Under review as a conference paper at ICLR 2026

UNDERSTANDING IN-CONTEXT LEARNING OF ADDI-
TION VIA ACTIVATION SUBSPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

To perform few-shot learning, language models extract signals from a few input-
label pairs, aggregate these into a learned prediction rule, and apply this rule to
new inputs. How is this implemented in the forward pass of modern transformer
models? To explore this question, we study a structured family of few-shot learning
tasks for which the true prediction rule is to add an integer k to the input. We
introduce a novel optimization method that localizes the model’s few-shot ability
to only a few attention heads. We then perform an in-depth analysis of individual
heads, via dimensionality reduction and decomposition. As an example, on Llama-
3-8B-instruct, we reduce its mechanism on our tasks to just three attention heads
with six-dimensional subspaces, where four dimensions track the unit digit with
trigonometric functions at periods 2, 5, and 10, and two dimensions track magnitude
with low-frequency components. To deepen our understanding of the mechanism,
we also derive a mathematical identity relating “aggregation” and “extraction”
subspaces for attention heads, allowing us to track the flow of information from
individual examples to a final aggregated concepts. Using this, we identify a
self-correction mechanism where mistakes learned from earlier demonstrations
are suppressed by later demonstrations. Our results demonstrate how tracking
low-dimensional subspaces of localized heads across a forward pass can provide
insight into fine-grained computational structures in language models.

1 INTRODUCTION

Large language models (LLMs) exhibit in-context learning (ICL) abilities; for instance, they can
few-shot learn new tasks from a small number of demonstrations in the prompt. To understand this
ability, past works have constructed detailed models of ICL for small synthetic language models (Garg
et al., 2022; Akyiirek et al., 2023; von Oswald et al., 2023) as well as coarser-grained analyses of
large pretrained models (Olsson et al., 2022; Hendel et al., 2023; Todd et al., 2024). However, little is
known about the fine-grained computational structure of ICL for large models.

ICL extracts task information from demonstrations and applies the aggregated information to input
queries. Previous work (Todd et al., 2024) constructed a vector (i.e., the “function” vector) from
demonstrations that encode the task information—for instance, adding it to the residual stream on
zero-shot inputs recovers ICL behavior. However, two questions remain elusive: (1) How precisely
do function vectors encode task information? (2) How do models aggregate information from ICL
examples to form such function vectors?

To address these questions, we perform a case study for few-shot learning of arithmetic (i.e., learning
to add a constant k to the input). This family of tasks has the advantage of providing a large number
of tasks (different integers k) that all share the same input domain, which is important to rule out
domain-based shortcuts when analyzing ICL mechanisms (§2.1). Arithmetic also has the advantage
of being well-studied in other (non-in-context) settings (Zhou et al., 2024; Kantamneni & Tegmark,
2025), allowing us to situate our results with other known mechanisms. Finally, most LLMs perform
this task reliably (e.g. 87% accuracy for Llama-3 and 90% for Qwen-2.5).

To study this setting, we first introduce a novel optimization method for localizing few-shot ability to a
small number of attention heads. Our approach is inspired by previous work on function vectors (Todd
et al., 2024), which mimic ICL when they are patched into the residual stream (§2.2). While Todd
et al. (2024) selected heads based on their individual effect on ICL performance, we search for



Under review as a conference paper at ICLR 2026

Task: add-12 (e.g., 3+12=15)

Prompt: “3 —/15#7 - 19#11 — 23#15 — 27#28 — 30#9 >~
} } [ }
T T T

| | I 12

(31,51)

(layer idx, head idx) previous tokens last",td'i'(en
/'(," Attention heads’ computatiqn"at the last;token
: outp"f 1,(524 attention heads in Llama-3-8b, are impﬁftant for add-kf-":ICL.

Finding 2: projecting head
activation space from 128-dim to
6-dim preserves task information. i

Finding 4: task
signals flow from
output tokens to
final token via a
self-correction
mechanism

Finding 3: 6-dim subspace factors
into 4-dim capturing the unit digit :
; 4-dim and capturing the ten-digit.

Figure 1: Key findings of our methods in the specific case of Llama-3-8b-instruct (illustrated using
an example add-k prompt): (1) out of 1024 attention heads, only three are important for add-k ICL
(§4); (2) each head encodes the task information & in a six-dimensional subspace (§4.1); (3) the
six-dimensional subspace further factors into four dimensions capturing the unit digit of k£ (encoding
periodic functions at periods 2,5, and 10) and two dimensions capturing its tens digit (encoding higher
frequency functions) (§4.3); and (4) task information flows from output tokens to final token via a
self-correction mechanism (§5).

coefficients within a continuous range [0, 1] that produce a sparse, weighted combination of heads’
outputs, maximizing ICL performance (§3.1). Our method successfully finds a small number of
heads that recover most of the ICL performance (§3.2); for example, Llama-3-8B-instruct achieves
79% accuracy using function vectors from just three heads (90% of the original ICL accuracy).

We next perform a detailed analysis of these heads, through dimensionality reduction and decomposi-
tion. We find that the task information from each head is encoded in a low-dimensional subspace
typically consisting of trigonometric functions. For example, in each of the three important heads in
Llama-3-8B-instruct, we get a 6-dimensional subspace, where 4 dimensions are periodic functions
with periods 2, 5, and 10 (tracking the units digit) and 2 dimensions are low-frequency functions
(tracking the tens digit) (§4). This interestingly aligns with recent findings in non-in-context settings
where addition is also encoded by trigonometric (Zhou et al., 2024) or helical functions (Kantamneni
& Tegmark, 2025), suggesting a deeper relation between non-ICL and ICL machinery.

Finally, we further study the flow of information across tokens, by deriving a general mathemat-
ical relation between “extractor” and “aggregator” subspaces, building on the second-order logit
lens (Gandelsman et al., 2025). This lets us study the task-related information that heads extract from
each token. For example, in Llama-3-8B-instruct we find that task information is mostly extracted
from label tokens (§5.2). Moreover, we find a self-correction mechanism: if the signal extracted from
one token has an error, signals from later tokens often write in the opposite direction of the error
(§5.3). This suggests that ICL goes beyond simple averaging of inputs and has stateful dynamics.

In summary, we found that task-specific information in ICL can be localized to a small number of
attention heads and low-dimensional subspaces with structured patterns. We also found that models
employ a self-correction mechanism when the task information flows from the “extractor” subspaces
to the “aggregator” subspaces. Our findings show how even in large models, ICL mechanisms can be
localized to specialized activation subspaces from a small number of heads that extract, represent,
and aggregate information in interpretable ways.



Under review as a conference paper at ICLR 2026

Our key contributions are thus as follows: (1) we introduce a novel optimization method to identify
relevant attention heads for ICL; (2) we derive a precise mathematical relation between signals from
earlier tokens and the output token; and (3) we perform a focused analysis of ICL addition and are
able to reverse-engineer rich latent structures and sophisticated computational strategies in LLMs.

2 PRELIMINARIES

2.1 MODEL AND TASK

We begin by specifying the model and the task studied in this paper.

Model. We focus on Llama-3-8B-instruct in the main body, which has 32 layers and 32 attention
heads per layer and a residual dimension of 4096. We denote each head as a tuple (layer index,
head index), where both indices range from O to 31. To make our analysis broader in model size,
training type, and model family, we also experiment on Llama-3.2-3B-instruct, Llama-3.2-3B, and
Qwen-2.5-7B and report the results in appendix. The results are consistent across Llama family and
directionally similar for the Qwen model.

Task. We study a structured family of ICL tasks that we call add-k. For a constant k, the add-k task
is to add k to a given input integer x to predict y = = + k. In an n-shot ICL prompt, the model is
given n demonstrations of the form “z; — y;” with y; = x; + k, concatenated using the separator
“#”, followed by a query “z, —” (see Figure 1 for an example). A key advantage of this family of
tasks is that ICL prompts for different tasks only differ in k (i.e. y; — x;) but not in the input domain,
enabling us to isolate task information from input content so as to dissect the ICL mechanism at a
finer granularity.

Our choice contrasts with prior work, which considers tasks such as product-company (“iPhone
S5—apple”) or celebrity->career (“Taylor Swift—singer”) (Todd et al., 2024). In such cases, the input
domain itself leaks information about the task: from the query alone, one could reasonably guess that
‘apple’ or ‘singer’ are likely outputs (Min et al., 2022). This makes it difficult to distinguish whether
the success stems from extracting the task rule or from leveraging domain-specific associations. For
add-k, the query x, alone provides no information about the hidden constant £, so the model must
infer k from the demonstrations, which cleanly dissect the key components of ICL mechanism.

We construct data for the task by varying z € [1,100] and k£ € [1,30] (thus y € [2,130]) since
Llama-3 models are empirically capable of solving the addition task in this range. We consider the
following three types of prompts:

1. five-shot ICL prompt, where all five demonstrations satisfy y; = x; + k for a fixed k € [1, 30]. We
also call this add-k ICL.

2. mixed-k ICL prompt, where the demonstrations are y; = x; + k; for possibly different k; values.

3. zero-shot prompt, where there are no demonstrations: the prompt is “z, —” for some .

We mostly study five-shot ICL prompts as examples of our ICL tasks, and use them to generate
function vectors (§2.2). We also examine the information extracted from demonstrations in mixed-k
ICL prompts, which is a varied version of five-shot ICL prompts with mistaken demonstrations, in
§5.2. We use zero-shot prompts to evaluate the effectiveness of heads and function vectors (§2.2).

