

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING IN-CONTEXT LEARNING OF ADDITION VIA ACTIVATION SUBSPACES

Anonymous authors

Paper under double-blind review

## ABSTRACT

To perform few-shot learning, language models extract signals from a few input-label pairs, aggregate these into a learned prediction rule, and apply this rule to new inputs. How is this implemented in the forward pass of modern transformer models? To explore this question, we study a structured family of few-shot learning tasks for which the true prediction rule is to add an integer  $k$  to the input. We introduce a novel optimization method that localizes the model’s few-shot ability to only a few attention heads. We then perform an in-depth analysis of individual heads, via dimensionality reduction and decomposition. As an example, on Llama-3-8B-instruct, we reduce its mechanism on our tasks to just three attention heads with six-dimensional subspaces, where four dimensions track the unit digit with trigonometric functions at periods 2, 5, and 10, and two dimensions track magnitude with low-frequency components. To deepen our understanding of the mechanism, we also derive a mathematical identity relating “aggregation” and “extraction” subspaces for attention heads, allowing us to track the flow of information from individual examples to a final aggregated concepts. Using this, we identify a self-correction mechanism where mistakes learned from earlier demonstrations are suppressed by later demonstrations. Our results demonstrate how tracking low-dimensional subspaces of localized heads across a forward pass can provide insight into fine-grained computational structures in language models.

## 1 INTRODUCTION

Large language models (LLMs) exhibit in-context learning (ICL) abilities; for instance, they can few-shot learn new tasks from a small number of demonstrations in the prompt. To understand this ability, past works have constructed detailed models of ICL for small synthetic language models (Garg et al., 2022; Akyürek et al., 2023; von Oswald et al., 2023) as well as coarser-grained analyses of large pretrained models (Olsson et al., 2022; Hendel et al., 2023; Todd et al., 2024). However, little is known about the fine-grained computational structure of ICL for large models.

ICL extracts task information from demonstrations and applies the aggregated information to input queries. Previous work (Todd et al., 2024) constructed a vector (i.e., the “function” vector) from demonstrations that encode the task information—for instance, adding it to the residual stream on zero-shot inputs recovers ICL behavior. However, two questions remain elusive: (1) How precisely do function vectors encode task information? (2) How do models aggregate information from ICL examples to form such function vectors?

To address these questions, we perform a case study for few-shot learning of arithmetic (i.e., learning to add a constant  $k$  to the input). This family of tasks has the advantage of providing a large number of tasks (different integers  $k$ ) that all share the same input domain, which is important to rule out domain-based shortcuts when analyzing ICL mechanisms (§2.1). Arithmetic also has the advantage of being well-studied in other (non-in-context) settings (Zhou et al., 2024; Kantamneni & Tegmark, 2025), allowing us to situate our results with other known mechanisms. Finally, most LLMs perform this task reliably (e.g. 87% accuracy for Llama-3 and 90% for Qwen-2.5).

To study this setting, we first introduce a novel optimization method for localizing few-shot ability to a small number of attention heads. Our approach is inspired by previous work on function vectors (Todd et al., 2024), which mimic ICL when they are patched into the residual stream (§2.2). While Todd et al. (2024) selected heads based on their individual effect on ICL performance, we search for



076 Figure 1: Key findings of our methods in the specific case of Llama-3-8b-instruct (illustrated using  
077 an example *add-k* prompt): (1) out of 1024 attention heads, only three are important for add-k ICL  
078 (§4); (2) each head encodes the task information  $k$  in a six-dimensional subspace (§4.1); (3) the  
079 six-dimensional subspace further factors into four dimensions capturing the unit digit of  $k$  (encoding  
080 periodic functions at periods 2, 5, and 10) and two dimensions capturing its tens digit (encoding higher  
081 frequency functions) (§4.3); and (4) task information flows from output tokens to final token via a  
082 self-correction mechanism (§5).

083 coefficients within a continuous range  $[0, 1]$  that produce a sparse, weighted *combination* of heads’  
084 outputs, maximizing ICL performance (§3.1). Our method successfully finds a small number of  
085 heads that recover most of the ICL performance (§3.2); for example, Llama-3-8B-instruct achieves  
086 79% accuracy using function vectors from just three heads (90% of the original ICL accuracy).

087 We next perform a detailed analysis of these heads, through dimensionality reduction and decomposition.  
088 We find that the task information from each head is encoded in a low-dimensional subspace  
089 typically consisting of trigonometric functions. For example, in each of the three important heads in  
090 Llama-3-8B-instruct, we get a 6-dimensional subspace, where 4 dimensions are periodic functions  
091 with periods 2, 5, and 10 (tracking the units digit) and 2 dimensions are low-frequency functions  
092 (tracking the tens digit) (§4). This interestingly aligns with recent findings in non-in-context settings  
093 where addition is also encoded by trigonometric (Zhou et al., 2024) or helical functions (Kantamneni  
094 & Tegmark, 2025), suggesting a deeper relation between non-ICL and ICL machinery.

