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ABSTRACT

To perform few-shot learning, language models extract signals from a few input-
label pairs, aggregate these into a learned prediction rule, and apply this rule to
new inputs. How is this implemented in the forward pass of modern transformer
models? To explore this question, we study a structured family of few-shot learning
tasks for which the true prediction rule is to add an integer k to the input. We
introduce a novel optimization method that localizes the model’s few-shot ability
to only a few attention heads. We then perform an in-depth analysis of individual
heads, via dimensionality reduction and decomposition. As an example, on Llama3-
8B-instruct, we reduce its mechanism on our tasks to just three attention heads
with six-dimensional subspaces, where four dimensions track the unit digit with
trigonometric functions at periods 2, 5, and 10; and two dimensions track magnitude
with low-frequency components. To more deeply understand the mechanism behind
this, we also derive a mathematical identity relating “aggregation” and “extraction”
subspaces for attention heads, allowing us to track the flow of information from
individual examples to a final aggregated concepts. Using this, we identify a
self-correction mechanism where mistakes learned from earlier demonstrations
are suppressed by later demonstrations. Our results demonstrate how tracking
low-dimensional subspaces of localized heads across a forward pass can provide
insight into fine-grained computational structures in language models.

1 INTRODUCTION

Large language models (LLMs) exhibit in-context learning (ICL) abilities; for instance, they can
few-shot learn new tasks from a small number of demonstrations in the prompt. To understand this
ability, past works have constructed detailed models of ICL for small synthetic language models (Garg
et al., 2022; Akyürek et al., 2023; von Oswald et al., 2023) as well as coarser-grained analyses of
large pretrained models (Olsson et al., 2022; Hendel et al., 2023; Todd et al., 2024). However, little is
known about the fine-grained computational structure of ICL for large models.

ICL extracts task information from demonstrations and applies the aggregated information to input
queries. Previous work (Todd et al., 2024) constructed a vector (i.e., the “function” vector) from
demonstrations that encode the task information—for instance, adding it to the residual stream on
zero-shot inputs recovers ICL behavior. However, two questions remain elusive: (1) How precisely
do function vectors encode task information? (2) How do models aggregate information from ICL
examples to form such function vectors?

To address these questions, we perform a case study for few-shot learning of arithmetic (i.e., learning
to add a constant k to the input). This family of tasks has the advantage of providing a large number
of tasks (different integers k) that all share the same input domain, which is important to rule out
domain-based shortcuts when analyzing ICL mechanisms (§2.1). Arithmetic also has the advantage
of being well-studied in other (non-in-context) settings (Zhou et al., 2024; Kantamneni & Tegmark,
2025), allowing us to situate our results with other known mechanisms. Finally, most LLMs perform
this task reliably (e.g. 87% accuracy for Llama3 and 90% for Qwen2.5).

To study this setting, we first introduce a novel optimization method for localizing few-shot ability to a
small number of attention heads. Our approach is inspired by previous work on function vectors (Todd
et al., 2024), which mimic ICL when they are patched into the residual stream (§2.2). While Todd
et al. (2024) selected heads based on their individual effect on ICL performance, we search for
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Prompt: “3 → 15#7 → 19#11 → 23#15 → 27#28 → 30#9 →”

(0,0)

(13, 6)

(15, 1)
(15, 2)

(31, 31)

Finding 4: task 
signals flow from 
output tokens to 
final token via a 
self-correction 

mechanism

Attention heads’ computation at the last token

(layer_idx, head_idx) previous tokens last token

Finding 1: out of 1024 attention heads in Llama-3-8b, only 3 are important for add-k ICL.

…
…

…

Task: add-12 (e.g., 3+12=15)

128-dim
+12
6-dim

Finding 2: projecting head 
activation space from 128-dim to 
6-dim preserves task information.

“+12”

Finding 3: 6-dim subspace factors 
into 4-dim capturing the unit digit 
and 2-dim capturing the ten-digit.

+10
(ten-digit)

+2
(unit-digit)

6-dim

2-dim 4-dim

Figure 1: Key findings of our methods in the specific case of Llama3-8b (illustrated using an
example add-k prompt): (1) out of 1024 attention heads, only three are important for add-k ICL
(§4); (2) each head encodes the task information k in a six-dimensional subspace (§4.1); (3) the
six-dimensional subspace further factors into four dimensions capturing the unit digit of k (encoding
periodic functions at periods 2,5, and 10) and two dimensions capturing its ten digit (encoding higher
frequency functions) (§4.3); and (4) task information flows from output tokens to final token via a
self-correction mechanism (§5).

a continuous set of coefficients that produces a sparse weighted combination of heads, where the
combination maximizes ICL performance (§3.1). Our method succesfully finds a small number of
heads that recover most of the ICL performance (§3.2); for example, Llama3-8B-instruct achieves
79% accuracy using function vectors from just three heads (90% of the original ICL accuracy).

We next perform a detailed analysis of these heads, through dimensionality reduction and decomposi-
tion. We find that the task information from each head can be reduced to a low-dimensional subspace
typically consisting of trigonometric functions. For example, in each of the three important heads in
Llama3-8B-instruct, we get a 6-dimensional subspace, where 4 dimensions are periodic functions
with periods 2, 5, and 10 (tracking the units digit) and 2 dimensions are low-frequency functions
(tracking the tens digit) (§4). This interestingly aligns with recent findings in non-in-context settings
where addition is also encoded by trigonometric (Zhou et al., 2024) or helical functions (Kantamneni
& Tegmark, 2025), suggesting a deeper relation between non-ICL and ICL machinery.

Finally, we further study the flow of information across tokens, by deriving a general mathemat-
ical relation between “extractor” and “aggregator” subspaces, building on the second-order logit
lens (Gandelsman et al., 2025). This lets us study the task-related information that heads extract from
each token. For example, in Llama3-8B-instruct we find that task information is mostly extracted
from output tokens (§5.2). Moreover, we find a self-correction mechanism: if the signal extracted
from one token has an error, signals from later tokens often write in the opposite direction of the error
(§5.3). This suggests that ICL goes beyond simple averaging of inputs and has stateful dynamics.

In summary, we found that task-specific information in ICL can be localized to a small number of
attention heads and low-dimensional subspaces with structured patterns. We also found that models
employ a self-correction mechanism when the task information flows from the “extractor” subspaces
to the “aggregator” subspaces. Our findings show how even in large models, ICL mechanisms can be
localized to specialized activation subspaces from a small number of heads that extract, represent,
and aggregate information in interpretable ways.
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Our key contributions are thus as follows: (1) we introduce a novel optimization method to identify
relevant attention heads for ICL; (2) we derive a precise mathematical relation between signals from
earlier tokens and the output token; and (3) we perform a focused analysis of ICL addition and are
able to reverse-engineer rich latent structures and sophisticated computational strategies in LLMs.

