30.57±2.80

PRL-LLaMA 43.70±0.02 16.66±0.25 37.46±0.5

Even though we use recent LLMs, bet-
ter prompts can still significantly increase
task performance, indicating that LLMs
are still sensitive to differences in seman-
tically equivalent prompts. Interestingly,
this holds true even for the largest LLM
we have tested on, the Qwen2-32B-instruct
model. Additionally, our results under-
score that there is no single recipe to gener-
ate good prompts across different tasks, as
some tasks benefit from few-shot examples
or other subtle semantic cues, while others
do not. Our approach effectively navigates
such delicate prompt crafting issues. In line with current work our prompt generator profits from
increased inference time compute by allowing it to reason about effective prompts.

Currently, improved performance is obtained via a significantly greater computational expense than
used by the comparatively simpler related work. Another limitation is that we retrain the prompt
generator for each new task. A universal prompt generator is a desideratum.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lucia
Specia. Asset: A dataset for tuning and evaluation of sentence simplification models with multiple
rewriting transformations. arXiv preprint arXiv:2005.00481, 2020.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the poten-
tial of prompt engineering in large language models: a comprehensive review. arXiv preprint
arXiv:2310.14735, 2023.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Ryan Greenblatt. Getting 50% (sota) on ARC-AGI with GPT-4o,
2024. URL https://redwoodresearch.substack.com/p/
getting-50-sota-on-arc-agi-with-gpt.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2310.08510, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177.
Association for Computing Machinery, 2004.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop, 2004.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. arXiv preprint arXiv:2104.08773, 2021.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics, pp. 271–278. Association for Computational Linguistics, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, pp. 115–124. Association for Computational Linguistics, 2005.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Amirhossein Razavi, Mina Soltangheis, Negar Arabzadeh, Sara Salamat, Morteza Zihayat, and
Ebrahim Bagheri. Benchmarking prompt sensitivity in large language models. In European
Conference on Information Retrieval, pp. 303–313. Springer, 2025.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond
the few-shot paradigm. In Extended abstracts of the 2021 CHI conference on human factors in
computing systems, pp. 1–7, 2021.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
A systematic survey of prompt engineering in large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927, 2024.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals
in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, and Junxiao Song. Deepseekmath: Pushing
the limits of mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300,
2024.

Sonish Sivarajkumar, Mark Kelley, Alyssa Samolyk-Mazzanti, Shyam Visweswaran, and Yanshan
Wang. An empirical evaluation of prompting strategies for large language models in zero-shot
clinical natural language processing: algorithm development and validation study. JMIR Medical
Informatics, 12:e55318, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642. Association for Computational Linguistics, 2013.

Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceedings of
the 23rd annual international ACM SIGIR conference on Research and development in information
retrieval, pp. 200–207, 2000.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statis-
tical machine translation for text simplification. Transactions of the Association for Computational
Linguistics, 4:401–415, 2016.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B Khalil. Llms and the abstrac-
tion and reasoning corpus: Successes, failures, and the importance of object-based representations.
arXiv preprint arXiv:2305.18354, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in Neural Information Processing Systems, volume 28, 2015.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight
infrastructure for fine-tuning, 2024. URL https://arxiv.org/abs/2408.05517.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh International
Conference on Learning Representations, 2022.

12

https://arxiv.org/abs/2408.05517

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX - PRL PSEUDO CODE

In Algorithm 1 we provide the PRL algorithm.

Algorithm 1 PRL

Require: πgenerator
θ : prompt generator

πeval: frozen Evaluation Model
T, V : training and validation datasets
n, ntest: number of prompts during training/Prompt Selection
k: number of samples per iteration
I: total number of iterations
t: Prompt Selection frequency
R: reward operator
f : scoring function

1: best_score← 0, best_prompt← “”
2: for i = 1 to I do
3: Sample k training samples D ∼ T
4: Generate answers o1, . . . , on ∼ πgenerator

θ
5: Extract answers p1, . . . , pn from o1, . . . , on
6: Compute rewards rj = R(πeval, D, pj , oj) for each j = 1, ..., n
7: Update θ using GRPO with rewards {rj}
8: if i mod t = 0 then
9: Generate test prompts p1, . . . , pntest ∼ πgenerator

