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Abstract

Neural networks are known to be vulnerable to adversarial attacks – slight but
carefully constructed perturbations of the inputs which can drastically impair the
network’s performance. Many defense methods have been proposed for improving
robustness of deep networks by training them on adversarially perturbed inputs.
However, these models often remain vulnerable to new types of attacks not seen
during training, and even to slightly stronger versions of previously seen attacks.
In this work, we propose a novel approach to adversarial robustness, which builds
upon the insights from the domain adaptation field. Our method, called Adversarial
Feature Desensitization (AFD), aims at learning features that are invariant towards
adversarial perturbations of the inputs. This is achieved through a game where
we learn features that are both predictive and robust (insensitive to adversarial
attacks), i.e. cannot be used to discriminate between natural and adversarial data.
Empirical results on several benchmarks demonstrate the effectiveness of the
proposed approach against a wide range of attack types and attack strengths. Our
code is available at https://github.com/BashivanLab/afd.

1 Introduction

When training a classifier, it is common to assume that the training and test samples are drawn
from the same underlying distribution. In adversarial machine learning, however, this assumption is
intentionally violated by using the classifier itself to perturb the samples from the original (natural)
data distribution towards a new distribution over which the classifier’s error rate is increased [52].
As expected, when tested on such adversarially generated input distribution, the classifier severely
underperforms. To date, various methods have been proposed to defend the neural networks against
adversarial attacks [34, 2], additive noise patterns and corruptions [24, 25, 45], and transformations
[17]. Among these methods, two of the most successful adversarial defense methods to date are
adversarial training [34], which trains the neural network with examples that are perturbed to
maximize the loss on the target model, and TRADES [57], which regularizes the classifier to push
the decision boundary away from the data. While past adversarial defence methods have successfully
improved the neural network robustness against adversarial examples, it has also been shown that
these robust networks remain susceptible to even slightly larger adversarial perturbations or other
forms of attacks [19, 46, 48].

In this paper, we propose to view the problem of adversarial robustness through the lens of domain
adaptation, and to consider distributions of natural and adversarial images as distinct input domains
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that a classifier is expected to perform well on. We then focus our attention on learning features that
are invariant under such domain shifts. Building upon domain adaptation literature [4], we use the
classification-basedH∆H-divergence to quantify the distance between the natural and adversarial
domains. The theory of domain adaptation allows us to formulate a bound on the adversarial
classification error (i.e. the error under the distribution of adversarial examples) in terms of the
classification error on natural images and the divergence between the natural and adversarial features.

We further propose an algorithm for minimizing the adversarial error using this bound. For this,
we train a classifier and a domain discriminator to respectively minimize their losses on the label
classification and domain discrimination tasks. The feature extractor is trained to minimize the label
classifier’s loss and maximise the discriminator’s loss. In this way, the feature extractor network
is encouraged to learn features that are both predictive for the classification task and insensitive
to the adversarial attacks. The proposed setup is conceptually similar to prior work in adversarial
domain adaptation [18, 53], where domain-invariant features are learned through an adversarial game
between the domain discriminator and a feature extractor network.

This setup is similar to the adversarial learning paradigm widely used in image generation and
transformation [20, 28, 60], unsupervised and semi-supervised learning [39], video prediction [35, 31],
active learning [47], and continual learning [16]. Some prior work have also considered adversarial
learning to tackle the problem of adversarial examples [54, 36, 9, 8]. These methods used generative
models to learn the distribution of the adversarial images[54, 36], or to learn the distribution of input
gradients[9, 8]. Unlike our method which learns a discriminator function between distributions of
adversarial and natural features and updates the feature extractor to reduce the discriminability of
those distributions.

The main contributions of this work are as follows:

• We apply domain-adaptation theory to the problem of adversarial robustness; this allows to
bound the adversarial error in terms of the error on the natural inputs and the divergence
between the feature (representation) distributions of adversarial and natural domains.

• Aiming to minimize this bound, we propose a method which learns adversarially robust
features that are both predictive and insensitive to adversarial attacks, i.e. cannot be used to
discriminate between natural and adversarial data.

