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Abstract001

Although substantial efforts have been made002
to mitigate catastrophic forgetting in contin-003
ual learning, the intrinsic mechanisms are not004
well understood. In this work, we demonstrate005
the existence of "pseudo forgetting": the per-006
formance degradation on previous tasks is not007
attributed to a loss of capabilities, but rather008
to the failure of the instructions to activate the009
appropriate model capabilities. We show that010
the model’s performance on previous tasks can011
be restored through two simple interventions:012
(1) providing partial external correct rationale,013
and (2) appending semantically meaningless014
suffixes to the original instructions, to guide015
the generation of correct rationales. Through016
empirical analysis of the internal mechanisms017
governing rationale generation, we reveal that018
models exhibiting pseudo forgetting show re-019
duced instruction dependence during rationale020
generation, leading to suboptimal activation021
of their inherent capabilities. Based on this022
insight, we propose Rationale-Guidance Diffi-023
culty based Replay (RGD-R) framework that024
dynamically allocates replay data based on the025
model’s ability to correctly leverage the intrin-026
sic capabilities. Experimental results demon-027
strate that RGD-R effectively mitigates pseudo028
forgetting while maintaining model plasticity.029

1 Introduction030

Continual learning enables Large Language Mod-031

els (LLMs) (Brown et al., 2020; Yang et al., 2023)032

to incrementally learn from a sequence of tasks,033

helping LLMs adapt to the dynamic nature of034

real-world data and improve their capabilities over035

time (Zheng et al., 2024). However, LLMs remain036

susceptible to catastrophic forgetting, where per-037

formance on previous tasks deteriorates after the038

acquisition of new abilities. (McCloskey and Co-039

hen, 1989).040

Despite the extensive methods proposed to mit-041

igate catastrophic forgetting (Wang et al., 2024,042
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Figure 1: Pseudo forgetting. 1. The performance degra-
dation on previous tasks stems from instructions failing
to properly activate the model’s inherent capabilities
rather than genuine forgetting of task-relevant abilities.
2. Performance can be restored through appropriate
prompting, demonstrating no actual forgetting occurs.

2023b; Zhao et al., 2024), limited studies investi- 043

gate the intrinsic mechanisms underlying this phe- 044

nomenon. Kotha et al. (2024) proposed the “task 045

inference” hypothesis, which suggests that fine- 046

tuning biases the model toward utilizing newly ac- 047

quired capabilities, rather than causing a loss of 048

previously learned abilities. While this hypothesis 049

is validated on synthetic datasets and small trans- 050

formers, direct empirical evidence from natural 051

language datasets and LLMs is missing. Similarly, 052

Jiang et al. (2024) investigate forgetting in LLMs 053

through the perspectives of instruction-following 054

and task-related knowledge. They highlight that 055

the forgetting stems from a decline in instruction- 056

following capabilities rather than an actual loss 057

of task-related knowledge. Nevertheless, they em- 058

ploy disparate experimental settings—instruction- 059

following for model training versus prefix comple- 060

tion for knowledge probing—which weakens the 061

persuasion of their conclusions. 062

In this paper, as shown in Figure 1, we argue that 063

the observed performance degradation on previous 064

tasks stems not from a genuine loss of task capabil- 065

ities, but rather from the instructions’ failure to ef- 066
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fectively activate the model’s intrinsic abilities—a067

phenomenon we term "pseudo forgetting". To val-068

idate this hypothesis, we conduct probing experi-069

ments on LLMs across a range of natural language070

tasks under instruction-following settings. We find071

that, given partial rationale as external guidance or072

augmented with a task-irrelevant instruction suf-073

fix, the forgetting model can complete the ratio-074

nale and reach or even outperform pre-forgetting075

models, providing strong empirical support for our076

hypothesis. To investigate the underlying causes077

of pseudo forgetting, we employ attribution scores078

to quantitatively analyze the model’s reliance on079

the instructions during rationale generation. Our080

analysis reveals that the pseudo-forgetting model081

exhibits significantly reduced reliance on instruc-082

tions, which prevents the model from effectively083

utilizing its internal capabilities.084

Building on the above insights, we believe that085

when learning new tasks, replaying data related to086

previous tasks to strengthen the model’s reliance on087

corresponding instructions offers a simple and ef-088

fective solution to mitigate pseudo forgetting. How-089

ever, how to allocate replay data efficiently is lim-090

ited studied (Wang et al., 2024). Thus, we first in-091

troduce the Rationale-Guidance Difficulty (RGD)092

metric, which measures the model’s ability to lever-093

age the correct internal capability under a given094

instruction. We then propose Rationale-Guidance095

Difficulty based Replay (RGD-R) to optimize the096

data utilization in replay-based continual learning097

algorithms. Specifically, during continual learning,098

the RGD score for each previous task is dynami-099

cally computed and used to determine the ratio of100

required replay data. Experimental results demon-101

strate that RGD-R effectively alleviates pseudo for-102

getting while preserving the model’s plasticity.103

Our contributions can be summarized as follows:104

1. We directly demonstrate the existence of105

pseudo forgetting in the continual learning of106

LLMs (Section 2.1), followed by an analysis107

of the underlying cause(Section 2.2).108

2. Building on this insight, we introduce RGD109

score, which measures the model’s ability to110

leverage the correct intrinsic capabilities un-111

der a given instruction (Section 3.1).112

3. By adopting RGD, we develop RGD-R, a113

novel replay-based framework designed to114

maximize the efficiency of replay data via dy-115

namic data allocation(Section 3.3).116

2 Unveiling Pseudo Forgetting : the 117

evidence and cause 118

Pseudo Forgetting

Pseudo forgetting is a phenomenon where
performance degradation on previously
learned tasks in continual learning occurs
not through the loss of task capabilities, but
rather through the diminished effectiveness
of original task instructions in activating the
model’s intact intrinsic capabilities, result-
ing in incorrect rationales and outputs.