2.2 ACTIVATION PATCHING AND FUNCTION VECTORS

Next, we briefly review activation patching, a common interpretability technique that is used through-
out the paper, and function vector, a construction we use to identify important heads for ICL tasks.

Activation patching. Activation patching is performed by taking the activations of a model compo-
nent when the model is run on one prompt, then patching in these activations when the model is run
on a different prompt. Patching can either replace the model’s base activations or add to them; we
will primarily consider the latter.

Specifically, if z; is the original value of the residual stream at layer [ at the final token position
“—”, we patch in the replacement z; + v, where v is constructed from activations on a different input



Under review as a conference paper at ICLR 2026

- 3 main heads

[l 1024 attention heads || 33 significant heads [ 30 mean-ablated heads

P - D

0 » »

5 Vv 5 v % Vv

o o N

'_g v K v g v

o N 2
[] L Q

o .o BN

el S o)

o N N

RN N S
Layer Index

Layer Index

4-dim subspace (unit-digit) X
6-dim subspace (add-k)

128-dim activation space

Figure 2: The chain of localization in §3 and §4. We first identify 33 significant attention heads
(out of 1024) via a global optimization method (§3.1), then narrow down to 3 main heads while
mean-ablating the remaining 30 (§3.2). We next study the structure of the representation of each main
head by localizing it to a six-dimensional subspace (§4.1), and decompose it into a four-dimensional
subspace encoding the unit digit and a two-dimensional subspace encoding the tens digit (§4.3).

prompt. We choose the layer [ at one third of the network’s depth and construct v from “function
vector” heads, following Todd et al. (2024), as described next.

Function vectors. Function vectors vy, are vectors constructed from the outputs of selected attention
heads, designed so that adding vy, to the residual stream of a zero-shot prompt approximates the effect
of the five-shot add-k task. For example, v, might be the average output of one or more attention
heads across a set of five-shot add-k examples. We define the intervention accuracy of vy, as the
average accuracy obtained on zero-shot prompts when vy, is added to the residual stream across all
tasks k. Due to the independency of k from input queries, this metric captures how effectively vy,
encodes task-specific information about k. For comparison, we define clean accuracy as the accuracy
on five-shot prompts without any intervention, also averaged across all tasks k.

In more detail, consider an attention head h: let h(p) denote the output of head h on prompt p at the
last token position, and define hy, as the average of h(p) across all five-shot add-k prompts.' Todd
et al. (2024) identified a subset H of attention heads (for a different set of tasks) such that the vector
Uk = Y _pen Pk has high intervention accuracy—that is, adding it to the residual stream of zero-shot
prompts effectively recovers few-shot task performance.

Building on this framework, we consider multiple ways to construct vy: (1) the task-specific mean hy,
over the add-k task (as described above); (2) the overall mean h (i.e., average across all k), which
removes task-specific information about k; or (3) the specific value h(p) on an individual prompt p.
Throughout the paper, we call h the mean-ablation of head h and call hy the head vector of h
with respect to k. Beyond the three choices above, we sometimes project a head’s output onto a
lower-dimensional subspace or scale it by a coefficient. Unlike Todd et al. (2024), we recover a
different set of heads through solving a novel global optimization problem (§3.1) and systematic
ablation studies (§3.2), which achieves higher performance (Figure 5).

3 IDENTIFYING THREE AGGREGATOR HEADS

To understand the mechanism behind the add-k ICL task, we first need to find out what model
components are responsible for performing it. In this section, we find that three heads do most

!'Similar to Todd et al. (2024), we approximate this average using 100 randomly generated five-shot add-k
prompts, where each prompt contains random demonstration inputs x; and the final query input z, is chosen
exactly once from each integer in [1, 100].



Under review as a conference paper at ICLR 2026

of the work for add-k. We find these heads by first solving an optimization problem to identify
33 significant heads out of 1024 (§3.1), and then further narrowing down to three main heads via
systematic ablations (§3.2). This process is illustrated in the first row of Figure 2.

3.1 IDENTIFYING SIGNIFICANT HEADS VIA SPARSE OPTIMIZATION

‘We will search for a set of heads that store the information for the add-k task, in the sense that their
output activations yield good function vectors for add-k (§2.2).

Formulating the sparse optimization. More formally, define vy (c) = 3, ¢p, - hy, the sum of head
outputs weighted by ¢, where h goes over all 1024 heads in the model. (Recall that hy is the average
output of head h averaged across a large dataset of five-shot add-k prompts.) We will search for a
sparse coefficient vector ¢ € [0, 1]1°?4 such that adding vy (c) to the residual stream of a zero-shot
prompt achieves high accuracy on the add-k task.

Let {(x4, yq4; v) be the cross-entropy loss between y, and the model output when intervening the
vector v onto the input “x, —”(i.e. replacing z; with z; 4 v in the forward pass on “x, —”, where z;
is the layer-/ residual stream at the last token). We optimize ¢ with respect to the loss

L(c) = EkE[SO]Erqe[l()O] [ﬂ(xq, zq+ k; vk (e))] + Allefl, (L

where the regularization term with weight A promotes sparsity.

Training details. We randomly select 25 add-k tasks of the total 30 tasks for training and in-
distribution testing, and use the remaining five tasks only for out-of-distribution testing. For each task
add-k, we generate 100 zero-shot prompts “z, —”, where x, ranges over all integers from [1, 100]
and the target output is x4 + k, yielding one data point for each (prompt, task) pair. We randomly split
the data points of the 25 tasks into training, validation, and test sets in proportions 0.7, 0.15, and 0.15,
respectively. We use AdamW with learning rate 0.01 and batch size 128. We set the regularization
rate A as 0.05, which promotes sparsity while incurring little loss in accuracy. During training, we
clip the coefficients ¢ back to [0, 1] if they go out of range after each gradient step.

Results. We get coefficients that achieve high intervention accuracy. In particular, on the 25 in-
distribution tasks and five out-of-distribution tasks, intervention accuracies at the final epoch are 0.83
and 0.87, close to the clean accuracies of 0.89 and 0.92, respectively. To identify the important heads
for the tasks, we plot the values of the coefficients in the final epoch for each layer and head index
(Figure 5a). We find 33 heads have coefficients c;, greater than 0.2, most (21) of which are one. In
contrast, the other (991) coefficients are all smaller than 0.01, most (889) of which are zero. We call
the 33 heads significant heads and denote the set of them as Hg.

Comparison to previous approach. We compare our optimization approach with the previous
method from Todd et al. (2024) for identifying important heads, which selects heads based on average
indirect effect (AIE). To perform a fair comparison, we construct our function vector by summing the
outputs of our selected heads directly without weighting by coefficients, matching their methodology.
Using this construction, we achieve an intervention accuracy of 0.85, close to the clean accuracy of
0.87, indicating that our 33 heads captures most of the necessary information for the add-k task. In
contrast, selecting the top 33 heads according to AIE yields a much lower intervention accuracy of
0.31.2 We visualize the coefficients and AIE values of heads from both methods in Figure 5.

3.2 FURTHER REFINEMENT VIA ABLATIONS

We suspect many heads are primarily responsible for storing formatting information (such as ensuring
the output appears as a number) rather than encoding information about % itself. Intuitively, while
we require the overall signal transmitted by these heads, we do not need any information about the
specific value of k. To test this hypothesis, we perform mean-ablations: replacing each task-specific
signal hj, with the overall mean h across all values of k (§2.2).

Specifically, we conduct mean-ablations over subsets of the 33 significant heads and measure the
resulting intervention accuracy of the corresponding function vectors. Formally, when ablating a

>Todd et al. select the top 10 heads in their work, but this yields an even lower accuracy of 0.05 in our setting.



Under review as a conference paper at ICLR 2026

Head Scalar Accuracy
No intervention N/A 0.87
(15,2):=Head 1 6 0.85
(15,1):=Head 2 5 0.83
(13,6):=Head 3 5 0.66
Any other head Optimal ? 0.19

 Scalar chosen to maximize accuracy for each
head (scanned over integer values).

Table 1: Intervention accuracies for scaling up each single head’s output by an optimal coefficient.
Each of the top three heads (in red) achieves much higher intervention accuracy compared to any
other significant head in layer 13 and 15 (in blue).

subset Hg, the resulting function vector is given by

Vg = Z h+ Z hy. 2)

heHo hG’H,,g\’Ho
Here, heads in H contribute only mean signal, while heads in H, \ # retain task-specific signal.

Focusing on two layers via layer-wise ablation. To efficiently narrow down the important heads,
we first perform mean-ablations at the level of layers. From Figure 5a, we observe that the significant
heads H, are concentrated primarily in the middle and late layers. We speculate that heads in the
late layers mainly contribute to formatting the output, as they appear too late in the computation to
meaningfully interact with the query. After trying different sets of layers, we found that mean-ablating
all significant heads outside layers 13 and 15 still achieves an intervention accuracy of 0.83, while
mean-ablating any other combination of layers causes negligible drops in accuracy (Appendix B.1,
Table 3). After these ablations, only 11 heads located in layers 13 and 15 remain.

