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ABSTRACT

Federated learning (FL) is a privacy-preserving machine learning framework that
enables multiple nodes to train models on their local data and periodically aver-
age weight updates to benefit from other nodes’ training. Each node’s goal is to
collaborate with other nodes to improve the model’s performance while keeping
its training data private. However, this framework does not guarantee data privacy.
Prior work has shown that the gradient-sharing steps in FL can be vulnerable to
data reconstruction attacks from an honest-but-curious central server. In this work,
we show that an honest-but-curious node/client can also launch attacks to recon-
struct peers’ image data through gradient inversion, presenting a severe privacy
risk. We demonstrate that a single client can silently reconstruct other clients’
private images using diluted information available within consecutive updates.
We leverage state-of-the-art diffusion models to enhance the perceptual quality
and recognizability of the reconstructed images, further demonstrating the risk of
information leakage at a semantic level. This highlights the need for more robust
privacy-preserving mechanisms that protect against silent client-side attacks during
federated training. Our source code and pretrained model weights are available at
https://anonymous.4open.science/r/curiousclient-5B6F.

1 INTRODUCTION

Federated learning (FL) has attracted significant attention as a promising approach to privacy-
preserving machine learning (McMahan et al., 2017; Kairouz et al., 2021). In this framework, a
central server coordinates training by multiple clients. In each training round, the server broadcasts a
shared model to clients. Clients may train for a single local iteration using the Federated Stochastic
Gradient Descent (FedSGD) protocol, or for multiple local iterations under the Federated Averaging
(FedAvg) protocol. Each client then returns the resulting gradient to the server, which averages all
the gradients and updates the model. This approach enables each participant to benefit from a model
trained on more data without sharing its own data. FL has the potential to revolutionize collaborative
efforts in real-world applications such as healthcare and finance, enabling participants to train better
models without compromising data privacy (Li et al., 2020a).

Despite the intent to protect privacy through FL, prior works have shown that an honest-but-curious
server can reconstruct a client’s training data via gradient inversion. This is done by adjusting
a dummy input to the model until its resulting gradient closely matches the gradient sent by the
client (Zhu et al., 2019; Geiping et al., 2020; Kariyappa et al., 2023). Meanwhile, studies on malicious
clients have shown that a client can disrupt federated training by sending adversarial data to the
server (Blanchard et al., 2017; Shi et al., 2022). However, far less attention has been given to the
potential for clients to reconstruct others’ data via gradient updates while honestly participating in
the federated training. This may be partially attributed to an intuition that peer clients can hardly
reconstruct meaningful data while adhering to the FL protocol due to the diluted information buried in
the heavily aggregated gradient updates. While Wu et al. (2024) have assumed the honest-but-curious
clients threat model for a related model inversion task, this inherently more difficult task has not
demonstrated substantial privacy concerns in terms of image reconstruction quality as seen in gradient
inversion attacks launched by honest-but-curious servers.

Our work explores the extent to which a single client can reconstruct high-quality training data
from other clients via gradient inversion while adhering to FL protocols. Our work demonstrates
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Figure 1: Overview of the proposed honest-but-curious client attack. The attacker participates in
two consecutive training rounds to obtain the global model’s gradient update by ① differencing the
model weights. The attacker then ② inverts the update to obtain each client’s training data. To
address the challenge of recovering high-quality images from diluted information hidden in the
global gradient update, the raw reconstructions are postprocessed using either ③ a direct technique
respecting pixel-level correctness or ④ a semantic technique focusing on producing photorealistic
images.

that the global model updates—broadcasted by the central server to all clients—contain enough
information for a client to reconstruct other clients’ image data, regardless of whether model updates
are computed under FedSGD or FedAvg. This risk is particularly concerning, as it implies that every
participating node, and not just the server, poses a potential privacy threat. Figure 1 depicts the
proposed client-to-client attack, where the attacker exploits weight updates between consecutive
training rounds to reconstruct training images. By participating in two consecutive training rounds and
comparing the global model’s weights, a single client extracts the averaged gradient of all participants
in the earlier round. Unlike server-side gradient inversion (Zhu et al., 2019; Geiping et al., 2020; Yue
et al., 2023), this attack requires isolating individual data from a heterogeneous mixture of gradient
updates. Despite this challenge, we show that the attacker can reconstruct images from every other
client.

We further propose to utilize two image postprocessing techniques based on diffusion models to
improve the quality and recognizability of the attack’s raw reconstructed images. Our first technique
uses a pretrained masked diffusion transformer (MDT) (Gao et al., 2023) to generate high-quality
images that resemble the raw attack results on a semantic level. Our second technique uses denoising
diffusion probabilistic models (DDPMs) (Ho et al., 2020) to enhance the raw reconstructions at the
pixel level through super resolution and denoising (Kawar et al., 2022). This paper’s contributions
are fourfold.

1. We experimentally demonstrate that honest-but-curious clients participating in FedAvg (McMahan
et al., 2017) can exploit the model update process to reconstruct high-quality image data from
peer nodes, highlighting an understudied privacy risk in FL.

2. The proposed masked diffusion enhancer (MDE) generates sharp, high-resolution images from the
low-resolution, color-aliased raw reconstructions. MDE’s output resembles a target image on a
semantic level, preserving its geometric shape and perceptual features with photorealistic quality.
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3. The proposed DDPM-based image postprocessing simultaneously denoises and upsamples raw
reconstructed images. This improves image resolution and object recognizability, achieving strong
pixel-wise similarity to ground-truth images.

4. We theoretically contrasted gradient inversion attacks launched by a client against a hypothetical
server or a super client. Their equivalence is stronger with fewer local iterations, more training
examples per client, fewer clients, and more training examples across all clients. Our theoretical
result justifies the proposed use of an equivalent super-client for the gradient inversion attacks, in
which the knowledge of the number of clients and per-client information is not needed.

2 RELATED WORK

Server-Side Gradient Inversion. The assumption that FL inherently protects data privacy has
been challenged by studies exposing vulnerabilities to gradient inversion attacks from the central
server (Zhu et al., 2019; Geiping et al., 2020). These attacks exploit the gradients shared by clients
to reconstruct private training data. They revealed that by iteratively updating a dummy input
to produce a gradient similar to a given target gradient, the server could generate images closely
resembling the participant’s original training data. Various defense mechanisms have been proposed
to protect against these attacks, including gradient compression, perturbation, and differential privacy
techniques (Zhang et al., 2020; Sun et al., 2021). Despite these efforts, recent studies have shown that
these defenses may not effectively prevent training data from being meaningfully reconstructed. For
example, Yue et al. (2023) overcame these defense methods by leveraging latent space reconstruction
and incorporating generative models to remove distortion from reconstructed images.

Client-Side Model Inversion. While the majority of research has focused on server-side attacks, the
potential for client-side attacks has been less examined. FedInverse (Wu et al., 2024) investigated
model inversion attacks, where a client exploits the model’s overfitting to reconstruct training data.
This approach relies on manipulating the model rather than directly reconstructing other clients’ data.
Similar to our work’s takeaway, their results demonstrated that clients can reconstruct peers’ images
without disrupting the training process. However, due to the challenging nature of model inversion,
their method produces reconstructed images far less similar to the target than those from gradient
inversion attacks.

Malicious Client Attacks. A parallel research direction focuses on attacks where a malicious client
interferes with the FL process (Blanchard et al., 2017; Shejwalkar et al., 2022). Specifically, malicious
clients can manipulate the model updates by using poisoned data or sending poisoned gradients to the
server to impede convergence. Meanwhile, researchers have shown that malicious modifications can
compromise privacy easily (Fowl et al., 2021; Wen et al., 2022). While this introduces unique security
challenges in FL, our attack does not disrupt the training process and is difficult to be detected by the
server or other clients.

3 PROPOSED ATTACK BY CURIOUS CLIENTS

In this section, we present the gradient inversion attack which allows an honest-but-curious client to
reconstruct image data from other clients. To enhance this reconstruction, two postprocessing methods
are introduced to achieve both fine-grained quality and perceptual realism. The first postprocessing
method improves the images at the pixel level with enhanced details. The second method, built on
a masked diffusion enhancer, refines the images at the semantic level and produces photorealistic
reconstructions.