2 PRELIMINARIES

2.1 MODEL AND TASK

We begin by specifying the model and the task studied in this paper.

Model. We focus on Llama3-8B-instruct in the main body, which has 32 layers and 32 attention
heads per layer and a residual dimension of 4096. We denote each head as a tuple (layer index,
head index), where both indices range from 0 to 31. To make our analysis broader in model size,
training type, and model family, we also experiment on Llama-3.2-3B-instruct, Llama-3.2-3B, and
Qwen2.5-7B and report the results in appendix. The results are consistent across Llama family and
directionally similar for the Qwen model.

Task. We study a structured family of ICL tasks that we call add-k. For a constant k, the add-k task
is to add k to a given input integer x to predict y = x+ k. In an n-shot ICL prompt, the model is
given n demonstrations of the form “xi → yi” with yi = xi + k, concatenated using the separator
“#”, followed by a query “xq →” (see Figure 1 for an example). A key advantage of this family of
tasks is that ICL prompts for different tasks only differ in k (i.e. yi − xi) but not in the input domain,
enabling us to isolate task information from input content so as to dissect the ICL mechanism at a
finer granularity.

Our choice contrasts with prior work, which considers tasks such as product-company (“iPhone
5→apple”) or celebrity->career (“Taylor Swift→singer”) (Todd et al., 2024). In such cases, the input
domain itself leaks information about the task: from the query alone, one could reasonably guess that
‘apple’ or ‘singer’ are likely outputs (Min et al., 2022). This makes it difficult to distinguish whether
the success stems from extracting the task rule or from leveraging domain-specific associations. For
add-k, the query xq alone provides no information about the hidden constant k, so the model must
infer k from the demonstrations, which cleanly dissect the key components of ICL mechanism.

We construct data for the task by varying x ∈ [1, 100] and k ∈ [1, 30] (thus y ∈ [2, 130]) since
Llama-3 models are empirically capable of solving the addition task in this range. We consider the
following three types of prompts:
1. five-shot ICL prompt, where all five demonstrations satisfy yi = xi + k for a fixed k ∈ [1, 30]. We

also call this add-k ICL.
2. mixed-k ICL prompt, where the demonstrations are yi = xi + ki for possibly different ki values.
3. zero-shot prompt, where there are no demonstrations: the prompt is “xq →” for some xq .

We mostly study five-shot ICL prompts as examples of our ICL tasks, and use them to generate
function vectors (§2.2). We also examine the information extracted from demonstrations in mixed-k
ICL prompts, which is a varied version of five-shot ICL prompts with mistaken demonstrations, in
§5.2. We use zero-shot prompts to evaluate the effectiveness of heads and function vectors (§2.2).

2.2 ACTIVATION PATCHING AND FUNCTION VECTORS

Next, we briefly review activation patching, a common interpretability technique that will be used
throughout the paper, and the function vector, a construction that we will use to identify important
heads for our ICL tasks.

Activation patching. Activation patching is performed by taking the activations of a model compo-
nent when the model is run on one prompt, then patching in these activations when the model is run
on a different prompt. Patching can either replace the model’s base activations or add to them; we
will primarily consider the latter.

Specifically, if zl is the original value of the residual stream at layer l at the final token position
“→”, we patch in the replacement zl + v, where v is constructed from activations on a different input
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4096-dim space

Add-k
6-dim subspace (add-k)

4-dim subspace (unit-digit)

2-dim subspace (ten-digit)
head 1

128-dim activation spacehead 1
128-dim activation space

Sec 
3.1

1024 attention heads 33 significant heads
3 main heads
30 mean-ablated heads

Sec 
3.2

Sec 4.2 Sec 4.1

Figure 2: The chain of localization in §3 and §4. We first identify 33 significant attention heads
(out of 1024) via a global optimization method (§3.1), then narrow down to 3 main heads while
mean-ablating the remaining 30 (§3.2). We next study the structure of the representation of each main
head by localizing it to a six-dimensional subspace (§4.1), and decompose it into a four-dimensional
subspace encoding the unit digit and a two-dimensional subspace encoding the tens digit (§4.3).

prompt. We choose the layer l at one third of the network’s depth and construct v from “function
vector” heads, following Todd et al. (2024), as described next.

Function vectors. Function vectors vk are vectors constructed from the outputs of selected attention
heads, designed so that adding vk to the residual stream of a zero-shot prompt approximates the effect
of the five-shot add-k task. For example, vk might be the average output of one or more attention
heads across a set of five-shot add-k examples. We define the intervention accuracy of vk as the
average accuracy obtained on zero-shot prompts when vk is added to the residual stream across all
tasks k. Due to the independency between k and input queries, this metric captures how effectively vk
encodes task-specific information about k. For comparison, we define clean accuracy as the accuracy
on five-shot prompts without any intervention, also averaged across all tasks k.

In more detail, consider an attention head h: let h(p) denote the output of head h on prompt p at the
last token position, and define hk as the average of h(p) across all five-shot add-k prompts.1 Todd
et al. (2024) identified a subset H of attention heads (for a different set of tasks) such that the vector
vk =

∑
h∈H hk has high intervention accuracy—that is, adding it to the residual stream of zero-shot

prompts effectively recovers few-shot task performance.

Building on this framework, we consider multiple ways to construct vk: (1) the task-specific mean hk

over the add-k task (as described above); (2) the overall mean h̄ (i.e., average across all k), which
removes task-specific information about k; or (3) the specific value h(p) on an individual prompt p.
Throughout the paper, we call h̄ the mean-ablation of head h and call hk the head vector of h
with respect to k. Beyond the three choices above, we sometimes project a head’s output onto a
lower-dimensional subspace or scale it by a coefficient. Unlike Todd et al. (2024), we recover a
different set of heads through solving a novel global optimization problem (§3.1) and systematic
ablation studies (§3.2), which achieves higher performance (Figure 3).

3 IDENTIFYING THREE AGGREGATOR HEADS

To understand the mechanism behind the add-k ICL task, we first need to find out what model
components are responsible for performing it. In this section, we find that three heads do most

1Similar to Todd et al. (2024), we approximate this average using 100 randomly generated five-shot add-k
prompts, where each prompt contains random demonstration inputs xi and the final query input xq is chosen
exactly once from each integer in [1, 100].
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of the work for add-k. We find these heads by first solving an optimization problem to identify
33 significant heads out of 1024 (§3.1), and then further narrowing down to three main heads via
systematic ablations (§3.2). This process is illustrated in the first row of Figure 2.