119

In Section 2.1, we directly demonstrate that 120

models do not genuinely forget task capabilities 121

by restoring their performance on previous tasks 122

via employing two methods to provide appropriate 123

guidance. In Section 2.2, we quantify the model’s 124

reliance on instructions during rationale generation, 125

revealing that pseudo forgetting occurs because 126

original instructions fail to activate the model’s ap- 127

propriate intrinsic capabilities. 128

2.1 Evidence for Pseudo Forgetting 129

For a forgetting model, two fundamental questions 130

naturally arise: 131

1. Q1: How does the model perform when pas- 132

sively provided with external correct ratio- 133

nale? 134

2. Q2: Can changing prompt (eg. adding task- 135

irrelevant prefixes or suffixes) enable the 136

model to generate the correct rationale ac- 137

tively? 138

A1: With a partially correct rationale guidance, 139

the model can passively recover task 140

performance. 141

Experiment Setting To address Q1, we select 142

the model from the final stage of sequential learn- 143

ing and choose the test set of tasks with a high for- 144

getting rate for this experiment. To offer external 145

correct capability guidance, as shown in Figure 3, 146

the first k words of the ground truth rationale af- 147

ter the <|assistant|> token, where k is the ratio 148

range from 0 to 1 (k ∈ [0, 1]). Notably, providing a 149

small ratio of the correct rationale does not directly 150

reveal task-specific answers, but rather guides the 151

model in shaping the overall direction of its predic- 152

tions. 153
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Llama2-13B

Mistral-7B Qwen2-0.5B

Llama2-7B

Figure 2: Changes in the model’s task performance after forgetting when the first k words of the appropriate
rationale are provided. 1. A forgetting model can regenerate the “forgotten rationale” and gradually recover its
“pre-forgetting” task performance when passively guided with partial “appropriate rationale.” 2. the degree of
recovery of the task performance is related to the task difficulty and the scale of the model.

<|user|>

Task: What is the logical relationship (contradiction, entailment or neutral) 

between the "sentence 1" and the "sentence 2"? Choose one from the option.

OPTIONS:

- neutral

- entailment

- contradiction

sentence 1: Case Study Evaluations.

sentence 2: Case Study preparations.

Answer:

<|assistant|>

The sentence 1 'Case Study Evaluations' implies a

Figure 3: Prompt example with additional the first 10%
words of the correct rationale guidance (k = 0.1). The
black parts are the original instruction; The blue parts
are the added part of the correct rationale, which does
not contain information directly related to the answer.

Results and Analysis The result is illustrated in154

Figure 2. Firstly, under the guidance of correct155

rationale, a forgetting model can recover its task156

performance to pre-forgetting levels. Specifi-157

cally, the performance on different forgotten tasks158

improves consistently across varying model scales159

as the value of k increases. Secondly, the degree160

of recovery of the model’s task performance is161

related to the task difficulty and the scale of the162

model. For instance, in the RTE task, Llama2-13B163

returns to its pre-forgetting performance level at164

k = 0.3, while the MNLI task requires k = 0.4165

to achieve the same recovery level. Meanwhile,166

to restore task performance to pre-forgetting lev-167

els steadily, Qwen2-0.5B, Mistral-7B, Llama2-7B,168

and Llama2-13B require k values of 0.8, 0.6, 0.5,169

and 0.4, respectively.170

Two potential explanations can be proposed: 171

(1). Complete catastrophic forgetting: LLMs re- 172

quire external reasoning guidance to restore 173

performance (even Llama2-13B at k = 0.4), 174

suggesting they may simply leverage pro- 175

vided solution components rather than retain 176

problem-solving abilities. 177

(2). Capability activation failure: LLMs’ im- 178

proved performance under minimal guidance 179

indicates preserved capabilities, as critical rea- 180

soning steps were self-generated rather than 181

externally provided (as shown in Figure 3, 182

when k = 0.1, no significant problem-solving 183

information was explicitly provided). 184

A2: With the addition of meaningless suffixes, 185

the model can actively recover task 186

performance. 187

To determine which of these two explanations is 188

correct, we address Q2. We employ Greedy Coor- 189

dinate Gradient (GCG) (Zou et al., 2023) to search 190

a meaningless suffix that helps the original instruc- 191

tion guide the forgetting model toward proper ra- 192

tionale generation actively (Figure 4). 193

GCG-based Search Given a sequence x1:n, the 194

probability of generating a sequence xn+1:n+T can 195

be written as: 196

p(xn+1:n+T | x1:n) =

T∏
i=1

p(xn+i | x1:n+i−1) (1) 197

Under the above notation, the loss of generating a 198

target sequence T = x1:Ntarget (eg. partial correct 199
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<|user|>

Task: What is the logical relationship (contradiction, entailment or neutral) 

between the "sentence 1" and the "sentence 2"? Choose one from the option.

