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Abstract
Estimating causal effects from non-randomized001
data requires assumptions about the underlying002
data-generating process. To achieve unbiased003
estimates of the causal effect of a treatment on004
an outcome, we must adjust for any confound-005
ing variables that influence both treatment and006
outcome. When such confounders include text007
data, existing causal inference methods strug-008
gle due to the high dimensionality of the text.009
The simple statistical models which have suffi-010
cient convergence criteria for causal estimation011
are not well-equipped to handle noisy unstruc-012
tured text, but flexible Large language models013
(LLMs) that excel at predictive tasks with text014
data do not meet the statistical assumptions015
necessary for causal estimation. Our method016
enables theoretically consistent estimation of017
causal effects using LLM-based nuisance mod-018
els by incorporating them within the framework019
of Double Machine Learning. On the best avail-020
able dataset for evaluating such methods, we021
obtain a 10.4% reduction in the relative abso-022
lute error for the estimated causal effect over023
existing methods.024

1 Introduction025

A common goal of scientific research is the analy-026

sis of causal relationships (Triantafillou et al., 2017;027

Sanna et al., 2019; Chang et al., 2022). Consider028

the following motivating example, where a phar-029

maceutical company wants to estimate the causal030

effect of the prescription of antibiotics (treatment)031

on the patient’s disease progression (outcome). The032

causal effect is defined as the expected change033

in disease progression across two counterfactual034

worlds which only differ in whether the patient035

is given antibiotics (Hernán, 2004). When ran-036

domization is impossible or unethical, we estimate037

causal effects from observational data using as-038

sumptions about the underlying data distribution.039

Confounders – variables affecting both the treat-040

ment and outcome – introduce potential bias that041

must be addressed.042

When data is low-dimensional, confounding can 043

be controlled for using various methods from the lit- 044

erature (Pearl, 2009). However, several challenges 045

arise in the case of high-dimensional confounders 046

such as text. For example, assume the pharmaceu- 047

tical company has free-text clinical notes that may 048

include information about patients’ histories, diag- 049

noses, or relationships with their doctors (Rajkomar 050

et al., 2018). If these potential confounding vari- 051

ables appear nowhere else in the patients’ records, 052

then to account for confounding we must use text- 053

based causal methods (Rosenbloom et al., 2011; 054

Wu et al., 2013). Since text is high-dimensional, 055

it requires sophisticated modeling that captures se- 056

mantic meaning. 057

Existing models often utilize overly simplified 058

representations of the text (Wood-Doughty et al., 059

2018; Keith et al., 2020), such as a bag-of-words 060

(BoW) representation. While such representations 061

combined with simple estimation models allow for 062

consistent1 estimation, they may fail to capture the 063

true complexity of the text’s underlying relation- 064

ships. The use of Large language models (LLMs) 065

in causal estimation has only recently been stud- 066

ied (Veitch et al., 2020), and many researchers 067

suggest the need for more sophisticated natural 068

language processing (NLP) techniques (Wood- 069

Doughty et al., 2021; Feder et al., 2022; Keith et al., 070

2023). However, while LLMs excel at predictive 071

tasks, they do not meet the necessary statistical 072

assumptions for a consistent causal estimation. 073

We present DoubleLingo, combining Double 074

Machine Learning with LLM-based nuisance mod- 075

els to enable a theoretically consistent estimation of 076

causal effects with text-based confounding. We test 077

our model on a novel dataset (Keith et al., 2023), 078

obtaining the best causal effect estimates reported 079

thus far. In particular, our relative absolute error is 080

over 10% lower than the best current models. 081

1Defined in more detail in §3
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2 Causal Inference Background082