θ
10: with torch.no_grad():
11: Compute scores sj = f(πeval, V, pj)
12: Let j∗ = argmaxj sj
13: if sj∗ > best_score then
14: best_score← sj∗ , best_prompt← pj∗
15: end if
16: end if
17: end for
18: return best_prompt

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

B APPENDIX - PRL PROMPT FORMAT

We present below the prompt format used by PRL. In the system prompt, we instruct the model
to generate a reasoning trace enclosed within <think> and </think> tokens, followed by the final
answer encapsulated within <answer> and </answer> tokens. The user message provides the base
prompt that it should refine. The model’s objective is to produce the prompt that is better than the
best prompt.

System Prompt

A conversation between User and Assistant. The user asks a ques-
tion, and the Assistant solves it. The assistant first thinks about
the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed
within <think> </think> and <answer> </answer> tags, respec-
tively, i.e., <think> reasoning process here </think><answer>
answer here </answer>

User Prompt

Your task is to refine a base prompt for another model that per-
forms a sentiment classification task. Improve the instructions
to enhance the model’s performance. The base prompt: In this
task, you are given sentences from movie reviews. The task is to
classify a sentence as ’positive’ if the sentiment of the sentence
is positive or as ’negative’ if the sentiment of the sentence is
negative. Return label ’positive’ or ’negative’ only without any
other text.

Figure 6: Prompt used by PRL

C APPENDIX – PROMPTS FOR CLASSIFICATION

This subsection provides the most effective prompts used for the classification task in our method.

PRL
In this task, you are to classify the opinion in a given sentence from a review as either subjective or objective.
- A subjective sentence expresses personal feelings, opinions, or attitudes.
- An objective sentence presents facts that can be verified and are not influenced by personal feelings.
Examples:
- Subjective: "This movie is the best I’ve ever seen." (Opinion expressed)
- Objective: "The movie won five awards this year." (Fact stated)
When classifying, focus only on the opinion, not the facts. Return the label ’subjective’ or ’objective’ only, without any additional text.
Example:
Input: "The food was delicious." Output: subjective

Acc.: 77.95

Figure 7: Best prompt generated by PRL for SUBJ classification task along with accuracy.

PRL
In this task, you will classify the sentiment of movie review sentences as ’positive’ or ’negative’. Examples:
"The movie was thrilling and exciting" -> positive;
"The plot was boring and predictable" -> negative.
Return only the label: ’positive’ or ’negative’.

Acc.: 96.38

Figure 8: Best prompt generated by PRL for SST2 classification task along with accuracy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

PRL
In this task, you are given sentences from movie reviews. Your goal is to classify each sentence as ’positive’ or ’negative’ based on its
sentiment. Pay close attention to the context and nuances in the text, as the sentiment might not be explicitly stated. Examples:
- "The acting was superb, and the plot was engaging." -> positive
- "The movie was so slow and boring that I almost fell asleep." -> negative
Return only the label ’positive’ or ’negative’ without any additional text.

Acc.: 93.00

Figure 9: Best prompt generated by PRL for CR classification task along with accuracy.

PRL
In this task, you are given a sentence from a movie review. Classify the sentence as ’positive’ if the sentiment is positive, or as ’negative’ if
the sentiment is negative. Provide only the label ’positive’ or ’negative’ without any additional text. Examples:
- "The acting was superb and the plot was engaging." -> positive
- "The movie was boring and the storyline was predictable." -> negative

Acc.: 91.30

Figure 10: Best prompt generated by PRL for MR classification task along with accuracy.

PRL
In this task, you are given sentences from movie reviews. Your goal is to classify the sentiment of each sentence as ’terrible’, ’bad’, ’okay’,
’good’, or ’great’. Be as accurate as possible. Here are the guidelines for each category:
- ’terrible’: The sentence expresses extreme dissatisfaction or negative feelings.
- ’bad’: The sentence conveys negative feelings but not as strongly as ’terrible’.
- ’okay’: The sentence is neutral or has mixed feelings with no strong positive or negative sentiment.
- ’good’: The sentence conveys positive feelings but not as strongly as ’great’.
- ’great’: The sentence expresses strong positive feelings or high satisfaction.
Consider the overall tone and specific positive or negative words in the sentence to determine the closest sentiment.
If you are not sure, choose the closest option.
Return the label ’terrible’, ’bad’, ’okay’, ’good’, or ’great’ only without any additional text.

