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Abstract001

When confronting long document infor-002
mation retrieval for Query-Focused Sum-003
marization(QFS), Traditional Retrieval-004
Augmented Generation(RAG) frameworks005
struggle to retrieve all relevant knowledge006
points, and the chunking and retrieve strate-007
gies of existing frameworks may disrupt the008
connections between knowledge points and009
the integrity of the information. To address010
these issues, we propose TreeRAG, which011
employs Tree-Chunking for chunking and012
embedding in a tree-like structure , coupled013
with "root-to-leaves" and "leaf-to-root"014
retrieve strategy named Bidirectional015
Traversal Retrieval. This approach effec-016
tively preserves the hierarchical structure017
among knowledge points and significantly018
enhances the ability to retrieve while mini-019
mizing noise inference. Our experimental020
results on the Finance, Law, and Medi-021
cal subsets of the Dragonball dataset022
demonstrate that TreeRAG achieves sig-023
nificant enhancements in both recall quality024
and precision compared to traditional and025
popular existing methods and achieves bet-026
ter performance to corresponding question-027
answering tasks, marking a new break-028
through in long document knowledge re-029
trieval.030

1 Introduction031

In the domain of Natural Language Process-032

ing(NLP). RAG, initially proposed by Lewis033

et al. (2021), has emerged as a pivotal strategy034

for enhancing the text generation capabilities035

of Large Language Models(LLMs) by integrat-036

ing information from external knowledge bases,037

leading to outstanding performance across a038

variety of NLP tasks (Ji et al., 2023; Izacard039

and Grave, 2021; Borgeaud et al., 2022). This040

technique incorporates specialized books or doc-041

uments related to particular domain into the042

knowledge base, thereby enhancing domain- 043

specific expertise and accuracy of model in spe- 044

cific fields. 045

Across various general domains, with the 046

increase of knowledge base content due to it- 047

eration or the emergence of large-scale docu- 048

ments as knowledge base content, structured 049

or semi-structured long documents have gradu- 050

ally become an vital carrier or knowledge stor- 051

age and information retrieval. However, tra- 052

ditional RAG frameworks struggle with effec- 053

tively chunking documents to ensure the in- 054

tegrity of information, especially when dealing 055

with QFS (Dang, 2006) and how to effectively 056

retrieve all relevant knowledge points. In sum- 057

mary, when using long documents as knowledge 058

bases in general domains, several major issues 059

arise:(1)Naive Chunking methods are highly 060

destructive to knowledge points (Dong et al., 061

2023); (2)Knowledge points become difficult to 062

retrieve once their integrity of information is 063

compromised (Dong et al., 2023); (3)The asso- 064

ciation between relevant knowledge points is 065

disrupted due to suboptimal vector distances, 066

leading to difficulties in finding all the correct 067

knowledge points for QFS. 068

In recent years, advanced retrieval frame- 069

works have emerged one after another. For in- 070

stance, Late-Chunking (Günther et al., 2024) 071

has proposed a "embedding then chunking" ap- 072

proach that cleverly generates embeddings for 073

each text chunk that consider the entire text. 074

Meta-Chunking (Zhao et al., 2024), on the 075

other hand, introduces the concepts of Margin 076

Sampling Chunking and Perplexity Chunking 077

to the segmentation of text chunks, making the 078

length of the chunks more flexible and coher- 079

ent. However, the aforementioned frameworks 080

fail to effectively exert their performance when 081

confronted with long documents. To address 082

this situation, Sarthi et al. (2024) proposed 083
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Figure 1: Framework of TreeRAG