Identifying three final heads via head-ablation. To understand the individual contributions of each
head within layers 13 and 15, we perform mean-ablations at the level of individual heads. We first
assess the intervention accuracy when retaining only the output of a single head while mean-ablating
all other significant heads; however, this generally results in low accuracy. We hypothesize that the
output magnitude of a single head is too small to significantly influence the model output, even if it
encodes task-relevant information. To amplify each head’s effect, we scale its output by a coefficient
(e.g., 5). We find that three heads—head 1 = (15, 2), head 2 = (15, 1), and head 3 = (13, 6)—achieve
intervention accuracies close to the clean accuracy when appropriately scaled, while all other heads
show much lower accuracies regardless of scaling (Table 1). This suggests that these three heads
individually encode the task information much better than any others.

Finally, to remove the need for scaling while maintaining high intervention accuracy, we sum the
outputs of these three heads (each with a coefficient of one) and mean-ablate all others. We find that
summing the top three, top two, and only the top head yields intervention accuracies of 0.79, 0.61,
and 0.21, respectively. The three heads are thus collectively sufficient for performing the add-k task.

Validating necessity of the three heads via ablating them in five-shot ICL. So far, we have studied
these three heads mainly through their contribution to the function vector vi. We next directly test
their necessity in the original five-shot ICL setting, by ablating outputs of these three heads when
running the model on random five-shot ICL prompts. Our experiment shows that mean-ablating these
three heads yields an accuracy of 0.43, sharply decreasing from the clean accuracy 0.87 by half. For
comparison, we mean-ablate 20 random sets of three significant heads (other than head 1,2,3); their
accuracies remain close to the clean accuracy: 95% of them have accuracy at least 0.86.

4 CHARACTERIZING THE AGGREGATOR SUBSPACE

For the model to perform add-k, it has to infer the task information (the number k) from the ICL
demonstrations. Our next goal is thus to understand how task information is represented in the
activation space. Since we have identified three aggregator heads that carry almost all of this
information, we can now focus on analyzing the representation space of these three heads.

In this section, we dissect their activation spaces in three stages (illustrated in Figure 3): (1) Localize
a six—dimensional task subspace in each head via principal component analysis (PCA) (§4.1); (2)



Under review as a conference paper at ICLR 2026

Rotate this subspace into orthogonal feature directions aligned with sinusoidal patterns across k
(§4.2); (3) Decompose the six-dimensional space into a four-dimensional unit-digit subspace and a
two-dimensional magnitude subspace that separately encode the units and tens of the answer (§4.3).

Component 1 Component 2 Component 3
1.0
3
% 05
o Head 1 £
g0 g 0.0
[
208 -05
8
8 Component 4 Component 5 Component 6
906 0.5
z 8
204 ®
g T 0O
“ 123456 7 8910 S
Number of Principal Components © 05
(a) Subspace localization. The first 0 20 0 20 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)

six PCs of head 1 explain 97% of
task variance, so we focus on this (b) Original coordinates. Coordinates of head 1’s vectors on the first six

six-dimensional subspace. PCs as functions of k. The first five PCs exhibit partially periodic patterns.
Modulo 2 Modulo 5 Modulo 10(cos)
A N 7
9]
°
2
a
g Projecting onto unit subspace 10 Projecting out of unit subspace
- \ 1.0 :
0 20 0.8 08
g 2
Modulo 10(sin) Modulo 25 Modulo 50 206 %0'6
194 7 r\ § 0.4 g 0.4
] 7 3 L
E 0.2 0.2
TEl 00 ) I I B B 0.0 R RN N B )
< - Task add-k Index (k) Task add-k Index (k)
- o B Unit-Digit Error W Answer Error

OTask Add-k Isgex (k) 0Task Add-k |r2\3ex (k) 0Task Add-k Irzu(j)ex (« (d) Subspace decomposition. Projecting head
1’s vectors onto the unit subspace (spanned by pe-
riods 2, 5, 10) preserves unit-digit accuracy while
(c) Subspace rotation. A linear transformation of the six PCs degrading final-answer accuracy, whereas project-
yields feature directions whose coordinate functions closely ing out of this subspace destroys the unit-digit
fit trigonometric curves with periods 2, 5, 10, 25, and 50. signal.

fffff Targeted periodic function =~ —— Constructed coordinate function

Figure 3: Characterizing the aggregator subspace of head 1 via localization, rotation, and decom-
position for task representations: (a) PCA localizes task information to a six-dimensional subspace.
(b) Coordinates on the original PCs reveal partially periodic dependence on k. (c) Rotating this
subspace produces feature directions that encode clean trigonometric patterns. (d) Validating the
decomposition of unit-digit subspace via causal steering experiments.

4.1 LOCALIZING TO SIX-DIMENSIONAL SUBSPACE

To reduce the 128-dimensional head activation to a more tractable space to study, we first perform PCA
on the 30 task vectors and find that just six directions can explain 97% of the task variance (Figure 3a,
more in Appendix C). We then check that the function vectors found earlier remain effective after
projecting onto the subspace. Specifically, we replace each head vector hy, with its projection onto the

subspace hy, to obtain a new function vector 0, = Zhe?—l ka (a variant of vy = ZheH hi in §2.2).

We find that vy, has intervention accuracy 0.76, which is close to the intervention accuracy of 0.79

before projection. Thus, we confine our study to the concise six-dimensional subspace for each head.

4.2 IDENTIFYING FEATURE DIRECTIONS ENCODING PERIODIC PATTERNS

To understand how the six-dimensional subspace of each head represents task information, we
first examine coordinates of head vectors (their inner products with principal components (PC)) as

functions of k. This reveals partially periodic patterns in the first five PCs (Figure 3b, Appendix D.1).

This motivates us to linearly transform the six PCs to find directions that encode pure periodic patterns.

Mathematically, if we can find a linear transformation of the six PC-coordinate functions that fits

B



Under review as a conference paper at ICLR 2026

trigonometric functions, then by applying the transformation on the PCs, we can obtain six directions
whose coordinate functions encode the periodicity.

To find trigonometric functions to fit, we searched over different periods and phases and performed
least squares regression. We found six trigonometric functions at periods 2, 5, 10, 10, 25, and 50 that
could be expressed as functions of the top 6 PCs with low regression error (Figure 3c, Appendix D.1).
We apply the resulting linear transformation to the six PCs to obtain a new set of directions that
encode these six pure periodic patterns, which we call feature directions.

4.3 DECOMPOSING TO SUBSPACES ENCODING SUBSIGNALS

Leveraging the feature directions identified previously, we decompose the head activation subspace
into lower-dimensional components that separately encode different subsignals relevant to the task—
in this case, the units digit and tens digit.

By construction, the coordinate function of each feature direction (viewed as linear projections of hy)
is a periodic function of k. Mathematically, a feature direction with period 7" carries task information
from the head vectors with “modulo 7. Based on this, we hypothesize: (i) the feature direction
corresponding to period two, which we call the “parity direction”, encodes the parity of k in add-k
task; (ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit
subspace”, encodes the unit digit of k; (iii) the subspace spanned by the directions with periods 25, 50,
which we call the “magnitude subspace”, encodes the coarse magnitude (i.e., the tens digit) of k.

We verify these hypotheses through causal intervention. We establish (1) sufficiency by showing
that projecting a head vector onto the subspace preserves the relevant task signal; and (2) necessity
by showing that projecting a head vector out of the subspace (i.e., onto its orthogonal complement)
destroys the relevant task signal. We show experimental results for unit-digit subspace in Figure 3d
and defer complete results in Appendix E.

5 SIGNAL EXTRACTORS OF ICL DEMONSTRATIONS

Previously, we localized the model’s behavior to three heads and their corresponding six-dimensional
subspaces, then examined how the model represents the task information (k for add-k) inferred
from the ICL demonstrations in one subspace. Now, we analyze how the model extracts the task
information from the ICL demonstrations.

In this section, we find that: (1) the signal is primarily gathered from the label tokens in demonstra-
tions; (2) each demonstration x; — y; individually contributes a signal y; —x; in the subspace even on
“mixed” in-context demonstrations with conflicting task information; and (3) when all demonstrations
x; — y; share the same value for y; — z;, the extracted signals exhibit a self-correction behavior.

5.1 MATHEMATICAL OBSERVATION: TRACING SUBSPACE BACK TO PREVIOUS TOKENS

We begin with a mathematical observation that lets us trace the subspace at the final token back to
corresponding subspaces at earlier token positions. Intuitively, a head’s output at the last token is
a weighted sum of transformed residual streams from the previous tokens, with the weights given
by the attention scores. Thus, the signal extracted from previous tokens is the transformed residual
stream at that token.

Formally, a head h’s output at the last token of a prompt p can be written as h(p) =, p O ‘Op V24,
where « is the attention score from the last token to each token ¢, satisfying Zt ep Ot = 1, z; is the

residual stream input to the head & at token ¢, V}, is the value matrix, and Oy, is the output matrix
mapping from head-dimensional space to model-dimensional space.

Let W}, denote the projection matrix onto the six-dimensional subspace for head h. Then the projected
signal at the final token, W}, - h(p), can be decomposed into contributions from previous tokens as
Wi - a4 Op Vi, 24, each lying in the image of the head subspace under W;, O, V. In the following
subsection, we analyze the magnitudes and directions of these signals, and study how signals from
different demonstrations interact.

5.2 SIGNAL EXTRACTOR FOR EACH DEMONSTRATION

To understand how demonstrations contribute to model generation at the last token, we identify which
tokens contribute the most, then examine what information they provide. By the analysis above, the



Under review as a conference paper at ICLR 2026

Projection norm. N |:| N - ‘ - : - : .:. . . :;2?