095 Finally, we further study the flow of information across tokens, by deriving a general mathematical  
096 relation between “extractor” and “aggregator” subspaces, building on the second-order logit  
097 lens (Gandelsman et al., 2025). This lets us study the task-related information that heads extract  
098 from each token. For example, in Llama-3-8B-instruct we find that task information is mostly extracted  
099 from label tokens (§5.2). Moreover, we find a self-correction mechanism: if the signal extracted from  
100 one token has an error, signals from later tokens often write in the opposite direction of the error  
101 (§5.3). This suggests that ICL goes beyond simple averaging of inputs and has stateful dynamics.

102 In summary, we found that task-specific information in ICL can be localized to a small number of  
103 attention heads and low-dimensional subspaces with structured patterns. We also found that models  
104 employ a self-correction mechanism when the task information flows from the “extractor” subspaces  
105 to the “aggregator” subspaces. Our findings show how even in large models, ICL mechanisms can be  
106 localized to specialized activation subspaces from a small number of heads that extract, represent,  
107 and aggregate information in interpretable ways.

108 Our key contributions are thus as follows: (1) we introduce a novel optimization method to identify  
 109 relevant attention heads for ICL; (2) we derive a precise mathematical relation between signals from  
 110 earlier tokens and the output token; and (3) we perform a focused analysis of ICL addition and are  
 111 able to reverse-engineer rich latent structures and sophisticated computational strategies in LLMs.  
 112

113 **2 PRELIMINARIES**

114 **2.1 MODEL AND TASK**

115 We begin by specifying the model and the task studied in this paper.

116 **Model.** We focus on Llama-3-8B-instruct in the main body, which has 32 layers and 32 attention  
 117 heads per layer and a residual dimension of 4096. We denote each head as a tuple (layer index,  
 118 head index), where both indices range from 0 to 31. To make our analysis broader in model size,  
 119 training type, and model family, we also experiment on Llama-3.2-3B-instruct, Llama-3.2-3B, and  
 120 Qwen-2.5-7B and report the results in appendix. The results are consistent across Llama family and  
 121 directionally similar for the Qwen model.  
 122

123 **Task.** We study a structured family of ICL tasks that we call *add- $k$* . For a constant  $k$ , the *add- $k$*  task  
 124 is to add  $k$  to a given input integer  $x$  to predict  $y = x + k$ . In an  $n$ -shot ICL prompt, the model is  
 125 given  $n$  demonstrations of the form “ $x_i \rightarrow y_i$ ” with  $y_i = x_i + k$ , concatenated using the separator  
 126 “#”, followed by a query “ $x_q \rightarrow$ ” (see Figure 1 for an example). A key advantage of this family of  
 127 tasks is that ICL prompts for different tasks only differ in  $k$  (i.e.  $y_i - x_i$ ) but not in the input domain,  
 128 enabling us to isolate task information from input content so as to dissect the ICL mechanism at a  
 129 finer granularity.  
 130

131 Our choice contrasts with prior work, which considers tasks such as product-company (“iPhone  
 132 5→apple”) or celebrity->career (“Taylor Swift→singer”) (Todd et al., 2024). In such cases, the input  
 133 domain itself leaks information about the task: from the query alone, one could reasonably guess that  
 134 ‘apple’ or ‘singer’ are likely outputs (Min et al., 2022). This makes it difficult to distinguish whether  
 135 the success stems from extracting the task rule or from leveraging domain-specific associations. For  
 136 *add- $k$* , the query  $x_q$  alone provides no information about the hidden constant  $k$ , so the model must  
 137 infer  $k$  from the demonstrations, which cleanly dissect the key components of ICL mechanism.  
 138

139 We construct data for the task by varying  $x \in [1, 100]$  and  $k \in [1, 30]$  (thus  $y \in [2, 130]$ ) since  
 140 Llama-3 models are empirically capable of solving the addition task in this range. We consider the  
 141 following three types of prompts:

- 142 *five-shot ICL prompt*, where all five demonstrations satisfy  $y_i = x_i + k$  for a fixed  $k \in [1, 30]$ . We  
 143 also call this *add- $k$  ICL*.
- 144 *mixed- $k$  ICL prompt*, where the demonstrations are  $y_i = x_i + k_i$  for possibly different  $k_i$  values.
- 145 *zero-shot prompt*, where there are no demonstrations: the prompt is “ $x_q \rightarrow$ ” for some  $x_q$ .

146 We mostly study five-shot ICL prompts as examples of our ICL tasks, and use them to generate  
 147 function vectors (§2.2). We also examine the information extracted from demonstrations in mixed- $k$   
 148 ICL prompts, which is a varied version of five-shot ICL prompts with mistaken demonstrations, in  
 149 §5.2. We use zero-shot prompts to evaluate the effectiveness of heads and function vectors (§2.2).

150 **2.2 ACTIVATION PATCHING AND FUNCTION VECTORS**

151 Next, we briefly review *activation patching*, a common interpretability technique that is used throughout  
 152 the paper, and *function vector*, a construction we use to identify important heads for ICL tasks.

153 **Activation patching.** Activation patching is performed by taking the activations of a model component  
 154 when the model is run on one prompt, then patching in these activations when the model is run  
 155 on a different prompt. Patching can either *replace* the model’s base activations or *add to* them; we  
 156 will primarily consider the latter.