OPTIONS:

- neutral

- entailment

- contradiction

sentence 1: Case Study Evaluations.

sentence 2: Case Study preparations.

Answer: 

<|assistant|>
! involving ! ! dass ! ! ! $\{ ! ! ! ! ! ! ! ! Given ! !

Figure 4: Prompt example with task-irrelevant suffix
searched by Greedy Coordinate Gradient (Zou et al.,
2023). The forgetting model outputs Health and Well-
ness due to the influence of the previous task, Yahoo,
but correctly outputs entailment before forgetting or
augmenting with this suffix.

rationale) given an instruction I = x1:Nins and an200

initial suffix S = x1:Nsuffix
can be written as201

L(S) = − log p(T | [I, S]) (2)202

To minimize the above loss, GCG (Zou et al.,203

2023) leverages gradients with respect to the one-204

hot token indicators to identify promising token205

replacements. Specifically, for each token position206

i, in the suffix, the gradient ∇Lei(S) is computed,207

where ei is the one-hot vector representing the cur-208

rent token at position i. Then, for each token po-209

sition, the top-k tokens with the largest negative210

gradients are identified as candidate replacements.211

Finally, the candidate replacement that minimizes212

the loss is selected and applied to the suffix.213

Notably, this approach ensures the validity of214

the experiments: (1) semantically meaningless suf-215

fixes devoid of task-specific information, ensuring216

the generated rationale reflects parametric capa-217

bilities; (2) instruction-following setting remains218

unchanged, aligning the detected capabilities with219

those learned via instruction fine-tuning, in contrast220

to the probing experiments in Jiang et al. (2024),221

which is under prefix completion setting.222

Experimental Settings We evaluate models223

from the final stage of sequential learning. For224

each task, we sample 100 instances where models225

exhibit correct predictions before forgetting but fail226

after forgetting. For GCG, as shown in Table 7,227

we explore three optimization targets: (1) Answer228

guidance; (2) Partial ground truth rationale guid-229

ance; (3) Partial pre-forgetting rationale guidance.230

See Appendix B.2 for the detailed implementation.231

Results and Analysis As shown in Figure 5, ap-232

pending task-irrelevant suffixes to original instruc-233

Figure 5: Recovery rate of forgotten tasks. 1. For each
task, we sample 100 forgotten instances. 2. The labels
‘Answer’, ‘Before R (0.5)’, and ‘Ground Truth R (0.5)’
denote respectively: the ground truth answer, the first
0.5 words of the rationale generated by the model before
forgetting and the ground truth, serving as optimization
target for GCG. 3. forgetting sample recovery rates sur-
pass 90% (reaching 100% in specific tasks), indicating
the forgetting model preserves previously acquired ca-
pabilities.

tions enables forgetting models to actively gener- 234

ate correct rationale, leading to 90% recovery rate 235

across tasks. This provides direct evidence that the 236

model dose not forget previously acquired capabil- 237

ities. Specifically, the recovery effectiveness may 238

correlate with sample complexity. While Mistral- 239

7B demonstrates complete recovery (100%) on 240

MNLI, its average recovery rate on QQP is 95.44%, 241

with a similar trend observed in Llama2-7B. As de- 242

tailed in Table 8, the optimal suffix varies across 243

samples, highlighting the dependence of correct 244

rationale generation on the prompt. 245

Summary

The results of the two experiments provide
direct evidence of pseudo forgetting: the
model does not truly forget task-specific
capabilities, rather, the original instructions
fail to guide the model in leveraging the
appropriate abilities to solve the task.

246

2.2 Cause of Pseudo Forgetting 247

In this section, we investigate the cause of pseudo 248

forgetting to further validate our hypothesis. We 249

demonstrate that the pseudo-forgetting model ex- 250

hibits a reduced reliance on the original instructions 251

during rationale generation, preventing the model 252

from correctly leveraging its intrinsic capabilities. 253

Attribution Algorithm We use attribution 254

scores (Li et al., 2024a; Wang et al., 2023a; Dai 255

et al., 2022) to quantify and analyze the dependency 256

between instructions and the generated rationales. 257
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(a) Llama2-7B (b) Mistral-7B

Figure 6: Comparison of instruction dependency scores
of pseudo-forgetting model for generating correct and
incorrect rationales on MNLI task.