While causal inference is a broad and diverse field083

(Robins et al., 2000; Pearl, 2009), we provide084

a brief introduction here. For recent surveys of085

causal inference and natural language processing,086

see Keith et al. (2020) or Feder et al. (2022).087

2.1 DAGs & Counterfactuals088

The motivating example described above is illus-089

trated by the directed acyclic graph (DAG) in Fig-090

ure 1, where we use a binary random variable A091

to indicate whether the patient receives (A = 1)092

antibiotics or not (A = 0). We similarly use a093

binary Y to denote whether the disease progresses094

(Y = 1) or not (Y = 0). An arrow in the DAG095

such as A → Y indicates that A has a potential096

causal effect on Y . Finally, we denote T as the097

patient medical records, and C as the set of all con-098

founding variables contained in the records. Most099

importantly, C is unobserved — we don’t know the100

exact confounding variables, but we have access101

to the text T containing them. Hence, there exist102

some causal effects T 99K A and T 99K Y where103

the text T affects A and Y through the unobserved104

C. The counterfactual outcome Y a=1 represents105

the hypothetical disease progression had we inter-106

vened to assign A = 1 (prescribe antibiotics), and107

Y a=0 is defined analogously. In causal inference,108

the most common estimand is the average treatment109

effect (ATE) of A on Y , computed as:110

ATE = E[Y a=1 − Y a=0] (1)111

A fundamental problem is that we can never112

simultaneously observe both counterfactuals113

Y a=1, Y a=0 (Holland, 1986), thus we need a way114

to compute the ATE only utilizing observed data.115

2.2 Identification Assumptions116

We proceed by assuming consistency, requiring that117

the outcome we observe for any possible treatment118

a is equal to the counterfactual outcome we would119

have observed had we intervened to assign A = a.120

Formally,121

A = a ↔ Y a = Y (2)122

We then assume conditional exchangeability, re-123

quiring the independence between our counterfac-124

tual Y a and the observed treatment A conditioned125

on all confounders C, formalized as126

Y a ⊥ A | C ∀a ∈ {0, 1} (3)127

C T

A Y

Figure 1: Textual Confounding DAG with Treatment A,
Outcome Y , Confounders C, and Text T .

Using these assumptions, we may compute the 128

counterfactual E[Y a] as follows 129

E[Y a] =
∑
C

E[Y a | C]P(C) (4) 130

(3)
=

∑
C

E[Y a | A = a,C]P(C) (5) 131

(2)
=

∑
C

E[Y | A = a,C]P(C) (6) 132

However, since C is unobserved, the main chal- 133

lenge is in modelling the text T to adjust for all of 134

the confounding from C. 135

2.3 Causal Effect Estimation 136

In estimating the ATE, we thus require (a) a repre- 137

sentation of the text and (b) an appropriate causal 138

estimation method. As mentioned in §1, a BoW 139

text representation is commonly used by existing 140

text-based causal estimators. For (b), there are 141

countless estimation methods, and we refer the 142

reader to a much more exhaustive guide by Peters 143

et al. (2017). One such commonly used method 144

is the Inverse Propensity of Treatment Weighting 145

(IPTW), where E[Y a] is calculated as follows for a 146

dataset of size N . 147

E[Y a] =
1

N

∑
i∈[N ]

Yi
1(Ai = a)

P(Ai = a | T )
(7) 148

Thus, combining (a) and (b), a common current 149

method is to use IPTW and learn a Logistic Re- 150

gression model P(A | T ) for the propensity of the 151

treatment A given a BoW text representation T . 152

3 Model 153

Any estimator θ̂ of the true ATE estimate θ must 154

be both unbiased and consistent such that 155

E[θ̂] = θ and θ̂
P→ θ (8) 156

While LLMs have drastically changed the field 157

of NLP (Vaswani et al., 2017; Min et al., 2023), 158
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they are not consistent estimators of causal param-159

eters due to both explicit and implicit regulariza-160

tion (Neyshabur, 2017; Chernozhukov et al., 2018).161

Thus, a naive approach of using an LLM such as162

BERT (Devlin et al., 2019) to learn the propensity163

P(A | T ) in Equation (7) would be biased.164

3.1 Double Machine Learning165

We thus turn to Double Machine Learning (DML),166

which has never previously been used in the con-167

text of LLMs. As proven by Chernozhukov et al.168

(2018), regularization bias in complex ML models169

can be overcome by utilizing orthogonalization. In170

particular, we partial out this bias by learning clas-171

sifiers for both the treatment E[A | T ] and outcome172

E[Y | T ]. Accordingly, we obtain a consistent173

estimate of the ATE by regressing the residuals174

Y − E[Y | T ] ∼ A− E[A | T ] (9)175

Additionally, as we fit both E[A | T ] and E[Y | T ],176

the estimation is doubly robust such that only one177

of the two models need to be correctly specified178

to obtain an unbiased ATE (Funk et al., 2011).179

Finally, we utilize sample splitting (Stone, 1974),180

where we train on half of the data, using the other181

half for estimation, preventing any estimation bias182

induced by overfitting. A potential concern is that183

DML requires our nuisance models to converge184

at N−1/4 rates such that the overall estimator is185 √
N -consistent2, that is186