7y0.33

Lo.00
RERE KO TDEGTRED T aF k> 7D KD 7

Attention score

Token-wise strings in prompt

(a) Signal magnitude from previous tokens ¢ to the final token || WrOr Vi 2t ||, decomposed into (1) the norm
of extracted information ||W3, Oy Vi, z¢|| and (2) the attention weight o Both consistently peak at label tokens.

Examples in mixed-k ICL prompt

"3->9"(+6) | [
"15->17"(+2)- B B B
"62->78"(+16) - |
"20->24"(+4)- - [ | [ |
"11->3o"(+19).‘HHHHHHH.‘H‘HHH -091

~1 & o K o :

Addition task signal

(b) Signal direction extracted from examples, the inner product between the projected signal from each y; and
the head vector hy, (renormalized to unit norm), consistently peak at y; — ;.

Figure 4: Task-signal extraction for head 1 on a mixed-k ICL prompt. (a) Signal magnitude
from previous tokens to the final token consistently peaks at the label tokens. (b) Signal direction
consistently peaks at y; — x; for each example z; — y;, showing that the head extracts the difference
from its corresponding demonstration.

task-signal contribution of each previous token to the final token through the head h is oy W, Op Vy, 2¢.
This can be decomposed into two parts: (1) extracted information: W;, 0}, V}, 2, the residual stream
input projected into the relevant subspace; and (2) aggregation weight: o, the attention score of the
final token to the previous token. We plot the norms of the extracted information and the aggregation
weights for a random mixed-k ICL prompt (with conflicting k; values), in Figure 4a. Both the strength
of the extracted information and the aggregation weights peak at y; tokens.

We next examine what specific information is extracted from each of these tokens. To do so, we
measure the inner product (W}, OV}, 2, hy) between the extracted information and the head vector
(projected onto the subspace and normalized to have unit norm) for each task k. In Figure 4b, we
plot this quantity for a random mixed-k ICL prompt for each token y; (i € {1,...,5}) and each task
k € {1,...,30}. We find that the inner product consistently peaks at k = y; — x;, indicating that the
model extracts the information of y; — x; from the corresponding demonstration z; — y;.

5.3 SIGNAL CORRELATION AMONG DEMONSTRATIONS

Having studied the signal extracted from each demonstration in the previous subsection, we next
study how signals from different demonstrations interact to execute ICL task. To do so, we compute
the correlation between the extracted signal from different demonstrations: for each y; token, we first
compute the inner product between the residual stream input to head 1, z;, and the corresponding
task vector hg, where k = y; — ;. Then, we compute the correlation of these measures across each
pair of five positions over 100 add-k prompts, yielding (g) correlations per task.

To analyze the correlation, we sum the negative correlation values and positive correlation values
respectively for each task, and calculate the various statistics (max, average and min) over all tasks
(Appendix G.1, Table 8). The negative correlation sum is significantly higher than the positive
correlation sum for all three statistics, indicating that the signals from any two demonstrations are
mostly negatively correlated. This suggests a self-correction mechanism: intuitively, when the head
extracts a noisy signal from one demonstration, signals from subsequent demonstrations are more
likely to correct the error, thereby stabilizing the final representation.

6 RELATED WORK

Our work builds on a growing body of interpretability research that aims to uncover circuits and
internal computations of language models. Many studies focus on synthetic tasks or models specifi-
cally trained on that task (Nanda et al., 2023; Bietti et al., 2023; Reddy, 2023; Singh et al., 2024).



Under review as a conference paper at ICLR 2026

Going beyond to large pretrained language models, some papers study general LLMs and tasks but
provide only coarser-grained analyses (Todd et al., 2024; Olsson et al., 2022; Hendel et al., 2023),
while others focus on particular model families and specific task classes to obtain more fine-grained
insights (Hanna et al., 2023; Feng & Steinhardt, 2023; Wu et al., 2023; Zhou et al., 2024; Panickssery
et al., 2024). Our work follows the latter trajectory: we analyze Llama-3 models and the Qwen-2.5
model on a structured set of addition ICL tasks, and we provide a deeper and more detailed account
of ICL mechanisms than prior studies of ICL in LLMs (Todd et al., 2024; Olsson et al., 2022; Hendel
et al., 2023). Below we discuss three particular threads that are most relevant to this paper.

Interpreting arithmetic tasks. A recent line of work examines how LLMs perform arithmetic
(Stolfo et al., 2023; Hanna et al., 2023; Nikankin et al., 2024; Maltoni & Ferrara, 2024), and in
particular addition (Nanda et al., 2023; Zhong et al., 2023; Zhou et al., 2024; Kantamneni & Tegmark,
2025). Zhou et al. (2024) find that pre-trained LLMs perform addition using Fourier features, and
Kantamneni & Tegmark (2025) find that mid-sized LLMs compute addition using a “clock” algorithm
via a helix representation of numbers. Unlike prior work, we analyze addition in the ICL setting for
LLMs, and interestingly we find similar representation structures to them.

Interpreting in-context learning. Researchers have constructed detailed models of in-context
learning (ICL) for small transformer models in standard supervised learning problems such as linear
regression (Garg et al., 2022; Akyiirek et al., 2023; Zhang et al., 2023; Li et al., 2023; Wu et al., 2024),
as well as more complex settings (von Oswald et al., 2023; Bai et al., 2023; Bietti et al., 2023; Reddy,
2023; Guo et al., 2023; Nichani et al., 2024). For large pretrained models, there exist coarser-grained
treatments attributing ICL performance to either induction heads (Olsson et al., 2022; Singh et al.,
2024; Crosbie & Shutova, 2025; Bansal et al., 2023) or function vector (FV) heads (Todd et al., 2024,
Hendel et al., 2023). Yin & Steinhardt (2025) compares the two types of heads and finds that few-shot
ICL performance depends primarily on FV heads. Motivated by this, we study function vector heads
in detail for a family of few-shot ICL tasks, introducing a novel optimization method, which achieves
better performance than the method in Todd et al. (2024). Another difference from Todd et al. (2024)
is that our tasks have the same input domain, ensuring that the ICL prompts for different tasks differ
only in the task information, which allows for a clearer understanding of ICL mechanism.

Causal analysis. There has been a line of research that proposes methods to understand the causal
influence of model components on model behavior, such as by probing (Conneau et al., 2018; Hewitt
& Manning, 2019; Clark et al., 2019). Our methodological approach follows recent developments in
revealing causal effects of model components by interventions on internal states of models (Vig et al.,
2020; Geiger et al., 2021). In particular, we draw inspiration from causal mediation analysis used in
Todd et al. (2024), activation patching (Meng et al., 2022), and causal scrubbing (Chan et al., 2022).

7  DISCUSSION

We provided a detailed mechanistic analysis of in-context learning for addition tasks. We found a
small number of attention heads operating in low-dimensional subspaces can extract, represent and
aggregate ICL task information in structured and interpretable ways. We analyzed in five steps:

1. Use sparse optimization to identify important attention heads whose outputs construct effective
function vectors for ICL tasks (§3.1).

2. Localize task information to a smaller subset of heads via ablations (§3.2).

3. Further localize to low-dimensional subspaces via PCA on each remaining head (§4.1).

4. Examine subspace qualitatively, which uncovered periodic patterns in activation space (§4.2) that
decomposed into interpretable subspaces encoding unit-digit and magnitude information (§4.3).

5. Exploit algebraic structure in the transformer to connect “aggregation” subspaces at the final token
position with “extraction” subspaces at the earlier y; tokens (§5).

This same methodology (identify important heads, restrict to relevant subspaces, and examine the
remaining information qualitatively) could be extended to other models and tasks. Most steps in
our methodology also scale easily: the sparse optimization is fully automatic. While mean ablation
involved some qualitative judgment, we can fold both of these steps into a single optimization task
that mean ablates some heads while fully removing others. PCA is also automatic. For the final step
that involves a qualitative examination of the subspaces, future work could explore automating this
step using Al systems.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models, 2023. URL https://arxiv.
org/abs/2211.15661.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023. URL https://arxiv.
org/abs/2306.04637.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan
Roth. Rethinking the role of scale for in-context learning: An interpretability-based case study at
66 billion scale. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 11833-11856, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.660. URL https://aclanthology.org/2023.acl-long.660/.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint, 2023. URL https://arxiv.org/abs/2306.00802.

Lawrence Chan, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny Nitishin-
skaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrubbing: A method for
rigorously testing interpretability hypotheses. In Al Alignment Forum, pp. 10, 2022.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of BERT ‘s attention. In Tal Linzen, Grzegorz Chrupata, Yonatan Belinkov, and
Dieuwke Hupkes (eds.), Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 276-286, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-4828. URL https://aclanthology.org/
W19-4828/.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loic Barrault, and Marco Baroni. What
you can cram into a single vector: Probing sentence embeddings for linguistic properties, 2018.
URL https://arxiv.org/abs/1805.01070.

Joy Crosbie and Ekaterina Shutova. Induction heads as an essential mechanism for pattern matching
in in-context learning, 2025. URL https://arxiv.org/abs/2407.07011.

Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context? arXiv preprint
arXiv:2310.17191, 2023.

Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. Interpreting the second-order effects of
neurons in clip, 2025. URL https://arxiv.org/abs/2406.04341.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583-30598, 2022.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 9574-9586. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/4f5c422f4d49a5a807eda27434231040-Paper . pdf.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions, 2023. URL https://arxiv.org/abs/2310.10616.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https://arxiv.
org/abs/2305.00586.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In Findings
of the Association for Computational Linguistics: EMNLP 2023, 2023.

11


https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2306.04637
https://arxiv.org/abs/2306.04637
https://aclanthology.org/2023.acl-long.660/
https://arxiv.org/abs/2306.00802
https://aclanthology.org/W19-4828/
https://aclanthology.org/W19-4828/
https://arxiv.org/abs/1805.01070
https://arxiv.org/abs/2407.07011
https://arxiv.org/abs/2406.04341
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://arxiv.org/abs/2310.10616
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586

Under review as a conference paper at ICLR 2026

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129-4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URL https://aclanthology.org/N19-1419/.

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873, 2025.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 19565-19594. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/1i231.html.

Davide Maltoni and Matteo Ferrara. Arithmetic with language models: From memorization to
computation. Neural Networks, 179:106550, November 2024. ISSN 0893-6080. doi: 10.1016/j.
neunet.2024.106550. URL http://dx.doi.org/10.1016/j.neunet.2024.106550.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359-17372, 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?, 2022.
URL https://arxiv.org/abs/2202.12837.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
gradient descent, 2024. URL https://arxiv.org/abs/2402.14735.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algorithms:
Language models solve math with a bag of heuristics, 2024. URL https://arxiv.org/abs/
2410.21272.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition, 2024. URL https://arxiv.org/
abs/2312.06681.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task, 2023. URL https://arxiv.org/abs/2312.03002.

Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What
needs to go right for an induction head? a mechanistic study of in-context learning circuits and
their formation, 2024. URL https://arxiv.org/abs/2404.07129.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 7035-7052, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.435. URL https://aclanthology.org/2023.
emnlp-main.435/.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models. In Proceedings of the 2024 International Conference
on Learning Representations, 2024.

12


https://aclanthology.org/N19-1419/
https://proceedings.mlr.press/v202/li23l.html
http://dx.doi.org/10.1016/j.neunet.2024.106550
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2402.14735
https://arxiv.org/abs/2410.21272
https://arxiv.org/abs/2410.21272
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2404.07129
https://aclanthology.org/2023.emnlp-main.435/
https://aclanthology.org/2023.emnlp-main.435/

Under review as a conference paper at ICLR 2026

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388-12401, 2020.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent,
2023. URL https://arxiv.org/abs/2212.07677.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L. Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression?, 2024. URL
https://arxiv.org/abs/2310.08391.

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. Interpretability
at scale: Identifying causal mechanisms in alpaca. Advances in neural information processing
systems, 36:78205-78226, 2023.

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? 2025
International Conference on Machine Learning, July 2025. URL https://arxiv.org/abs/2502.
14010.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context,
2023. URL https://arxiv.org/abs/2306.09927.

Zigian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in
mechanistic explanation of neural networks, 2023. URL https://arxiv.org/abs/2306.17844.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier
features to compute addition. arXiv preprint arXiv:2406.03445, 2024.

13


https://arxiv.org/abs/2212.07677
https://arxiv.org/abs/2310.08391
https://arxiv.org/abs/2502.14010
https://arxiv.org/abs/2502.14010
https://arxiv.org/abs/2306.09927
https://arxiv.org/abs/2306.17844

Under review as a conference paper at ICLR 2026

A SUPPLEMENT FOR §3.1

A.1 ADDITIONAL FIGURE FOR §3.1

In §3.1, we developed a global optimization method to identify 33 significant heads for Llama-3-8B-
instruct. Here we visualize our optimized coefficients as well as the previous method, also comparing
their intervention accuracy in Figure 5.

Intervention Accuracy: 0.85 Intervention Accuracy: 0.31

1.0
0.8 -0.004
0.6 0.002
ﬂ)
E
g
0.4
0.000
0.2
-0.002
0.0

Head Index
09 % 6 &YYo 0 %560
Values

Head Index
09 2 6 &Y%l o0 Y e

OV > 0D OYNODAD AV AN AO OV X 0PI NORAD AN AQ
Layer Index Layer Index
(a) Coefficients of heads. (b) Average indirect effects of heads (Todd et al., 2024).

Figure 5: Comparison of significant heads identified by our optimized coefficients (left) and by
average indirect effects (AIE) from the previous method (Todd et al., 2024) (right). Colors indicate
the magnitude of each head’s importance (coefficients or AIE) on Llama-3-8B-instruct. The top
33 heads identified by both methods are highlighted with frames (13 heads common across both
methods in red and other 20 heads in blue). Our identified heads yield an intervention accuracy of
0.85, compared to the previous method’s accuracy of 0.31. Both methods select heads from similar
layers, but our optimization approach is significantly more effective.

A.2 ADDITIONAL MODELS FOR §3.1

We also train coefficients to get sets of important heads responsible for add-k on Llama-3.2-3B-
instruct, Llama-3.2-3B, and Qwen-2.5-7B. In all cases, we achieve better accuracies with less number
of heads than Todd et al. (2024). We report our results in Table 2.

14



Under review as a conference paper at ICLR 2026

Model Llama-3.2-3B-instruct Llama-3.2-3B  Qwen-2.5-7B
ICL accuracy 0.50 0.64 0.91
Our weighted-heads accuracy 0.66 0.83 0.61
Our top-heads accuracy 0.62 0.75 0.34
Todd et al. (2024)’s top-heads accuracy 0.20 0.1 0.12

Table 2: Accuracies comparison between our method and Todd et al. (2024)’s method as well as
the baseline ICL accuracy on add-k task cross other models. Our weighted-heads accuracy is the
intervention accuracy achieved by the weighted sum of all heads where the weights are the raw
coefficients at the last epoch of our training; our top-heads accuracy is the intervention accuracy
achieved by the sum of top heads selected by coefficients at the last epoch of our training; and the
Todd et al. (2024)’s top-heads accuracy is the intervention accuracy achieved by the sum of top
heads selected by their average indirect effect. Here we choose the number of top heads as the one
giving the highest accuracy for each case. For Llama-3 models, we need to choose around 30 heads
while Todd et al. (2024)’s method needs to choose around 60 heads; for Qwen-2.5 model, we both
need to choose 210 heads. Our weighted-heads accuracy get significant higher accuracy than Todd
et al. (2024)’s, which indicates our method can find better function vectors than Todd et al. (2024)’s.
Our top-heads accuracy are also higher with less number of heads than Todd et al. (2024)’s, which
indicates our method can also find more effective set of heads for ICL tasks.

15



Under review as a conference paper at ICLR 2026

B SUPPLEMENT FOR §3.2

B.1 ADDITIONAL TABLE FOR §3.2

In §3.2, we did systematic ablation studies to narrow down the tasks to three main heads from 33
significant heads. The first step of the ablation studies is layer-wise ablation, where we mean-ablate
the significant heads in a subset of layers. We include the experimental results here, which narrow
down to layer 13 and 15 in Table 3.

Layer Accuracy
No intervention 0.87
[0, 31] 0.85
[0,15] 0.83
[13,15] 0.83
{13,15} 0.83
{14,15} 0.69
{13, 14} 0.25
{15} 0.71
{13} 0.27
14 0.03

0,31]\ {13,15}  0.05

Table 3: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama-3-8B-instruct. We first narrow down
to the layers before layer 15, then the range of [13, 15] and finally {13, 15} (in red), which all almost
preserve the clean accuracy of 0.87, while other combinations lead to substantial drops in accuracy,
especially when mean-ablating layers 13 and 15 (in blue).

B.2 ADDITIONAL MODELS FOR §3.2

We do the same ablation experiments for other three models, narrowing down to one layer and three
heads for all of them. For two Llama-3.2 models, we narrow down to layer 14 and heads (14, 1), (14,
2), and (14, 12), the sum of which achieves accuracy 0.60 and 0.70. For Qwen-2.5-7B model, we
narrow down to layer 21 and heads (21, 0), (21, 2), and (21, 5), the sum of which achieves accuracy
0.29. Note that all of accuracies of these three heads are higher than the corresponding accuracies by
Todd et al. (2024). We report the specific accuracies under different ablation setups in Tables 4, 5, 6,
and 7.

Layer Llama-3.2-3B-instruct Accuracy Llama-3.2-3B Accuracy
No intervention 0.50 0.64
[0, 27] 0.62 0.75
{14} 0.60 0.70
Other single layer (max) 0.06 0.05

Table 4: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama-3.2-3B-instruct and Llama-3.2-3B
models. We both narrow down to the layer 14, which achieves significant higher accuracy than any
other single layer.

16



Under review as a conference paper at ICLR 2026

Head Coefficients Llama-3.2-3B-instruct Accuracy Llama-3.2-3B Accuracy
(14,1) 5/5 0.78 0.95
(14,2) 6/4 0.51 0.61
(14,12) 4/4 0.26 0.26
Other single head Optimal 0.03 0.08

Table 5: Intervention accuracies for keeping the selected heads scaled by the corresponding coeffi-
cients and mean-ablating all the other significant heads on Llama-3.2-3B-instruct and Llama-3.2-3B

models. We narrow down them both to the same three heads, which achieves significant higher
accuracy than any other single head in layer 14.