the RAPTOR frameworks, which treats text084

chunks as nodes and constructs a tree structure085

from the bottom up using soft clustering to086

strengthen the connections between different087

text chunks within long documents. Neverthe-088

less, when the subject words in the text chunks089

are ambiguous, the bottom-up summarization090

may lead to erroneous clustering issues due to091

the lack of clear subject. GraphRAG designed092

by Edge et al. (2024) enhances the association093

between information by constructing a graph094

structure of chunks, integrating the retrieved095

entities with thier related content as context096

input to the LLM. However, overly lengthy con-097

tent may introduce excessive noise, causing the098

LLM to "lost in the middle (Liu et al., 2023;099

Yan et al., 2024; Shi et al., 2023)."100

To address the aforementioned issues, in this101

paper, we propose a novel RAG framework102

called TreeRAG, which comprises two com-103

ponents: the chunking method dubbed Tree-104

Chunking and the retrieve strategy termed105

Bidirectional Traversal Retrieval.106

The Tree-Chunking method employs a107

LLM to process the original documents, an-108

alyzing the general-to-specific structure within109

the documents in a tree-like fashion. While110

maintaining semantic coherence, this structure111

is used to hierarchically categorize the entire112

document, adding subtitles and index numbers.113

A corresponding index table dictionary is also 114

generated for subsequent vector storage and 115

integration with the Bidirectional Traver- 116

sal Retrieval. When performing vector em- 117

bedding of knowledge points, the original text 118

chunk obtains the title of its immediate higher 119

level based on its unique index number and con- 120

catenate it as a prefix. This method has been 121

proven to effectively enhance semantic similar- 122

ity (Liu et al., 2021; Karpukhin et al., 2020; 123

Thakur et al., 2021). The rewritten text chunk 124

is then used as the knowledge point embedding, 125

with the original text chunk and index number 126

serving as the metadata. 127

Before utilizing the Bidirectional Traver- 128

sal Retrieval, we first employ a LLM with 129

strong comprehension capabilities, such as 130

GPT-4o (OpenAI et al., 2024), Qwen-max (Bai 131

et al., 2023), Gemini (Team et al., 2024),GLM4 132

(Du et al., 2022) and so on, to perform a "step- 133

back" (Zheng et al., 2024) analysis on the user’s 134

input query. It only needs to identify whether 135

the query contains intents like summarization 136

or concept enumeration, and based on this, de- 137

cide whether to adopt this specialized retrieve 138

strategy. Within this procession, we extract the 139

index numbers of the TopK retrieved knowledge 140

points then use the hierarchical positions in the 141

tree-like index table to extract the content of 142

their peer leaf nodes or all their subordinate 143
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Figure 2: Chunking Example