3.1 ATTACK FRAMEWORK

Threat Model. We consider an honest-but-curious client (or curious client, for simplicity) attacker.
It aims to reconstruct other clients’ training data while following FL’s protocol. The attacker does
not disrupt the model training process. Unlike a server-side attacker, the curious client does not
have direct access to the gradients from other clients. However, it receives an updated version of
the shared model from the server at each communication round. The clients may train for multiple
local iterations between global averaging rounds, following the FedAvg protocol. We follow the
assumption of Yue et al. (2023) that each client trains for τ iterations on a single batch of images in
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each local iteration/update round and that the class labels have been analytically inverted as in Ma
et al. (2023). The attacker may not know the number of clients in each training round but can correctly
guess the total number of training images. Additionally, we assume as in Li et al. (2020b); Huang
et al. (2020) that all client updates in a given round have been computed using the same learning rate,
which is applied locally if each client transmits a model update, as shown in Eq. (2). It may also be
applied globally if clients transmit raw gradients to the server, as discussed in Appendix B. We target
cross-silo FL scenarios, in which a small number of clients collaborate to overcome data scarcity.
For example, a group of hospitals may use FL to develop a classifier for rare diseases from CT
scans, where each has limited training examples and images cannot be directly shared due to privacy
concerns. We assume that the system is designed to prioritize model accuracy and uses synchronous
gradient updates. Clients are not edge devices and have sufficient computational resources to perform
the optimization process while participating in FL.

We describe the FL process to be attacked as follows. The kth client at time t uses a batch of size Nk

to compute its local weights W(t,u)
k across all local iterations u until u = τ , where τ is the number

of local training iterations. Each client’s final local weight can be written as:

W
(t,τ)
k = W(t) −

ηg

Nk
∆

(t)
k , ∆

(t)
k =

τ−1∑
u=0

Nk∑
i=1

∇ℓ(W
(t,u)
k ;Xk,i,Yk,i), (1)

where W(t) is the global model parameters at time t, ∇ℓ(·) is the gradient of the loss function, the
doubly indexed Xk,i ∈ RC×H×W ,Yk,i ∈ R are the ith training image and label from client k,
respectively, and C, H , and W are the number of channels, the height, and the width of the images.
The server generates the global weights by a weighted average of all clients’ final local weights,
namely, W(t+1) = 1

N

∑K
k=1 NkW

(t,τ)
k , where N =

∑K
k=1 Nk is the total number of training

examples across K clients, with each client having a fixed minibatch of Nk images. Substituting
W

(t,τ)
k into the expression for W(t+1), we obtain the global weight update equation:

W(t+1) = W(t) −
ηg

N

K∑
k=1

∆
(t)
k . (2)

We note that scaling each client’s update by its number of training images Nk causes the gradient of
each training image Xk,i to be weighted equally in the global update.

Our approach to reconstructing data from the global model updates builds upon traditional gradient
inversion and includes extra initialization and calculation steps to separate individual training images
from the averaged global update. Our attacker engages in two consecutive rounds of FedAvg and
obtains two versions of the global model parameters, W(t) and W(t+1). By computing the difference
between successive model weights, the attacker can infer the gradient used for the global model
update: ∇(t)

avg = (W(t+1) − W(t))/η
(t)
g , where η

(t)
g is the globally-determined learning rate for

round t.

To reconstruct training images, our attacker approximates the global model update as that of a single
super-client. In Appendix A, we justify mathematically that this approximation is close when the
number of clients K, the number of local iterations τ , or the learning rate ηg is small, or the number
of training images from all clients N is large. In this way, the curious client attack is significantly
simplified as it does not need the knowledge of the number of clients and per-client information.

The attacker initializes dummy image data X ∈ RN×C×H×W and labels Y ∈ RN . The at-
tacker passes them through an equivalent global model and compares the resulting gradient update
∆(t)(X,Y) =

∑τ−1
u=0

∑N
l=1 ∇ℓ(W(t,u);Xl,Yl) to the target gradient ∇(t)

avg, where the singly in-
dexed Xl and Yl are the lth dummy image and label for the combined dataset. Following the gradient
inversion framework, the goal is to iteratively refine X until it closely approximates the data used to
compute the target gradient. The attacker solves the following optimization problem:

X̂ = argmin
X

∥∥∥∆(t)(X,Y)−∇(t)
avg

∥∥∥2 , (3)

where the evolving global model {W(t,u)}τ−1
u=0 requires only the knowledge of the total number of

images, eliminating the need to know the number of clients and the image counts from all clients.
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Figure 2: Pixel-level correct images reconstructed by the proposed attack before and after direct
postprocessing (Section 3.2). The second and third rows show postprocessed and raw reconstructed
images. The raw reconstruction results from our attack are low-resolution and have significant
color aliasing. Our direct postprocessing method increases the resolution and simultaneously de-
noises the images while maintaining pixel-level correctness, revealing image details that make the
reconstructions easier to recognize.

Finally, the attacker applies a postprocessing function ϕ(·) to improve the quality of the reconstructed
images X̃ = ϕ(X̂). This shows that a curious client attacker is able to follow an approach similar
to server-side gradient inversion and obtain reconstructed data from all other clients from only two
consecutive versions of the model weights. We describe below two methods of postprocessing X̂ to
improve its quality at either a pixel or semantic level.

3.2 DIRECT POSTPROCESSING

To reconstruct the target data more effectively, we introduce a direct postprocessing method that
utilizes pretrained diffusion models to perform super resolution and denoising on the raw image
reconstructions. The raw reconstructed images from the attack may be low-resolution or have
pixel artifacts due to imperfect gradient inversion. This problem may also be more severe in our
attack compared to server-side gradient inversion as the target gradient contains diluted information
from multiple clients. To address this problem, we introduce a postprocessing implementation,
ϕ(·) ≡ ϕdirect(·) that uses pretrained diffusion models to directly postprocess the raw reconstructed
images. Diffusion models have demonstrated good performance in image generation and restoration
tasks and are able to produce more realistic images with a lower likelihood of hallucination (Dhariwal
& Nichol, 2021). Our method follows the denoising diffusion restoration models (DDRM) framework
and utilizes a pretrained DDPM (Ho et al., 2020) as a backbone model. DDRM has demonstrated
strong performance across various image restoration tasks, including super resolution and denoising
(Kawar et al., 2022). By increasing resolution and removing noise, we aim to accurately reveal details
of the ground truth images and make the reconstructions more recognizable.

3.3 RECONSTRUCTION AT A SEMANTIC LEVEL

In this subsection, we also introduce a method to reconstruct target images at the semantic level,
ϕ(·) ≡ ϕsemantic(·), the masked diffusion enhancer (MDE). The goal of MDE is to generate sharp,
high-resolution images from the low-resolution, color-aliased raw attack results. This approach
complements the direct postprocessing technique, as the generated images resemble the raw recon-
structions at the semantic level, rather than at the pixel level. The generated images preserve the
shape and perceptual features of the target image while achieving photorealistic quality.

Backbone Model. We use masked diffusion transformer (MDT) as the backbone of our reconstruc-
tion technique. MDT has been proven to achieve state-of-the-art performance in image generation
(Gao et al., 2023). Due to its extensive training and flexibility, MDT has learned a complex represen-
tation of each image class that enables it to accurately reconstruct each image’s semantic features
through projection onto the manifold. Following the diffusion framework, MDT generates images by
starting from a Gaussian noise vector XT ∼ N (0, I), where T is the total number of diffusion steps.
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Figure 3: Photorealistic images reconstructed by the proposed semantic reconstruction method
MDE. This diffusion-based method iteratively refines its generated image by referring to the raw
reconstruction. As iterations progress, the image increasingly assumes the shape and perceptual
features of the raw reconstruction. After some optimal epoch number (determined by visual inspection
of the attacker), the reconstructed image strongly resembles the target at a high quality. Beyond this
point, further optimization may produce blurry images due to overfitting.

At each step t, the model predicts a noise residual ϵθ(Xt), and uses it to refine the noisy image Xt to
Xt−1. After T iterations, the initial noise vector XT will be transformed into a high quality image
X0. For our reconstruction technique, we leverage a pretrained MDT and freeze its model parameters
throughout the process to maintain consistency in the image generation pipeline.