Specifically, we can use the Riemann approxi-258

mation of the integral to calculate the contribution259

of a neuron ω to the model’s output F (·), with m260

approximation steps:261

Attr(ω) = ω ◦
∫ 1

0

∂F (αω)

∂ω
dα ≈ ω

m

m∑
k=1

∂F
(

k
m
ω
)

∂ω
(3)262

Since the self-attention layers learn strong263
instruction-following patterns (Wu et al., 2024),264
we can compute the dependency between the in-265
struction I = x1 : xNins and the given rationale266
R = x1 : xNrationale

based on the attention layers:267

Q
(l)
IR =

1

|N |
∑

(i,j)∈DIR

Attr(A(l)
i,j) (4)268

DIR = {(i, j)|xi ∈ I, xj ∈ R} (5)269

In this notation, Attr(A(l)
i,j) represents the depen-270

dence intensity from the i-th token to the j-th to-271

ken in the l-th self-attention layer, calculated by272

summing the absolute attribution scores across all273

heads. |N | denotes the total number of rationale274

steps. More implementation details are provided in275

the Appendix B.3.276

Experimental Settings We use Mb−f and Ma−f277

to denote the model trained on the old task and278

continually trained on the final task, correspond-279

ing to the stages of before and after pseudo for-280

getting. The probing dataset is the same as that281

used in Section 2.1. Each sample can be denoted282

as (I,Rb−f , Ra−f , Rg, Ab−f , Aa−f , Ag), where I283

represents the instruction, Rb−f , Ra−f , Rg repre-284

sent the rationale generated by Mb−f , Ma−f , and285

Llama3.1-70B-Instruct (as the ground truth), re-286

spectively. Ab−f , Aa−f , Ag represent the corre-287

sponding predicted answers.288

Experiment 1 Firstly, we investigate the differ-289

ences in the pseudo-forgetting model’s (Ma−f ) in-290

struction dependency when generating incorrect291

(Ra−f ) versus correct (Ra−f ) rationale.292

(a) Llama2-7B (b) Mistral-7B

Figure 7: Comparison of relative instruction dependency
scores across different states of Llama2-7B and Mistral-
7B on MNL task.

As shown in Figure 6, we can conclude that the 293

pseudo-forgetting model generates incorrect ra- 294

tionales primarily due to the reduced instruction 295

dependency. Specifically, for Ma−f , the instruc- 296

tion dependency when generating incorrect ratio- 297

nales (blue line) is generally lower than that when 298

generating correct rationales (orange line). The dif- 299

ference is noticeable in shallow layers, aligning 300

with the findings in Wu et al. (2024) that shal- 301

low layers learn more and stronger instruction- 302

following patterns. 303

Experiment 2 Secondly, to confirm that the re- 304

duced instruction dependency is indeed caused by 305

pseudo forgetting, we examine the impact of dif- 306

ferent models (Mb−f vs Ma−f ). Specifically, we 307

compare the relative instruction dependency scores 308

when different models generate rationales: 309

∆Attr(Rgen|Rg) = |Q(l)
IRgen

−Q
(l)
IRg

| (6) 310

where Rgen is Ra−f (Rb−f ) if we calculate Equa- 311

tion (6) on Ma−f (Rb−f ). This approach ensures 312

that the only variable in the experiment is the oc- 313

currence of pseudo forgetting. 314

As shown in Figure 7, the discrepancy between 315

Rg and Ra−f on Ma−f (blue line) is larger com- 316

pared to the difference between Rg and Rb−f on 317

Mb−f (orange line)1. This finding further sup- 318

ports our hypothesis that a key factor contribut- 319

ing to pseudo forgetting is the model’s reduced 320

reliance on the original instruction during ratio- 321

nale generation. 322

1While certain layers display differences or larger “be-
fore” delta scores compared to “after” scores, analyzing these
observations is outside the scope of this work.
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3 Addressing Pseudo Forgetting:323

Rationale-Guidance Difficulty based324

Replay325

Based on these findings, we argue that replay-based326

algorithms, which incorporate a small portion of327

data from previous tasks during continual learn-328

ing, can effectively reinforce the model’s depen-329

dency on corresponding instructions, thereby offer-330

ing a simple yet effective solution to pseudo for-331

getting. However, how to allocate the replay data332

ratio for each task remains underexplored (Wang333

et al., 2024). Thus, in Section 3.1, we introduce334

the Rationale-Guidance Difficulty (RGD) metric335

to measure the impact of pseudo forgetting on the336

model. Then, in Section 3.3, we propose Rationale-337

Guidance Difficulty based Replay (RGD-R), which338

leverages RGD to dynamically determine the re-339

play data proportion for each task, optimizing re-340

play data utilization during continual learning.341

3.1 Rationale-Guidance Difficulty342

We first introduce the Rationale-Guidance Diffi-343

culty (RGD) metric, which measures the difficulty344

for the model to correctly utilize its internal capa-345

bilities in generating appropriate rationale under a346

given instruction. For a data triplet (I,Rg, Ag), the347

RGD score 2 is calculated as follows:348

RGD(I, Rg, Ag) =
PPLa−f (Rg|I)
PPLb−f (Rg)

(7)349

where I , Rg, and Ag denote the prompt, the ground350

truth rationale, and the ground truth answer, respec-351

tively. PPLb−f (Rg) represents the difficulty for the352

model with normal access to its capabilities to gen-353

erate the correct rationale, and PPLa−f (Rg|I) de-354

notes the difficulty for the pseudo-forgetting model355

to generate the same rationale given prompt I . A356

higher RGD score signifies greater difficulty for a357

prompt in guiding the model to generate the ratio-358

nale, and vice versa.359

RGDD =
1

|D|
∑
i

RGD(I,Rg, Ag)i (8)360

where (I,Rg, Ag)i is the i-th sample in dataset D,361

and |D| is the total number of samples.362

3.2 Theoretical Analysis363

Here, we give a simple proof that under a reason-364

able assumption, the RGD score can measure the365

2This metric is calculated similarly to Instruction Follow-
ing Difficulty score (Li et al., 2024c), which is mainly used
for data selection (Li et al., 2024b,c)