leaf nodes. Finally, we rerank all the knowledge144

points to serve as the final retrieved results.145

To demonstrate the reliability and underlying146

principles of Tree-Chunking and the effective-147

ness of the TreeRAG framework, we conduct148

ablation and comparative experiments on the149

Dragonball dataset (Zhu et al., 2024). The150

results show that Tree-Chunking effectively151

preserves information’s integrity and connec-152

tivity in long documents, while the TreeRAG153

framework achieves good recall and generation154

performance with minimal noise.155

Main contributions of this paper are as fol-156

lows:157

(1)We propose a novel text chunking method158

called Tree-Chunking, which chunks and159

stores text in a tree-like structure, thereby re-160

ducing the information disruption caused by161

chunking, and enhancing the retrieval effective-162

ness by completing hierarchical prefixes.163

(2)We design a retrieve strategy named Bidi-164

rectional Traversal Retrieval, which adopts165

the philosophy of "from root to leafs" and166

"from leaf to root" to comprehensively iden-167

tify knowledge points in search results, address-168

ing to a certain extent the challenge of relevant169

knowledge points being distant in vector space.170

(3)Experiments conducted on the Finance,171

Medical and Law subsets of Dragonball172

dataset demonstrate that TreeRAG, com-173

pared to other frameworks, has better recall174

quality, achieving a good recall rate while min-175

imizing the introduction of noise.176

2 Related Work177

As the number of parameters and the volume178

of training data for LLM increase, these models179

have demonstrated unprecedented capabilities 180

in handing complex language understanding 181

and generation tasks. However, for domain- 182

specific knowledge-intensive tasks such as open- 183

domain question answering and fact verifica- 184

tion, LLM still face challenges in terms of pro- 185

fessionalism and accuracy. Consequently, RAG 186

has emerged, combining the generative capabil- 187

ities of large-scale pre-trained models with the 188

retrieval capabilities to retrieve relevant infor- 189

mation from a vast array of documents to assist 190

in generation tasks.Current RAG research pri- 191

marily focuses on three core stages (Gao et al., 192

2024) :“Retrieval,” “Generation,” and “Augmen- 193

tation.” During the retrieval stage, original doc- 194

uments are processed and chunked into sizes, 195

then stored in vector databases through em- 196

bedding models, and knowledge points are ob- 197

tained by calculating the similarity between 198

users’ queries and document chunks in the 199

knowledge base. In the generation stage, the 200

retrieved knowledge points are passed to the 201

model as contexts to assist in generating re- 202

sponses. The augmentation stage involves opti- 203

mizing the retrieval workflow to address more 204

complex problems. This paper focuses on the 205

"Retrieval" and "Augmentation" stages. 206

Langchain1 (Chase, 2024) offers various con- 207

venient traditional chunking strategies, such as 208

RecursiveCharacterTextSplitter and Character- 209

TextSplitter. While these text splitters have 210

their applicability in certain scenarios, they are 211

no longer effective in meeting the increasing de- 212

mand for precise knowledge recall. Particularly 213

in long documents, a rough chunking method 214

implies more information loss, more noise and 215

poorer retrieval outcomes (Xu et al., 2023). 216

To address the aforementioned challenges, 217

advanced frameworks have emerged. Late- 218

Chunking employs chunking on documents 219

after embedding and before mean pooling, al- 220

lowing the resulting chunks to capture complete 221

contextual information. Meta-Chunking in- 222

troduces two chunking methods: one that iden- 223

tifies potential splitting points through perplex- 224

ity and another that involves LLMs in sentence 225

chunking decisions. The RAPTOR frame- 226

work uses Uniform Manifold Approximation 227

and Projection(UMAP) (McInnes et al., 2020) 228

and Gaussian clustering (Bishop, 2006) to gen- 229

1https://www.langchain.com/
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Figure 3: Prefix Add

erate nodes from the bottom up through sum-230

mary generation, thereby enhancing retrieval231

effectiveness. GraphRAG optimizes final gen-232

eration quality by integrating data into graph233

structures.234

However, when facing long document knowl-235

edge bases, the challenge of effective retrieval236

remains. This paper argues that greater fo-237

cus should be places on the connectivity be-238

tween knowledge points and the preservation239

of hierarchical contextual information. There-240

fore, we propose a RAG framework called241

TreeRAG which consists of the chunking242

method named Tree-Chunking and the re-243

trieve strategy termed Bidirectional Traver-244

sal Retrieval , which is designed to address245

these issues and enhance the performance of246

RAG.247

3 TreeRAG248

In this section, we will elaborate on the chunk-249

ing method of Tree-Chunking and the construc-250

tion of the index table, that is, how it chunks251

the text and enhances its embedding form for252

better retrieval effectiveness. Bidirectional253

Traversal Retrieval, based on Tree-Chunking,254

incorporates the use of LLM for intent identi-255

fication of users’ queries and the use of a tree-256

shaped index table for node completion. The257

framework of TreeRAG is shown in Figure 1.258

3.1 Tree-Chunking 259

Tree-Chunking focuses on the "Retrieval" 260

and "Augmentation" stages of RAG, consist- 261

ing of two major components: the chunking 262

method and the index table. These two compo- 263

nents work in tandem to generate text chunks 264

with more distinct and complete semantic fea- 265

tures and stronger associations, as well as to cre- 266

ate a tree-shaped index table for subsequent use 267

in the Bidirectional Traversal Retrieval. 268

3.1.1 Chunking Method & Index 269

Construction 270

Traditional chunking methods and text embed- 271

ding often chunk the text based on a fixed 272

size, and after adding a certain context win- 273

dow, they directly embed the chunks into lo- 274

cal knowledge base. More advanced chunking 275

methods that have recently emerged, such as 276

Late-Chunking and Meta-Chunking, aim 277

to preserve the text’s association with the orig- 278

inal document by adopting a "embedding first, 279

then chunking" approach or by finding poten- 280

tial splitting points. However, their effective- 281

ness declines as the length of the document 282

increases. Therefore, the chunking method and 283

embedding used in Tree-Chunking focus on 284

explicitly demonstrating the relationship be- 285

tween chunk and its preceding text. 286

After performing a certain level of cleaning 287

on the original document, an LLM with strong 288

comprehension capabilities, like GPT-4o, is 289

used to hierarchically categorize and add titles 290

to the document while respecting semantic co- 291

herence and the original document’s structure. 292

The titles consist of a title index number and 293

title content. These index numbers, generated 294

based on the document’s hierarchy, naturally 295

form a tree-like structure from top to bottom. 296

We represent the newly obtained chunk as Ni , 297

which is composed of the original chunk con- 298

tent and the title. The original chunk content 299

is represented as R (Ni), the index number in 300

the title is represented as T (Ni), and the ti- 301

tle content within the title is represented as 302

C (T (Ni)). An example of chunking is shown 303

in Figure 2 . 304

This chunking strategy flexibly divides the 305

original document into appropriately sized and 306

coherent text chunks, rather than using a fixed- 307

size chunking method. To explicitly demon- 308

strate the connection between each text chunk 309
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and the higher levels of the document, this310