Proposed Masked Diffusion Enhancer (MDE). MDE optimizes the initial noise vector XT to
generate an image that closely matches a target image X̂. During optimization, the noise predictions
ϵθ(Xt) at each timestep are treated as constants. The objective of MDE is to minimize the mean
squared error (MSE) between the final generated image µθ(XT , T ) and the target image X̂:

X̃T = argmin
XT

∥∥∥µθ(XT , T )− X̂
∥∥∥2
2
, (4)

where µθ(XT , T ) denotes the final image produced from the initial noise vector XT after all diffusion
steps. By optimizing XT based on the loss term, we guide the model to generate images that have
the same shape and perceptual features as the target image.

4 EXPERIMENTAL RESULTS

This section first presents the performance of the proposed reconstruction attack in terms of image
reconstruction quality against gradients averaged from multiple clients. Factors affecting reconstruc-
tion quality, including the number of local iterations and client batch size, will be analyzed. The
postprocessing modules will be ablated to examine their benefits on image reconstruction. The state
of the art will be compared and the limitation of the proposed attack will be discussed.

Experimental Conditions. We evaluate our reconstruction attacks using the ImageNet (Deng et al.,
2009) and MNIST (LeCun et al., 1998) datasets. We employ LeNet (LeCun et al., 1998) and ResNet
(He et al., 2016) as the global models and conduct experiments under the FedAvg framework. We vary
the client batch size and the number of local training iterations. Each client computes local updates on
the same number of training images, though this does not significantly affect the image reconstruction
quality, as we verify in Appendix D. As more clients participate in training, the training image count
from the global model’s perspective increases proportionally. The attacker uses a learning rate of
0.1 to optimize the dummy data and the attack is conducted after the first FL round, following the
approach of Yue et al. (2023). Before inverting the target gradient, the attacker encodes its dummy

6
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Figure 4: Pixel-level correct images reconstructed from the proposed honest-but-curious client-based
attack. Rows 2–4 show reconstructions from gradients averaged across 2, 4, and 8 clients using
LeNet5 as the global model with 16 images per client and 3 local training iterations. The images
remain high quality even when the attack is performed against multiple clients.

data through bicubic sampling with a scale factor of 4 to reduce the number of unknown parameters.
This has been proven to save convergence time and improve image quality in gradient inversion (Yue
et al., 2023). We use LPIPS (Zhang et al., 2018) as the primary metric to evaluate quality of the
attack’s reconstructed images as it provides the best representation of perceptual image quality based
on our experiments, through we observe similar trends for SSIM (Wang et al., 2004) and PSNR/MSE.

Figure 5: LPIPS of reconstructed im-
ages vs. number of clients with three
different models: LeNet5, ResNet9, and
ResNet18.

Main Results. Figure 5 shows the image reconstruction
quality across three model architectures, LeNet, ResNet9,
and ResNet18, measured by LPIPS as the number of
clients increases. Each client trains for three local it-
erations on a batch of 16 images. As the number of
clients increases, the total number of images from the
attacker’s perspective increases proportionally, up to 512
total images with 32 clients. We observe that reconstruc-
tion quality declines gradually as the number of clients
and images increases, and with larger models. Figure 4
provides qualitative examples with LeNet for systems of
2-8 clients trained with three local iterations. The results
show that while the reconstructions become noisier and
exhibit stronger aliasing as the number of clients increases,
the reconstructed images remain recognizable. Additional
examples are provided in Appendix H and confirm that
many reconstructions remain recognizable with 16 or more
clients and that this trend holds across multiple models, batch sizes up to 128 images per client, and
at least eight local training iterations. We note that clients follow the FedAvg protocol, though this
is equivalent to FedSGD when only a single local iteration is used. In the FedSGD case, client and
server-side gradient inversion are equivalent under the super-client approximation except for the
number of images inverted, as we prove in Appendix A.

We further evaluate the impact of diffusion-based postprocessing on reconstruction quality. Figure 2
illustrates that DDPM-based direct postprocessing improves the raw reconstructions by simultane-
ously denoising and upsampling from 32 × 32 to 128 × 128 resolution. The raw reconstructions
are constrained by the dummy data’s encoding and often contain pixel artifacts and color aliasing
due to imperfect inversion. Direct postprocessing addresses these issues, producing sharper images
that are more recognizable and retain details closely matching the ground truth. Figure 3 shows the
complementary effect of the masked diffusion enhancer (MDE), which refines the raw reconstructions

7
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at the semantic level. MDE generates high-resolution images that preserve the geometric structure
and perceptual features of the targets with photorealistic quality. While prolonged optimization may
lead to blurring, at a manually-selected optimal point, the generated images closely resemble the raw
reconstructions in both shape and semantics while achieving photorealistic quality.

Figure 6: LPIPS of reconstructed images vs. num-
ber of clients, client batch size, and local iterations.
Reconstruction quality worsens with more clients
and larger batch sizes.

Factor Analysis. Figure 6 reveals the effect of
local iterations and client batch size on image
reconstruction quality. These factors directly
influence the attack’s ability to invert the target
gradient. As shown in the left plot of Figure 6,
larger client batch sizes lead to worse recon-
struction quality as the total number of images
increases from the attacker’s perspective. This
problem is worse for client-side inversion as the
total number of images from the attacker’s per-
spective is a product of the client batch size and
the number of participating clients, rather than
simply the client batch size. Smaller batches add
variability to updates, making them more infor-
mative for the attacker, whereas larger batches
smooth updates and reduce the amount of exploitable information. The right plot of Figure 6 shows
that increasing the number of local iterations leads to worse reconstructions when the number of
clients is large, which is consistent with our theoretical result in Appendix A that the attacker’s super-
client approximation becomes worse when clients train for more local iterations. This is particularly
important because federated learning often uses more local iterations to reduce communication. We
further analyze the effect of more local iterations on the proposed attack in Appendix F.

Lemma 1 (informal): We claim that the divergence between the attacker’s single-client approximation
and the true global update rule increases quadratically with the number of local iterations. We
provide a formal proof in Appendix A.

Figure 7: LPIPS of reconstructed images with vary-
ing number of clients. Our direct postprocessing
technique significantly improves reconstruction
quality compared to the raw attack results.

Ablation Study. We examine how much im-
pact the direct and semantic postprocessing
blocks have on the quality of the attacker’s re-
constructed images. Figure 7 shows that directly
postprocessing the raw reconstructed images re-
sults in a 20–30% improvement in LPIPS for
systems with 2–8 clients. Figure 2 visually com-
pares reconstructed images from a system with
four clients before and after direct postprocess-
ing. The raw images are low resolution and may
be somewhat difficult to recognize while the
postprocessed versions show much finer details
and have recognizable features. This demon-
strates the utility of our direct postprocessing
technique in increasing the pixel-wise accuracy
and recognizability of the reconstructed images.

Additionally, Figure 3 shows the effect of post-
processing the raw reconstructed images using
the proposed MDE. The final results have the same shape and perceptual features of the raw recon-
structions without any pixel artifacts, color aliasing, or blurriness. However, MDE’s goal is not to
achieve pixel-wise accuracy so the generated images should not be compared quantitatively to the
raw reconstructions.

Comparison to ROG and FedInverse. We compare our attack method to FedInverse (Wu et al.,
2024) and our postprocessing modules to reconstruction from obfuscated gradients (ROG) (Yue et al.,
2023). To the best of our knowledge, FedInverse is the only prior work addressing honest-but-curious
client attacks, though it differs fundamentally from our setting. We do not compare our results with
those from server-side attacks as client-side data reconstruction is a more difficult problem.

8
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Figure 8: Pixel-level-correct reconstructed images using (row 2) our direct postprocessor and
(row 3) ROG GAN (Yue et al., 2023). Our direct postprocessing method produces reconstruc-
tions that are more recognizable and have more accurate image details compared to the ROG GAN.
However, our method also results in worse LPIPS and SSIM due to blurring.