3.1 IDENTIFYING SIGNIFICANT HEADS VIA SPARSE OPTIMIZATION

We will search for a set of heads that store the information for the add-k task, in the sense that their
output activations yield good function vectors for add-k (§2.2).

Formulating the sparse optimization. More formally, define vk(c) =
∑

h ch · hk, the sum of head
outputs weighted by c, where h goes over all 1024 heads in the model. (Recall that hk is the average
output of head h averaged across a large dataset of five-shot add-k prompts.) We will search for a
sparse coefficient vector c ∈ [0, 1]1024 such that adding vk(c) to the residual stream of a zero-shot
prompt achieves high accuracy on the add-k task.

Let ℓ(xq, yq; v) be the cross-entropy loss between yq and the model output when intervening the
vector v onto the input “xq →”(i.e. replacing zl with zl + v in the forward pass on “xq →”, where zl
is the layer-l residual stream at the last token). We optimize c with respect to the loss

L(c) = Ek∈[30]Exq∈[100][ℓ(xq, xq + k; vk(c))] + λ∥c∥1, (1)

where the regularization term with weight λ promotes sparsity.

Training details. We randomly select 25 add-k tasks of the total 30 tasks for training and in-
distribution testing, and use the remaining five tasks only for out-of-distribution testing. For each task
add-k, we generate 100 zero-shot prompts “xq →”, where xq ranges over all integers from [1, 100]
and the target output is xq+k, yielding one data point for each (prompt, task) pair. We randomly split
the data points of the 25 tasks into training, validation, and test sets in proportions 0.7, 0.15, and 0.15,
respectively. We use AdamW with learning rate 0.01 and batch size 128. We set the regularization
rate λ as 0.05, which promotes sparsity while incurring little loss in accuracy. During training, we
clip the coefficients c back to [0, 1] if they go out of range after each gradient step.

Results. We get coefficients that achieves high intervention accuracy. In particular, at the final epoch,
the average accuracies of intervening on test data for the 25 tasks and the five tasks (0.83 and 0.87)
are both close to the average accuracies of doing no intervention (0.89 and 0.92). To identify the
important heads for the tasks, we plot the values of the coefficients in the final epoch for each layer
and head index (Figure 3a). We find 33 heads have coefficients ch greater than 0.2, most (21) of
which are one. In contrast, the other (991) coefficients are all smaller than 0.01, most (889) of which
are zero. We call the 33 heads significant heads and denote the set of them as Hsig.

Comparison to previous approach. We compare our optimization approach with the previous
method from Todd et al. (2024) for identifying important heads, which selects heads based on average
indirect effect (AIE). To perform a fair comparison, we construct our function vector by summing the
outputs of our selected heads directly without weighting by coefficients, matching their methodology.
Using this construction, we achieve an intervention accuracy of 0.85, close to the clean accuracy of
0.87, indicating that our 33 heads captures most of the necessary information for the add-k task. In
contrast, selecting the top 33 heads according to AIE yields a much lower intervention accuracy of
0.31.2 We visualize the coefficients and AIE values of heads from both methods in Figure 3.

3.2 FURTHER REFINEMENT VIA ABLATIONS

We suspect many heads are primarily responsible for storing formatting information (such as ensuring
the output appears as a number) rather than encoding information about k itself. Intuitively, while
we require the overall signal transmitted by these heads, we do not need any information about the
specific value of k. To test this hypothesis, we perform mean-ablations: replacing each task-specific
signal hk with the overall mean h across all values of k (§2.2).

Specifically, we conduct mean-ablations over subsets of the 33 significant heads and measure the
resulting intervention accuracy of the corresponding function vectors. Formally, when ablating a

2Todd et al. select the top 10 heads in their work, but this yields an even lower accuracy of 0.05 in our setting.
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Head Coefficient Accuracy

No intervention N/A 0.87
(15, 2):=Head 1 6 0.85
(15, 1):=Head 2 5 0.83
(13, 6):=Head 3 5 0.66
Any other head Optimal 0.19

Table 1: Intervened accuracies for scaling up each single head’s output by an optimal coefficient.
Each of the top three heads (in red) achieves much higher intervention accuracy compared to any
other significant head in layer 13 and 15 (in blue).

subset H0, the resulting function vector is given by

vk =
∑
h∈H0

h+
∑

h∈Hsig\H0

hk. (2)

Here, heads in H0 contribute only their overall mean signals, while heads in Hsig \ H0 retain their
task-specific information.

Focusing on two layers via layer-wise ablation. To efficiently narrow down the important heads,
we first perform mean-ablations at the level of layers. From Figure 3a, we observe that the significant
heads Hsig are concentrated primarily in the middle and late layers. We speculate that heads in the
late layers mainly contribute to formatting the output, as they appear too late in the computation to
meaningfully interact with the query. After trying different sets of layers, we found that mean-ablating
all significant heads outside layers 13 and 15 still achieves an intervention accuracy of 0.83, while
mean-ablating any other combination of layers causes negligible drops in accuracy (Appendix B.1,
Table 3). After these ablations, only 11 heads located in layers 13 and 15 remain.

Identifying three final heads via head-ablation. To understand the individual contributions of each
head within layers 13 and 15, we perform mean-ablations at the level of individual heads. We first
assess the intervention accuracy when retaining only the output of a single head while mean-ablating
all other significant heads; however, this generally results in low accuracy. We hypothesize that the
output magnitude of a single head is too small to significantly influence the model output, even if it
encodes task-relevant information. To amplify each head’s effect, we scale its output by a coefficient
(e.g., 5). We find that three heads—head 1 = (15, 2), head 2 = (15, 1), and head 3 = (13, 6)—achieve
intervention accuracies close to the clean accuracy when appropriately scaled, while all other heads
show much lower accuracies regardless of scaling (Table 1). This suggests that these three heads
individually encode the task information much better than any others.

Finally, to remove the need for scaling while maintaining high intervention accuracy, we sum the
outputs of these three heads (each with a coefficient of one) and mean-ablate all others. We find that
summing the top three, top two, and only the top head yields intervention accuracies of 0.79, 0.61,
and 0.21, respectively. The three heads are thus collectively sufficient for performing the add-k task.