study firstly constructs a tree-shaped index ta-311

ble based on the Ni . The connections and levels312

between nodes are determined by the title in-313

dex number in the new chunk, and the content314

of the nodes is the original content of the new315

chunk. We represent this index table as D .316

Through this index table D , we can clearly ob-317

tain the higher-level index numbers for each318

title index number. Then we add the title con-319

tents within the higher-level index numbers as320

prefixes to Ni to enhance the accuracy of simi-321

larity retrieval. The prefix P (Ni) is determined322

by the following formula:323

P (Ni) =

l−1⋃
i=1

C(Ti(Ni)), (1)324

where
⋃

represents concatenation, l repre-325

sents the level of the title index number, and326

C(Ti(Ni)) represents the i-th level title index327

number of T (Ni).328

The prefix P (Ni) is merged with Ni to yield329

Ni
′. This augmented chunk Ni

′ is then sub-330

jected to vector embedding as a knowledge331

points, with the corresponding title index T (Ni)332

and the original chunk content R (Ni) being333

utilized as metadata. The procedure for con-334

catenating the knowledge points is depicted in335

Figure 3.336

3.1.2 Approaching for solving337

demonstrative pronoun338

One of the original intentions of Late-339

Chunking is to address the ambiguity of refer-340

ents for pronouns such as"It," "He," and "She"341

within sentences through a clever chunking342

method. Tree-Chunking, on the other hand, ex-343

plicitly incorporates preceding text information344

as a prefix, which also alleviates to the situa-345

tion where demonstrative pronouns and their346

corresponding antecedents are too far apart in347

the document to be understood by LLMs. A348

detailed comparison and experiments will be349

presented in the "Experiment & Analysis"350

section.351

3.2 Bidirectional Traversal Retrieval352

Facing QFS, such as "Please list the effects of353

a certain medication", for embedding models354

that have not undergone fine-tuning and have355

not added special tokens, the multiple concepts356

Figure 4: Unsatisfactory Vector Distance

describing the same entity may not be ideally 357

distant from the user’s query in terms of vector 358

space, leading to the inability to fully retrieve 359

the correct knowledge points in the ground 360

truths. As illustrated in Figure 4, Dataset 361

consists of user’s queries (Query) and the cor- 362

rect knowledge points (Ground Truths). The 363

Ground Truths is composed of several chunks 364

from the Knowledge Base that can answer 365

the Query. In the example, G_1,G_2,G_3 366

are all correct knowledge points for the Query, 367

presenting a parallel relationship at the docu- 368

ment hierarchy and belonging to the same node. 369

However, in the vector space, G_2 is close to 370

Q in terms of vector distance, while G_2 and 371

G_3 are not ideal. Therefore, during the re- 372

trieval process, only G_2 may be included in 373

the TopK retrieval results. 374

Therefore, we propose Bidirectional 375

Traversal Retrieval, which utilizes LLM 376

with strong comprehension capabilities to 377

perform intent recognition on users’ queries 378

before retrieval. It identifies whether the 379

queries contain concept-listing intentions such 380

as "Summarization," as in the query "What 381

are the symptoms of disease A ?" This query 382

includes an intent to summarize and requires 383

retrieving multiple knowledge points. If such 384

an intention is detected, the process enters this 385

special retrieve strategy; otherwise, it proceeds 386

with the normal retrieval process. In Algorithm 387

1, we show this retrieval strategy. Here, T 388

refers to the Knowledge Tree Index Table 389

derived from Tree-Chunking, R represents 390

the initial set of retrieved knowledge points. 391

Tleaves (Ri) refers to the process of obtaining 392

all the leaf node contents associated with 393
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Ri, while Troot (Ri) refers to the process of394

extracting the unique immediate root node of395

Ri.396

Algorithm 1: Bidirectional Traversal
Retrieval
Input: Query Q; Knowledge Tree Index

Table T ; LLM with strong
comprehension LLM(·); initially
retrieved knowledge points R

Output: Final knowledge points F
1 I ← LLM(Q)
2 F ← ∅
// Initialize F as an empty set

3 if I = 0 then
4 F ← R
5 else
6 for i = 1, 2, . . . do
7 if Ri is a root node then
8 F ← F ∪ Tleaves(Ri)

// Union with leaf nodes

9 else
10 F ← F ∪ Tleaves(Troot(Ri))
11 end if
12 end for
13 end if
14 Description: The LLM(·) determines

whether the input involves a
"summarization" intent. If true, it
outputs 1; otherwise, it outputs 0.