Acc.: 56.38

Figure 11: Best prompt generated by PRL for SST-5 classification task along with accuracy.

PRL
In this task, you will be given a news article and asked to classify it into one of the four predefined categories: ’World’, ’Sports’, ’Business’,
or ’Tech’.
Follow these detailed instructions to ensure accurate classification
1. Read the article thoroughly to understand its main subject matter.
2. Determine which of the following categories the article’s main topic most closely aligns with:
- ’World’: articles covering global news, politics, international affairs, etc.
- ’Sports’: articles discussing various sports, competitions, athletes, etc.
- ’Business’: articles focusing on financial news, corporate activities, markets, etc.
- ’Tech’: articles about technology, innovations, companies, gadgets, etc.
3. If the article’s content is not clearly related to any of these categories, choose the closest option based on the predominant subject matter.
4. Return the label of the chosen category as a single word without any additional text or explanations, e.g., ’World’, ’Sports’, ’Business’, or
’Tech’.
Example:
Article: "Apple Launches New iPhone Model with Improved Camera Features" Label: Tech
Article: "China and the US Reach a New Trade Agreement" Label: World
Article: "Local Soccer Team Qualifies for the World Cup" Label: Sports
Article: "Oil Prices Drop as OPEC Decides to Cut Production" Label: Business

Acc.: 84.42

Figure 12: Best prompt generated by PRL for AG’s News classification task along with accuracy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

PRL
Please perform a Question Classification task. Given a question, classify it into one of the following categories:
- **Description**: Questions asking for descriptions or explanations.
- **Entity**: Questions asking about specific things, objects, or entities.
- **Expression**: Questions asking about how something is expressed or phrased.
- **Human**: Questions asking about people, their characteristics, or roles.
- **Location**: Questions asking about places or geographical locations.
- **Number**: Questions asking for numerical information or quantities.
Return the label ’Description’, ’Entity’, ’Expression’, ’Human’, ’Location’, or ’Number’ only without any additional text. Example:
Question: "What is the capital of France?" Label: Location
Question: "How do you say ’hello’ in Spanish?" Label: Expression
Question: "Who is the CEO of Apple?" Label: Human

Acc.: 78.60

Figure 13: Best prompt generated by PRL for TREC classification task along with accuracy.

D APPENDIX - ADDITIONAL ABLATION STUDY EXPERIMENTS

Impact of Prompt Sampling Size in Prompt Selection We investigate how the number of prompt
samples used during inference in the Prompt Selection technique affects final performance. Specifi-
cally, we evaluate PRL on the MR classification dataset while varying the number of sampled prompts:
ntest = 1, 5, 10, and 15. Each configuration is run three times, and we report the average accuracy.
The results are presented in Table 7.

Performance remains stable when using more than five prompt samples, while one prompt only
leads to a performance drop. Although the results suggest that five prompts are sufficient for stable
performance, we recommend using ten prompts to provide an additional buffer against potential
sensitivity in other tasks or datasets.

Table 7: Model accuracy vs. number of test samples

ntest 1 5 10 15

Accuracy 90.92±0.17 91.25±0.15 91.27±0.11 91.35±0.11

Influence of Few-Shot Examples To ascertain the importance of the automatic inclusion of few-
shot examples, we manually remove them from prompt for which PRL provided them and measure
performance, see Table 8 for results on a subset of classification tasks where PRL produced few-shot
examples. We see that indeed few-shot examples significantly enhance quality.

Table 8: Accuracy on different datasets with and without few-shot learning.

Dataset Acc. w/o few-shot Acc. with few-shot

SUBJ 66.75 77.95
CR 92.40 93.00
SST-2 95.00 96.38
MR 90.95 91.30

E APPENDIX – BENCHMARK RESULTS REPRODUCTION

To provide a fair comparison with existing benchmarks (APE, APO, and EvoPrompt), we reproduced
their results using Qwen2.5-7B-Instruct as both the Prompt Generator and the Evaluation Model,
terms named differently in the original papers but are functionally equivalent. The evaluation
procedure is identical for all the benchmarks and for PRL, as follows:

• For classification tasks, only a response consisting of a single word denoting the correct class is
considered a valid answer.