Validating necessity of the three heads via ablating them in five-shot ICL. So far, we have studied
these three heads mainly through their contribution to the function vector vk. We next directly test
their necessity in the original five-shot ICL setting, by ablating the outputs of these three heads when
running the model on many random five-shot ICL prompts. Our experiment shows that mean-ablating
these three heads in five-shot prompts yields an accuracy of 0.43, sharply decreasing from the clean
accuracy 0.87 by half. For comparison, we mean-ablate 20 random sets of three significant heads
(other than head 1,2,3); their accuracies remain close to the clean accuracy: 95% of them have
accuracy at least 0.86.

4 CHARACTERIZING THE AGGREGATOR SUBSPACE

For the model to perform add-k, it has to infer the task information (the number k) from the ICL
demonstrations. Our next goal is thus to understand how task information is represented in the
activation space. Since we have identified three aggregator heads that carry almost all of this
information, we can now focus on analyzing the representation space of these three heads.

In this section, we dissect their activation spaces in three stages: (1) Localize a six–dimensional task
subspace in each head via principal component analysis (PCA) (§4.1); (2) Rotate this subspace into
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orthogonal feature directions aligned with sinusoidal patterns across k (§4.2); (3) Decompose the
six-dimensional space into a four-dimensional unit-digit subspace and a two-dimensional magnitude
subspace that separately encode the units and tens of the answer (§4.3).

4.1 LOCALIZING TO SIX-DIMENSIONAL SUBSPACE

To reduce the 128-dimensional head activation to a more tractable space to study, we first perform
PCA on the 30 task vectors and find that just six directions can explain 97% of the task variance
(Appendix C, Figure 4). We then check that the function vectors found earlier remain effective after
projecting onto the subspace. Specifically, we replace each head vector hk with its projection onto
the subspace h̃k to obtain a new function vector ṽk =

∑
h∈H h̃k (a variant of vk =

∑
h∈H hk in

§2.2). We find that ṽk has intervention accuracy 0.76, which is close to the intervention accuracy of
0.79 before projection (§3.2). Thus, we confine our study to the concise six-dimensional subspace
for each head.

4.2 IDENTIFYING FEATURE DIRECTIONS ENCODING PERIODIC PATTERNS

To understand how the six-dimensional subspace of a head represents the task information, we first
examine the coordinates of the head vectors (their inner products with the principal components (PC))
as a function of k. This reveals partially periodic patterns in the first five components (Appendix D.1,
Figure 8, 9, 10).

This motivates us to linearly transform the six PCs to find directions that encode pure periodic patterns.
Mathematically, if we can find a linear transformation of the six PC-coordinate functions that fits
trigonometric functions, then by applying the transformation on the PCs, we can obtain six directions
whose coordinate functions encode the periodicity.

To find trigonometric functions to fit, we searched over different periods and phases and performed
least squares regression. We found six trigonometric functions at periods 2, 5, 10, 10, 25, and 50 that
could be expressed as functions of the top 6 PCs with low regression error (Appendix D.1, Figure 11,
12, 13). We apply the resulting linear transformation to the six PCs to obtain a new set of directions
that encode these six pure periodic patterns, which we call feature directions.

4.3 DECOMPOSING TO SUBSPACES ENCODING SUBSIGNALS

Leveraging the feature directions identified previously, we decompose the head activation subspace
into lower-dimensional components that separately encode different subsignals relevant to the task—
in this case, the units digit and tens digit.

By construction, the coordinate function of each feature direction (viewed as linear projections of hk)
is a periodic function of k. Mathematically, a feature direction with period T carries task information
from the head vectors with “modulo T ”. Based on this, we hypothesize: (i) the feature direction
corresponding to period two, which we call the “parity direction”, encodes the parity of k in add-k
task; (ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit
subspace”, encodes the unit digit of k; (iii) the subspace spanned by the directions with periods 25, 50,
which we call the “magnitude subspace”, encodes the coarse magnitude (i.e., the tens digit) of k.

We verify these hypotheses through causal intervention. We establish (1) sufficiency by showing
that projecting a head vector onto the subspace preserves the relevant task signal; and (2) necessity
by showing that projecting a head vector out of the subspace (i.e., onto its orthogonal complement)
destroys the relevant task signal. We defer experimental results in Appendix E.

5 SIGNAL EXTRACTORS OF ICL DEMONSTRATIONS

Previously, we localized the model’s behavior to three heads and their corresponding six-dimensional
subspaces, then examined how the model represents the task information (k for add-k) inferred
from the ICL demonstrations in one subspace. Now, we analyze how the model extracts the task
information from the ICL demonstrations.

In this section, we find that: (1) the signal is primarily gathered from the yi tokens in each demon-
stration xi → yi; (2) each demonstration xi → yi individually contributes a signal yi − xi in the
subspace even on “mixed” in-context demonstrations with conflicting task information; and (3)
when all demonstrations xi → yi share the same value for yi − xi, the extracted signals exhibit a
self-correction behavior.
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5.1 MATHEMATICAL OBSERVATION: TRACING SUBSPACE BACK TO PREVIOUS TOKENS

We begin with a mathematical observation that lets us trace the subspace at the final token back to
corresponding subspaces at earlier token positions. Intuitively, a head’s output at the last token is
a weighted sum of transformed residual streams from the previous tokens, with the weights given
by the attention scores. Thus, the signal extracted from previous tokens is the transformed residual
stream at that token.

Formally, a head h’s output at the last token of a prompt p can be written as h(p) =
∑

t∈p αt·OhVh·zt,
where αt is the attention score from the last token to each token t, satisfying

∑
t∈p αt = 1, zt is the

residual stream input to the head h at token t, Vh is the value matrix, and Oh is the output matrix
mapping from head-dimensional space to model-dimensional space.

Let Wh denote the projection matrix onto the six-dimensional subspace for head h. Then the projected
signal at the final token, Wh · h(p), can be decomposed into contributions from previous tokens as
Wh · αtOhVhzt, each lying in the transformed head subspace defined by the matrix Wh ·OhVh. In
the following subsection, we analyze the magnitudes and directions of these signals, and study how
signals from different demonstrations interact.

5.2 SIGNAL EXTRACTOR FOR EACH DEMONSTRATION

To understand how demonstrations contribute to model generation at the last token, we identify which
tokens contribute the most, then examine what information they provide. By the analysis above, the
task-signal contribution of each previous token to the final token through the head h is αtWhOhVhzt.
This can be decomposed into two parts: (1) extracted information: WhOhVhzt, the residual stream
input projected into the relevant subspace; and (2) aggregation weight: αt, the attention score of the
final token to the previous token. We plot the norms of the extracted information and the aggregation
weights for a random mixed-k ICL prompt in Appendix F.1. Both the strength of the extracted
information and the aggregation weights peak at yi tokens.