Within Bidirectional Traversal Re-397

trieval, the core concepts of "From Leaf to398

Root" and "From Root to Leaves" enable399

the system to retrieve all relevant knowledge400

points even in extreme cases where only one401

of the corresponding ground truths is initially402

retrieved. This is achieved through the rela-403

tionships between root and leaf nodes. Finally,404

all retrieved knowledge points are re-ranked to405

further enhance the recall performance.406

4 Experiments & Analysis407

We measure TreeRAG’s performance on408

the Dragonball dataset (Zhu et al., 2024)409

through three major experiments in this section:410

The Principle of Tree-Chunking, Compar-411

ative Experiments and Ablation Studies.412

The Dragonball dataset is a multilingual413

and multi-domain dataset consisting of multi-414

hop reasoning questions, summary questions,415

factual questions, and corresponding long orig- 416

inal documents from the domains of Finance, 417

Medical and Law. This dataset does not con- 418

tain any real-world information. For more de- 419

tails, please refer to A.1. We select parts 420

of dataset that contains Chinese non-multi- 421

document questions, and in all three experi- 422

ments, we use BGE-M3 (Chen et al., 2023) as 423

embedding model which performs excellently 424

on Chinese language tasks and utilize bold and 425

underline formatting to indicate the highest 426

and second-highest scores. Additionally, all 427

pre-trained models used in experiments employ 428

the default parameter settings. 429

In the The Principle of Tree-Chunking 430

experiment, we use similarity as the evalua- 431

tion metirc. In the Comparative and Abla- 432

tion Studies, we use Recall (Musgrave et al., 433

2020), Precision and Effective Information 434

Rate(EIR) Zhu et al. (2024) as metrics for 435

retrieval quality, and ROUGE-L (Lin, 2004), 436

METEOR (Banerjee and Lavie, 2005) and 437

BLEU (Papineni et al., 2002) for generation 438

quality evaluation. 439

4.1 The Principle of Tree-Chunking 440

In the experiments of this subsection, we will 441

demonstrate that the method of adding ex- 442

plicit prefixes adopted by Tree-Chunking can 443

alleviate the confusion of demonstrative pro- 444

nouns, thereby proving the reliability of Tree- 445

Chunking in terms of preserving the integrity 446

and connectivity of information. We selected 447

two long documents from the Dragonball 448

dataset and extracted a coherent segment from 449

each of them. The characteristic of each seg- 450

ments is that only the first sentence contains an 451

explicit subject, while subsequent sentences use 452

demonstrative pronouns such as "it" and "the 453

company" to refer to that subject. To conduct 454

a comparative experiment, this subsection will 455

evaluate three different approaches: Baseline, 456

Late-Chunking, and Tree-Chunking. 457

The metric for the experimental results is the 458

cosine similarity (Zhang et al., 2020) between 459

the subject in the first sentence of the document 460

and each sentence in the vector space. The 461

experimental results are presented in Table 4 462

and Table 5 in A.2. 463

In the experiments presented in Table 4, from 464

the perspective of similarity scores, both Late- 465

Chunking (Günther et al., 2024) and Tree- 466
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Methods Finance Medical Law
Recall Precision EIR Recall Precision EIR Recall Precision EIR

Late-Chunking 0.541 0.249 0.440 0.087 0.061 0.145 0.024 0.016 0.266
RAPTOR-GLM4-flashx 0.837 0.3833 0.4863 0.132 0.143 0.578 / / /
RAPTOR-GLM4-airx 0.835 0.382 0.492 0.119 0.150 0.540 / / /
Meta-Chuking-Margin 0.833 0.460 0.493 0.503 0.256 0.233 0.646 0.456 0.391
Meta-Chuking-PPL 1.513 0.609 0.321 0.594 0.325 0.171 1.331 0.639 0.298

TreeRAG 1.983 0.888 0.630 0.669 0.415 1.183 1.078 0.575 0.807

Table 1: Comparative Experiment on Retrieval Quality: The RAPTOR framework uses two
different LLMs from the GLM4 series for summarizing nodes in its internal preocess.However, due to the
presence of sensitive or unsafe content in the original documents of the Law subset, LLMs cannot be used
for summarization. The Meta-Chunking framework, offers two different chunking logics: Margin Sampling
Chunking and Perplexity Chunking.