Unlike our approach, which reconstructs data from gradients, FedInverse applies model inversion
at late training stages to recover class-prototype images (the typical example of class c), rather than
individual training samples. This difference indicates that the two methods are complementary rather
than directly comparable. FedInverse is more general in scope, working with large, well-trained
models, while our attack is most effective in earlier stages or with simpler models where gradient
signals are larger. Because the attack surfaces differ, a direct numerical comparison would not be
meaningful. Figure 9 illustrates the qualitative distinction in the privacy risks posed by each attack.

Figure 9: (a) Evaluation on MNIST of the at-
tack with MDE postprocessing compared to (b)
the model inversion (MI) and model inversion
with Hilbert–Schmidt independence criterion (MI-
HSIC) approaches [reproduced from Wu et al.
(2024)]. Only 5 examples were provided for each
method. FedInverse generates class-prototype im-
ages while our attack breaches privacy at the in-
stance level.

We compare reconstruction quality from our
direct and semantic postprocessing techniques
to the state-of-the-art postprocessing results
achieved by Yue et al. (2023). Figure 8 shows
that our technique generates images that are
more recognizable but often blurry because of
uncertainty in the fine image details. LPIPS is
designed to evaluate image quality, rather than
detail accuracy, and penalizes blurriness and
pixelation much more than hallucination. We
find that our direct postprocessing method yields
reconstructions with higher LPIPS values than
the state-of-the-art GAN-based postprocessing
technique, though it achieves comparable SSIM,
which is less sensitive to blurriness than LPIPS.
Numerical results are provided in Appendix G.

5 CONCLUSIONS
AND FUTURE WORK

We have demonstrated that a curious client at-
tacker can successfully reconstruct high-quality
images from a small number of clients simply by participating in two consecutive training rounds.
This type of attack does not alter the training process or introduce corrupted data, making it difficult
to detect by the server or other clients in the system. Our findings indicate that the attack is highly
effective when the number of participating clients is small or the available training examples are
limited. This raises a significant concern for cross-silo FL, where participants collaborate specifically
to overcome data scarcity (Li et al., 2020a). In such settings, our findings reveal a serious privacy
risk, as the reconstruction of sensitive data becomes more feasible. Further research is needed to
assess the robustness of more advanced FL frameworks against curious client attacks and develop
effective defenses to preserve data privacy in cross-silo FL.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. Advances in Neural Information Processing
Systems, 30, 2017.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In ACM SIGSAC Conference on Computer and Communications
Security, pp. 1175–1191, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. Robbing the
Fed: Directly obtaining private data in federated learning with modified models. arXiv preprint
arXiv:2110.13057, 2021.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
is a strong image synthesizer. In IEEE/CVF International Conference on Computer Vision, pp.
23164–23173, 2023.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Li Huang, Yifeng Yin, Zeng Fu, Shifa Zhang, Hao Deng, and Dianbo Liu. Loadaboost: Loss-based
adaboost federated machine learning with reduced computational complexity on iid and non-iid
intensive care data. Plos One, 15(4):e0230706, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sanjay Kariyappa, Chuan Guo, Kiwan Maeng, Wenjie Xiong, G Edward Suh, Moinuddin K Qureshi,
and Hsien-Hsin S Lee. Cocktail party attack: Breaking aggregation-based privacy in federated
learning using independent component analysis. In International Conference on Machine Learning,
pp. 15884–15899. PMLR, 2023.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, and Michael Mitzenmacher. Gra-
dient disaggregation: Breaking privacy in federated learning by reconstructing the user participant
matrix. In International Conference on Machine Learning, pp. 5959–5968, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. IEEE, 86(11):2278–2324, 1998.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers
& Industrial Engineering, 149:106854, 2020a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
FedAvg on non-iid data. In International Conference on Learning Representations, 2020b.

Kailang Ma, Yu Sun, Jian Cui, Dawei Li, Zhenyu Guan, and Jianwei Liu. Instance-wise batch
label restoration via gradients in federated learning. In International Conference on Learning
Representations, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. Back to the drawing board:
A critical evaluation of poisoning attacks on production federated learning. In IEEE Symposium
on Security and Privacy, pp. 1354–1371, 2022.

Junyu Shi, Wei Wan, Shengshan Hu, Jianrong Lu, and Leo Yu Zhang. Challenges and approaches for
mitigating Byzantine attacks in federated learning. In IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 139–146, 2022.

Shanghao Shi, Ning Wang, Yang Xiao, Chaoyu Zhang, Yi Shi, Y Thomas Hou, and Wenjing Lou.
Scale-mia: A scalable model inversion attack against secure federated learning via latent space
reconstruction. arXiv preprint arXiv:2311.05808, 2023.

Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable
defense against privacy leakage in federated learning from representation perspective. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9311–9319, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

Yuxin Wen, Jonas A Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing for user
data in large-batch federated learning via gradient magnification. In International Conference on
Machine Learning, pp. 23668–23684. PMLR, 2022.

Di Wu, Jun Bai, Yiliao Song, Junjun Chen, Wei Zhou, Yong Xiang, and Atul Sajjanhar. FedInverse:
Evaluating privacy leakage in federated learning. In International Conference on Learning
Representations, 2024.

Kai Yue, Richeng Jin, Chau-Wai Wong, Dror Baron, and Huaiyu Dai. Gradient obfuscation gives
a false sense of security in federated learning. In USENIX Security Symposium, pp. 6381–6398,
2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 586–595, 2018.

Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin Jin. Is network the
bottleneck of distributed training? In Workshop on Network Meets AI & ML, pp. 8–13, 2020.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Joshua C Zhao, Atul Sharma, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Salman Avestimehr, and
Saurabh Bagchi. Loki: Large-scale data reconstruction attack against federated learning through
model manipulation. In IEEE Symposium on Security and Privacy (SP), pp. 1287–1305, 2024.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in Neural
Information Processing Systems, 32, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS OF DIVERGENCE BETWEEN TRUE GRADIENT
UPDATE AND THAT FROM A SINGLE SUPER-CLIENT ATTACKER

We mathematically analyze the expected difference between the true gradient update and the at-
tacker’s single super-client approximation as a function of the number of local iterations τ and other
hyperparameters of FedAvg.

Lemma 1. The expected difference between the FedAvg global weight/update and the single
super-client approximated weight/update E[δ(τ)] is proportional to

η2g τ(τ − 1)(K − 1)/N,

where ηg is the learning rate, τ is the number of local iterations, K is the number
of clients, and N is the number of training examples from all clients.

Remark 1. As the clients train beyond the first local iteration, their starting points for computing
gradients increasingly diverge, worsening the attacker’s super-client approximation.

Remark 2. When the number of clients K is held constant, increasing the total number of training
images N reduces the expected divergence between the true FedAvg update and the attacker’s single
super-client approximation. This effect arises because each client’s update becomes more stable and
closer to the global average when computed over more examples, making the attacker’s approximation
more accurate.

Sketch of the proof. We first demonstrate the cases for τ = 2 and 3, then guess the general form
for τ = n, and finally prove the case for τ = n + 1 via mathematical induction. To simplify our
analysis, we make the assumptions that image-label pairs (Xk,i, Yk,i) are IID across client indices
k ∈ {1, . . . ,K}, and that all clients use the same batch size Nk = N/K, ∀k.

Proof: We begin by formally defining the variables and expressions used within our analysis.

Definition 1. We define g(W ;Zk,i) = ∇ℓ(W ;Zk,i) ∈ RM×1 be the gradient of the training loss
with respect to the model weights W ∈ RM×1, where Zk,i = (Xk,i, Yk,i) represents a single training
image-label pair indexed by client k and image number i.

Definition 2. We further define J(W (t);Zk,i) ∈ RM×M as the Jacobian of g(W ;Zk,i) with respect
to W (t), the model weights of the most recent global update. In our experiments, the attacker
inverts the gradient of an untrained model so we substitute W (t) = W 0, where W 0 ∈ RM×1 is the
randomly-initialized weight vector before model training.