difficulty of the capability activation process. First, 366

Wu et al. (2024) finds that the underlying mecha- 367

nism of instruction following likely involves model 368

θ first recognizing instruction i, then utilizing the 369

activated capabilities c1, . . . , cn to generate ratio- 370

nale r. We can formalize this process as: 371

Pθ(r|i) =
∑
n

p(r | cn) · p(cn | i) (9) 372

Assumption. Under normal circumstances, each 373

capability c can only be activated by task-specific 374

instructions i, which subsequently supports the gen- 375

eration of the corresponding rationale r. The ca- 376

pabilities of tasks across different domains are in- 377

dependent from one another. 378

∀m ̸= n, p(r | cn) · p(cm | i) = 0 (10) 379

We can formalize the probability of activating 380

the correct task capability c∗ given instruction i as: 381

Pθ(c
∗ | i) = p(c1, . . . , cm | i) =

∑
m

p(cm | i) (11) 382

The correct rationale generation process is: 383

Pθ(r
∗) = p(r∗ | c1, . . . , cn) =

∑
m

p(r∗ | cn) (12) 384

Based on assumption 3.2, we can rewrite Equa- 385

tion 9 as: 386

Pθ(r
∗|i) =

(∑
n

p(r∗ | cn)
)
·
(∑

m

p(cm | i)
)

(13) 387

Hence, the following equation holds: 388

Pθ(c
∗ | i) = Pθ(r

∗|i)
Pθ(r∗)

(14) 389

Consequently, the RGD score can approximate 390

the difficulty of a given instruction in activating the 391

model’s corresponding capability. 392

3.3 RGD-based Replay framework 393

To optimize the data utilization in replay-based 394

methods, we propose the Rationale-Guidance 395

Difficulty-based Replay (RGD-R) framework. Dur- 396

ing continual learning, RGD-R dynamically deter- 397

mines the required replay data ratio for each pre- 398

vious task based on the RGD score calculated via 399

Equation 8. Specifically, when training the model 400

on the i-th task, the replay data ratio for the j-th 401

previous task can be calculated as: 402

αj =
RGDDj∑i−1

k=1 RGDDk

, j ∈ [1, i− 1] (15) 403

where
∑i−1

j=1 αj = 1, and RGDDj represents the 404

RGD score of the j-th previous task. Thus, the 405

amount of replay data allocated to this task is αj ·N , 406

where N represents the total amount of replay data. 407
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3.4 Experiments408