Layer Qwen-2.5-7B Accuracy
No intervention 0.91
[0, 27] 0.34
{21} 0.29
Other single layer (max) 0.03

Table 6: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama-3.2-3B-instruct and Llama-3.2-3B

models. We both narrow down to the layer 14, which achieves significant higher accuracy than any
other single layer.

Head Coefficient Qwen-2.5-7B Accuracy
(21,5) 4 0.29
(21,0) 3 0.18
(21,2) 4 0.15
Other single head  Optimal 0.06

Table 7: Intervention accuracies for keeping the selected heads scaled by the corresponding coeffi-
cients and mean-ablating all the other significant heads on Qwen-2.5-7B. We narrow down to three
heads, which achieves significant higher accuracy than any other single head in layer 21.

17



Under review as a conference paper at ICLR 2026

C SUPPLEMENT FOR §4.1

We perform PCA on the 30 task vectors and find that just six directions can explain 97% of the task
variance on Llama-3-8B-instruct (Figure 6a), and similarly for the three models (Figures 6b, 6¢ and

6d).

Head 1

Head 2

Head 3

g
=)

i

.
[

o
IS

=

<

Cumulative Variance Ratio
o
o

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 1

1 2 3 4 5 6 7 8 910
Number of Principal Components

(a) Llama-3-8B-instruct

Head 2

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 3

g
=)

<
=

.
©

o
IS

Cumulative Variance Ratio
o
o

5

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

1 2 3 4 5 6 7 8 910
Number of Principal Components

(b) Llama-3.2-3B-instruct

Head 1

Head 2

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 3

g
=)

g
=

ot
©

1N
FS

Cumulative Variance Ratio
o
(=]

:

1 2 3 4 5 6 7 8 910
Number of Principal Components

1 2 3 45 6 7 8 910
Number of Principal Components

(c) Llama-3.2-3B

1 2 3 4 5 6 7 8 910
Number of Principal Components

g
=)

o
©

o
IS

Cumulative Variance Ratio
o
o

Number of Principal Components

Figure 6: Explained variance ratio vs. number of PCs for each head across models. The first six PCs
make up most of the explained variance (97%) for Llama-3 models, and the first eight PCs do so for

Qwen-2.5-7B.

Number of Principal Components

(d) Qwen-2.5-7B

18

Head (21, 0) Head (21, 5) Head (21, 2)
123 456 7 8 910 1 2 3 45 6 7 8 910 1 2 3 45 6 7 8 9 10

Number of Principal Components




Under review as a conference paper at ICLR 2026

D SUPPLEMENT FOR §4.2

We first present additional figures for Llama-3-8B-Instruct, followed by results for the other three
models. The main finding is that three heads in each Llama-3.2 model and one head in the Qwen-
2.5 model consistently encode periodic patterns through trigonometric functions. By contrast, the
remaining two heads in Qwen-2.5 do not encode periodicity; instead, their coordinate functions
exhibit distinct behaviors across the intervals [1, 10], [11, 20], and [21, 30]. We conjecture that this
difference arises from tokenization: Qwen encodes numbers digit by digit, leading to discontinuities
across each 10-interval, whereas the Llama family represents every number below 100 as a single
token.

D.1 ADDITIONAL FIGURES FOR §4.2

In §4.2, we found six trigonometric functions that can be linearly fitted by the coordinate functions.
Here we first supplement the plot from which we observe the periodic pattern of the coordinate
functions for the three heads (Figure 7) and then show the fitting functions for three heads (Figure 8).

19



Under review as a conference paper at ICLR 2026

Component 1

Component 2

Component 3

Coordinates
|

© o o »
w o wv o

=

Component 4

Component 5

Component 6

Coordinates

|

o o o©

wv o w
o
N
) §
o
N
i ?
o
N
o {

Task Add-k Index (k)

Component 1

Task Add-k Index (k)
(a) Head (15, 2)

Component 2

Task Add-k Index (k)

Component 3

Coordinates
|

© o o =
1%,] o wv o

=

Component 4

Component 5

Component 6

0.50
0.25
0.00

Coordinates

-0.25

=
=
L

20
Task Add-k Index (k)

Component 1

20
Task Add-k Index (k)
(b) Head (15, 1)

Component 2

20
Task Add-k Index (k)

Component 3

0.5

0.0

Coordinates

f/
5
3

|
I
U

Component 4

Component 5

Component 6

Coordinates
© o
o wv
o
° %
o
o <
o
) ?

2
Task Add-k Index (k)

Figure 7: Coordinates of three heads’ vectors (inner products with PCs) for the first six PCs across
different add-k tasks on Llama-3-8B-instruct. Periodic patterns are visible in the first few PCs of

each head.

2
Task Add-k Index (k)
(c) Head (13, 6)

20

2
Task Add-k Index (k)




Under review as a conference paper at ICLR 2026

Modulo 2 Modulo 5 Modulo 10(cos)

Amplitude

Modulo 10(sin)

Amplitude

0 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)
fffff Targeted periodic function —— Constructed coordinate function

(a) Head (15, 2)
Modulo 2 Modulo 5 Modulo 10(cos)

Amplitude

Amplitude

20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)

fffff Targeted periodic function —— Constructed coordinate function

(b) Head (15, 1)
Modulo 2 Modulo 5 Modulo 10(cos)

Amplitude

0 20
Modulo 10(sin)

Amplitude

0 0 20 0 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)

fffff Targeted periodic function —— Constructed coordinate function

(c) Head (13, 6)

Figure 8: Coordinate functions of three heads can fit six trigonometric functions with periods
2,5,10, 10, 25, and 50 on Llama-3-8B-instruct.

21



Under review as a conference paper at ICLR 2026

D.2 LLAMA-3.2-3B-INSTRUCT FOR §4.2

The Llama family of models show similar results. We show results for Llama-3.2-3B-instruct here

and omit Llama-3.2-3B.

Component 1

Component 2

Component 3

Coordinates
»I—- o = N

3

Component 4

Component 5

Component 6

Coordinates
o =
o
O ;
o
o ?
o
o {

2
Task Add-k Index (k)

Component 1

2
Task Add-k Index (k)
(a) Head (14, 1)

Component 2

2
Task Add-k Index (k)

Component 3

0.5

0.0

Coordinates

3
7

-0.5

3

Component 4

Component 5

Component 6

0.5

0.0

Coordinates

H
z

-0.5

5

o

20
Task Add-k Index (k)

Component 1

20
Task Add-k Index (k)

(b) Head (14, 2)

o

Component 2

o

20
Task Add-k Index (k)

Component 3

Coordinates
o =

£
i

Component 4

Component 5

Component 6

0.5

0.0

Coordinates

-0.5

o
N
o
o
N
o
o
N
o

Task Add-k Index (k)

Task Add-k Index (k)
(c) Head (14, 12)

Task Add-k Index (k)

Figure 9: Coordinates of three heads’ vectors (inner products with PCs) for the first six PCs across
different add-k£ tasks on Llama-3.2-3B-instruct. The first six PCs reveal clear periodic patterns.

22



Under review as a conference paper at ICLR 2026

Modulo 2 Modulo 5 Modulo 10(cos)

Amplitude
o r

|
-

o

20

iy

Amplitude
o

0 20 0 20 0 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)

fffff Targeted periodic function —— Constructed coordinate function

(a) Head (14, 1)
Modulo 2 Modulo 5 Modulo 10(cos)

Amplitude

Amplitude

0 20 0 20 0 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)

fffff Targeted periodic function —— Constructed coordinate function

(b) Head (14, 2)
Modulo 2 Modulo 5 Modulo 10(cos)

Amplitude

Modulo 50

Amplitude

0 20 0 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)

fffff Targeted periodic function —— Constructed coordinate function

(c) Head (14, 12)

Figure 10: Coordinate functions of three heads can fit six trigonometric functions with periods
2,5,10, 10, 25, and 50 on Llama-3.2-3B-instruct.

23



Under review as a conference paper at ICLR 2026

D.3 QWEN-2.5-7B FOR §4.2

One head (21, 0) shows similar periodic patterns while the other two heads do not encode periodicity;
instead, their coordinate functions exhibit distinct behaviors across the intervals [1,10], [11, 20], and
[21, 30]. We conjecture that this difference arises from tokenization: Qwen encodes numbers digit by
digit, leading to discontinuities across each 10-interval, whereas the Llama family represents every
number below 100 as a single token.

24



Under review as a conference paper at ICLR 2026

Component 1

Component 2

Component 3

2
Task Add-k Index (k)

2
Task Add-k Index (k)
(c) Head (21, 5)

310
3z
©
£
el
s 0
(e}
o
Component 4 Component 5 Component 6
10
]
w5
£
e
s O
o
(&)
-5
0 20 0 20 0 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)
(a) Head (21, 0)
Component 1 Component 2 Component 3
10
%]
g
©
£
el
5 0
(o]
(&)
Component 4 Component 5 Component 6
wn
35
©
C
5
20
o
0 20 0 20 0 20
Task Add-k Index (k) Task Add-k Index (k) Task Add-k Index (k)
(b) Head (21, 2)
Component 1 Component 2 Component 3
$ 10
®
C
5
S0
O
Component 4 Component 5 Component 6
§ 5
©
c
T o
o
o
o
-5
0 0 0 0 0 0

2
Task Add-k Index (k)

Figure 11: Coordinates of three heads’ vectors (inner products with PCs) for the first six PCs across
different add-k tasks on Qwen-2.5-7B. Head (21, 0) reveals periodic patterns, whereas Heads (21, 2)
and (21, 5) show discontinuous behaviors across the intervals [1, 10], [11, 20], and [21, 30].