Recall in Section 3.1, we defined the update operations for FedAvg as follows:

Local updates: W
(t,τ)
k = W (t) −

ηg

Nk

τ−1∑
u=0

Nk∑
i=1

∇ℓ(W
(t,u)
k ;Zk,i), ∀k, (5a)

Global update: W
(t+1)
fed =

1

N

K∑
k=1

NkW
(t,τ)
k . (5b)

The definitions in Section 3.1 also allow us to explicitly denote the true global weight update as
follows:

True update: η(t)g ∇(t)
avg

def
= W

(t+1)
fed −W (t) = −

ηg

N

K∑
k=1

τ−1∑
u=0

Nk∑
i=1

∇ℓ(W
(t,u)
k ;Zk,i). (6)

Reconstruction attack via a single super-client approximation. The attacker will invert the
difference between two sets of global model weights, W (t) and W (t+1), by using a single-client

12
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approximation of the true update rule, which is defined as:

Approximated update: ηg∆
(t) def

= W
(t+1)
single −W (t) = −

ηg

N

τ−1∑
u=0

N∑
i=1

∇ℓ(W (t,u);Zk,i) (7a)

= −
ηg

N

K∑
k=1

τ−1∑
u=0

Nk∑
i=1

∇ℓ(W a(t,u);Zk,i),

(7b)

where W a represents the placeholder variables for weights that the curious client attacker aims
to estimate. We explore the simplified scenario in which the client correctly estimated all Zk,is.
Divergence measure. Given that the attacker’s approximation of the global update differs from
the true update rule, we define a measure, δ(τ), to quantify the divergence between the attacker’s
single-client approximation and the true model update rule for K clients as follows:

δ(τ)
def
= η(t)g ∇(t)

avg − ηg∆
(t) = W

(t+1)
fed −W

(t+1)
single (8a)

= −
ηg

N

K∑
k=1

τ−1∑
u=0

Nk∑
i=1

[
g(W

(t,u)
k ;Zk,i)− g(W a(t,u);Zk,i)

]
. (8b)

Applying a first-order Taylor expansion around W 0, we obtain:

δ(τ) ≈ −
ηg

N

K∑
k=1

τ−1∑
u=0

Nk∑
i=1

[
J(W 0;Zk,i)(W

(t,u)
k −W a(t,u))

]
. (9)

With a slight misuse of notations, we will use equals signs instead of approximation signs for further
equations involving the same Taylor expansion.

A.1 DEMONSTRATION FOR τ ∈ {1,2,3}

When τ = 1. When the clients train for only one local iteration, the attacker’s approximation is
equivalent to the true model update:

δ(1) = −
ηg

N

K∑
k=1

Nk∑
i=1

[
J(W 0;Zk,i)(W

(t,0)
k −W a(t,0))

]
= 0, (10)

because W
(t,0)
k = W a(t,0) = W 0. When τ = 2. When the clients train for multiple local iterations,

we may obtain a recursive relationship between δ(n) and δ(n − 1) from equation 9. For δ(2) and
δ(1), this yields:

δ(2) = δ(1)− ηg
N

K∑
k=1

Nk∑
i=1

J (Wk,i;Zk,i)
(
W

(t,1)
k −W a(t,1)

)
. (11)

We study the divergence in the expectation sense as follows:

E [δ(2)] = 0− ηg
N

K∑
k=1

Nk∑
i=1

E
[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

)]
(12a)

= −ηg
N

K∑
k=1

Nk∑
i=1

E
{
E
[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

) ∣∣W 0
]

︸ ︷︷ ︸
def
=h

(2)
k,i(W

0)

}
, (12b)
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where W 0 is the randomly initialized weight vector before model training. Substituting the local
update rule equation 5a, and the attacker’s update rule equation 7b into h

(2)
k,i(W

0), we obtain:

h
(2)
k,i(W

0) = E

[
J
(
W 0;Zk,i

)(
W 0 − ηg

Nk

Nk∑
i=1

g
(
W 0;Zk,i

)
−W 0 (13a)

+
ηg
N

K∑
k=1

Nk∑
i=1

g
(
W 0;Zk,i

)) ∣∣∣∣∣W 0

]

= ηgE

[
J
(
W 0;Zk,i

)(( 1

N
− 1

Nk

) Nk∑
i=1

g
(
W 0;Zk,i

)
(13b)

+
1

N

K∑
k1=1
k1 ̸=k

Nk∑
i=1

g
(
W 0;Zk1,i

)
∣∣∣∣∣W 0


h
(2)
k,i(W

0) = ηg

(
1

N
− 1

Nk

)
E

[
J
(
W 0;Zk,i

) Nk∑
i=1

g
(
W 0;Zk,i

) ∣∣∣∣W 0

]

+
ηg
N

E
[
J
(
W 0;Zk,i

) ∣∣∣∣W 0

]
E

 K∑
k1=1
k1 ̸=k

Nk∑
i=1

g
(
W 0;Zk1,i

) ∣∣∣∣∣W 0


(14)

h
(2)
k,i(W

0) = ηg

(
1

N
− 1

Nk

){
E
[
J
(
W 0;Zk,i

)
g
(
W 0;Zk,i

) ∣∣∣∣W 0

]

+

Nk∑
i′=1
i′ ̸=i

E
[
J
(
W 0;Zk,i

) ∣∣∣∣W 0

]
E
[
g
(
W 0;Zk,i1

) ∣∣∣∣W 0

]}

+
ηg
N

E
[
J
(
W 0;Zk,i

) ∣∣∣∣W 0

]
E

 K∑
k1=1
k1 ̸=k

Nk∑
i=1

g
(
W 0;Zk,i

) ∣∣∣∣∣W 0

 ,

(15)

where equation 14 is due to the independence between training examples Zk,i and {Zk1,i}k1 ̸=k and
equation 15 is due to the independence between training examples Zk,i and {Zk,i1}i1 ̸=i. Let us
define

µg = E
[
g
(
W 0;Zk,i

) ∣∣∣∣W 0

]
, (16a)

µJ = E
[
J
(
W 0;Zk,i

) ∣∣∣∣W 0

]
. (16b)

Substituting these expressions into equation 15, we obtain:

h
(2)
k,i(W

0) =
ηg
N

µJ(N −Nk)µg + ηg

(
1
N − 1

Nk

){
E
[
J ·g | W 0

]
+(Nk − 1)µgµJ

}
(17a)

= ηg · 1−K
N

{
E
[
J · g | W 0

]
− µJ · µg

}
(17b)

= ηg · 1−K
N · Cov(J, g | W 0), (17c)

where [
Cov(X,Y )

]
i,j

:=

p∑
k=1

Cov(xi,k, yk,j), (18)
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for X = [xi,k]m×p and Y = [yk,j ]p×n. Substituting equation 17c back into equation 12b, we obtain:

E [δ(2)] = −ηg
N

K∑
k=1

Nk∑
i=1

h
(2)
k,i(W

0) (19a)

= η2g · K−1
N · E

[
Cov(J, g | W 0)

]︸ ︷︷ ︸
def
=Cov(J,g)

. (19b)

From this result, we can see that the divergence for two local iterations is nonzero and increases
linearly with the number of clients K when the total number of images N is fixed.
When τ = 3. Similar to τ = 2, we have the recursive relationship between δ(3) and δ(2):

δ(3) = δ(2)− ηg
N

K∑
k=1

Nk∑
i=1

J (Wk,i;Zk,i)
(
W

(t,2)
k −W a(t,2)

)
. (20)

Taking the expected value, we then obtain:

E [δ(3)] = E [δ(2)]− ηg
N

K∑
k=1

Nk∑
i=1

E
{
E
[
J
(
W 0;Zk,i

) (
W

(t,2)
k −W a(t,2)

) ∣∣W 0
]

︸ ︷︷ ︸
def
=h

(3)
k,i(W

0)

}
. (21)

Substituting the local update rule equation 5a, and the attacker’s update rule equation 7b into
h
(3)
k,i(W

0), we obtain:

h
(3)
k,i = E

[
J
(
W 0;Zk,i

) (
W

(t,2)
k −W a(t,2)

) ∣∣∣∣W 0

]
(22a)

= E

[
J
(
W 0;Zk,i

)(
W 0 − ηg

Nk

Nk∑
i=1

g
(
W 0;Zk,i

)
− ηg

Nk

Nk∑
k=1

g(W 0;Zk,i)

− ηg
Nk

Nk∑
i=1

∇g
(
W 0;Zk,i

) (
W (t,1) −W 0

)
−W 0 +

ηg
N

K∑
k=1

Nk∑
i=1

g
(
W 0;Zk,i

)
+
ηg
N

K∑
k=1

Nk∑
i=1

g
(
W 0;Zk,i

)
+

ηg
N

K∑
k=1

Nk∑
i=1

J
(
W 0;Zk,i

) (
W (t,1)−W 0

)) ∣∣∣∣∣W 0

]
. (22b)

Distributing the expectation, we obtain:

h
(3)
k,i = 2E

[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

)]
−

η2g
N2

E

[
J
(
W 0;Zk,i

) K∑
k1=1

Nk∑
i1=1

K∑
k2=1

Nk∑
i2=1

J
(
W 0;Zk1,i1

)
g
(
W 0;Zk2,i2

)]

+
η2g
N2

k

E

[
J
(
W 0;Zk,i

) Nk∑
i1=1

Nk∑
i2=1

J
(
W 0;Zk,i1

)
g
(
W 0;Zk,i2

)]
. (23)

We note that first term of equation 23 mirrors the case where τ = 2. The summations in the second
and third terms can each be divided into four parts based on the indices of the summations:

1. (k1, i1) = (k, i), and (k2, i2) = (k, i).