Methods TreeRAG nano-
GraphRAG TreeRAG nano-

GraphRAG
Finance Medical

ROUGE-L 0.313 0.255 0.238 0.241
METEOR 0.405 0.321 0.319 0.301
BLEU-1 0.253 0.131 0.171 0.101
BELU-2 0.200 0.106 0.129 0.081
BLEU-3 0.162 0.086 0.105 0.067
BLEU-4 0.134 0.070 0.089 0.056

Table 2: Comparative Experiment on Gener-
ation Quality: Due to the presence of unsafe and
sensitive content in the Law subset, we conduct
experiments on Finance and Medical subsets.

Chunking have yielded promising results.467

The experiments shown in Table 5, which468

differ from those in Table 4 by featuring a469

greater number of sentences and longer sentence470

lengths, the superiority of Tree-Chunking471

becomes more apparent. This also theoret-472

ically demonstrates the reliability of Tree-473

Chunking in preserving the integrity and con-474

nectivity of information.475

4.2 Ablation Studies & Comparative476

Experiments477

To evaluate the performance of TreeRAG in478

addressing these challenges, we select the pro-479

cessed Dragonball dataset (Zhu et al., 2024)480

for our experiments, conducting tests across its481

Finance, Law, Medical subsets.482

4.2.1 Comparative Experiment on483

Retrieval Quality484

We compare TreeRAG with popular recall-485

focused RAG frameworks such as Late-486

Chunking, Meta-Chunking and RAPTOR.487

Among these frameworks, Late-Chunking488

and Meta-Chunking enhance embedding489

effectiveness through optimizations in the490

chunking method, while RAPTOR improves 491

the storage structure and retrieval strategy. 492

TreeRAG innovates across chunking method, 493

storage structure and retrieval strategy to 494

achieve better retrieval performance. The ex- 495

perimental results are shown in Table 1 and 496

original results is shown in Table 6 in A.4. 497

The final metric scores are calculated using the 498

following formula: 499

Metric = Metric@3 +Metric@5 +Metric@10
(2) 500

From this perspective reveals that 501

TreeRAG, while always maintaining a 502

great recall rate, achieves the best precision 503

and EIR metrics, meaning it maintains the 504

integrity and connectivity of information to 505

the great extent while introducing the least 506

amount of noise. 507

4.2.2 Comparative Experiment on 508

Generation Quality 509

GraphRAG stores knowledge points in the 510

form of a knowledge graph, integrating the vari- 511

ous attributes the retrieved entities and present- 512

ing them to the LLM, there by enabling high- 513

quality answer generation for QFS tasks. To 514

ensure a fair comparison of answer generation 515

quality across different frameworks, we choose 516

nano-GraphRAG (gusye1234, 2024), which 517

enhances the customizability of GraphRAG 518

and is configured for Chinese QA tasks. In 519

this experiment, we use Qwen-max as the gen- 520

eration model. For TreeRAG, we use the re- 521

trieved knowledge points, augmented with pre- 522

fixes, as the context input to the LLM. We 523

use ROUGE-L, METEOR and BLEU on 524

Finance and Medical subsets to evaluate 525
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Dragonball-Finance Dragonball-Medical Dragonball-Law
Method Baseline Tree-Chunking TreeRAG Baseline Tree-Chunking TreeRAG Baseline Tree-Chunking TreeRAG

Top-3
Recall 30.49% 47.75% 50.51% 1.56% 7.38% 14.30% 6.98% 7.64% 26.22%

Precision 23.11% 36.59% 38.65% 2.53% 10.79% 15.38% 10.17% 14.03% 22.67%
EIR 26.18% 27.67% 27.96% 26.97% 38.76% 54.48% 20.39% 24.97% 38.48%

Top-5
Recall 40.09% 60.65% 64.14% 2.13% 9.11% 19.55% 12.32% 11.07% 33.79%

Precision 19.10% 28.33% 29.99% 2.08% 8.82% 13.45% 9.12% 11.77% 19.53%
EIR 18.20% 19.92% 20.98% 21.39% 24.05% 38.78% 15.46% 18.93% 25.59%

Top-10
Recall 53.41% 79.82% 83.63% 2.65% 14.13% 33.05% 26.35% 19.10% 47.76%

Precision 12.34% 19.10% 20.11% 1.37% 6.62% 12.66% 8.46% 9.84% 15.27%
EIR 10.90% 13.18% 14.04% 11.99% 17.41% 25.08% 10.09% 10.88% 16.60%