• We empirically demonstrate the effectiveness of the proposed method in learning robust
models against a wide range of attack types and attack strengths, and show that our proposed
approach often significantly outperforms most previous defense methods.

2 Related Work

There is an extensive literature on mitigating susceptibility to adversarial perturbations [34, 57,
13, 59, 3, 22, 7]. Adversarial training [34] is one of the earliest successful attempts to improve
robustness of the learned representations to potential perturbations to the input pattern by solving a
min-max optimization problem. TRADES [57] adds a regularization term to the cross-entropy loss
which penalizes the network for assigning different labels to natural images and their corresponding
perturbed images. [41] proposed an additional regularization term (local linearity regularizer) that
encourages the classification loss to behave linearly around the training examples. [55, 51] proposed
to regularize the flatness of the loss to improve adversarial robustness.

Our work is closely related to the domain adaptation literature in which adversarial optimization
has recently gained much attention [18, 32, 53]. From this viewpoint one could consider the clean
and perturbed inputs as two distinct domains for which a network aims to learn an invariant feature
set. Although in our setting, i) the perturbed domain continuously evolves while the parameters of
the feature network are tuned; ii) unlike the usual setting in domain-adaptation problems, here we
have access to the labels associated with some samples from the perturbed (target) domain. Recent
work[49] regularized the network to have similar logit values in response to clean and perturbed inputs
and showed that this additional term leads to better robust generalization to unseen perturbations.
Related to this, Adversarial Logit Pairing [27] increases robustness by directly matching the logits
for clean and adversarial inputs. JARN [9] Another line of work is on developing certified defenses
which consist of methods with provable bounds over which the network is certified to operate robustly
[58, 56, 10]. While these approaches provide a sense of guarantee about the proposed defenses, they
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(a) (b)
Figure 1: (a) Overview of the proposed AFD approach; (b) Visual comparison of adversarial
robustness methods (Adversarial training [34], TRADES [57], and AFD). The dashed red and dotted
black lines correspond to the decision boundary of classes and the domain discriminator respectively.

are usually prohibitively expensive to train, drastically reduce the performance of the network on
natural images, and the empirical robustness gained against standard attacks is low.

3 Our approach
We will now make a connection between the domain adaptation and adversarial robustness, and
build upon this connection to develop an approach for improving the network’s robustness against
adversarial attacks.

3.1 Preliminaries

Let Fθ(x) : X → Z , where X ⊆ Rn, Z ⊆ Rm, be a feature extractor (e.g. a neural network
with parameters θ) mapping the input x ∈ X into the feature vector (representation) z ∈ Z , and let
Cφ : Z → Y , where Y = {1, . . . ,K} are the class labels, be a classifier, with parameters φ (e.g., the
last linear layer of a neural network plus the softmax function, on top of the extracted features).

Adversarial attack: Let π(x, ε) denote a perturbation function (an adversarial attack) which, for a
given (x, y) ∈ X × Y , generates a perturbed sample x′ ∈ B(x, ε) within the ε-neighborhood of x,
B(x, ε) = {x′ ∈ X : ‖x′ − x‖ < ε}, by solving the following maximization problem

max
t∈B(x,ε)

L(Cφ(Fθ(t)), y), (1)

where L is the task classification loss function. In practice, however, the perturbed sample x′ found
by an attacker is typically an approximate rather than the exact solution to this maximization problem.

In order to characterize the distance between the natural and adversarial data distributions, the
following notion of distance between two probability distributions, defined in [4, 18], will be used
later to make a connection with domain adaptation theory.

H∆H-distance: Let H be a set of binary classifiers (hypotheses), called a hypothesis space; then
the symmetric difference hypothesis space H∆H defines the set of hypotheses that capture the
disagreements between two hypotheses inH, as in [4]:

g ∈ H∆H ⇐⇒ g(x) = h(x)⊕ h′(x) for some h, h′ ∈ H, (2)

where ⊕ denotes the XOR function. Then theH∆H-distance [4, 18] between two data distributions
(domains) S and T , with respect to the hypothesis spaceH, is defined as:

dH∆H(S, T ) = 2 sup
h∈H∆H

|Px∼S
[
h(x) = 1

]
− Px∼T

[
h(x) = 1

]
|. (3)

This equation turns into an inequation when the supremum is taken over the hypothesis space H
instead ofH∆H [18].