157 Specifically, if  $z_l$  is the original value of the residual stream at layer  $l$  at the final token position  
 158 “ $\rightarrow$ ”, we patch in the replacement  $z_l + v$ , where  $v$  is constructed from activations on a different input



Figure 2: The chain of localization in §3 and §4. We first identify 33 significant attention heads (out of 1024) via a global optimization method (§3.1), then narrow down to 3 main heads while mean-ablating the remaining 30 (§3.2). We next study the structure of the representation of each main head by localizing it to a six-dimensional subspace (§4.1), and decompose it into a four-dimensional subspace encoding the unit digit and a two-dimensional subspace encoding the tens digit (§4.3).

We choose the layer  $l$  at one third of the network’s depth and construct  $v$  from “function vector” heads, following Todd et al. (2024), as described next.

**Function vectors.** Function vectors  $v_k$  are vectors constructed from the outputs of selected attention heads, designed so that adding  $v_k$  to the residual stream of a zero-shot prompt approximates the effect of the five-shot *add-k* task. For example,  $v_k$  might be the average output of one or more attention heads across a set of five-shot *add-k* examples. We define the *intervention accuracy* of  $v_k$  as the average accuracy obtained on zero-shot prompts when  $v_k$  is added to the residual stream across all tasks  $k$ . Due to the independency of  $k$  from input queries, this metric captures how effectively  $v_k$  encodes task-specific information about  $k$ . For comparison, we define *clean accuracy* as the accuracy on five-shot prompts without any intervention, also averaged across all tasks  $k$ .

In more detail, consider an attention head  $h$ : let  $h(p)$  denote the output of head  $h$  on prompt  $p$  at the last token position, and define  $h_k$  as the average of  $h(p)$  across all five-shot *add-k* prompts.<sup>1</sup> Todd et al. (2024) identified a subset  $\mathcal{H}$  of attention heads (for a different set of tasks) such that the vector  $v_k = \sum_{h \in \mathcal{H}} h_k$  has high intervention accuracy—that is, adding it to the residual stream of zero-shot prompts effectively recovers few-shot task performance.

Building on this framework, we consider multiple ways to construct  $v_k$ : (1) the task-specific mean  $h_k$  over the *add-k* task (as described above); (2) the overall mean  $\bar{h}$  (i.e., average across all  $k$ ), which removes task-specific information about  $k$ ; or (3) the specific value  $h(p)$  on an individual prompt  $p$ . Throughout the paper, we call  $\bar{h}$  the *mean-ablation* of head  $h$  and call  $h_k$  the *head vector* of  $h$  with respect to  $k$ . Beyond the three choices above, we sometimes project a head’s output onto a lower-dimensional subspace or scale it by a coefficient. Unlike Todd et al. (2024), we recover a different set of heads through solving a novel global optimization problem (§3.1) and systematic ablation studies (§3.2), which achieves higher performance (Figure 5).

### 3 IDENTIFYING THREE AGGREGATOR HEADS

To understand the mechanism behind the *add-k* ICL task, we first need to find out what model components are responsible for performing it. In this section, we find that three heads do most

<sup>1</sup>Similar to Todd et al. (2024), we approximate this average using 100 randomly generated five-shot *add-k* prompts, where each prompt contains random demonstration inputs  $x_i$  and the final query input  $x_q$  is chosen exactly once from each integer in  $[1, 100]$ .

216 of the work for *add-k*. We find these heads by first solving an optimization problem to identify  
 217 33 significant heads out of 1024 (§3.1), and then further narrowing down to three main heads via  
 218 systematic ablations (§3.2). This process is illustrated in the first row of Figure 2.  
 219

220 **3.1 IDENTIFYING SIGNIFICANT HEADS VIA SPARSE OPTIMIZATION**  
 221

222 We will search for a set of heads that store the information for the *add-k* task, in the sense that their  
 223 output activations yield good function vectors for *add-k* (§2.2).  
 224

225 **Formulating the sparse optimization.** More formally, define  $v_k(c) = \sum_h c_h \cdot h_k$ , the sum of head  
 226 outputs weighted by  $c$ , where  $h$  goes over all 1024 heads in the model. (Recall that  $h_k$  is the average  
 227 output of head  $h$  averaged across a large dataset of five-shot *add-k* prompts.) We will search for a  
 228 sparse coefficient vector  $c \in [0, 1]^{1024}$  such that adding  $v_k(c)$  to the residual stream of a zero-shot  
 229 prompt achieves high accuracy on the *add-k* task.