2. (k1, i1) = (k, i), and (k2, i2) ̸= (k, i).

3. (k1, i1) ̸= (k, i), and (k2, i2) = (k, i).

4. (k1, i1) ̸= (k, i), and (k2, i2) ̸= (k, i).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Equal indices indicate two terms depend on the same Zk,i, while unequal indices indicate the terms
depend on different Zk,is and are independent under our assumption that the training images are IID.
Splitting the terms, we obtain:

h
(3)
k,i = 2E

[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

) ∣∣∣∣W 0

]

−
η2
g

N2
E

J (W 0;Zk,i

)J
(
W 0;Zk,i

)
g
(
W 0;Zk,i

)
+ J

(
W 0;Zk,i

) K∑
k1=1

Nk∑
i1=1

g
(
W 0;Zk1,i1

)

+

K∑
k1=1

Nk∑
i1=1

J
(
W 0;Zk1,i1

)
g
(
W 0;Zk,i

)
+

K∑
k1=1

Nk∑
i1=1

K∑
k2=1

Nk∑
i2=1

J
(
W 0;Zk1,i1

)
g
(
W 0;Zk2,i2

) ∣∣∣∣∣W 0


+

η2
g

N2
k

E

[
J
(
W 0;Zk,i

)(
J
(
W 0;Zk,i

)
g
(
W 0;Zk,i

)
+ J

(
W 0;Zk,i

) Nk∑
i1=1

g
(
W 0;Zk,i1

)
+

Nk∑
i1=1

J
(
W 0;Zk,i1

)
g
(
W 0;Zk,i

)
+

Nk∑
i1=1

Nk∑
i2=1

J
(
W 0;Zk,i1

)
g
(
W 0;Zk,i2

)) ∣∣∣∣∣W 0

]
. (24)

Given our assumption of independence among Zk,i, we distribute the expectation operator:

h
(3)
k,i = 2E

[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

) ∣∣∣∣W 0

]
−

η2g
N2

(
E
[
J(W 0;Zk,i)J

(
W 0;Zk,i

)
g
(
W 0;Zk,i

) ∣∣∣∣W 0

]
+ E

[
J(W 0;Zk,i)J

(
W 0;Zk,i

) ∣∣∣∣W 0

]
E

[
K∑

k1=1

Nk∑
i1=1

g
(
W 0;Zk1,i1

) ∣∣∣∣∣W 0

]

+ E

[
K∑

k1=1

Nk∑
i1=1

J
(
W 0;Zk1,i1

) ∣∣∣∣W 0

]
E
[
J(W 0;Zk,i)g

(
W 0;Zk,i

) ∣∣∣∣W 0

]

+E
[
J(W 0;Zk,i)

∣∣∣∣W 0

]
E

[
K∑

k1=1

Nk∑
i1=1

K∑
k2=1

Nk∑
i2=1

J
(
W 0;Zk1,i1

)
g
(
W 0;Zk2,i2

) ∣∣∣∣∣W 0

])

+
η2g
N2

k

(
E
[
J(W 0;Zk,i)J

(
W 0;Zk,i

)
g
(
W 0;Zk,i

) ∣∣∣∣W 0

]
+ E

[
J(W 0;Zk,i)J

(
W 0;Zk,i

) ∣∣∣∣W 0

]
E

[
Nk∑
i1=1

g
(
W 0;Zk,i1

) ∣∣∣∣∣W 0

]

+ E

[
Nk∑
i1=1

J
(
W 0;Zk,i1

) ∣∣∣∣∣W 0

]
E
[
J(W 0;Zk,i)g

(
W 0;Zk,i

) ∣∣∣∣W 0

]

+ E
[
J(W 0;Zk,i)

∣∣∣∣W 0

]
E

[
Nk∑
i1=1

Nk∑
i2=1

J
(
W 0;Zk,i1

)
g
(
W 0;Zk,i2

) ∣∣∣∣∣W 0

])
. (25)

In addition to the already defined terms from our analysis on τ = 2, we further define:

J2 = J
(
W 0;Zk,i

)
J
(
W 0;Zk,i

)
, (26a)

µJ2 = E
[
J(W 0;Zk,i)J

(
W 0;Zk,i

)]
. (26b)
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Substituting them into equation 25, we obtain:

h
(3)
k,i = 2E

[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

) ∣∣∣∣W 0

]
−

η2g
N2

k

(
E(J2 · g | W 0) + µJ2µg(N − 1) + µJE(J · g | W 0)(N − 1)

+ µJ [(N − 1)E(J · g | W 0) + (N2 − 3N + 2)µJµg]
)

+
η2g
N2

k

(
E(J2 · g | W 0) + µJ2µg(Nk − 1) + µJE(J · g | W 0)(Nk − 1)

)
+µJ [(Nk − 1)E(J · g | W 0) + (N2

k − 3Nk + 2)µJµg]
)

(27)

h
(3)
k,i = 2E

[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

) ∣∣∣∣W 0

]
+ η2g

{
K2−1
N2 · Cov(J2, g | W 0)

− 1−K
N ·Var(J | W 0)µg +

2(K−1)(N−K−1)
N2 · µJ Cov(J, g | W 0)

}
,

(28)

where Var(X) = Cov(X,Y ) where X = Y . Substituting into the recursive form of δ(3) equation 21,
we obtain:

E [δ(3)] =E [δ(2)]− ηg
N

K∑
k=1

Nk∑
i=1

E

{
2E
[
J
(
W 0;Zk,i

) (
W

(t,1)
k −W a(t,1)

) ∣∣∣∣W 0

]
+ η2g

[
K2−1
N2 · Cov(J2, g | W 0)− 1−K

N ·Var(J | W 0)µg

+ 2(K−1)(N−K−1)
N2 · µJ Cov(J, g | W 0)

]}
. (29)

Reusing the result from τ = 2 equation 19b to simplify the first inner term, we obtain:

E [δ(3)] = 3E [δ(2)] + η3g

[
K−1
N · Cov(J)µg

− K2−1
N2 · Cov(J2, g)− 2(K−1)(N−K−1)

N2 · µJ · Cov(J, g)
]
. (30)

The expression has two terms: one proportional to η2g and another to η3g . In typical settings where
ηg is small (e.g. ηg = 0.003 in our experiments) and N ≫ K (e.g., N = 64, K = 4), the cubic
term is suppressed by at least one additional order of magnitude relative to the quadratic term. The
coefficients of η3g involve averaged variance and covariance terms, which are unlikely to be large
enough to counteract this suppression. Specifically, the covariance of J2 and g would need to be
several orders of magnitude larger than the covariance of J and g to overcome the intrinsic η3g
downscaling.

Using our experimental observation µg ≈ −0.004 and our set learning rate of ηg = 0.003, we show
that the cubic term is much smaller than the quadratic term under the range of Cov(J), Cov(J2, g) ≤
100 · Cov(J, g). This is based on the relationship between J and g and that the mean and standard
deviation of g are each experimentally determined to be close to zero. Under typical experimental
conditions, we expect that these values would be much smaller than the given bound. However,
even if Cov(J, g) = 1, Cov(J) = Cov(J2, g) = 100, and µJ = 1000, the quadratic term is still
33.1 times greater than the cubic term. Given this, we conclude that the cubic term is negligible and
exclude it from further analysis.