3.2 A Domain Adaptation View of Adversarial Robustness

A domain is defined as a data distribution D on the set of inputs X [5]. In the adversarial robustness
setting, we consider two domains – the natural and the adversarial domains, corresponding respectively
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to the source and target domains in domain adaptation. We denote by DX and D′X the natural and
adversarial distributions of input instances respectively and by DZ and D′Z their corresponding
induced distributions over the feature space Z . As in domain adaptation, we assume that f : X → Y
is a labeling function common to both domains. The expected classification error εZ of the classifier
Cφ over DZ is defined as the probability that the classifier Cφ disagrees with the function f̃ :

εZ(Cφ) = Ez∼DZ

[
y 6= Cφ(z)

]
, (4)

where f̃ : Z → Y is a mapping from the features to the class label such that f(x) = f̃(Fθ(x)). We
similarly define ε′Z as the expected error of Cφ over DZ′ . Using theorem 2 from [4] that relates the
source and the target domain errors, we get an upper bound on the expected adversarial error ε′Z as:

ε′Z(h) ≤ εZ(h) +
1

2
dH∆H(DZ ,D′Z) + c, (5)

where c is a constant term w.r.t. h. Eq. 5 essentially gives a bound on the adversarial error ε′Z in
terms of the natural error εZ and a divergence dH∆H between the natural and adversarial domains
with respect to their induced representation distributions DZ and D′Z . In the next section, we will
describe an algorithm for improving adversarial robustness of a model by iteratively estimating and
minimizing these two components of the error bound.

3.3 Adversarial Feature Desensitization

Based on Eq. 5, the expected adversarial error could be reduced by jointly minimizing the nat-
ural error and the divergence between the distributions of natural and adversarial representations
dH∆H(DZ ,D′Z). While minimizing the natural error εX is straightforward, minimizing the cross-
domain divergence requires us to estimate dH∆H(DZ ,D′Z). As was shown before [18], training a
domain discriminator Dψ is closely related to estimating the dH∆H(DZ ,D′Z). The domain discrimi-
nator is a classifier trained to assign a label of 1 to samples from DZ , and -1 to samples from D′Z .
Namely, it is shown [18] that

dH∆H(DZ ,D′Z) ≤ 2 sup
h∈H
|αDZ ,D′

Z
(h)− 1|, (6)

where αDZ ,D′
Z

(h) = Pz∼DZ

[
h(z) = 1

]
+Pz∼D′

Z

[
h(z) = −1

]
combines the true positives and true

negatives, and is thus maximized by the optimal domain discriminator h = Dψ. Note that, if the
domain distributions DZ and D′Z are the same, then even the best choice of domain discriminator
Dψ will achieve chance-level accuracy, corresponding to αDZ ,D′

Z
(Dψ) = 1. Our approach will

aim at minimizing this estimated distance dH∆H(DZ ,D′Z) by tuning the feature extractor network
parameters θ in the direction that pushes the distributions DZ and D′Z closer together. In parallel,
we train the domain discriminator to estimate and guide the progress of the feature extractor’s tuning.

We now describe the proposed approach (see Algorithm 1) which essentially involves simultaneous
training of the feature extractor Fθ, the task classifier Cφ and the domain discriminator Dψ (see
Figure 1a)1. One iteration of the training procedure consists of the following three steps.

First, parameters of the feature extractor Fθ and classifier Cφ are updated aiming to minimize the
natural error εX using the cross-entropy loss on natural inputs:

LC = − 1

m

m∑
i=1

ỹi · log
(

softmax(Cφ(Fθ(xi)))
)
, (7)

where ỹi is a one-hot encoding of the true label of the i-th sample xi.