3.4.1 Experiment Setting409

Datasets Following Razdaibiedina et al. (2023a)410

and Wang et al. (2023c), we conduct exper-411

iments on Long Sequence Benchmark, with412

train/validation/test splits of 1000/500/500 samples413

respectively. See Appendix A for more details.414

Metrics Following prior works (Zhao et al.,415

2024; Zhang et al., 2023b) Let ai,j be the test-416

ing performance on the j-th task after training on417

i-th task, the metrics for evaluating are: (1) Fi-418

nal Average Performance (FAP) is the average419

performance of all tasks after the final task tT is420

learned, i.e., FAPT = 1
T

∑T
t=1 aT,t; (2) Forgetting421

Rate (F.Ra) measures how much knowledge has422

been forgotten across the first T − 1 tasks, i.e.,423

FT = 1
T−1

∑T−1
t=1 (maxT−1

k=i ak,t − aT,t); (3) Back-424

ward Transfer (BWT) measures the impact that425

continually learning on subsequent tasks has on pre-426

vious tasks, i.e., BWTT = 1
T−1

∑T−1
t=1 (aT,t − at,t).427

(4) Forward Transfer (FWT) measures how much428

the model can help to generalize and learn the429

new task, i.e., FWT = 1
T

∑T
t=2 at−1,t. Better430

scores on FAP, F.Ra, and BWT indicate improved431

model stability, while a better FWT score reflects432

enhanced model plasticity.433

Baselines To validate the effectiveness of RGD434

in measuring pseudo forgetting and RGD-R in mit-435

igating this phenomenon, we conduct comparative436

experiments across the following baselines focus-437

ing on replay data allocation, where samples for438

each task are randomly selected from the training439

set: (1) Sequential Training (SEQ) refers to learn-440

ing new capabilities without replay data. (2) Equal441

Allocation (EA) replays the same amount of data442

for each previous task. See Appendix B.1 for more443

details.444

3.4.2 Main Results445

LLMs exhibit inherent resistance to pseudo for-446

getting, which improves with larger model sizes.447

Larger models show lower forgetting rates, such as448

F.Ra of Llama2-13B and Qwen2-0.5B with SEQ449

are 13.54 and 53.18, respectively.450

The equal allocation method significantly alle-451

viates pseudo forgetting. Compared to SEQ, EA452

improves the final performance (FAP) of Qwen2-453

0.5B, Mistral-7B, and Llama2-13B by 43.40, 20.67,454

and 8.60, respectively, while reducing the forget-455

ting rate (F.Ra) by 49.54, 22.6, and 9.86. These456

Method FAP↑ F.Ra↓ BWT↑ FWT↑

Qwen2-0.5B
SEQ 20.73 53.18 -53.04 21.46
EA 64.13 5.43 -4.90 33.34

RGD-R 65.99 3.64 -3.29 31.87

Mistral-7B
SEQ 51.48 30.19 -29.97 47.91
EA 72.15 7.59 -6.96 51.17

RGD-R 74.91 4.37 -3.92 50.77

Llama2-7B
SEQ 62.79 17.87 -17.85 43.95
EA 76.10 3.52 -2.49 50.91

RGD-R 77.03 2.65 -1.25 51.06

Llama2-13B
SEQ 68.38 13.54 -13.2 51.69
EA 76.98 4.73 -3.70 56.92

RGD-R 78.25 3.68 -2.29 57.83

Table 1: Performance of different models on Long Se-
quence Benchmark. The decoding strategy is greedy
search. RGD-R effectively alleviates model forgetting
and maintains better model plasticity simultaneously.

results support our hypothesis that LLMs do not 457

truly forget the previously learned capabilities. 458

RGD-R further alleviates pseudo forgetting 459

and ensures the model plasticity simultaneously. 460

Compared to EA, RGD-R demonstrates superior 461

effectiveness in mitigating pseudo forgetting (FAP, 462

F.Ra, BWT) and promoting asynchronous knowl- 463

edge transfer (FWT) across different models. This 464

highlights the efficacy of the RGD score in measur- 465

ing the impact of pseudo forgetting and confirms 466

that RGD-R successfully optimizes the utilization 467

of replay data in replay-based continual learning 468

algorithms, leading to better overall model perfor- 469

mance. 470

3.4.3 Analysis 471

Data Replay Restores Instruction dependence 472

To demonstrate that the replay-based method in- 473

deed enhances the instruction dependence, we 474

repeat the attribution experiment in Section 2.2. 475

Specifically, we compare the relative instruction 476

dependency scores between the pseudo-forgetting 477

model trained via SEQ and the model trained 478

via EA data replay. As shown in Figure 8, the 479

model trained via data replay (orange line) exhibits 480

a smaller overall difference in instruction depen- 481

dence when generating rationales compared to the 482

pseudo-forgetting model (blue lines). This sug- 483

gests that the replay-based method improves the 484

model’s reliance on original instructions, thereby 485

alleviating pseudo forgetting. 486
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(a) MNLI (b) QQP

Figure 8: Comparison of relative instruction dependency
scores across different states of Mistral-7B on MNLI
and QQP tasks. 1. ‘pseudo forgetting’ and ‘random
replay’ represent Mistral-7B exhibiting pseudo forget-
ting and Mistral-7B after capability recovery through
random data replay, respectively. 2. The replay-based
method leads to lower relative instruction dependency
scores, indicating that it helps the model rely more on
instructions during rationale generation.

Rationale MNLI BOOLQA RTE

Ra−f 0.2756 0.2962 0.2538
RParaphrase 0.6641 0.6793 0.6554
RGCG 0.2871 0.3134 0.2856
Rg 0.4103 0.4719 0.4038
RReplay 0.4391 0.4931 0.4359

Table 2: Comparison of ROUGE-L scores between ra-
tionales (R(·)) generated by different methods and those
(Rb−f ) from the model before pseudo-forgetting. 1.
RParaphrase is the paraphrased rationale generated by
GPT-3.5 based on Rb−f . RGCG and RReplay are the
rationales generated after mitigating pseudo forgetting
with the GCG and data replay methods, respectively.