• For summarization and simplification tasks, the entire response generated by the Evaluation Model
is used to compute ROUGE/SARI metrics.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

• For GSM8K task, a response including only the proper integer is considered a valid answer.

To ensure that only the label is output by the Evaluation Model, we appended the following instruction
to the end of each prompt in the initial population:

Return only label {list of labels} without any other
text.

For example, in the case of the SST-5 dataset, the appended sentence was:

Return only label ’terrible’, ’bad’, ’okay’, ’good’ or
’great’ without any other text.

In GSM8K task, the instruction to output only correct integer is added to the initial prompt but only
when using the evaluation protocol (1), see paragraph GSM8K.

Depending on the benchmark, the initial population consisted of manual prompts (see MI in Baseline
Methods) and/or automatic prompts generated by Qwen, following the prompt generation method
described in (Zhou et al., 2022).

APO Following the EvoPrompt (Guo et al., 2023) experimental protocol, we ran the APO algorithm
using the manual prompt with the best performance as the initial population. However, unlike the
EvoPrompt authors, we applied the method to all classification tasks, not only binary ones. APO was
not evaluated on text generation tasks (i.e., summarization and simplification), as its optimization
algorithm fundamentally relies on binary feedback (correct vs incorrect), which is incompatible with
continuous scores such as ROUGE or SARI.

The default parameter setup provided by (Pryzant et al., 2023) was used for each run.

APE and EvoPrompt Following (Guo et al., 2023), the development set size was set to 200
for classification tasks and 100 for simplification and summarization tasks. Each run included 10
iterations. The 10 best prompts for each task served as the initial population (selected from automatic
prompts for APE and from both automatic and manual prompts for EvoPrompt).

RLPrompt A direct adaptation of RLPrompt (Deng et al., 2022) to PRL setting was not feasible,
since it relies on a fundamentally different evaluation paradigm (selecting the token with the highest
probability from a list of predefined verbalizers), much smaller training datasets, and significantly
smaller language models. Instead of retraining RLPrompt on Qwen (which would be meaningless
in our opinion), we compared the prompts generated by PRL with those reported in the RLPrompt
paper, using RLPrompt’s own evaluation method. To ensure fairness despite differences in prompt
templates, we evaluated each method with three variants:

• sample + prompt; without chat template,
• sample + prompt; with chat template,
• prompt + sample; with chat template

and selected the best score. This approach is justified by the RLPrompt authors’ claim that its prompts
exhibit inter-model generalizability. Under this setup, PRL surpasses RLPrompt on every task except
SUBJ and achieves a higher average score by 16.5% (see Table 9).

Table 9: Accuracy achieved by prompts from RLPrompt and PRL on classification tasks. Red colour
mark the best result. The right-most column shows the mean accuracy of each method across the
seven datasets.

Method / Dataset SST-2 CR MR SST-5 AG’s News TREC Subj Avg
RLPrompt (2 tokens) 65,79 58.65 72.45 40.23 70.42 38.40 68.90 59.26
RLPrompt (5 tokens) 82.98 76.20 82.25 27.24 65.07 39.60 74.10 63.92

PRL (ours) 95.55 88.60 91.85 56.02 87.39 76.40 67.10 80.42

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

F APPENDIX – DISCLOSING STATEMENT ON THE USE OF LARGE LANGUAGE
MODELS

LLMs were used solely as an assistive tool for text formatting and minor language refinement.
They did not contribute to research ideation, experimental design or analysis. The authors take full
responsibility for the final content of this paper.

18

	Introduction
	Related Work
	Method
	Experiments
	Conclusions & Limitations
	Appendix - PRL Pseudo Code
	Appendix - PRL Prompt Format
	Appendix – Prompts for Classification
	Appendix - Additional Ablation Study Experiments
	Appendix – Benchmark Results Reproduction
	Appendix – Disclosing Statement on the Use of Large Language Models