Next, steps two and three essentially implement a two-player minimax game similar to that in
Generative Adversarial Networks (GAN) [20], carried out between the feature extractor network Fθ
and the domain discriminator Dψ , with a value function

V (Fθ, Dψ) = Ep(y)

[
Ep(x|y)[S(−Dψ(Fθ(x), y))]

]
+ Eq(y)

[
Eq(x|y)[S(Dψ(Fθ(x), y))]

]
, (8)

1Note that we will somewhat abuse the notation, assuming that Cφ and Dψ below correspond to the
logits (last-layer output) of the corresponding networks. Also, we will use class-conditional discriminators,
Dψ(Fθ(x, y)), i.e. train different domain discriminator for different label values y.
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Algorithm 1: AFD training procedure
Input: Adversarial perturbation function (attack) π, feature extractor Fθ, task classifier Cφ,

domain discriminator Dψ , learning rates α, β, and γ.
repeat

input next mini-batch {(xi, yi), ..., (xm, ym)}
for i=1 to m: x′i ← π(xi, ε)
Compute LC according to Eq. 7
Compute LD according to Eq. 9
Compute LF according to Eq. 10
(θ, φ)← (θ, φ)− α∇θ, φLC % update feature extractor and task classifier
ψ ← ψ − β∇ψLD % update domain discriminator
θ ← θ − γ∇θLF % update feature extractor

until convergence;

where S is the softplus function. In particular, parameters of the domain discriminator Dψ are
updated to minimize the cross-entropy loss associated with discriminating natural and adversarial
inputs, maximizing α(h) in Eq. 6.

LD =
1

m

m∑
i=1

[
S(−Dψ(Fθ(xi), yi)) + S(Dψ(Fθ(x

′
i), yi))

]
, (9)

while the parameters of the feature extractor function Fθ are adversarially updated to maximize the
domain discriminator’s loss from Eq. 9

LF =
1

m

m∑
i=1

S(−Dψ(Fθ(x
′
i), yi)). (10)

In Figure 1b, we visually compare the learning dynamics in adversarial training, TRADES and AFD.
Essentially, the adversarial training solves the classification problem by pushing the representation
of adversarial examples from different classes away. TRADES regularizes the normal classification
loss on the natural inputs with an additional term that encourages the representation of adversarial
and natural images to match. Similar to TRADES, in AFD, the regular classification loss on natural
inputs is augmented but with an adversarial game which consists of training the domain discriminator
that distinguishes between the adversarial and natural inputs for each class followed by updates to
the feature extractor to make the representations for natural and adversarial examples to become
indistinguishable from each other. Notably, because the parameter update for the feature extractor
network is done to maximize the domain discriminator loss and not to decrease the loss for particular
adversarial examples (as is done in adversarial training or TRADES), it potentially increases the
network robustness against any perturbation that could be correctly classified using the same domain
discriminator. This could potentially lead to a broader form of generalization learned by the network.

Discussion: Relation to Adversarial Training. Adversarial training minimizes the expected error
on adversarial examples (the perturbed versions of the natural samples), generated by an attacker
in order to maximize the classification loss. The adversarial training procedure involves a minimax
optimization problem consisting of an inner maximization to find adversarial examples that maxi-
mize the classification loss and an outer minimization to find model parameters that minimize the
adversarial loss. From the domain adaptation point of view, the inner optimization of adversarial
training is equal to a sampling procedure that generates samples from the target domain. Intuitively,
direct training of the classifier on samples from the target domain would be the best way to improve
the accuracy in that domain (i.e. adversarial classification accuracy). However, it’s important to note
that the adversarial examples found through the inner optimization only approximately maximize
the classification loss, and therefore the adversarial error associated with these samples only act as
a lower bound on the true adversarial error and therefore the outer loop of the adversarial training
method essentially minimizes a lower bound on the adversarial classification error. In contrast to
this setup, our proposed method minimizes a conservative upper bound on the adversarial error and
therefore is more likely to generalize to a larger set of unseen attacks, and to stronger versions of
previously seen attacks (i.e. ones that generate higher-loss samples in the inner optimization loop).
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4 Experiments

4.1 Experimental setup

Datasets. We validated our proposed method on several common datasets including MNIST [30],
CIFAR10, CIFAR100 [29], and tiny-Imagenet [26]. The inputs for all datasets were used in their
original resolution except for tiny-Imagenet where the inputs were resized to 32× 32 to allow the
experiments to finish within reasonable time on two GPUs.