θ̂ − θ = Op(N
−1/2) (10)187

While there is research on the rate of convergence188

of misclassification probability (Gurevych et al.,189

2022) for encoder-based transformer classifiers190

such as BERT, its convergence rate for semipara-191

metric inference is unknown.192

3.2 Faster Converging Model Variations193

Since fully fine-tuning BERT classifiers within194

the DML framework may not be appropriate, we195

present DoubleLingo, utilizing two faster converg-196

ing model variations.197

BERT+Adapter. Our first configuration utilizes198

parameter efficient transfer learning in the form199

of adapters (Houlsby et al., 2019). Thus, instead200

of fine-tuning all of BERT, we only fine-tune the201

adapter layers. While there are no theoretical202

2As N → ∞ estimation error goes to 0 at a rate of
√
N

bounds for the convergence of adapters, they em- 203

pirically demonstrate a much quicker convergence 204

compared to fine-tuning the full network. 205

Embedding+FFN. Fully-connected feedforward 206

neural networks (FFNs) with the ReLU activation 207

function have been proven to converge at N−1/4 208

rates for their use in semiparametric inference (Far- 209

rell et al., 2021). Thus, instead of fine-tuning BERT 210

at all, a potential approach is to fine-tune a feed- 211

forward layer on top of BERT’s pre-trained em- 212

beddings. Since BERT doesn’t learn independent 213

sentence embeddings, we could instead use the 214

[CLS] encoding or pool the sequence of hidden 215

states for the whole input. Instead, we utilize em- 216

beddings from pre-trained sentence transformers 217

(Reimers and Gurevych, 2019), which are much 218

more semantically meaningful. To our knowledge, 219

sentence transformer embeddings have never been 220

utilized in the context of causal inference estima- 221

tion, thus we further contribute to the literature 222

by analyzing their causal estimation capabilities 223

compared to simpler text representations. 224

4 Causal Dataset & Experiment 225

Unlike supervised learning models, which can be 226

evaluated on held-out test sets with ground-truth la- 227

bels, causal estimation methods require evaluations 228

with counterfactual ground-truth, which is impossi- 229

ble to measure from observed data (Holland, 1986). 230

Researchers often turn to (semi-)synthetic data, for 231

which there is a tension between generating real- 232

istic text and maintaining full knowledge of the 233

underlying data-generating process (DGP) (Wood- 234

Doughty et al., 2021). Most current datasets fail to 235

accomplish both, either fully specifying the DGP 236

but with unrealistic text (Johansson et al., 2016; 237

Yao et al., 2019), or using real-world text inside a 238

semi-synthetic DGP (Veitch et al., 2020). 239

4.1 Dataset and Baselines 240

A recent novel dataset employs a randomized con- 241

trolled trial (RCT) rejection sampling algorithm 242

to create text-based datasets that both contain real 243

text and are based on a realistic DGP (Keith et al., 244

2023). In particular, the authors fix C to be a sin- 245

gle binary confounding variable contained in the 246

text and choose RCT’s with an existing C → Y 247

relationship. They then sample the dataset to artifi- 248

cially create a C → A relationship and evaluate 8 249

different models over 100 sampled dataset subsets. 250
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Unadjusted Oracle (C) TF-IDF+FFN LRQ LRIPTW LRAIPTW LRDML

0.214 (0.08) 0.115 (0.09) 0.118 (0.09) 1.408 (1.00) 0.470 (0.16) 1.579 (0.66) 1.899 (0.91)

BERT+Adapter SPECTER+FFN MPNetV2+FFN CBQ CBIPTW CBAIPTW CBDML

0.104 (0.08) 0.104 (0.08) 0.103 (0.08) 0.237 (0.10) 0.141 (0.11) 0.115 (0.10) 0.128 (0.10)

Table 1: Relative Absolute Error mean (variance) for all methods over 100 subsets. §4.2 describes our DoubleLingo
methods and TF-IDF+FNN baseline. Logistic Regression (LR), CatBoost (CB), Oracle, and Unadjusted baselines
all use code from Keith et al. (2023). Our methods achieve the best (lowest) error and variance.