Table 3: Ablation Studies: The Baseline in the study uses the same chunking method as Tree-
Chunking, but it lacks the prefix addition step, instead opting to include a context window as a
substitute. In the metrics, EIR quantifies the proportion of relevant information within the retrieved
passages, ensuring that the retrieval process is both accurate and efficient in terms of information content.

the generation quality of nano-GraphRAG526

and TreeRAG. The experimental results are527

shown in Table 2.528

The results show that TreeRAG achieves bet-529

ter comprehensive results, demonstrating its530

ability to introduce minimal noise while accu-531

rately recalling relevant knowledge points in532

QFS tasks, ultimately improving the quality of533

the LLM’s answers.534

4.2.3 Ablation Studies535

TreeRAG is formed based on Tree-536

Chunking with the addition of a special537

retrieval strategy called Bidirectional Traver-538

sal Retrieval. To validate the effectiveness539

of each component within this framework,540

this subsection conducts ablation studies by541

evaluating Baseline, Tree-Chunking, and542

TreeRAG on Dragonball dataset.543

Table 3 presents the final results of the544

ablation studies. The introduction of Tree-545

Chunking has yielded a noticeable enhance-546

ment in the metrics, offering a more intuitive547

demonstration of this chunking method’s relia-548

bility. Importantly, as the components of the549

framework are refined step by step, there is550

a pronounced upward trend in the Recall@k.551

However, it is noteworthy that during this pro-552

cess, neither Precision@k nor EIR@k de-553

crease as result of the framework modifications.554

This means that TreeRAG not only enhances555

the recall rate but also further reduces the in-556

troduction of noise. This capability sufficiently557

demonstrates the effectiveness of TreeRAG558

and its components in preserving the integrity559

and connectivity of information when address- 560

ing QFS tasks. 561

5 Conclusion 562

In this paper, we propose a tree-like struc- 563

ture for chunking and embedding called Tree- 564

Chunking. Building upon this foundation, we 565

introduce a RAG framework named TreeRAG 566

that integrates Bidirectional Traversal Re- 567

trieval with the concepts of "from root to 568

leaves" and "from leaf to root". We conduct 569

experiments across Dragonball dataset to 570

demonstrate the principle of Tree-Chunking 571

in preserving the integrity and connectivity of 572

information, thereby validating its reliability in 573

this regard. Most importantly, we have demon- 574

strated that TreeRAG can maintain the in- 575

tegrity and connectivity of knowledge points 576

when tackling the QFS task on long documents, 577

achieving high recall rates whit minimal noise 578

introduction and ultimately facilitating the gen- 579

eration of high-quality answers. 580

Additionally, it is independent of specific em- 581

bedding models and LLMs, and does not re- 582

quire additional training, making it applicable 583

to a wide rage of application scenarios. 584

6 Limitation 585

In fact, during our research, we identified limi- 586

tations: TreeRAG does not have a particular 587

advantage when it comes to recalling knowledge 588

points from different documents due to the in- 589

dependence of each constructed tree. Moreover, 590

we have not yet focused on further optimiz- 591

ing the retrieved knowledge points before using 592

8



them as context for input like GraphRAG. In593

the future, we plan to improve the framework’s594

versatility and enhance its performance in QA595

tasks by focusing on "knowledge aggregation"596

and "generation enhancement".597
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A Appendix794

A.1 schema examples of Dragonball795

dataset796

Figure 5: a schema example of Finance subsets
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Figure 6: a schema example of Law subsets

12



Figure 7: a schema example of Medical subsets

A.2 The principle of Tree-Chunking797
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Text Sim.Baseline Sim.Late-Chunking Sim.TreeStructure
In terms of governance structure, during the reporting period,
TuoYuan Technology Co., Ltd. experienced several
ethical and integrity issues.

0.8206 0.7615 0.8077

First, the company revealed an internal fraud case involving
senior executives, who took advantage of their positions to
engage in financial misconduct. This incident severely damaged
the company’s reputation and shareholder trust.

0.6223 0.7393 0.7328

Additionally, the company exposed issues of conflicts of
interest among senior executives, including cases where
executives used company resources for personal gain. These
conflicts of interest further weakened the effectiveness of
the company’s governance.

0.6054 0.7315 0.7164

Table 4: Similarity to TuoYuan Technology Co., Ltd.: The "embedded-first, then-chunk" method in
Late-Chunking enables each sentence’s embedding vector to incorporate information from other sentences,
leading to superior similarity results. In the Tree-Chunking, explicit prefixes are added to the embedded
sentences, directly incorporating prior context, which also yields favorable outcomes.