Adversarial attacks. To fairly assess the generalization ability of each defense method across attack
types, we tested each network on 9 well-known adversarial attacks from the literature, using existing
implementations from the Foolbox [42] and Advertorch [12] Python packages. Namely, we tested the
models against different variations of the Projected Gradient Descent (PGD) [34] (L∞, L2, L1), Fast
Gradient Sign Method (FGSM) [21], Momentum Iterative Method (MIM) [14], Decoupled Direction
and Norm (DDN) [43], Deepfool [40], C&W [6], and AutoAttack [11] attacks. Also to assess the
generalization in robustness across stronger adversarial attacks, for each attack we also varied the ε
value across a wide range and validated different models on each. Specific hyperparameters used for
each attack are listed in Table-A2.

Feature extractor network Fθ and classifierCφ. We used the same network architecture, ResNet18
[23] for the feature extractor and classifier networks in experiments on all datasets and only increased
the number of features for more challenging datasets. The number of base filters in the ResNet
architecture was set to 16 for MNIST and 64 for other datasets. We used the activations before the
last linear layer as the the output of the feature extractor network (Z) and the last linear layer as the
classifier network Cφ. We added an activation normalization layer to the output of feature extractor
network to provide normalized features to both Cθ and Dψ networks.

Domain discriminator network Dψ . We compared several variations of the domain discriminator
architecture and evaluated its effect on robust classification on MNIST dataset (Table A5). Overall,
we found that using deeper networks for domain discriminator and adding projection discriminator
layer improves the robust classification accuracy. The number of hidden units in all layers of Dψ

were equal (64 for MNIST and 512 for other datasets). Following the common design principles in
Generative Adversarial Networks literature, we used the spectral normalization [37] on all layers of
Dψ . In all experiments, the domain discriminator (Dψ) consisted of three fully connected layers with
Leaky ReLU nonlinearity followed by a projection discriminator layer that incorporated the labels
into the adversarial discriminator through a dot product operation [38]. Further details of training for
each experiment are listed in Table-A1.

Training parameters and baselines. All networks including baselines were trained on an adaptive
version of PGD attack [11] that adaptively tunes the step size during the attack with virtually no
computational overhead compared to standard PGD attack. We used ε = 0.3, 0.031, and 0.016
for MNIST, CIFAR, and Tiny-Imagenet datasets respectively. To find the best learning rates, we
randomly split the CIFAR10 train set into a train and validation sets (45000 and 5000 images in train
and validation sets respectively). We then carried out a grid-search using the train-validation sets and
picked the learning rates with highest validation performance. Based on this analysis, we selected the
learning rate γ = 0.5 for tuning the feature extractor Fθ, and α = β = 0.1 for tuning the parameters
in domain discriminator Dψ , and the task classifier Cφ.

In all experiments we trained two versions of the AFD model, one with losses LD and LF according
to Eq. 9 and 10 which we call AFD-DCGAN and another version where we substitute the losses with
those from the Wasserstein GAN [1] dubbed AFD-WGAN (see Eq. 11 and 12 in the Appendix). We
mainly compared the performance of our proposed method with two prominent defense methods,
adversarial training and TRADES. We used a re-implementation of adversarial training (AT) method
[34] and the official code for TRADES2 [57] and denoted these results with † in the tables. All
experiments were run on NVIDIA V100 GPUs. We used one GPU for experiments on MNIST and 2
GPUs for other datasets.

4.2 Robust classification against nominal attacks

We first evaluated our method against adversarial attacks under similar settings to those used during
training (ε = 0.3, 0.031, and 0.015 for MNIST, CIFAR, and Tiny-Imagenet datasets respectively).

2https://github.com/yaodongyu/TRADES.git
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Table 1: Comparison of adversarial accuracy against various attacks on different datasets. For PGD∞
attack we used ε = 0.3, 0.031, and 0.015 for MNIST, CIFAR10/CIFAR100, and Tiny-Imagenet
datasets respectively and for C&W attack we used ε = 1 for all datasets. † indicates replicated
results. NT: natural training; AT: adversarial training; AFD: adversarial feature desensitization; WB:
white-box attack; BB: black-box attack where the adversarial examples were produced by running
the attack on the NT ResNet18 model. Numbers reported with µ± σ denote mean and std values
over three independent runs with different random initialization. * RST[7] additionally uses 500K
unlabeled images during training.