Data Replay Enables Better Semantic Recovery487

in Rationales We compare the semantic similar-488

ity between rationales generated by different meth-489

ods (R(·)) and those generated by the pre-pseudo-490

forgetting model (Ra−f ). As shown in Table 2,491

the replay-based method achieves higher seman-492

tic similarity compared to GCG, and surpasses the493

ground truth rationales. This indicates that replay-494

based methods are more effective in stimulating495

the model’s previously learned task capabilities.496

In contrast, based on GCG, the pseudo-forgetting497

model still tends to generate tokens related to the498

new task (Gu and Feng, 2020). While adding a se-499

mantic constraint to GCG helps alleviate this issue,500

our preliminary experiments show that it makes the501

search process harder and less efficient.502

4 Related Work503

Mechanism of catastrophic forgetting While504

many continual learning algorithms are proposed, a505

substantial gap persists in understanding the mecha- 506

nism of catastrophic forgetting. Kotha et al. (2024) 507

hypothesize that models first perform “task in- 508

ference” before applying the relevant capability, 509

and fine-tuning biases this inference towards tasks 510

aligned with the fine-tuning distribution, thereby 511

suppressing performance on other prior capabili- 512

ties. Jiang et al. (2024) believe that forgetting is 513

primarily due to the reduced instruction-following 514

capability, rather than a loss of task-related knowl- 515

edge. Unlike our work, the above studies do not 516

provide direct and effective evidence of pseudo 517

forgetting on LLMs and natural language datasets. 518

Traditional methods in continual learning (1) 519

Regularization-based methods constrain the fea- 520

tures learned from previous tasks (Zhang et al., 521

2023a; Huang et al., 2021) or penalize changes 522

to weights critical for those tasks (Zhou and Cao, 523

2021; Wang et al., 2023b), ensuring that new 524

learning minimally interferes with prior capabil- 525

ity thus maintaining performance on earlier tasks. 526

(2) Architecture-based methods aim to reduce the 527

interference by either increasing the model’s ca- 528

pacity (Zhao et al., 2024) or isolating the existing 529

weights (Hu et al., 2024). (3) Replay-based meth- 530

ods retain a small subset of prior training examples 531

or pseudo data and revisit them when a new task 532

is introduced (Guo et al., 2024; Huang et al., 2024; 533

Qin and Joty, 2022). InsCL (Wang et al., 2024) 534

allocates replay data based on the similarity of task 535

instructions. In this paper, we introduce RGD-R, 536

which dynamically allocates replay data based on 537

the model’s susceptibility to pseudo forgetting, cap- 538

turing more model-relevant characteristics to help 539

the model maintain both stability and plasticity. 540

5 Conclusion 541

In this study, we directly demonstrate the phe- 542

nomenon of “pseudo forgetting” in LLMs during 543

continual learning. We show that the performance 544

degradation on previous tasks does not stem from 545

the loss of corresponding capabilities, but rather 546

from reduced instruction dependence during ratio- 547

nale generation. We introduce the RGD score to 548

quantify the extent of the model’s susceptibility to 549

pseudo forgetting, which is then used to dynami- 550

cally allocate the replay ratio for each previous task 551

to optimize replay data utilization in our proposed 552

RGD-R framework. Experimental results confirm 553

the effectiveness of RGD-R in addressing pseudo 554

forgetting and preserving model plasticity. 555
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Limitations and Future Works556

While this paper analyzes and addresses pseudo for-557

getting during continual learning in LLMs, several558

limitations warrant further discussion. First, we559

do not conduct an in-depth analysis of the specific560

process behind pseudo forgetting. For instance, at561

what point during the learning of new tasks does the562

model begin to show reduced dependence on the in-563

structions from previously learned tasks? What are564

the underlying factors driving this decline? Second,565

the relationship between pseudo forgetting and spe-566

cific tasks or domains remains unexplored. For567

example, as noted by Li et al. (2024d), domain gen-568

eralization in summarization tasks correlates with569

words distribution, raising the question of whether570

pseudo forgetting exhibits similar characteristics.571

Additionally, we propose that measuring pseudo-572

forgetting is likely a multi-dimensional problem,573

and our proposed RGD score represents just one574

possible metric. The development of more com-575

prehensive evaluation metrics for this phenomenon576

requires additional research. Finally, our findings577

indicate that LLMs do not forget previously ac-578

quired capabilities, and Dai et al. (2022) suggest579

that these capabilities are stored parametrically580

within the model. Consequently, to optimize con-581

tinual learning algorithms, we suggest that future582

works could benefit from combining replay-based583

and parameter-based approaches, with a greater584

emphasis on enhancing asynchronous knowledge585

transfer capabilities—an underexplored aspect in586

current research (Zhang et al., 2023b).587

6 Ethics Statement588

This work focuses on analyzing and addressing589

pseudo forgetting in large language models during590

continual learning, and as such, does not introduce591

additional ethical risks beyond those inherent to592

standard NLP research. The potential risks pri-593

marily stem from two aspects: First, our experi-594

ments utilize large language models trained on vast595

amounts of internet text data, which may contain596

societal biases. However, since our research fo-597

cuses on analyzing model capabilities rather than598

deploying systems, the risk of propagating harm-599

ful biases is minimal. Second, while our findings600

about model capabilities and instruction depen-601

dence could potentially be misused to manipulate602

model outputs, our work specifically aims to im-603

prove model reliability and performance stability,604

ultimately contributing to more robust and depend-605

able AI systems. Throughout our experiments, we 606

used standard benchmarks and publicly available 607

datasets to ensure reproducibility and transparency. 608

Our methods and findings are intended to advance 609

the scientific understanding of continual learning 610

in language models while adhering to established 611

ethical guidelines in NLP research. 612
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A Dataset Details857

A.1 Datasets858

Long Sequence Benchmark The Long Sequence Benchmark (Razdaibiedina et al., 2023b) comprises859

15 tasks from CL benchmark (Zhang et al., 2015), GLUE benchmark (Wang et al., 2019b), and SuperGLUE860

benchmark (Wang et al., 2019a), as detailed in Table 3.861

Dataset Source Task Domain Metric

1. Yelp CL Benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL Benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL Benchmark topic classification Wikipedia accuracy
4. Yahoo CL Benchmark topic classification Yahoo Q&A accuracy
5. AG News CL Benchmark topic classification news accuracy
6. MNLI GLUE natural language inference various accuracy
7. QQP GLUE paragraph detection Quora accuracy
8. RTE GLUE natural language inference news, Wikipedia accuracy
9. SST-2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE natural language inference various accuracy
12. COPA SuperGLUE question and answering blogs, encyclopedia accuracy
13. BoolQA SuperGLUE boolean question and answering Wikipedia accuracy
14. MultiRC SuperGLUE question and answering various accuracy
15. IMDB SuperGLUE sentiment analysis movie reviews accuracy

Table 3: The details of 15 classification datasets in the Long Sequence Benchmark (Razdaibiedina et al., 2023b).