We next examine what specific information is extracted from each of these tokens. To do so, we
measure the inner product ⟨WhOhVhzt, h̃k⟩ between the extracted information and the head vector
(projected onto the subspace and normalized to have unit norm) for each task k. In Figure 34, we
plot this quantity for a random mixed-k ICL prompt for each token yi (i ∈ {1, . . . , 5}) and each task
k ∈ {1, . . . , 30}. We find that the inner product consistently peaks at k = yi − xi, indicating that the
model extracts the information of yi − xi from the corresponding demonstration xi → yi.

5.3 SIGNAL CORRELATION AMONG DEMONSTRATIONS

Having studied the signal extracted from each demonstration in the previous subsection, we next
study how signals from different demonstrations interact to execute ICL task. To do so, we compute
the correlation between the extracted signal from different demonstrations: for each yi token, we first
compute the inner product between the residual stream input to head 1, zt, and the corresponding
task vector hk, where k = yi − xi. Then, we compute the correlation of these measures across each
pair of five positions over 100 add-k prompts, yielding

(
5
2

)
correlations per task.

To analyze the correlation, we sum the negative correlation values and positive correlation values
respectively for each task, and calculate the various statistics (max, average and min) over all tasks
(Appendix G.1, Table 16). The negative correlation sum is significantly higher than the positive
correlation sum for all three statistics, indicating that the signals from any two demonstrations are
mostly negatively correlated. This suggests a self-correction mechanism: intuitively, when the head
extracts a noisy signal from one demonstration, signals from subsequent demonstrations are more
likely to correct the error, thereby stabilizing the final representation.

6 RELATED WORK

Our work builds on a growing body of interpretability research that aims to uncover circuits and inter-
nal computations of language models. Many studies focus on synthetic tasks or models specifically
trained on that task (Hanna et al., 2023; Nanda et al., 2023; Bietti et al., 2023; Reddy, 2023; Singh
et al., 2024). Going beyond to large pretrained language models, some papers study general LLMs
and tasks but provide only coarser-grained analyses (Feng & Steinhardt, 2023; Todd et al., 2024;
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Olsson et al., 2022; Hendel et al., 2023), while others focus on particular model families and specific
task classes to obtain more fine-grained insights (Wu et al., 2023; Zhou et al., 2024; Panickssery
et al., 2024). Our work follows the latter trajectory: we analyze the Llama-3 family on a structured
set of addition ICL tasks, and we provide a deeper and more detailed account of ICL mechanisms
than prior studies of ICL in LLMs (Todd et al., 2024; Olsson et al., 2022; Hendel et al., 2023). Below
we discuss three particular threads that are most relevant to this paper.

Interpreting arithmetic tasks. A recent line of work examines how LLMs perform arithmetic
(Stolfo et al., 2023; Hanna et al., 2023; Nikankin et al., 2024; Maltoni & Ferrara, 2024), and in
particular addition (Nanda et al., 2023; Zhong et al., 2023; Zhou et al., 2024; Kantamneni & Tegmark,
2025). Zhou et al. (2024) find that pre-trained LLMs perform addition using Fourier features, and
Kantamneni & Tegmark (2025) find that mid-sized LLMs compute addition using a “clock” algorithm
via a helix representation of numbers. Different from them, our work is the first to analyze addition
for in-context learning in LLM, and interestingly we find similar representation structures to them.

Interpreting in-context learning. Researchers have constructed detailed models of in-context
learning (ICL) for small transformer models in standard supervised learning problems such as linear
regression (Garg et al., 2022; Akyürek et al., 2023; Zhang et al., 2023; Li et al., 2023; Wu et al., 2024),
as well as more complex settings (von Oswald et al., 2023; Bai et al., 2023; Bietti et al., 2023; Reddy,
2023; Guo et al., 2023; Nichani et al., 2024). For large pretrained models, there exist coarser-grained
treatments attributing ICL performance to either induction heads (Olsson et al., 2022; Singh et al.,
2024; Crosbie & Shutova, 2025; Bansal et al., 2023) or function vector (FV) heads (Todd et al., 2024;
Hendel et al., 2023). Yin & Steinhardt (2025) compares the two types of heads and finds that few-shot
ICL performance depends primarily on FV heads. Motivated by this, we study function vector heads
in details for a family of ICL tasks, introducing a novel optimization method, which achieves better
performance than the method in Todd et al. (2024). Another difference from Todd et al. (2024) is that
our tasks have the same input domain, ensuring that the ICL prompts for different tasks differ only in
the task information, which allows for a clearer understanding of ICL mechanism.

Causal analysis. There has been a line of research that proposes methods to understand the causal
influence of model components on model behavior, such as by probing (Conneau et al., 2018; Hewitt
& Manning, 2019; Clark et al., 2019). Our methodological approach follows recent developments in
revealing causal effects of model components by interventions on internal states of models (Vig et al.,
2020; Geiger et al., 2021). In particular, we draw inspiration from causal mediation analysis used in
Todd et al. (2024), activation patching (Meng et al., 2022), and causal scrubbing (Chan et al., 2022).

7 DISCUSSION

In this work, we provided a detailed mechanistic analysis of in-context learning for addition tasks.
We found that a small number of attention heads operating in low-dimensional subspaces can extract,
represent, and aggregate ICL task information in structured and interpretable ways. We performed
our analysis in five steps:

1. Use sparse optimization to identify important attention heads whose outputs construct effective
function vectors for ICL tasks (§3.1).

2. Localize task information to a smaller subset of heads via ablations (§3.2).
3. Further localize to low-dimensional subspaces via PCA on each remaining head (§4.1).
4. Examine subspace qualitatively, which uncovered periodic patterns in activation space (§4.2) that

decomposed into interpretable subspaces encoding unit-digit and magnitude information (§4.3).
5. Exploit algebraic structure in the transformer to connect “aggregation” subspaces at the final token

position with “extraction” subspaces at the earlier yi tokens (§5).

This same methodology (identify important heads, restrict to relevant subspaces, and examine the
remaining information qualitatively) could be extended to other models and tasks. Most steps in
our methodology also scale easily: the sparse optimization is fully automatic. While mean ablation
involved some qualitative judgment, we can fold both of these steps into a single optimization task
that mean ablates some heads while fully removing others. PCA is also automatic. For the final step
that involves a qualitative examination of the subspaces, future work could explore automating this
step using AI systems.
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(a) Coefficients of heads.
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(b) Average indirect effects of heads (Todd et al., 2024).