Method Dataset Network Clean PGD∞ (WB) C&W2 (WB) AA∞ (WB) PGD∞ (BB) C&W2 (BB)

NT†
MNIST

RN18 98.84 0. 62.43 0.0 50.82 96.48
AT[34]† RN18 99.35 95.66 92.78 89.99 98.92 98.95

TRADES[57]† RN18 99.14 94.81 90.08 88.66 98.5 98.57
AFD-DCGAN RN18 99.24 95.72 93.78 88.79 98.65 98.49
AFD-WGAN RN18 99.14 97.68 97.68 90.12 98.59 98.71

AT[34]

CIFAR10

RN18 87.3 45.8 - - 86.0 -
TRADES[57] RN18 84.92 56.61 - - 87.60 -
RLFAT[50] WRN-32-10 82.72 58.75 - - - -

RST+[55, 7]∗ WRN-34-10 89.82 64.86 - - - -
LLR[41] WRN-28-8 86.83 52.99 - - - -
JARN[9] WRN-34-10 84.8 46.7 - - - -

NT† RN18 94.89 0.55 0.31 0.0 17.93 -
AT[34]† RN18 85.92 40.07 40.27 36.14 85.14 85.84

TRADES[57]† RN18 81.94 53.3 40.24 43.48 80.82 81.74
AFD-DCGAN RN18 86.82 44.35 50.93 34.46 85.73 86.68
AFD-WGAN RN18 85.95 59.38 62.43 37.33 84.74 85.79

NT†

CIFAR100

RN18 76.76 0.01 0.52 0.02 - -
AT[34]† RN18 56.49 18.54 17.71 18.30 56.07 56.42

TRADES[57]† RN18 60.32 25.11 20.52 21.10 59.62 60.29
AFD-DCGAN RN18 60.95 18.06 21.47 16.31 60.31 60.86
AFD-WGAN RN18 58.87 22.35 25.33 18.00 58.15 58.75

NT†
Tiny-IN

RN18 58.30 0.3 0.0 0.0 - -
AT[34]† RN18 43.80 12.62 4.90 9.48 41.87 42.86

TRADES[57]† RN18 37.70 13.26 4.11 12.57 36.26 36.72
AFD-WGAN RN18 47.70 11.49 5.90 9.45 43.5 44.69

Table 1 compares the robust classification performance of AFD and several other defense methods
against PGD-L∞, C&W-L2 and AutoAttack white-box and black-box attacks. The black-box attacks
were carried out by constructing the adversarial examples using a ResNet18 architecture trained on
the natural inputs x ∼ DX . Overall both versions of AFD (AFD-DCGAN and AFD-WGAN) were
highly robust against all five tested attacks while maintaining a higher "Clean" accuracy (on natural
data) compared to strong baseline models like TRADES and Adversarial Training. AFD-WGAN was
consistently at the top on MNIST and CIFAR10 datasets. On CIFAR100 and Tiny-Imagenet, AFD
performed better than or similar to Adversarial Training on all the attacks and performed better than
TRADES on most of the attacks, although it was occasionally behind TRADES (on PGD-L∞ and
AA white-box attacks). Analysis of feature sensitivity showed that on MNIST and CIFAR10 datasets
on which AFD outperformed the other baselines by a larger margin, the features were significantly
more insensitive to adversarial perturbations and over a larger range of attack strengths (Figure-A4).
In addition to these tests, we also evaluated the AFD model against transfer black-box attacks from
Adversarial Training and TRADES models which further demonstrated AFD’s higher robustness to
those attacks too (Table-A3).

4.3 Robust classification against stronger and unseen attacks

To evaluate how each network generalizes to unseen domains of adversarial inputs (i.e. adversarial
attacks generated with unseen forms of adversarial attacks), we additionally validated the classification
robustness against a range of possible ε values for several widely used attacks that were not used
during training. To fairly compare different models while considering both attack types and ε values,
we computed the area-under-the-curve (AUC) for accuracy vs. epsilon for each attack (similar to
Figure-2). Table-2 summarizes the AUC values for all 9 attack methods on four tested datasets.
Compared with the baselines, we found that, AFD-trained networks consistently performed better
on various datasets and on almost all the tested attacks even for substantially larger ε values (Figure
2, also see Figures A1,A3 in the appendix). These results show that compared to other baselines,
AFD-trained networks are robust against a wider range of attacks and attack strengths (ε). This further
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Figure 2: Adversarial accuracy for different methods against white-box attacks on CIFAR10 dataset
with ResNet18 architecture.