A.2 Task Sequence Orders862

Following previous works (Zhao et al., 2024; Razdaibiedina et al., 2023b), we conduct experiments using863

two different training orders, as shown in Table 4.864

Order Task Sequence

1 mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

2 yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

Table 4: Tow different orders of task sequences used for our experiments correspond to the Long Sequence
Benchmark.

A.3 Data Construction and Ground Truth Rationales Generation865

The raw sample consists of an instruction I , an input Iinput, and an answer A. We adopted the instruction866

conversion templates proposed by Wang et al. (2023d) to integrate inputs into instructions ([I, Iinput] → I).867

To explicitly probing the model’s acquired capabilities, we employed Llama3.1-70B-Instruct 3 to generate868

a rationale R for each sample. The final data samples were structured as triples (I,Rg, Ag). Specifically,869

we use the prompt shown in Table 5 to ensure that Ag would not appear directly within Rg, or would only870

appear at the end of Rg. This approach prevent the occurrence of Ag being provided via partial rationale871

guidance in experiments in Section 2.1, thereby ensuring the validity of our experimental results.872

3https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
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<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{default system prompt}
<|eot_id|><|start_header_id|>user<|end_header_id|>
### Instruction:
We have a question and an answer provided below. Your task is to generate a rationale that explains
the reasoning behind the given answer. The rationale should be comprehensive, logical, and clearly
support why the answer is appropriate for the question.
### QA Pair:
Original question:
{Instruction}
Original answer:
{Answer}
### Guidelines:
1. Provide a detailed rationale for the given answer.
2. Ensure that the rationale is clear, logical, and free of any ambiguity.
### Format:
Please generate the following JSON formatted output and nothing else:<|eot_id|><|start_header_id|>
assistant<|end_header_id|>
{"answer": "{Answer}", "rationale": "The correct answer is {Answer}.
The rationale behind this answer is as follows:

Table 5: The prompt for ground truth rationale generation

B Experimental Implementation Details 873

B.1 Model Training 874

We perform continual learning training using the LoRa algorithm on the 7B and 13B models. Specifically, 875

the LoRA hyperparameters are set as follows: lora_rank = 8, lora_alpha = 16, and lora_dropout = 876

0.1, with LoRA applied across all modules. For the Qwen2-0.5B model, we directly apply full fine-tuning. 877

The detailed parameter settings are presented in Table 6:

Model Size Optimizer Lr Scheduler Learning Rate Batch Size Epochs

≥ 7B AdamW
Warmup=0.03
Decay="cosine"

5e-4 32 6

≤ 7B AdamW
Warmup=0.03
Decay="cosine"

5e-5 64 3

Table 6: Training details of continual learning

878

B.2 GCG Implementation 879

In Section 2.1, we employ GCG (Zou et al., 2023) to search for the suffix corresponding to each 880

forgotten sample, which enables the original instruction to guide the pseudo-forgetting model in generating 881

appropriate rationale and restoring performance on previous tasks. Specifically, as shown in Table 7, we 882

utilize three optimization objectives to facilitate the search process. The termination conditions are set as: 883

(1) correct model response to the original instruction, or (2) reaching the maximum iteration count of 500. 884

We configure the hyperparameters with top− k = 256 and batch size = 256. The initial suffix is set 885

to "! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ". 886
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Target T Example (k = 0.2)

Answer The answer is: {ground truth answer}. The reasons are as follows:

Partial Rg

1. To establish the logical relationship between the two sentences, we must analyze
the meaning and implications of each. 2. Sentence 1 states that the presence of
a smart doctor who gave a tip through

Partial Rb−f
1. Sentence 1 states that there was a smart doctor who gave them a tip through
the Coroner,which implies the presence and involvement of a doctor in the situation.

Table 7: Optimization targets used by GCG on MNLI task in Experiment 2.1. 1. Rg and Rb−f represent the ground
truth rationale and the rationale generated by the pre-forgetting model, respectively. 2. The rationale shown here
corresponds to the first 20% of the sequence; in the actual experiment, we used the first 50%.

B.3 Attribution Implementation887

In Section 2.2, we quantify the model’s dependency on the given instruction during rationale generation888

using an attribution algorithm (Li et al., 2024a; Wang et al., 2023a; Dai et al., 2022). Specifically, in889

Equation ( 3), F (·)represents the language modeling loss, and m = 20. Each sentence in the rationale is890

treated as a separate reasoning step, allowing us to compute the total number of inference steps, |N |, as891

described in Equation (4).892

C Case study893

Model Task Partial suffixes

Mistral-7B BoolQA ! ! Sounds striking ! ! ! ! ! Bo ..## !phony provisions !="#
Mistral-7B BoolQA And ! ! ! ! ! doesn ! mentioned ! !However ! ! ! Shadow ! !
Mistral-7B MNLI ! ! ! ! ! ! ! ! ! the ! ! Fifth ! ! ! ! ! ! !
Mistral-7B MNLI ! ! Cons ! > nation ! April ! G ! Pub Final ! ! ! ! ! ! !

Qwen2-0.5B MNLI !HolAndHashCode ! ErrorResponse-not Donovan unpublished

Table 8: Examples of instruction suffixes discovered by GCG. Due to length constraints, only the initial portions of
the suffixes are shown.
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