Figure 3: Comparison of significant heads identified by our optimized coefficients (left) and by
average indirect effects (AIE) from the previous method (Todd et al., 2024) (right). Colors indicate
the magnitude of each head’s importance (coefficients or AIE) on Llama3-8B-instruct. The top
33 heads identified by both methods are highlighted with frames (13 heads common across both
methods in red and other 20 heads in blue). Our identified heads yield an intervention accuracy of
0.85, compared to the previous method’s accuracy of 0.31. Both methods select heads from similar
layers, but our optimization approach is significantly more effective.

Model Llama3.2-3B-instruct Llama3.2-3B Qwen2.5-7B

ICL accuracy 0.50 0.64 0.91
Our weighted-heads accuracy 0.66 0.83 0.61
Our top-heads accuracy 0.62 0.75 0.34
Todd et al. (2024)’s top-heads accuracy 0.20 0.1 0.12

Table 2: Accuracies comparison between our method and Todd et al. (2024)’s method as well as
the baseline ICL accuracy on add-k task cross other models. Our weighted-heads accuracy is the
intervention accuracy achieved by the weighted sum of all heads where the weights are the raw
coefficients at the last epoch of our training; our top-heads accuracy is the intervention accuracy
achieved by the sum of top heads selected by coefficients at the last epoch of our training; and the
Todd et al. (2024)’s top-heads accuracy is the intervention accuracy achieved by the sum of top
heads selected by their average indirect effect. Here we choose the number of top heads as the one
giving the highest accuracy for each case. For Llama3 models, we need to choose around 30 heads
while Todd et al. (2024)’s method needs to choose around 60 heads; for Qwen2.5 model, we both
need to choose 210 heads. Our weighted-heads accuracy get significant higher accuracy than Todd
et al. (2024)’s, which indicates our method can find better function vectors than Todd et al. (2024)’s.
Our top-heads accuracy are also higher with less number of heads than Todd et al. (2024)’s, which
indicates our method can also find more effective set of heads for ICL tasks.

A SUPPLEMENT FOR §3.1

A.1 ADDITIONAL FIGURE FOR §3.1

In §3.1, we developed a global optimization method to identify 33 significant heads for Llama3-8B-
instruct. Here we visualize our optimized coefficients as well as the previous method, also comparing
their intervention accuracy in Figure 3.

A.2 ADDITIONAL MODELS FOR §3.1

We also train coefficients to get sets of important heads responsible for add-k on Llama3.2-3B-instruct,
Llama3.2-3B, and Qwen2.5-7B. In all cases, we achieve better accuracies with less number of heads
than Todd et al. (2024). We report our results in Table 2. XH TOOD: add training metrics and tricks?
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Layer Accuracy

No intervention 0.87
[0, 31] 0.85
[0, 15] 0.83
[13, 15] 0.83
{13, 15} 0.83
{14, 15} 0.69
{13, 14} 0.25
{15} 0.71
{13} 0.27
{14} 0.03
[0, 31] \ {13, 15} 0.05

Table 3: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama3-8B-instruct. We first narrow down
to the layers before layer 15, then the range of [13, 15] and finally {13, 15} (in red), which all almost
preserve the clean accuracy of 0.87, while other combinations lead to substantial drops in accuracy,
especially when mean-ablating layers 13 and 15 (in blue).

Layer Llama3.2-3B-instruct Accuracy Llama3.2-3B Accuracy

No intervention 0.50 0.64
[0, 27] 0.62 0.75
{14} 0.60 0.70
Other single layer (max) 0.06 0.05

Table 4: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama3.2-3B-instruct and Llama3.2-3B
models. We both narrow down to the layer 14, which achieves significant higher accuracy than any
other single layer.

B SUPPLEMENT FOR §3.2

B.1 ADDITIONAL TABLE FOR §3.2

In §3.2, we did systematic ablation studies to narrow down the tasks to three main heads from 33
significant heads. The first step of the ablation studies is layer-wise ablation, where we mean-ablate
the significant heads in a subset of layers. We include the experimental results here, which narrow
down to layer 13 and 15 in Table 3.

B.2 ADDITIONAL MODELS FOR §3.2

We do the same ablation experiments for other three models, narrowing down to one layer and three
heads for all of them. For two Llama3.2 models, we narrow down to layer 14 and heads (14, 1), (14,
2), and (14, 12), the sum of which achieves accuracy 0.60 and 0.70. For Qwen2.5-7B model, we
narrow down to layer 21 and heads (21, 0), (21, 2), and (21, 5), the sum of which achieves accuracy
0.29. Note that all of accuracies of these three heads are higher than the corresponding accuracies
from Todd et al. (2024). We report the specific accuracies under different ablation setups in Tables 4,
5, 6, and 7.
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Head Coefficients Llama3.2-3B-instruct Accuracy Llama3.2-3B Accuracy

(14, 1) 5 / 5 0.78 0.95
(14, 2) 6 / 4 0.51 0.61
(14, 12) 4 / 4 0.26 0.26
Other single head Optimal 0.03 0.08

Table 5: Intervention accuracies for keeping the selected heads scaled by the corresponding coeffi-
cients and mean-ablating all the other significant heads on Llama3.2-3B-instruct and Llama3.2-3B
models. We narrow down them both to the same three heads, which achieves significant higher
accuracy than any other single head in layer 14.

Layer Qwen2.5-7B Accuracy

No intervention 0.91
[0, 27] 0.34
{21} 0.29
Other single layer (max) 0.03

Table 6: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama3.2-3B-instruct and Llama3.2-3B
models. We both narrow down to the layer 14, which achieves significant higher accuracy than any
other single layer.

Head Coefficient Qwen2.5-7B Accuracy

(21, 5) 4 0.29
(21, 0) 3 0.18
(21, 2) 4 0.15
Other single head Optimal 0.06

Table 7: Intervention accuracies for keeping the selected heads scaled by the corresponding coeffi-
cients and mean-ablating all the other significant heads on Qwen2.5-7B. We narrow down to three
heads, which achieves significant higher accuracy than any other single head in layer 21.
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Figure 4: The explained variance ratio vs. number of PCs for each head on Llama3-8B-instruct. The
first six PCs make up most of the explained variance (97%) for each head.
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Figure 5: The explained variance ratio vs. number of PCs for each head on Llama3.2-3B-instruct.
The first six PCs make up most of the explained variance for each head.

C SUPPLEMENT FOR §4.1

We perform PCA on the 30 task vectors and find that just six directions can explain 97% of the task
variance on Llama3-8B-instruct (Figure 4), and similarly for the three models (Figures 5, 6 and 7).
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Figure 6: The explained variance ratio vs. number of PCs for each head on Llama3.2-3B. The first
six PCs make up most of the explained variance for each head.
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Figure 8: Coordinates of head (15, 2)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Llama3-8B-instruct. The coordinates in the first five PCs reveal
periodic patterns.