Table 2: AUC measures for different perturbations and methods on MNIST, CIFAR10, CIFAR100,
and tiny-imagenet datasets. AUC values are normalized to have a maximum allowable value of 1.
Evaluations on AT and TRADES were made on networks trained using reimplemented or official
code.

Dataset Model PGDL∞ PGDL2 PGDL1 FGSM MIM DDN DeepFool C&W AA

MNIST

NT 0.16 0.06 0.07 0.3 0.19 0.09 0.21 0.57 0.28
AT 0.74 0.29 0.19 0.83 0.95 0.49 0.55 0.87 0.89

TRADES 0.71 0.26 0.15 0.79 0.88 0.42 0.47 0.86 0.88
AFD-DCGAN 0.77 0.33 0.3 0.78 0.91 0.51 0.49 0.9 0.88
AFD-WGAN 0.92 0.54 0.55 0.9 0.98 0.68 0.63 0.94 0.90

CIFAR10

NT 0.05 0.1 0.17 0.19 0.05 0.1 0.16 0.1 0.12
AT 0.28 0.2 0.44 0.33 0.31 0.26 0.29 0.31 0.22

TRADES 0.32 0.22 0.5 0.24 0.32 0.33 0.18 0.28 0.25
AFD-DCGAN 0.34 0.54 0.43 0.4 0.31 0.4 0.43 0.47 0.22
AFD-WGAN 0.56 0.54 0.66 0.59 0.56 0.4 0.52 0.62 0.24

CIFAR100

NT 0.03 0.08 0.1 0.07 0.03 0.08 0.06 0.08 0.09
AT 0.13 0.1 0.24 0.13 0.14 0.14 0.12 0.15 0.13

TRADES 0.16 0.13 0.31 0.12 0.17 0.18 0.1 0.16 0.15
AFD-DCGAN 0.14 0.12 0.27 0.17 0.16 0.15 0.16 0.18 0.13
AFD-WGAN 0.18 0.16 0.31 0.22 0.19 0.16 0.19 0.23 0.13

Tiny-IN

NT 0.04 0.03 0.08 0.05 0.04 0.06 0.07 0.07 0.07
AT 0.10 0.03 0.16 0.15 0.09 0.14 0.13 0.11 0.14

TRADES 0.10 0.03 0.16 0.07 0.09 0.15 0.11 0.09 0.16
AFD-WGAN 0.10 0.04 0.19 0.12 0.09 0.15 0.16 0.12 0.15

suggests that the features learned through AFD generalize better across various forms of attacks and
can sustain larger perturbations.

We also observed that the AFD-WGAN performs better than AFD-DCGAN under most tested
conditions. This is potentially due to: 1) WGAN’s ability to avoid vanishing gradients when the
discriminator becomes too good compared to the generator (the feature extractor function in our
case) [5]; 2) WGAN’s ability to avoid mode-collapses during training. In training GANs, mode
collapses lead to the generator network to only output a limited set of patterns instead of learning to
produce a diverse set of natural-looking images that fool the discriminator. Under our setting, WGAN
potentially leads to learning a feature extractor that can produce a more diverse set of features for
perturbed inputs, instead of focusing on a subset of latent dimensions. This suggests that applying
more advanced GAN training algorithms could potentially further improve the robust performance in
AFD-type models.
4.4 EstimatedH∆H-distance and adversarial-vs-natural generalization gap