230 Let  $\ell(x_q, y_q; v)$  be the cross-entropy loss between  $y_q$  and the model output when intervening the  
 231 vector  $v$  onto the input “ $x_q \rightarrow$ ” (i.e. replacing  $z_l$  with  $z_l + v$  in the forward pass on “ $x_q \rightarrow$ ”, where  $z_l$   
 232 is the layer- $l$  residual stream at the last token). We optimize  $c$  with respect to the loss

$$233 \quad \mathcal{L}(c) = \mathbb{E}_{k \in [30]} \mathbb{E}_{x_q \in [100]} [\ell(x_q, x_q + k; v_k(c))] + \lambda \|c\|_1, \quad (1)$$

235 where the regularization term with weight  $\lambda$  promotes sparsity.  
 236

237 **Training details.** We randomly select 25 *add-k* tasks of the total 30 tasks for training and in-  
 238 distribution testing, and use the remaining five tasks only for out-of-distribution testing. For each task  
 239 *add-k*, we generate 100 zero-shot prompts “ $x_q \rightarrow$ ”, where  $x_q$  ranges over all integers from [1, 100]  
 240 and the target output is  $x_q + k$ , yielding one data point for each (prompt, task) pair. We randomly split  
 241 the data points of the 25 tasks into training, validation, and test sets in proportions 0.7, 0.15, and 0.15,  
 242 respectively. We use AdamW with learning rate 0.01 and batch size 128. We set the regularization  
 243 rate  $\lambda$  as 0.05, which promotes sparsity while incurring little loss in accuracy. During training, we  
 244 clip the coefficients  $c$  back to [0, 1] if they go out of range after each gradient step.

245 **Results.** We get coefficients that achieve high intervention accuracy. In particular, on the 25 in-  
 246 distribution tasks and five out-of-distribution tasks, intervention accuracies at the final epoch are 0.83  
 247 and 0.87, close to the clean accuracies of 0.89 and 0.92, respectively. To identify the important heads  
 248 for the tasks, we plot the values of the coefficients in the final epoch for each layer and head index  
 249 (Figure 5a). We find 33 heads have coefficients  $c_h$  greater than 0.2, most (21) of which are one. In  
 250 contrast, the other (991) coefficients are all smaller than 0.01, most (889) of which are zero. We call  
 251 the 33 heads *significant heads* and denote the set of them as  $\mathcal{H}_{\text{sig}}$ .

252 **Comparison to previous approach.** We compare our optimization approach with the previous  
 253 method from Todd et al. (2024) for identifying important heads, which selects heads based on average  
 254 indirect effect (AIE). To perform a fair comparison, we construct our function vector by summing the  
 255 outputs of our selected heads directly without weighting by coefficients, matching their methodology.  
 256 Using this construction, we achieve an intervention accuracy of 0.85, close to the clean accuracy of  
 257 0.87, indicating that our 33 heads captures most of the necessary information for the *add-k* task. In  
 258 contrast, selecting the top 33 heads according to AIE yields a much lower intervention accuracy of  
 259 0.31.<sup>2</sup> We visualize the coefficients and AIE values of heads from both methods in Figure 5.

260 **3.2 FURTHER REFINEMENT VIA ABLATIONS**  
 261

262 We suspect many heads are primarily responsible for storing formatting information (such as ensuring  
 263 the output appears as a number) rather than encoding information about  $k$  itself. Intuitively, while  
 264 we require the *overall* signal transmitted by these heads, we do not need any information about the  
 265 specific value of  $k$ . To test this hypothesis, we perform *mean-ablations*: replacing each task-specific  
 266 signal  $h_k$  with the overall mean  $\bar{h}$  across all values of  $k$  (§2.2).

267 Specifically, we conduct mean-ablations over subsets of the 33 significant heads and measure the  
 268 resulting intervention accuracy of the corresponding function vectors. Formally, when ablating a  
 269

<sup>2</sup>Todd et al. select the top 10 heads in their work, but this yields an even lower accuracy of 0.05 in our setting.

| Head            | Scalar               | Accuracy |
|-----------------|----------------------|----------|
| No intervention | N/A                  | 0.87     |
| (15, 2):=Head 1 | 6                    | 0.85     |
| (15, 1):=Head 2 | 5                    | 0.83     |
| (13, 6):=Head 3 | 5                    | 0.66     |
| Any other head  | Optimal <sup>a</sup> | 0.19     |

<sup>a</sup> Scalar chosen to maximize accuracy for each head (scanned over integer values).

Table 1: Intervention accuracies for scaling up each single head’s output by an optimal coefficient. Each of the top three heads (in red) achieves much higher intervention accuracy compared to any other significant head in layer 13 and 15 (in blue).

subset  $\mathcal{H}_0$ , the resulting function vector is given by

$$v_k = \sum_{h \in \mathcal{H}_0} \bar{h} + \sum_{h \in \mathcal{H}_{\text{sig}} \setminus \mathcal{H}_0} h_k. \quad (2)$$

Here, heads in  $\mathcal{H}_0$  contribute only mean signal, while heads in  $\mathcal{H}_{\text{sig}} \setminus \mathcal{H}_0$  retain task-specific signal.

**Focusing on two layers via layer-wise ablation.** To efficiently narrow down the important heads, we first perform mean-ablations at the level of layers. From Figure 5a, we observe that the significant heads  $\mathcal{H}_{\text{sig}}$  are concentrated primarily in the middle and late layers. We speculate that heads in the late layers mainly contribute to formatting the output, as they appear too late in the computation to meaningfully interact with the query. After trying different sets of layers, we found that mean-ablating all significant heads outside layers 13 and 15 still achieves an intervention accuracy of 0.83, while mean-ablating any other combination of layers causes negligible drops in accuracy (Appendix B.1, Table 3). After these ablations, only 11 heads located in layers 13 and 15 remain.