D SUPPLEMENT FOR §4.2

We first present additional figures for Llama-3-8B-Instruct, followed by results for the other three
models. The main finding is that three heads in each Llama3.2 model and one head in the Qwen2.5
model consistently encode periodic patterns through trigonometric functions. By contrast, the
remaining two heads in Qwen2.5 do not encode periodicity; instead, their coordinate functions exhibit
distinct behaviors across the intervals [1, 10], [11, 20], and [21, 30]. We conjecture that this difference
arises from tokenization: Qwen encodes numbers digit by digit, leading to discontinuities across each
10-interval, whereas the Llama family represents every number below 100 as a single token.

D.1 ADDITIONAL FIGURES FOR §4.2

In §4.2, we found six trigonometric functions that can be linearly fitted by the coordinate functions.
Here we first supplement the plot from which we observe the periodic pattern of the coordinate func-
tions for the three heads (Figure 8, 9, 10) and then show the fitting functions for three heads(Figure 11,
12, 13).
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Figure 9: Coordinates of head (15, 1)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Llama3-8B-instruct. The coordinates in the first five PCs reveal
periodic patterns.
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Figure 10: Coordinates of head (13, 6)’s vectors (their inner products with a PC) for the first six PCs
across different add-k tasks on Llama3-8B-instruct. The coordinates in the first four and the last PCs
reveal periodic patterns.
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Figure 11: The coordinate functions (inner product with feature directions) of head 1’s vectors can fit
six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation.
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Figure 12: The coordinate functions (inner product with feature directions) of head (15, 1)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3-8B-instruct.
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Figure 13: The coordinate functions (inner product with feature directions) of head (13, 6)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3-8B-instruct.
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Figure 14: Coordinates of head (14, 1)’s vectors (their inner products with a PC) for the first six PCs
across different add-k tasks on Llama3.2-3B-instruct. The coordinates in the first six PCs reveal
periodic patterns.

0.5

0.0

0.5

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0.5

0.0

0.5

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 15: Coordinates of head (14, 2)’s vectors (their inner products with a PC) for the first six PCs
across different add-k tasks on Llama3.2-3B-instruct. The coordinates in the first six PCs reveal
periodic patterns.

D.2 LLAMA3.2-3B-INSTRUCT FOR §4.2

The Llama family of models show similar results. We show results for Llama3.2-3B-instruct here
and omit Llama3.2-3B.
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Figure 16: Coordinates of head (14, 12)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Llama3.2-3B-instruct. The coordinates in the first six PCs reveal
periodic patterns.
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Figure 17: The coordinate functions (inner product with feature directions) of head (14, 1)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3.2-3B-instruct.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 20
1

0

1
Am

pl
itu

de

Modulo 2

0 20

Modulo 5

0 20

Modulo 10(cos)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25

0 20
Task Add-k Index (k)

Modulo 50

Targeted periodic function Constructed coordinate function

Figure 18: The coordinate functions (inner product with feature directions) of head (14, 2)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3.2-3B-instruct.
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Figure 19: The coordinate functions (inner product with feature directions) of head (14, 12)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3.2-3B-instruct.
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Figure 20: Coordinates of head (21, 0)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Qwen2.5-7B. The coordinates in the first six PCs reveal periodic
patterns.
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Figure 21: Coordinates of head (21, 2)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Qwen2.5-7B. The coordinates in the first six PCs exhibit distinct
behaviors across the intervals [1, 10], [11, 20], and [21, 30].

D.3 QWEN2.5-7B FOR §4.2

One head (21,0) show similar periodic patterns while the other two heads do not encode periodicity;
instead, their coordinate functions exhibit distinct behaviors across the intervals [1, 10], [11, 20], and
[21, 30]. We conjecture that this difference arises from tokenization: Qwen encodes numbers digit by
digit, leading to discontinuities across each 10-interval, whereas the Llama family represents every
number below 100 as a single token.
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Figure 22: Coordinates of head (21, 5)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Qwen2.5-7B. The coordinates in the first six PCs exhibit distinct
behaviors across the intervals [1, 10], [11, 20], and [21, 30].
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Figure 23: The coordinate functions (inner product with feature directions) of head (21, 0)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Qwen2.5-7B.
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E SUPPLEMENT FOR §4.3

Recall that the three hypotheses in §4.3 are as follows:

(i) the feature direction corresponding to period two, which we call the “parity direction”,
encodes the parity of k in the add-k task;

(ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit
subspace”, encodes the unit digit of k;

(iii) the subspace spanned by by the directions with periods 25, 50, which we call the “magnitude
subspace”, encodes the coarse magnitude (i.e., the tens digit) of k.

We first show the experimental results validating the hypotheses (ii) for head 1 (Figure 24) and then
show analogous results for hypothesis (i) and (iii). Projecting out of the parity direction doesn’t lead
to high errors for the parity and the final answer across all tasks, which might be because parity is
relatively easy to obtain (e.g., random choice leads to 0.5 accuracy).
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Figure 24: The error rates for the unit digit and the final answer across tasks when projecting head
1’s vectors onto the “unit subspace” (left) and out of the “unit subspace” (right). Projecting onto the
unit subspace results in a low unit-digit error rate even when final-answer error remains high, while
projecting out leads to high unit-digit error rates that almost fully account for the final-answer errors.
This confirms that the unit subspace specifically encodes the unit-digit signal.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Parity Error
Answer Error

(a) Head 1 projected onto parity direction
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(b) Head 1 projected out of parity direction

Figure 25: Validation of hypothesis (i) for head 1.
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(a) Head 1 projected onto magnitude subspace
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(b) Head 1 projected out of magnitude subspace

Figure 26: Validation of hypothesis (iii) for head 1.
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We then show analogous results for head 2.
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(a) Head 2 projected onto parity direction
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(b) Head 2 projected out of parity direction

Figure 27: Validation of hypothesis (i) for head 2.
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(a) Head 2 projected onto unit subspace
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(b) Head 2 projected out of unit subspace

Figure 28: Validation of hypothesis (ii) for head 2.
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(a) Head 2 projected onto magnitude subspace
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(b) Head 2 projected out of magnitude subspace

Figure 29: Validation of hypothesis (iii) for head 2.
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Finally, we show analogous results for head 3. The evidence for head 3 is slightly weaker than the
first two heads, which aligns with the fact that the intervened accuracy of head 3 is slightly weaker
than the ones of the first two heads (Tabel 1).
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(a) Head 3 projected onto parity direction
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(b) Head 3 projected out of parity direction

Figure 30: Validation of hypothesis (i) for head 3.
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(a) Head 3 projected onto unit subspace

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r R

at
e

Unit-Digit Error
Answer Error

(b) Head 3 projected out of unit subspace

Figure 31: Validation of hypothesis (ii) for head 3.
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(a) Head 3 projected onto magnitude subspace
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(b) Head 3 projected out of magnitude subspace

Figure 32: Validation of hypothesis (iii) for head 3.
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F SUPPLEMENT FOR §5.2

We show the strength and direction of the signals extracted from each individual token through a
random mixed-k ICL prompt as an example below. Since we find out the llama family of models
behave similarly in the previous sections, we here just show results for llama3-8B-instruct and
qwen2.5-7B as examples.