They train Logistic Regression and CatBoost nui-251

sance models based on a BoW representation for252

the text, combining both with 4 different causal es-253

timation techniques, including IPTW, Augmented-254

IPTW (AIPTW), Outcome Regression (Q), and255

DML. They finally evaluate an Oracle with full256

access to the unobserved C value.257

4.2 DoubleLingo Experiments258

We now describe our methods that use LLMs in-259

side the DML framework. Our BERT+Adapter260

method fine-tunes adapters within BERT classi-261

fiers for both A and Y (Houlsby et al., 2019). Our262

Embedding+FFN configuration uses two sentence263

transformers. First, all-mpnet-base-v2 3, based264

on MPNet (Song et al., 2020) and fine-tuned on265

1 million sentence pairs. Second, SPECTER (Co-266

han et al., 2020), pre-trained on a dataset of scien-267

tific paper titles and abstracts which matches the268

format of Keith et al. (2023). For both Embed-269

ding+FFN methods, we use a single hidden layer,270

ReLU activation functions, and the AdamW op-271

timizer (Loshchilov and Hutter, 2018) to obtain272

N−1/4 convergence (Farrell et al., 2021). Finally,273

we implement a TF-IDF+FFN baseline, follow-274

ing Manzoor et al. (2023), which uses DML with275

FFNs with batch normalization (Ioffe and Szegedy,276

2015) and a TF-IDF text representation. A more277

detailed implementation, including specific hyper-278

parameters and RCT parameterization choices are279

provided in Appendix A.280

5 Results and Conclusions281

Table 1 shows that our three DoubleLingo esti-282

mators obtain the lowest ATE relative absolute283

error (0.103), a 10.4% decrease from the prior best284

(0.115). These results provide strong empirical285

evidence that the DML framework successfully286

enables the use of LLMs in causal estimation. No-287

tably, the prior best was achieved by both a BoW288

3https://hf.co/sentence-transformers/all-mpnet-base-v2

model (CBAIPTW) and the Oracle estimator which 289

calculates the estimates using the unobserved C 290

values. If C contained all causes of A and Y , it 291

would be the theoretically-optimal efficient adjust- 292

ment set (Rotnitzky and Smucler, 2020) and the 293

Oracle should – asymptotically – be impossible to 294

outperform. However, while the C → A relation- 295

ship is artificially induced by the sampling proce- 296

dure of Keith et al. (2023), the C → Y correlation 297

is confirmed to exist4; we hypothesize that the un- 298

derlying complexity of the T → Y relationship is 299

not fully captured by the binary topic C and thus 300

modeling T allows for more efficient estimation. 301

Our results specifically support the hypothesis 302

that the text representation itself matters to causal 303

estimation. Among all DML methods with feed- 304

forward classifiers, our Embedding+FFN meth- 305

ods’ outperformance of our TF-IDF+FFN baseline 306

shows that better representations can enable lower 307

estimation error. Appendix B also shows our mod- 308

els’ slightly better classification accuracy than the 309

TF-IDF+FFN baseline during estimation. 310

Between our three proposed methods, we see 311

no large differences in performance. This sug- 312

gests that while the incorporation of LLMs into 313

the estimators is essential, the specific architec- 314

ture and training setup matters less. However, 315

BERT+Adapter trains two to three times slower 316

than Embedding+FFN. We also see little differ- 317

ence between the two pre-trained embeddings, de- 318

spite the similarity of the SPECTER embedding’s 319

dataset to that of our evaluation data. 320

This work proposes DoubleLingo, a theoreti- 321

cally consistent causal estimator that uses LLM 322

nuisance models inside the DML framework. We 323

show that both adapters and sentence transformers 324

can achieve the lowest estimation error on the best 325

available dataset for evaluating methods that ac- 326

count for text confounding. We include our code as 327

an appendix that reproduces our provided results. 328

4Authors verify that C ̸⊥ Y with an odds ratio test
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Limitations329

The main limitation of our estimation procedure330

is compute time – training the BERT+Adapter331

configuration on 100 sampled dataset subsets takes332

10 hours parallelized across 2 RTX 8000’s, signifi-333

cantly longer than the baseline Linear Regression334

or CatBoost models. In particular, our model’s re-335

liance on sample-splitting and double robustness to336

obtain a consistent final estimate requires training337

4 times as many models per each dataset subset.338

However, it’s important to note that the Embed-339

ding+FFN configurations only take a third of the340

time, yet achieve identical results.341

Additionally, our work only focuses on causal342

estimation with text-based confounding. In partic-343

ular, dealing with textual treatments or outcomes344

is still an open problem in the field (Feder et al.,345

2022). Finally, we only train on a single English-346

language dataset, and resultingly encourage future347

work to expand on this by testing other types of348

text-based RCT’s.349
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Model Accuracy