Text Sim.Baseline Sim.Late-Chunking Sim.TreeStructure
The year 2019 was a pivotal year in the development of
ACME R&D Co., Ltd., during which the company underwent
a series of significant events in its financial affairs, events that had
a profound impact on the company’s financial status and
performance.

0.7600 0.7288 0.7663

First, in June 2018, the company launched a large-scale financing
plan aimed at supporting its expansion and development. After
several months of preparation and negotiations, the company
finalized the financing plan in September 2018 and officially
signed the financing agreement in January 2019. This financing
plan provided the company with sufficient funds, helping to drive
its business growth and innovation in R&D.

0.6046 0.6775 0.7522

However, in March 2019, the company faced the challenge of debt
restructuring. Due to the large scale of its debt, the company
decided to undertake debt restructuring to reduce financial risks
and ease the burden of liabilities. This measure helped to
optimize the company’s capital structure and improve its financial
stability.

0.5454 0.6728 0.7259

In June 2019, the company made a significant investment to further
expand its business scale and market share. This investment brought
new growth opportunities to the company and laid a solid foundation
for its future development.

0.5389 0.6794 0.7444

Table 5: Similarity to ACME R&D Co., Ltd.: In scenarios with extensive contents and sparse explicit
subjects, although Late-Chunking can still perform well, the concentration of information tends to
dilute as the number of sentences increases and their lengths become longer. Tree-Chunking, due to its
explicit expression of prior context, can better maintain the association between chunks and the preceding
texts, thereby offering a greater advantage in resolving demonstrative pronouns.
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A.3 Retrieved Knowledge Points798

Figure 8: Knowledge Points Retrieved by RAG
frameworks

A.4 Complete Results of Comparative799

Experiment on Retrieval Quality800

15



Method Late
Chunking

RAPTOR
GLM4-flashx

RAPTOR
GLM4-airx

Meta
Chunking
Margin

Meta
Chunking

PPL
TreeRAG

Finance subset of Dragonball dataset
Top-3

Recall 9.19% 20.99% 21.49% 20.64% 40.66% 50.51%
Precision 8.56% 16.74% 12.71% 20.18% 27.96% 38.65%

EIR 21.25% 23.39% 24.09% 23.36% 15.24% 27.96%
Top-5

Recall 15.85% 26.72% 26.68% 27.01% 49.64% 64.14%
Precision 8.75% 12.85% 16.95% 15.72% 20.32% 29.99%

EIR 14.46% 16.01% 15.84% 16.48% 10.62% 20.98%
Top-10

Recall 29.02% 35.99% 35.30% 35.66% 61.02% 83.63%
Precision 7.58% 8.74% 8.57% 10.11% 12.58% 20.11%

EIR 8.27% 9.23% 9.31% 9.43% 6.27% 14.04%
Medical subset of Dragonball dataset

Top-3
Recall 1.61% 3.75% 3.69% 11.94% 13.09% 14.30%

Precision 2.19% 6.06% 6.33% 9.56% 12.72% 15.38%
EIR 7.36% 26.49% 25.46% 11.89% 8.18% 54.48%

Top-5
Recall 2.54% 4.95% 4.04% 15.97% 20.70% 19.55%

Precision 2.05% 4.32% 4.60% 8.11% 10.56% 13.45%
EIR 4.70% 17.92% 16.10% 7.75% 6.23% 38.78%

Top-10
Recall 4.50% 4.50% 4.21% 22.43% 25.61% 33.05%

Precision 1.84% 3.94% 4.04% 7.95% 9.26% 12.66%
EIR 2.39% 13.37% 12.39% 3.63% 2.68% 25.08%

Law subset of Dragonball dataset
Top-3

Recall 0.07% / / 11.92% 26.75% 26.22%
Precision 0.17% / / 16.30% 25.00% 22.67%

EIR 13.91% / / 17.16% 12.70% 38.48%
Top-5

Recall 0.59% / / 18.77% 42.23% 33.79%
Precision 0.55% / / 15.59% 22.49% 19.53%

EIR 8.25% / / 13.29% 10.27% 25.59%
Top-10

Recall 1.71% / / 33.93 64.16% 47.76%
Precision 0.85% / / 13.71% 16.41% 15.27%

EIR 4.48% / / 8.64% 6.82% 16.60%

Table 6: Complete Results of Comparative Experiment on Retrieval Quality
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