F.1 ADDITIONAL FIGURES FOR §5.2

All three heads for Llama3-8B-instruct behave similarly in the signal strengths and directions. They
all peak at the y tokens and extract signal corresponding to yi − xi.
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Token-wise strings in prompt

Attention score

0.01
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0.00
0.33

Figure 33: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (15, 2) on Llama3-8B-instruct. Decomposing it
into two parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention
score from the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).
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Figure 34: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k, of
head (15, 2) on Llama3-8B-instruct. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.
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Figure 35: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (15, 1) on Llama3-8B-instruct. Decomposing it
into two parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention
score from the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).
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Figure 36: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k, of
head (15, 1) on Llama3-8B-instruct. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.
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Figure 37: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (13, 6) on Llama3-8B-instruct. Decomposing it
into two parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention
score from the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).
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Figure 38: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k, of
head (13, 6) on Llama3-8B-instruct. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.
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F.2 QWEN2.5-7B FOR §5.2

Notice that Qwen2.5-7B has a different tokenizer from Llama3 models: Qwen2.5 model tokenizes
each number digit by digit. The three heads for Qwen2.5 model behave qualitatively similarly to
Llama3 model, i.e., they alomst always peak at the y tokens and extract signal corresponding to
yi − xi except for having an offsey of 10 or 20 sometimes.
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Figure 39: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (21, 0) on Qwen2.5-7B. Decomposing it into two
parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention score from
the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).
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Figure 40: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k,
of head (21, 0) on Qwen2.5-7B. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.
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Figure 41: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (21, 2) on Qwen2.5-7B. Decomposing it into two
parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention score from
the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).
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Figure 42: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k,
of head (21, 2) on Qwen2.5-7B. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.
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Figure 43: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (21, 5) on Qwen2.5-7B. Decomposing it into two
parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention score from
the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).
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Figure 44: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k,
of head (21, 5) on Qwen2.5-7B. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.
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G SUPPLEMENT FOR §5.3

We report the concrete numeric variables computed in §5.3 for Llama3-8B-instruct, Llama3.2-3B,
and Qwen2.5-7B. The self-correction mechanism significantly exists in Llama family of models
while partially exists in Qwen model.

G.1 ADDITIONAL TABLE FOR §5.3

The signals from any two demonstrations are mostly negatively correlated for all three heads,
suggesting a self-correction mechanism on Llama3-8B-instruct.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −2.01 0.27
Min −1.40 0.07
Max −2.34 0.54

Table 8: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (15, 2) on Llama3-8B-instruct. The
negative correlation sum is significantly higher than the positive correlation sum for all three statistics,
which indicates that the signals from any two demonstrations are mostly negatively correlated,
suggesting a self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −1.95 0.05
Min −1.65 0.0
Max −2.17 0.20

Table 9: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (15, 1) on Llama3-8B-instruct. The
negative correlation sum is significantly higher than the positive correlation sum for all three statistics,
which indicates that the signals from any two demonstrations are mostly negatively correlated,
suggesting a self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −0.76 0.28
Min −0.15 0.0
Max −1.68 1.03

Table 10: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (13, 6) on Llama3-8B-instruct. The
negative correlation sum is significantly higher than the positive correlation sum for all three statistics,
which indicates that the signals from any two demonstrations are mostly negatively correlated,
suggesting a self-correction mechanism.
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G.2 LLAMA3.2-3B FOR §5.3

The signals from any two demonstrations are mostly negatively correlated for the two more important
heads within the three, aligning with the self-correction mechanism as Llama3-8B-instruct.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −2.12 0.23
Min −1.96 0.0
Max −2.41 0.53

Table 11: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (14, 1) on Llama3.2-3B. The negative
correlation sum is significantly higher than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly negatively correlated, suggesting a
self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −2.07 0.05
Min −1.89 0.0
Max −2.24 0.22

Table 12: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (14, 2) on Llama3.2-3B. The negative
correlation sum is significantly higher than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly negatively correlated, suggesting a
self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average 0.27 0.75
Min 0.0 0.0
Max −0.90 0.75

Table 13: The statistics (min, max, and average) of the absolute values of negative correlation sum
and positive correlation sum respectively over the 30 tasks for head (14, 12) on Llama3.2-3B. The
negative correlation sum is similar to the positive correlation sum for all three statistics, which doesn’t
align with the other two heads. Noting that this head achieves way lower accuracy than the other two
heads (see Table 5), it’s possible that the self-correction mechanism doesn’t appear in this head.
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G.3 QWEN2.5-7B FOR §5.3

For Qwen model, it’s interesting that the signals from any two demonstrations are differently corre-
lated for each head. For the one head that also encodes periodic patterns, they are mostly negatively
correlated, indicating the self-correction mechanism partially exists in Qwen2.5-7B.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −1.84 0.08
Min −1.44 0.0
Max −2.15 0.67

Table 14: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (21, 0) on Qwen2.5-7B. The negative
correlation sum is significantly higher than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly negatively correlated, suggesting a
self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −0.64 0.50
Min −1.44 0.03
Max −2.19 1.57

Table 15: The statistics (min, max, and average) of the absolute values of negative correlation sum
and positive correlation sum respectively over the 30 tasks for head (21, 5) on Qwen2.5-7B. The
negative correlation sum is a little higher than the positive correlation sum for all three statistics,
which doesn’t indicates a strong signal of how two demonstrations are correlated.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −0.37 2.62
Min −0.0 0.0
Max −1.85 5.54

Table 16: The statistics (min, max, and average) of the absolute values of negative correlation sum
and positive correlation sum respectively over the 30 tasks for head (21, 2) on Qwen2.5-7B. The
negative correlation sum is a lower than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly positively correlated.
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