E[A | T ] E[Y | T ]
Logistic Regression 75.5 82.8

CatBoost 80.3 95.5

TF-IDF+FFN 80.6 95.3

SPECTER+FFN 82.8 95.7

MPNetV2+FFN 83.2 95.7

BERT+Adapter 83.2 95.7

Table 2: Average Predictive Accuracy over 100 dataset
subsets

A Implementation534

This section gives a more detailed overview of535

our implementation, including specific hyper-536

parameter values for both model configurations537

and parameterization choices of P(A | C) required538

by the RCT rejection sampling algorithm.539

BERT+Adapters. For our BERT adapter config-540

uration, we use a batch size of 128, the maximum541

that can fit parallelized across two RTX 8000’s.542

We use default values for beta and weight decay,543

setting B1 = 0.9, B2 = 0.999, λ = 0. We manu-544

ally optimize for the learning rate and number of545

epochs based on validation accuracy on a small546

subset of the 100 datasets, resulting in a learn-547

ing rate of 3e-4 over 5 epochs. Our estimation548

takes around 10 hours to complete. For the esti-549

mation of a single dataset, we suggest practition-550

ers perform a larger search over hyper-parameters,551

however the use of sample-splitting and doubly-552

robust estimation requires training 4 times the num-553

ber of models. Thus, a simple grid-search over554

just 10 hyper-parameter combinations with 4-fold555

cross-validation over 100 dataset seeds would re-556

quire the training of 16, 000 models. Finally, we557

use BERTBASE which has 109, 482, 240 parame-558

ters, however the use of adapters allows us to only559

fine-tune 894, 528 parameters.560

Embedding+FFN. For all of our FFN configu-561

rations, we use the same batch size of 128 and the562

same default beta and weight decay values. We563

use a single hidden layer with the same number564

of nodes as the input layer, equal to 768 for both565

sentence transformers. Since these FFNs are much566

quicker to train, we perform a search over the learn-567

ing rates, {1e-5, 1e-4, 1e-3, 1e-2}, combined with568

early-stopping for each one of the 100 dataset sub-569

sets.570

RCT parameterization. The RCT rejection sam- 571

pling algorithm requires practitioners to specify 572

P(A | C). In particular, the authors choose C to be 573

a binary random variable representing the specific 574

text topic. We accordingly utilize the default pro- 575

vided RCT using medicine (C = 0) and physics 576

(C = 1) articles. Authors then define P(A | C) as 577

follows 578

P(A = 1 | C) =

{
ζ0 if C = 0
ζ1 if C = 1

579

which is used in sampling the RCT to create an 580

artificial C → A effect. We utilize the default 581

choices of ζ0 = 0.85 and ζ1 = 0.15 which induce 582

the highest amount of confounding. For a much 583

more thorough explanation, we direct readers to 584

Keith et al. (2023). 585

B Nuisance Model Predictive Accuracy 586

Specific values for the average predictive accuracy 587

during estimation of all tested nuisance models 588

are provided in Table 2. A similar trend appears 589

compared to causal estimation results in Table 1, 590

where the largest improvement occurs from simply 591

switching to non-linear nuisance models (CatBoost 592

vs. LogisticRegression). 593

While our three DoubleLingo model config- 594

urations achieve the best predictive accuracies 595

(83.2%, 95.7%), the values are only slightly higher 596

than those for the TF-IDF+FFN implementation. 597

Here, it’s important to note that predictive accu- 598

racy alone does not directly contribute to a more 599

accurate estimation (Wood-Doughty et al., 2018). 600

C Use of Scientific Artifacts & Licensing 601

Our work uses the RCT rejection sampling dataset 602

by Keith et al. (2023). In particular, the dataset is 603

fully in English, containing publicly available pa- 604

per titles and abstracts. The authors remove any po- 605

tentially personally identifiable information from 606

the dataset (author names, user ids, user IP ad- 607

dresses, or session ids). The dataset is made publi- 608

cally available for research purposes (apache-2.0). 609

Finally, DoubleLingo uses the Hugging 610

Face implementations for bert-base-uncased, al- 611

lenai/specter, and all-mpnet-base-v2, all made pub- 612

lically available for research purposes (apache-2.0). 613
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