25



Under review as a conference paper at ICLR 2026

Modulo 5(cos) Modulo 5(sin)

Modulo 2(cos)

Modulo 25(cos)

Modulo 10(sin)

Modulo 10(cos)

apnyljdwy

apnyljdwy

Task Add-k Index (k) Task Add-k Index (k)

Task Add-k Index (k)

Constructed coordinate function

----- Targeted periodic function

0)

s

(a) Head (21

Modulo 5(cos)

Modulo 2(cos)

Modulo 5(sin)

Modulo 25(cos)

Modulo 10(sin)

Modulo 10(cos)

apnydwy

|
apnydwy

Task Add-k Index (k) Task Add-k Index (k)

Task Add-k Index (k)

Constructed coordinate function

----- Targeted periodic function

2)
(cos)

(b) Head (21,

Modulo 5(sin)

Modulo 5

Modulo 2(cos)

Modulo 25(cos)

Modulo 10(sin)

Modulo 10(cos)

apnydwy

|
apnydwy

Task Add-k Index (k)

Task Add-k Index (k)

-k Index (k)

Task Add

Constructed coordinate function

----- Targeted periodic function

5)

s

(c) Head (21

Figure 12: Six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 fitted by coordinate

functions of three heads on Qwen-2.5-7B. Only head (21, 0) fits the periodic functions well, while

heads (21, 2) and (21, 5) do not, consistent with their non-periodic coordinate behaviors.

26



Under review as a conference paper at ICLR 2026

E SUPPLEMENT FOR §4.3

Recall that the three hypotheses in §4.3 are as follows:

(i) the feature direction corresponding to period two, which we call the “parity direction”,
encodes the parity of k in the add-k task;
(ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit
subspace”, encodes the unit digit of &;
(iii) the subspace spanned by the directions with periods 25, 50, which we call the “magnitude
subspace”, encodes the coarse magnitude (i.e., the tens digit) of k.

We first show the experimental results validating hypothesis (ii) for head 1 (Figure 13), and then
show analogous results for hypotheses (i) and (iii). Projecting out of the parity direction doesn’t lead
to high errors for the parity and the final answer across all tasks, which might be because parity is
relatively easy to obtain (e.g., random choice leads to 0.5 accuracy).

Projecting onto unit subspace Projecting out of unit subspace
1.0 1.0,
0.8 0.8
2 2
S0.6 S0.6
£0.4 £0.4
L w
0.2 0.2
0.0 0.0 —
KRN RN S O KRNI S O
Task add-k Index (k) Task add-k Index (k)

I Unit-Digit Error B Answer Error

Figure 13: The error rates for the unit digit and the final answer across tasks when projecting head 1’s
vectors onto (left) and out of (right) the “unit subspace”. Projecting onto the unit subspace results in
a low unit-digit error rate even when the final-answer error remains high, while projecting out leads
to high unit-digit error rates that almost fully account for the final-answer errors. This confirms that
the unit subspace specifically encodes the unit-digit signal.

27



Under review as a conference paper at ICLR 2026

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

K | |
1472 B Parity Error | ] Parity Error
1473 I Answer Error Answer Error

1474 '
1475 :
1476
1477 '
1478 : I I
1479 ] 1] I l -‘ J01] I | I 1
% 9N 0PN D

1480 N OA D NDONDP DDA D
1481 Task add-k Index (k) Task add-k Index (k)

1482 (a) onto parity direction (b) out of parity direction
1483
1484

1485 ’ Emm Magnitude Error
1486 . mmm Answer Error ) II|I

1487

1488 . Im Magnitude Error
B Answer Error

1489 .

1490

B, mi

1492

. x’b@’\q\,\:b\,\,@q}’b‘o'\% ' x’b@’\q\,\:b\jo\;\@q}’b‘o'\ca
Task add-k Index (k) Task add-k Index (k)

1494

1495 (c) onto magnitude subspace (d) out of magnitude subspace

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Iy

=)
-
=}

<]

©
e
©

o
o

Error Rate
o
[}

o
B

Error Rate
o
D

o
N)
I
N

o
o
o
o

\7

-

o
=
=3

o

0o
o
&

o

o
o
o

o
~
o
I

Error Rate
Error Rate

o
N)
o
N

o
o
o
o

Figure 14: Validation of hypotheses (i) and (iii) for head 1. Each row shows results for the parity and
magnitude subspaces (left: projection onto; right: projection out of). The unit-digit hypothesis (ii) is
omitted here since it is already shown in Figure 13.

28



Under review as a conference paper at ICLR 2026

1512
1513
1514
1515
1516
1517
1518
1519
1520 1.0 B Parity Error
1521 0.8 mmm  Answer Error 0.8
1522 o o 06
1523 £0.6 & 77| mmm Parity Error
1524 S S B Answer Error
1525 u 04 i
1526 0.2 0.2
1527 oo MERENEH e NN e ey 0.0 l [ | I [ 11 I
1528 N 0A D NDON DDA D '5""\‘”\?’0»'»»’»'17”1?”1:\'19
1529 Task add-k Index (k) Task add-k Index (k)
1530 (a) Head 2 onto parity direction (b) Head 2 out of parity direction
1531
1532
1.0 e 1.0
1533 BN Unit-Digit Error
1534 0.8 mm Answer Error 0.8
1535 I o
1536 20.6 206
1537 Lo4 Eo4
1538 0.2 0.2 I Unit-Digit Error
1539 I B Answer Error
1540 00 00 AENENENENENEEEN
. N 9N NDON DO D N 9N NDON DO D
Task add-k Index (k) Task add-k Index (k)
1542
1543 (c) Head 2 onto unit subspace (d) Head 2 out of unit subspace
1544
1545 1.0 - 1.0
1546 B Magnitude Error
1547 0.8 mmE Answer Error 0.8 IIII
[] [V]
1548 2 8
20.6 & 0.6 B Magnitude Error
1549 5 s mm Answer Error
1550  &04 504
1551 0.2 02
1552 III
1553 00 5 6 A 020NN YDA O 0 5 6 A 0 3 a5 N WD > DD D
«,«,«,'\,'\,'1, NN NN I QYA ARt
1554 Task add-k Index (k) Task add-k Index (k)
1555
1556 (e) Head 2 onto magnitude subspace (f) Head 2 out of magnitude subspace
eer Figure 15: Validation of hypotheses (i)—(iii) for head 2. Each row shows the projection effects for the
1958 parity, unit, and magnitude subspaces respectively.
1559
1560
1561
1562
1563
1564
1565

29



Under review as a conference paper at ICLR 2026

1566
1567
1568
1569
1570
1571
1572
1573
1.0
o o we= Parity Error = Parity Error
1575 0.8 == Answer Error 0.8 B Answer Error
1576 o )
1577 206 gose
o7 04 £0.4
1579 " =
1580 0.2 0.2
1582 ’ ‘\"J")’\‘b»‘\r&,{’)\'@q"\”)")’\% ’ ‘\’5%’\%,\‘\/0,\"’).\"\,\9%\/ ")’\Q
1583 Task add-k Index (k) Task add-k Index (k)
1584 (a) Head 3 onto parity direction (b) Head 3 out of parity direction
1585
1586
1587 1.0 B UnitDigi 1.0
nit-Digit Error
1588 0.8 s Answer Error 0.8
1589 9 o I I
1590 206 206 m=s Unit-Digit Error
1591 ,_%0.4 ,_%0'4 s Answer Error
1592 0.2
1593 0-2 I I I ' I
1594 0.0 ' 0.0
- x’b@’\q\}@@\;\@q}%%«ca YDA NP D
Task add-k Index (k) Task add-k Index (k)
1596
1597 (c) Head 3 onto unit subspace (d) Head 3 out of unit subspace
1598
1599 1.0 1.0
1600 B Magnitude Error ’ BN Magnitude Error
mm Answer Error mmm Answer Error
1601 0.8 0.8
[] []
1602 Zo.6 Zo.6
1603 5 5
1604 i 04 S04
1605 0.2 0.2
1606 I
0.0 0.0
1607 Y9N NDON DD PN D «,fbﬁ«q\,@@,\,«,@,ﬁ,%@«ca
1608 Task add-k Index (k) Task add-k Index (k)
1609
e) Head 3 onto magnitude subspace ead 3 out of magnitude subspace
1610 (e) Head 3 ont tude sub (f) Head 3 out of tude sub
1611

Figure 16: Validation of hypotheses (i)—(iii) for head 3. The evidence is slightly weaker than for

1612 heads 1 and 2, consistent with head 3’s lower intervention accuracy (Table 1).
1613

1614
1615
1616
1617
1618
1619

30



Under review as a conference paper at ICLR 2026

F SUPPLEMENT FOR §5.2

We show the strength and direction of the signals extracted from each individual token through a
random mixed-k ICL prompt as an example below. Since we find out the Llama family of models
behave similarly in the previous sections, we here just show results for Llama-3-8B-instruct and
Qwen-2.5-7B as examples.

F.1 ADDITIONAL FIGURES FOR §5.2

All three heads for Llama-3-8B-instruct behave similarly in the signal strengths and directions. They
all peak at the y tokens and extract signal corresponding to y; — ;.