**Identifying three final heads via head-ablation.** To understand the individual contributions of each head within layers 13 and 15, we perform mean-ablations at the level of individual heads. We first assess the intervention accuracy when retaining only the output of a single head while mean-ablating all other significant heads; however, this generally results in low accuracy. We hypothesize that the output magnitude of a single head is too small to significantly influence the model output, even if it encodes task-relevant information. To amplify each head’s effect, we scale its output by a coefficient (e.g., 5). We find that three heads—head 1 = (15, 2), head 2 = (15, 1), and head 3 = (13, 6)—achieve intervention accuracies close to the clean accuracy when appropriately scaled, while all other heads show much lower accuracies regardless of scaling (Table 1). This suggests that these three heads individually encode the task information much better than any others.

Finally, to remove the need for scaling while maintaining high intervention accuracy, we sum the outputs of these three heads (each with a coefficient of one) and mean-ablate all others. We find that summing the top three, top two, and only the top head yields intervention accuracies of 0.79, 0.61, and 0.21, respectively. The three heads are thus collectively sufficient for performing the *add-k* task.

**Validating necessity of the three heads via ablating them in five-shot ICL.** So far, we have studied these three heads mainly through their contribution to the function vector  $v_k$ . We next directly test their necessity in the original five-shot ICL setting, by ablating outputs of these three heads when running the model on random five-shot ICL prompts. Our experiment shows that mean-ablating these three heads yields an accuracy of 0.43, sharply decreasing from the clean accuracy 0.87 by half. For comparison, we mean-ablate 20 random sets of three significant heads (other than head 1,2,3); their accuracies remain close to the clean accuracy: 95% of them have accuracy at least 0.86.

## 4 CHARACTERIZING THE AGGREGATOR SUBSPACE

For the model to perform *add-k*, it has to infer the task information (the number  $k$ ) from the ICL demonstrations. Our next goal is thus to understand how task information is represented in the activation space. Since we have identified three aggregator heads that carry almost all of this information, we can now focus on analyzing the representation space of these three heads.

In this section, we dissect their activation spaces in three stages (illustrated in Figure 3): (1) **Localize** a six-dimensional task subspace in each head via principal component analysis (PCA) (§4.1); (2)

324 **Rotate** this subspace into orthogonal *feature directions* aligned with sinusoidal patterns across  $k$  (§4.2); (3) **Decompose** the six-dimensional space into a four-dimensional *unit-digit* subspace and a two-dimensional *magnitude* subspace that separately encode the units and tens of the answer (§4.3).



328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
(a) **Subspace localization.** The first six PCs of head 1 explain 97% of task variance, so we focus on this six-dimensional subspace.



342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
(b) **Original coordinates.** Coordinates of head 1's vectors on the first six PCs as functions of  $k$ . The first five PCs exhibit partially periodic patterns.



358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
(c) **Subspace rotation.** A linear transformation of the six PCs yields feature directions whose coordinate functions closely fit trigonometric curves with periods 2, 5, 10, 25, and 50.

372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1678  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1778  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1878  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1978  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
2051  
2052  
2053  
2054  
2055  
2056  
2057  
2058  
2059  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2078  
2079  
2080  
2081

378 trigonometric functions, then by applying the transformation on the PCs, we can obtain six directions  
 379 whose coordinate functions encode the periodicity.  
 380

381 To find trigonometric functions to fit, we searched over different periods and phases and performed  
 382 least squares regression. We found six trigonometric functions at periods 2, 5, 10, 10, 25, and 50 that  
 383 could be expressed as functions of the top 6 PCs with low regression error (Figure 3c, Appendix D.1).  
 384 We apply the resulting linear transformation to the six PCs to obtain a new set of directions that  
 385 encode these six pure periodic patterns, which we call *feature directions*.  
 386

### 4.3 DECOMPOSING TO SUBSPACES ENCODING SUBSIGNALS

387 Leveraging the feature directions identified previously, we decompose the head activation subspace  
 388 into lower-dimensional components that separately encode different subsignals relevant to the task—  
 389 in this case, the units digit and tens digit.  
 390

391 By construction, the coordinate function of each feature direction (viewed as linear projections of  $h_k$ )  
 392 is a periodic function of  $k$ . Mathematically, a feature direction with period  $T$  carries task information  
 393 from the head vectors with “modulo  $T$ ”. Based on this, we hypothesize: (i) the feature direction  
 394 corresponding to period two, which we call the “parity direction”, encodes the parity of  $k$  in *add-k*  
 395 task; (ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit  
 396 subspace”, encodes the unit digit of  $k$ ; (iii) the subspace spanned by the directions with periods 25, 50,  
 397 which we call the “magnitude subspace”, encodes the coarse magnitude (i.e., the tens digit) of  $k$ .  
 398