The expression then shows that the deviation with three local iterations is three times greater than the
deviation with two local iterations.

A.2 GENERAL FORM

For τ ∈ {2, 3}, the divergence contains a factor of η2g · K−1
N · Cov(J, g), which dominates the

expression as further terms are multiplied by higher powers of ηg , and ηg is small. From equation 22b,
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it is apparent that each local iteration beyond τ = 1 will increase the factor of W (t,1)
k −W a(t,1) by

one and that the higher order terms of those iterations will have factors of ηmg ,m > 2. These higher
order terms should be less than or equal to the case where τ = 3 and are small relative to the first
term. This pattern yields the following general form:

E[δ(n)] =
n(n− 1)

2
· η2g · K−1

N · Cov(J, g) +O, (31)

where O represents terms multiplied by ηmg where m > 2. We assume these terms are negligible
based on our prior analysis.

Mathematical Induction. We prove by mathematical induction that equation 31 is the general form
of E[δ(n)]. We first demonstrate the base case, where τ = 1:

δ(1) =
1(1− 1)

2
· η2g · K−1

N · Cov(J, g) = 0. (32)

We now assume equation 31 is true and try to prove:

E[δ(n+ 1)] =
(n+ 1)n

2
· η2g · K−1

N · Cov(J, g) +O. (33)

From equation 9, we know that δ(n+ 1) is recursively related to δ(n) by the following expression:

δ(n+ 1) = δ(n)−
ηg

N

K∑
k=1

Nk∑
i=1

[
J(W 0;Zk,i)(W

(t,n)
k −W a(t,n))

]
. (34)

Substituting the local update rule equation 5a and the attacker’s update rule equation 7b, we obtain:

δ(n+ 1) = δ(n)−
ηg

N

K∑
k=1

Nk∑
i=1

[
J(W 0;Zk,i)ηg

{
1

N

K∑
k=1

n−1∑
u=0

Nk∑
i=1

g(W a(t,u);Zk,i) (35)

− 1

Nk

n−1∑
u=0

Nk∑
i=1

g(W
(t,u)
k ;Zk,i)

}]
.

We then apply the same Taylor expansion used for equation 9 to expand g.

δ(n+ 1) = δ(n)−
ηg

N

K∑
k=1

Nk∑
i=1

[
J(W 0;Zk,i)ηg

{
1

N

K∑
k=1

n−1∑
u=0

Nk∑
i=1

(
g(W 0;Zk,i)

+J(W 0;Zk,i)
[
W a(t,u) −W 0

])
− 1

Nk

n−1∑
u=0

Nk∑
i=1

(
g(W 0;Zk,i) + J(W 0;Zk,i)

[
W

(t,u)
k −W 0

])}] (36)

δ(n+ 1) = δ(n)−
ηg

N

K∑
k=1

Nk∑
i=1

[
J(W 0;Zk,i)

{
− n ·W 0 + n ·

ηg

N

K∑
k=1

Nk∑
i=1

g(W 0;Zk,i)

− n ·
ηg

Nk

Nk∑
i=1

g(W 0;Zk,i) +
ηg

N

K∑
k=1

n−1∑
u=0

Nk∑
i=1

J(W 0;Zk,i)
[
W a(t,u) −W 0

]
+n ·W 0 −

ηg

Nk

n−1∑
u=0

Nk∑
i=1

J(W 0;Zk,i)
[
W

(t,u)
k −W 0

]}]
(37)
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We separate the terms, add n ·W 0 − n ·W 0 to the inner expression, and substitute equation 5a and
equation 7b to expand the first-order terms.

δ(n+ 1) = δ(n)−
ηg

N

K∑
k=1

Nk∑
i=1

[
J(W 0;Zk,i)

{
n
(
W

(t,1)
k −W a(t,1)

)
+
ηg

N

K∑
k=1

n−1∑
u=0

Nk∑
i=1

J(W 0;Zk,i)

[
−
ηg

N

K∑
k=1

u−1∑
u′=0

Nk∑
i=1

g(W a(t,u′);Zk,i)

]

−
ηg

Nk

n−1∑
u=0

Nk∑
i=1

J(W 0;Zk,i)

[
−

ηg

Nk

u−1∑
u′=0

Nk∑
i=1

g(W
(t,u′)
k ;Zk,i)

]}]
. (38)

We can see that the second and third terms within the outer summation will have a factor of η3g or
higher. Under our prior assumption, we determine that they will be small relative to the η2g term and
neglect them. We also note that for τ > 3, the additional terms beyond those that appeared for τ = 3
will have factors of ηg raised to powers greater than three, making them much smaller than the terms
we showed were negligible for τ = 3. Taking the expectation and using our result from τ = 2, we
then rewrite the first term, obtaining:

E[δ(n+ 1)] = E[δ(n)] + n · K−1
N · Cov(J, g) +O (39a)

=
n(n− 1)

2
· η2g · K−1

N · Cov(J, g) +O + n · K−1
N · Cov(J, g) +O (39b)

=
(n+ 1)n

2
· η2g · K−1

N · Cov(J, g) +O. (39c)

This completes the proof for the general form equation 31 for the discrepancy between the attacker’s
single super-client approximation and the true global update.
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Figure 10: Pixel-level-correct reconstructed images from a system with 16 clients. With more clients,
our reconstruction technique can reconstruct only a subset of training images with high quality,
whereas others show distortion and color aliasing artifacts. Each client has 16 images and trains for 3
local iterations using LeNet5 as the model architecture.

B DISCUSSION

Limitations. Our attack struggles to reconstruct high-quality images in systems where the number of
clients is large. As the information contained within the attacker’s target gradient is averaged from
more clients, it becomes more difficult to reconstruct high-quality images. With more than 8 clients,
we observe that some reconstructed images remain high quality while others exhibit significant
degradation or are not recognizable. Figure 10 shows the varying quality in our reconstructed images
in a system of 16 clients. Additionally, we observe that the postprocessors are often able to restore
image details that may not be obvious to a human observer looking at the raw reconstruction results.
However, they are not able to restore images when the raw reconstruction result does not provide
enough information, which is a problem common to all postprocessing tasks.
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Figure 11: Quality of the raw reconstructed images
when the attacker incorrectly guesses the global
model’s learning rate (LR). Image quality improves
as the attacker guesses more correctly.

Unknown Learning Rate. We assume in our
experiments that the attacker knows the global
learning rate ηg. This assumption simplifies the
attack but need not be true for the attack to be
effective. If the learning rate is applied globally
(by the central server) and the attacker’s guess
differs from the true value, the target gradient
will be inversely scaled by a factor of the ra-
tio between the guessed learning rate and the
true learning rate, leading to poor reconstruction
quality. For simplicity, we set the base ηg = 1
and examine the impact on reconstruction when
it is unknown to the attacker. The attacker uses
its own training images to evaluate reconstruc-
tion quality as it knows they will be in the set
of reconstructed images. Figure 11 shows that
reconstruction quality degrades rapidly as the
guessed and true learning rates diverge. How-
ever, within an order of magnitude of the true learning rate, the degradation follows a simple
polynomial pattern. An attacker with sufficient computational resources can refine their guess over
multiple iterations to improve reconstruction quality if the true learning rate is not known.

Nonuniform Learning Rate. The proposed attack relies on each client’s gradient update being scaled
by the same learning rate and this is also necessary for the global model to converge with FedAvg. To
achieve the best model convergence during federated training, FedAvg scales each client’s update by
the client’s number of training images, which gives the individual gradient of each training image
equal weight in the global model update. If clients used very different learning rates, the clients with
larger learning rates would dominate the global weight update, leading to suboptimal convergence.
This is the basis for the assumption that the clients’ learning rate in each round is either set by the
server or otherwise controlled. For example, the clients may use a learning rate scheduler but agree
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on its parameters so the scale of their updates does not vary significantly in a given round. Regardless
of how the learning rate is set during federated training, scaling individual image gradients unevenly
in a way that would disrupt the attack is also likely to impede the global model’s convergence.