As stated in Eq. 5, the upper bound on the adversarial error can be stated in terms of the natural
error, the divergence between the two domains, and a constant term. In practice, this means that
the smaller the divergence term dH∆H is, the smaller the gap between the adversarial and natural
errors (ε′Z − εZ ) can be. We empirically tested this prediction using the domain discriminator trained
on CIFAR10 dataset using the PGD-L∞ attack. Figure-3a shows that the estimated dH∆H using
the domain discriminator (i.e., using the corresponding empirical value of α in Eq. 6) trained on
PGD − L∞ with ε = 0.031 is closely related to the adversarial-vs-natural generalization gap over
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Figure 3: (a) Estimated dH∆H distance (based on empirical value of α in Eq. 6) and generalization
gap in adversarial and natural error ε′Z − εZ as a function of epsilon for PGD − L∞ attack; (b)
scatter plot of the estimated dH∆H distance using the domain discriminator and the gap in adversarial
and natural error across different attack types and magnitudes (i.e. ε). Colors correspond to different
attack types. Each dot corresponds to one attack evaluated at a particular epsilon value. Estimations
of the dH∆H distance for all attacks and epsilons are made with the domain discriminator trained on
PGD-L∞ with ε = 0.031.

different ε values as predicted by Eq. 5. Moreover, estimations from the same domain discriminator
also predicts the gap in generalization error attained for other forms of attacks (even ones not seen
during AFD training) and ε values with high accuracy (Figure-3b). This further supports the proposal
that minimizing the estimated distance between the natural and adversarial representations can be an
efficient way to improve the model robustness against various adversarial attacks.

4.5 Learning a sparse representation

Because the AFD method aims to learn a representation that is insensitive to adversarial attacks, we
expected the learned representational space to potentially be of lower dimensionality (i.e. less number
of orthogonal features). To test this, we compared the dimensionality of the learned representation
using two measures. i) number of non-zero features over the test set within each dataset and ii)
number of Principal Component Analysis (PCA) dimensions that explains more than 99% of the
variance in the representation computed over the test-set of each dataset. We found that the same
network architecture (i.e. ResNet18), when trained with AFD method learns a much sparser and
lower dimensional representational space (Table A4) compared to the naturally trained, adversarial
training and TRADES models. The representational spaces learned with AFD on MNIST, CIFAR10,
and CIFAR100 datasets had only 6, 9, and 76 principal components respectively.

4.6 Adversarial and norm-based desensitization

To investigate whether the same level of robustness could be achieved by encouraging the network to
produce similar representations in response to natural and adversarial inputs, we ran an additional
experiment on the MNIST dataset in which we added a regularization term to the classification loss
to directly minimize the representation sensitivity Se = 1

n

∑
x‖F (x)− F (x′)‖, during training. We

observed that although this augmented loss led to learning robustness representations, it achieved
modest levels of robustness (∼ 80%) and showed only weak generalization to stronger and other
unseen attacks (Figure-A5). This result suggests that more direct forms of enforcing representational
similarity may not lead to the same form of robustness with generalization properties similar to that
achieved using an adversarial training with domain discriminator (e.g. as in AFD).

5 Conclusion and limitations

Decreasing the input-sensitivity of features has long been desired in training neural networks [15] and
has been suggested as a way to improve adversarial robustness [44, 61]. In this work we proposed an
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algorithm to decrease the sensitivity of neural network representations using an adversarial learning
paradigm that involves joint training of a domain discriminator, a feature extractor, and a task classifier.
Essentially, our proposed algorithm iteratively estimates a bound on the adversarial error in terms of
the natural error and a classification-based measure of distance between the distributions of natural
and adversarial features and then minimizes the adversarial error by concurrently reducing the natural
error as well as the distance between the two feature distributions.

Limitations. The empirical results presented here suggest that AFD-trained models are robust
against a wide range of adversarial attacks (distributions) even compared to strong baselines like
Adversarial Training and TRADES. However, it is not guaranteed that the model would remain robust
against any unseen attacks that we have not tested or may be invented in the future - as is the case in
domain adaptation literature and the lack of theoretical guarantees for cross-domain generalization.
With regards to the computational cost, when measuring the average per-epoch training time on the
CIFAR10 dataset (using 2 NVIDIA V100 GPUs), we found that the AFD training time is 31% longer
than adversarial training and only 4% longer than TRADES. This shows that while AFD requires
three SGD updates per batch, the additional computational cost is not significantly higher than many
prior methods when considering that most of the computational cost is associated with generating the
adversarial examples during training.
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