399 We verify these hypotheses through causal intervention. We establish (1) **sufficiency** by showing  
 400 that projecting a head vector *onto* the subspace preserves the relevant task signal; and (2) **necessity**  
 401 by showing that projecting a head vector *out of* the subspace (i.e., onto its orthogonal complement)  
 402 destroys the relevant task signal. [We show experimental results for unit-digit subspace in Figure 3d](#)  
 403 and [defer complete results in Appendix E](#).  
 404

## 5 SIGNAL EXTRACTORS OF ICL DEMONSTRATIONS

405 Previously, we localized the model’s behavior to three heads and their corresponding six-dimensional  
 406 subspaces, then examined how the model represents the task information ( $k$  for *add-k*) inferred  
 407 from the ICL demonstrations in one subspace. Now, we analyze *how* the model extracts the task  
 408 information from the ICL demonstrations.  
 409

410 In this section, we find that: (1) the signal is primarily gathered from the label tokens in demonstra-  
 411 tions; (2) each demonstration  $x_i \rightarrow y_i$  individually contributes a signal  $y_i - x_i$  in the subspace even on  
 412 “mixed” in-context demonstrations with conflicting task information; and (3) when all demonstra-  
 413 tions  $x_i \rightarrow y_i$  share the same value for  $y_i - x_i$ , the extracted signals exhibit a *self-correction* behavior.  
 414

### 5.1 MATHEMATICAL OBSERVATION: TRACING SUBSPACE BACK TO PREVIOUS TOKENS

415 We begin with a mathematical observation that lets us trace the subspace at the final token back to  
 416 corresponding subspaces at earlier token positions. Intuitively, a head’s output at the last token is  
 417 a weighted sum of transformed residual streams from the previous tokens, with the weights given  
 418 by the attention scores. Thus, the signal extracted from previous tokens is the transformed residual  
 419 stream at that token.  
 420

421 Formally, a head  $h$ ’s output at the last token of a prompt  $p$  can be written as  $h(p) = \sum_{t \in p} \alpha_t \cdot O_h V_h \cdot z_t$ ,  
 422 where  $\alpha_t$  is the attention score from the last token to each token  $t$ , satisfying  $\sum_{t \in p} \alpha_t = 1$ ,  $z_t$  is the  
 423 residual stream input to the head  $h$  at token  $t$ ,  $V_h$  is the value matrix, and  $O_h$  is the output matrix  
 424 mapping from head-dimensional space to model-dimensional space.  
 425

426 Let  $W_h$  denote the projection matrix onto the six-dimensional subspace for head  $h$ . Then the projected  
 427 signal at the final token,  $W_h \cdot h(p)$ , can be decomposed into contributions from previous tokens as  
 428  $W_h \cdot \alpha_t O_h V_h z_t$ , each lying in the image of the head subspace under  $W_h O_h V_h$ . In the following  
 429 subsection, we analyze the magnitudes and directions of these signals, and study how signals from  
 430 different demonstrations interact.  
 431

### 5.2 SIGNAL EXTRACTOR FOR EACH DEMONSTRATION

432 To understand how demonstrations contribute to model generation at the last token, we identify which  
 433 tokens contribute the most, then examine what information they provide. By the analysis above, the  
 434



Figure 4: Task-signal extraction for head 1 on a mixed- $k$  ICL prompt. (a) Signal magnitude from previous tokens to the final token consistently peaks at the label tokens. (b) Signal direction consistently peaks at  $y_i - x_i$  for each example  $x_i \rightarrow y_i$ , showing that the head extracts the difference from its corresponding demonstration.

task-signal contribution of each previous token to the final token through the head  $h$  is  $\alpha_t W_h O_h V_h z_t$ . This can be decomposed into two parts: (1) **extracted information**:  $W_h O_h V_h z_t$ , the residual stream input projected into the relevant subspace; and (2) **aggregation weight**:  $\alpha_t$ , the attention score of the final token to the previous token. We plot the norms of the extracted information and the aggregation weights for a random mixed- $k$  ICL prompt (with conflicting  $k_i$  values), in Figure 4a. Both the strength of the extracted information and the aggregation weights peak at  $y_i$  tokens.

We next examine what specific information is extracted from each of these tokens. To do so, we measure the inner product  $\langle W_h O_h V_h z_t, \tilde{h}_k \rangle$  between the extracted information and the head vector (projected onto the subspace and normalized to have unit norm) for each task  $k$ . In Figure 4b, we plot this quantity for a random mixed- $k$  ICL prompt for each token  $y_i$  ( $i \in \{1, \dots, 5\}$ ) and each task  $k \in \{1, \dots, 30\}$ . We find that the inner product consistently peaks at  $k = y_i - x_i$ , indicating that the model extracts the information of  $y_i - x_i$  from the corresponding demonstration  $x_i \rightarrow y_i$ .

### 5.3 SIGNAL CORRELATION AMONG DEMONSTRATIONS

Having studied the signal extracted from each demonstration in the previous subsection, we next study how signals from different demonstrations interact to execute ICL task. To do so, we compute the correlation between the extracted signal from different demonstrations: for each  $y_i$  token, we first compute the inner product between the residual stream input to head 1,  $z_t$ , and the corresponding task vector  $h_k$ , where  $k = y_i - x_i$ . Then, we compute the correlation of these measures across each pair of five positions over 100 *add-k* prompts, yielding  $\binom{5}{2}$  correlations per task.