Unknown Number of Images. The proposed attack assumes that the attacker can correctly guess
the total number of training images N in a given round. This assumption simplifies the attacking
algorithm but is not always needed. Instead, the attacker can search for this integer value and decide
on the best guess leading to a successful recovery of the attacker’s own training images. If both the
learning rate and number of images are unknown, a joint parameter search can be conducted.

Application to Secure Aggregation. We evaluate the similarity between our approach and server-
side attacks against the secure aggregation protocol, identifying both significant differences and an
additional application scenario of our attack. Our problem of inverting the aggregated gradients
of multiple clients is similar to the problem server-side attackers encounter in systems using the
secure aggregation protocol, which prevents the parameter server from knowing individual clients’
gradients (Bonawitz et al., 2017). Despite this similarity, we have not found any other works that
obtain high-quality reconstructions without modifying the global model (Shi et al., 2023; Zhao et al.,
2024) or relying on additional information the server might have about the client devices, such as
device type and available memory (Lam et al., 2021), which would not be possible for a client attacker.
Most of these attacks also rely on information collected across many training rounds, which may not
be available to a client who cannot choose which rounds it is selected to participate in. In contrast,
our attack does not require the attacker to disrupt the training protocol or have any information about
the other clients beyond the model updates and total number of training images, which it may be
able to guess. It also relies only on information from two consecutive training rounds. This indicates
that our attack could also be performed by a server against a securely aggregated gradient and would
allow it to avoid modifying the global model, maintaining the honest-but-curious threat model.

C ASSUMPTIONS

Table 1: Many of the assumptions necessary for the proposed attack are shared by server-side gradient
inversion attacks. We compare the assumptions necessary for our attack to ROG (Yue et al., 2023),
DLG (Zhu et al., 2019), and iDLG (Zhao et al., 2020) to clarify which are unique to the curious-client
threat model. Beyond what is required for these server-side attacks, the proposed attack requires that
the number of clients in each training round is small and that the attacker knows or can guess the
total number of images in a given round.

Assumption Ours
(client)

ROG
(server)

iDLG
(server)

DLG
(server)

Application:
cross-silo/cross-device

cross-silo both both both

Analytical label inversion ✓ ✓ ✓

Single image per gradient ✓

Each client trains on a single
batch in each round

✓ ✓ ✓ ✓

Clients can guess the total
number of images in a given
training round

✓

Small number of clients ✓

Small number of local
iterations

✓ ✓ ✓ ✓

Small number of images in
each training round

✓ ✓ ✓ ✓

Attacker has resources for
complex attack

✓ ✓ ✓ ✓
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D EFFECT OF UNEVEN LOCAL BATCH SIZE

Figure 12: Quality of image reconstructions when
training images are distributed unevenly between
clients compared to an even distribution of training
images. The effectiveness of the proposed attack
is not sensitive to uneven client batch sizes, even
when training for multiple local iterations.

We compare the performance of the proposed
attack with uneven client batch sizes to confirm
that the proposed attack is not affected when
training examples are distributed unevenly be-
tween clients. To evaluate this, we distribute
a total of 256 training images unevenly across
clients, using an average client batch size of
16 images. Half of the clients are initialized
with 21 images (two-thirds of the total training
data), while the other half receive 11 images
(one-third of the total). Figure 12 compares the
image reconstruction quality between this un-
even distribution and a system where each client
has an equal batch size of 16 images, keeping
the total number of training images constant.
The evaluation is conducted with an even num-
ber of clients ranging from 2 to 8. The results
indicate negligible differences in reconstruction
quality between the two systems. This finding
supports our hypothesis that the weighting be-
havior of FedAvg renders the attack robust to
uneven batch size distributions.

E EFFECT OF INVERSION LEARNING RATE
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Figure 13: LPIPS of reconstructed images with
varying attacker’s inversion learning rate, which
the reconstruction quality is not sensitive to.

Figure 13 examines the sensitivity of the pro-
posed attack to variations in the attacker’s inver-
sion learning rate, which is used optimize the
dummy data. We evaluate reconstruction qual-
ity by varying both the inversion learning rate
and the number of clients where the FL learning
rate, used to update the global model, is fixed at
0.03. The results show only minor differences
in image reconstruction quality across different
learning rates, with slight variations in the opti-
mal learning rate depending on the number of
clients. Overall, the attack’s performance re-
mains robust as long as the inversion learning
rate is within a reasonable range.
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F FURTHER ANALYSIS ON NUMBER OF LOCAL TRAINING ITERATIONS

Figure 14: Reconstruction quality vs. the number of local
iterations for simulations with 2 clients (upper left), 4 clients
(upper right), 6 clients (lower left), and 8 clients (lower
right). Each plot compares the proposed attack (single-client
simulation) to a theoretical upper bound where the attacker
explicitly simulates the true number of clients with labels
grouped correctly. The gap between the proposed attack
and the upper bound increases with more clients and local
iterations, as the attacker’s approximation error increases.

We experimentally examine an upper
bound of reconstruction performance
for the proposed attack to better un-
derstand the effect of larger numbers
of clients and local iterations. The
attacker is initialized to simulate the
true global model update by explic-
itly modeling K clients. While this
attack is not practical as it requires
the attacker to correctly group the
inverted image labels by client in-
dex k, it is useful for understanding
how the number of local training it-
erations uniquely impacts the perfor-
mance of client-side gradient inver-
sion. Figure 14 presents the qual-
ity of the attacker’s reconstructed im-
ages as a function of local iterations,
with separate plots for simulations of
2, 4, 6, and 8 clients. The figure
highlights the gap between the real
attack (single-client simulation) and
the upper bound, where the attacker
correctly simulates the true number of
clients. The results show that explicit
multi-client simulation enables the at-
tack to be unaffected by more local
iterations, demonstrating that the dis-
crepancy between the true update rule
and the attacker’s approximation accounts for the degradation in reconstruction quality as local
iterations increase. Further, as the number of clients grows, the performance gap widens. Our result
in Appendix A demonstrates that the attacker’s single super client-based loss function becomes less
accurate with more local iterations. This could be one explanation of why the reconstruction quality
decreases as the local iteration count increases.

G ADDITIONAL POSTPROCESSOR COMPARISON TO ROG

Figure 15 compares the performance of our direct postprocessor to the GAN used by Yue et al. (2023)
in both LPIPS and SSIM, as described in the experimental results section of the main text.

Figure 15: LPIPS and SSIM of reconstructed images using our direct postprocessor vs. GAN
postprocessing with varying number of clients. Our method results in higher LPIPS as it blurs
uncertain image details, compared to sharper but potentially less accurate outputs from GANs. SSIM,
less sensitive to blurring, remains comparable across both approaches.
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H ADDITIONAL RECONSTRUCTION RESULTS
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Figure 16: Images reconstructed by the proposed attack on a system using LeNet as the global model
with 8 images per client and three local iterations.
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Figure 17: Images reconstructed by the proposed attack on a system using LeNet as the global model
with 32 images per client and three local iterations.
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Figure 18: Images reconstructed by the proposed attack on a system using LeNet as the global model
with 64 images per client and three local iterations.
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Figure 19: Images reconstructed by the proposed attack on a system using LeNet as the global model
with 16 images per client and one local iteration.
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Figure 20: Images reconstructed by the proposed attack on a system using LeNet as the global model
with 16 images per client and five local iterations.
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Figure 21: Images reconstructed by the proposed attack on a system using LeNet as the global model
with 16 images per client and eight local iterations.
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Figure 22: Images reconstructed by the proposed attack on a system using ResNet9 as the global
model with 16 images per client and three local iterations.
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Figure 23: Images reconstructed by the proposed attack on a system using ResNet18 as the global
model with 16 images per client and three local iterations.

27


	Introduction
	Related Work
	Proposed Attack by Curious Clients
	Attack Framework
	Direct Postprocessing
	Reconstruction at a Semantic Level

	Experimental Results
	Conclusions and Future Work
	Theoretical Analysis of Divergence Between True Gradient Update and That From a Single Super-Client Attacker
	Demonstration for {1,2,3}
	General Form

	Discussion
	Assumptions
	Effect of Uneven Local Batch Size
	Effect of Inversion Learning Rate
	Further Analysis on Number of Local Training Iterations
	Additional Postprocessor Comparison to ROG
	Additional Reconstruction Results