31



Under review as a conference paper at ICLR 2026

Projection norm. ‘ .:l B - | _ | -- :;3?

y0.33
“0.00

Attention score
((/0‘9"‘) IO KO TNEETAEAD 7> Ky 7D KD

Token-wise strings in prompt

Examples in mixed-k ICL prompt

"3->9"(+6) ] .1‘38
"15->17"(+2)- [
"62->78"(+16) L. | | | ]
"20->24"(+4)- - [ |
ussco i NN IR e -_091

~e o K B ’

Addition task signal

(a) Head (15, 2)

profecton nor IR U] NN AT

py0.31
“0.00

Attention score
PP A KD ALK TADEAD TP K TP KD T

Token-wise strings in prompt

Examples in mixed-k ICL prompt
"3->9"(+6)

1.16
"15->17"(+2)- . N Ol |
"62->78"(+16)

20->24"(+4) [ [ | |
"11->30"(+19) [ ' N N .,103
K B

Addition task signal

(b) Head (15, 1)

Projection norm...:. | .:. | _ | - | . :;3?

p0.52

%0.00
S AOEL AL HGARDEAR TP T KD 7

Attention score

Token-wise strings in prompt

Examples in mixed-k ICL prompt

1.38
"3->9"(+6)
"15->17"(+2)- D . . .
"62->78"(+16) | |
"20->24"(+4) | | | |
"11->30"(+19)..- | .
«,ft‘o‘s‘fb““““‘se sca““““,,)‘o -0.54

Addition task signal

(c) Head (13, 6)

Figure 17: Llama-3-8B-instruct. For each head, the top panel shows the strength of task-signal
contribution of each previous token ¢ to the final token, ||c; W}, Op V3 2¢||. Decomposing it into two
parts: (1) the norm of the extracted information ||W};, OV}, 2:|| and (2) the attention score from the
final token a, both consistently peak at the tokens ¢ = y; (in bold). The bottom panel shows the
inner product between the projected signal from each y; and the head vector hj, (normalized to unit
norm), which peaks at k = y; — x;, indicating that each head extracts y; — z; from its corresponding

demonstration x; — y;.
32



Under review as a conference paper at ICLR 2026

F.2 QWEN-2.5-7B FOR §5.2
Notice that Qwen-2.5-7B has a different tokenizer from the Llama models: it tokenizes numbers

digit by digit. The three heads behave qualitatively similarly—peaking at y tokens and extracting
y; — v;—though sometimes with an offset of 10 or 20.

33



Under review as a conference paper at ICLR 2026

Projectionnorm-‘-.‘_‘ .-.E. .-. :(1)50;4

w0.44
£0.00

Attention score
Q’O(’)\"\/f/‘\/u’?")V{//")Q%’L"Vﬂ")o%bfl")e%@bﬁb%%'\/’\;/

Token-wise strings in prompt

Examples in mixed-k ICL prompt

"11->14" (+3)- BN | B B .14.86
"34->50" (+16) B B
"22->30" (+8)1 . | | . . .

"6->30" (+24)-

se>68'+12. . B W ®m " -_1227
NS ® ~V o > P '
Addition task signal

(a) Head (21, 0)

Projection norm--l | -:. 1 - | l E.l | I-- :;6125

n0.34
%0.00

Attention score
%oe\,xﬁxwmvﬁéo%mmﬁ'bo%bﬁ'boxmb;,e‘mx«,4

Token-wise strings in prompt

Examples in mixed-k ICL prompt

"11->14" (+3)- . I--.ﬂ -.13.16

"34->50" (+16)]

22->30"(+8) . W []

"6->30" (+24)-
"56->68" (+12) . | . SN R D . 5 .i] R -.11 58
~ % ® N N s »

Addition task signal

(b) Head (21, 2)

Projection norm-. : -l ‘ - i . ‘ - ‘ . E. _ . -- :(1)3023

p0.32
%0.00

Attention score
Q/o%\,ﬂxbt%’bb‘f/‘oo%’b’bﬂéo%bﬂ’bo%‘)bﬂb%%»’\,«,

Token-wise strings in prompt

Examples in mixed-k ICL prompt

"11->14" (+3)- - .12.86

"34->50" (+16) I |
"22->30" (+8) [ B B

"6->30" (+24)- |:|
se>er 12 NN WD T N
5~ ® R © > B

Addition task signal

(c) Head (21, 5)

Figure 18: Qwen-2.5-7B. For each head, the top panel shows ||ca; W}, O V3 2¢||, decomposed into
two parts: (1) the norm of extracted information ||W;, O, V},2.||, and (2) the attention score from
the final token a;. Both consistently peak at the tokens ¢t = y; (in bold). The bottom panel shows

the inner products between the projected signals from y; and head vectors Ry, which peak near

k = y; — x; (sometimes offset by 10 or 20), consistent with Qwen’s digit-wise tokenization.

34



Under review as a conference paper at ICLR 2026

G SUPPLEMENT FOR §5.3

We report the concrete numeric variables computed in §5.3 for Llama-3-8B-instruct, Llama-3.2-3B,
and Qwen-2.5-7B. The self-correction mechanism significantly exists in Llama family of models
while partially exists in Qwen model.

G.1 ADDITIONAL TABLE FOR §5.3

The signals from any two demonstrations are mostly negatively correlated for all three heads,
suggesting a self-correction mechanism on Llama-3-8B-instruct.

Stat Neg  Pos Stat Neg Pos Stat Neg Pos
Avg -2.01 0.27 Avg -195 0.05 Avg -0.76 0.28
Min -1.40 0.07 Min -1.65 0.00 Min -0.15 0.00
Max -2.34 0.54 Max -2.17 0.20 Max -1.68 1.03
(a) Head (15, 2) (b) Head (15, 1) (c) Head (13, 6)

Table 8: Llama-3-8B-instruct: Statistics (min, max, average) of the absolute values of negative
and positive correlation sums over the 30 tasks for three heads. The negative correlation sum is
significantly higher for all heads, indicating that signals from any two demonstrations are mostly
negatively correlated — a hallmark of the self-correction mechanism.

G.2 LLAMA-3.2-3B FOR §5.3

The signals from any two demonstrations are mostly negatively correlated for the two stronger heads,
consistent with the self-correction mechanism observed in Llama-3-8B-instruct.

Stat  Neg  Pos Stat Neg  Pos Stat Neg  Pos
Avg -2.12 023 Avg -2.07 0.05 Avg 027 075
Min -1.96 0.00 Min -1.89 0.00 Min 0.00 0.00
Max -2.41 0.53 Max -2.24 022 Max -0.90 0.75
(a) Head (14, 1) (b) Head (14, 2) (c) Head (14, 12)

Table 9: Llama-3.2-3B: Statistics (min, max, average) of the absolute values of negative and positive
correlation sums over the 30 tasks for three heads. Heads (14, 1) and (14, 2) show clear negative
correlation dominance, while head (14, 12) does not — consistent with its weaker task accuracy
(Table 5).

G.3 QWEN-2.5-7B FOR §5.3
For Qwen-2.5-7B, the correlation pattern varies by head. The head encoding periodic patterns

(21, 0) still shows strong negative correlations, while the others exhibit weaker or even positive
correlations—indicating that the self-correction mechanism only partially exists.

35



Under review as a conference paper at ICLR 2026

Stat Neg Pos Stat Neg Pos Stat Neg Pos
Avg -1.84 0.08 Avg -0.64 0.50 Avg -037 2.62
Min -1.44 0.00 Min -1.44 0.03 Min 0.00 0.00
Max -2.15 0.67 Max -2.19 1.57 Max -1.85 5.54
(a) Head (21, 0) (b) Head (21, 5) (c) Head (21, 2)

Table 10: Qwen-2.5-7B: Statistics (min, max, average) of the absolute values of negative and positive
correlation sums over the 30 tasks for three heads. Head (21, 0) shows clear negative correlations,
while Heads (21, 5) and (21, 2) show mixed or positive correlations, suggesting that self-correction
partially exists in Qwen-2.5-7B.

36



	Introduction
	Preliminaries
	Model and Task
	Activation Patching and Function Vectors

	Identifying Three Aggregator Heads
	Identifying Significant Heads via Sparse Optimization
	Further Refinement via Ablations

	Characterizing the Aggregator Subspace
	Localizing to Six-dimensional Subspace
	Identifying Feature Directions Encoding Periodic Patterns
	Decomposing to Subspaces Encoding Subsignals

	Signal Extractors of ICL Demonstrations
	Mathematical Observation: Tracing Subspace back to Previous Tokens
	Signal Extractor for each Demonstration
	Signal Correlation among Demonstrations

	Related Work
	Discussion
	Supplement for §3.1
	Additional figure for §3.1
	Additional models for §3.1

	Supplement for §3.2
	Additional table for §3.2
	Additional models for §3.2

	Supplement for §4.1
	Supplement for §4.2
	Additional figures for §4.2
	Llama-3.2-3B-instruct for §4.2
	Qwen-2.5-7B for §4.2

	Supplement for §4.3
	Supplement for §5.2
	Additional figures for §5.2
	Qwen-2.5-7B for §5.2

	Supplement for §5.3
	Additional table for §5.3
	Llama-3.2-3B for §5.3
	Qwen-2.5-7B for §5.3