To analyze the correlation, we sum the negative correlation values and positive correlation values respectively for each task, and calculate the various statistics (max, average and min) over all tasks (Appendix G.1, Table 8). The negative correlation sum is significantly higher than the positive correlation sum for all three statistics, indicating that the signals from any two demonstrations are mostly negatively correlated. This suggests a *self-correction* mechanism: intuitively, when the head extracts a noisy signal from one demonstration, signals from subsequent demonstrations are more likely to correct the error, thereby stabilizing the final representation.

## 6 RELATED WORK

Our work builds on a growing body of interpretability research that aims to uncover circuits and internal computations of language models. Many studies focus on synthetic tasks or models specifically trained on that task (Nanda et al., 2023; Bietti et al., 2023; Reddy, 2023; Singh et al., 2024).

486 Going beyond to large pretrained language models, some papers study general LLMs and tasks but  
 487 provide only coarser-grained analyses (Todd et al., 2024; Olsson et al., 2022; Hendel et al., 2023),  
 488 while others focus on particular model families and specific task classes to obtain more fine-grained  
 489 insights (Hanna et al., 2023; Feng & Steinhardt, 2023; Wu et al., 2023; Zhou et al., 2024; Panickssery  
 490 et al., 2024). Our work follows the latter trajectory: we analyze Llama-3 models and the Qwen-2.5  
 491 model on a structured set of addition ICL tasks, and we provide a deeper and more detailed account  
 492 of ICL mechanisms than prior studies of ICL in LLMs (Todd et al., 2024; Olsson et al., 2022; Hendel  
 493 et al., 2023). Below we discuss three particular threads that are most relevant to this paper.

494 **Interpreting arithmetic tasks.** A recent line of work examines how LLMs perform arithmetic  
 495 (Stolfo et al., 2023; Hanna et al., 2023; Nikankin et al., 2024; Maltoni & Ferrara, 2024), and in  
 496 particular addition (Nanda et al., 2023; Zhong et al., 2023; Zhou et al., 2024; Kantamneni & Tegmark,  
 497 2025). Zhou et al. (2024) find that pre-trained LLMs perform addition using Fourier features, and  
 498 Kantamneni & Tegmark (2025) find that mid-sized LLMs compute addition using a “clock” algorithm  
 499 via a helix representation of numbers. Unlike prior work, we analyze addition in the ICL setting for  
 500 LLMs, and interestingly we find similar representation structures to them.

501 **Interpreting in-context learning.** Researchers have constructed detailed models of in-context  
 502 learning (ICL) for small transformer models in standard supervised learning problems such as linear  
 503 regression (Garg et al., 2022; Akyürek et al., 2023; Zhang et al., 2023; Li et al., 2023; Wu et al., 2024),  
 504 as well as more complex settings (von Oswald et al., 2023; Bai et al., 2023; Bietti et al., 2023; Reddy,  
 505 2023; Guo et al., 2023; Nichani et al., 2024). For large pretrained models, there exist coarser-grained  
 506 treatments attributing ICL performance to either induction heads (Olsson et al., 2022; Singh et al.,  
 507 2024; Crosbie & Shutova, 2025; Bansal et al., 2023) or function vector (FV) heads (Todd et al., 2024;  
 508 Hendel et al., 2023). Yin & Steinhardt (2025) compares the two types of heads and finds that few-shot  
 509 ICL performance depends primarily on FV heads. Motivated by this, we study function vector heads  
 510 in detail for a family of few-shot ICL tasks, introducing a novel optimization method, which achieves  
 511 better performance than the method in Todd et al. (2024). Another difference from Todd et al. (2024)  
 512 is that our tasks have the same input domain, ensuring that the ICL prompts for different tasks differ  
 513 only in the task information, which allows for a clearer understanding of ICL mechanism.

514 **Causal analysis.** There has been a line of research that proposes methods to understand the causal  
 515 influence of model components on model behavior, such as by probing (Conneau et al., 2018; Hewitt  
 516 & Manning, 2019; Clark et al., 2019). Our methodological approach follows recent developments in  
 517 revealing causal effects of model components by interventions on internal states of models (Vig et al.,  
 518 2020; Geiger et al., 2021). In particular, we draw inspiration from causal mediation analysis used in  
 519 Todd et al. (2024), activation patching (Meng et al., 2022), and causal scrubbing (Chan et al., 2022).

## 520 7 DISCUSSION

521 We provided a detailed mechanistic analysis of in-context learning for addition tasks. We found a  
 522 small number of attention heads operating in low-dimensional subspaces can extract, represent and  
 523 aggregate ICL task information in structured and interpretable ways. We analyzed in five steps:

- 524 1. Use sparse optimization to identify important attention heads whose outputs construct effective  
 525 function vectors for ICL tasks (§3.1).
- 526 2. Localize task information to a smaller subset of heads via ablations (§3.2).
- 527 3. Further localize to low-dimensional subspaces via PCA on each remaining head (§4.1).
- 528 4. Examine subspace qualitatively, which uncovered periodic patterns in activation space (§4.2) that  
 529 decomposed into interpretable subspaces encoding unit-digit and magnitude information (§4.3).
- 530 5. Exploit algebraic structure in the transformer to connect “aggregation” subspaces at the final token  
 531 position with “extraction” subspaces at the earlier  $y_i$  tokens (§5).

532 This same methodology (identify important heads, restrict to relevant subspaces, and examine the  
 533 remaining information qualitatively) could be extended to other models and tasks. Most steps in  
 534 our methodology also scale easily: the sparse optimization is fully automatic. While mean ablation  
 535 involved some qualitative judgment, we can fold both of these steps into a single optimization task  
 536 that mean ablates some heads while fully removing others. PCA is also automatic. For the final step  
 537 that involves a qualitative examination of the subspaces, future work could explore automating this  
 538 step using AI systems.

539

540 REFERENCES  
541

542 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning  
543 algorithm is in-context learning? investigations with linear models, 2023. URL <https://arxiv.org/abs/2211.15661>.

545 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:  
546 Provable in-context learning with in-context algorithm selection, 2023. URL <https://arxiv.org/abs/2306.04637>.

548 Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan  
549 Roth. Rethinking the role of scale for in-context learning: An interpretability-based case study at  
550 66 billion scale. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings  
551 of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long  
552 Papers)*, pp. 11833–11856, Toronto, Canada, July 2023. Association for Computational Linguistics.  
553 doi: 10.18653/v1/2023.acl-long.660. URL <https://aclanthology.org/2023.acl-long.660>.

555 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a  
556 transformer: A memory viewpoint, 2023. URL <https://arxiv.org/abs/2306.00802>.

557 Lawrence Chan, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny Nitishin-  
558 skaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrubbing: A method for  
559 rigorously testing interpretability hypotheses. In *AI Alignment Forum*, pp. 10, 2022.

560 Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look  
561 at? an analysis of BERT’s attention. In Tal Linzen, Grzegorz Chrupa, Yonatan Belinkov, and  
562 Dieuwke Hupkes (eds.), *Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and  
563 Interpreting Neural Networks for NLP*, pp. 276–286, Florence, Italy, August 2019. Association for  
564 Computational Linguistics. doi: 10.18653/v1/W19-4828. URL <https://aclanthology.org/W19-4828>.

566 Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. What  
567 you can cram into a single vector: Probing sentence embeddings for linguistic properties, 2018.  
568 URL <https://arxiv.org/abs/1805.01070>.

570 Joy Crosbie and Ekaterina Shutova. Induction heads as an essential mechanism for pattern matching  
571 in in-context learning, 2025. URL <https://arxiv.org/abs/2407.07011>.

572 Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context? *arXiv preprint  
573 arXiv:2310.17191*, 2023.

575 Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. Interpreting the second-order effects of  
576 neurons in clip, 2025. URL <https://arxiv.org/abs/2406.04341>.

577 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn  
578 in-context? a case study of simple function classes. *Advances in Neural Information Processing  
579 Systems*, 35:30583–30598, 2022.

581 Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural  
582 networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan  
583 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 9574–9586. Curran  
584 Associates, Inc., 2021. URL [https://proceedings.neurips.cc/paper\\_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf).

586 Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do  
587 transformers learn in-context beyond simple functions? a case study on learning with representa-  
588 tions, 2023. URL <https://arxiv.org/abs/2310.10616>.

589 Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:  
590 Interpreting mathematical abilities in a pre-trained language model, 2023. URL <https://arxiv.org/abs/2305.00586>.

593 Roei Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In *Findings  
of the Association for Computational Linguistics: EMNLP 2023*, 2023.

594 John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-  
 595 sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019*  
 596 *Conference of the North American Chapter of the Association for Computational Linguistics:*  
 597 *Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4129–4138, Minneapolis,  
 598 Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.  
 599 URL <https://aclanthology.org/N19-1419/>.

600 Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. *arXiv*  
 601 *preprint arXiv:2502.00873*, 2025.

602

603 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-  
 604 formers as algorithms: Generalization and stability in in-context learning. In Andreas Krause,  
 605 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett  
 606 (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of  
 607 *Proceedings of Machine Learning Research*, pp. 19565–19594. PMLR, 23–29 Jul 2023. URL  
 608 <https://proceedings.mlr.press/v202/li23l.html>.

609 Davide Maltoni and Matteo Ferrara. Arithmetic with language models: From memorization to  
 610 computation. *Neural Networks*, 179:106550, November 2024. ISSN 0893-6080. doi: 10.1016/j.  
 611 neunet.2024.106550. URL <http://dx.doi.org/10.1016/j.neunet.2024.106550>.

612 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual  
 613 associations in gpt. *Advances in Neural Information Processing Systems*, 35:17359–17372, 2022.

614

615 Sewon Min, Xinxin Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke  
 616 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?, 2022.  
 617 URL <https://arxiv.org/abs/2202.12837>.

618 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures  
 619 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.

620

621 Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with  
 622 gradient descent, 2024. URL <https://arxiv.org/abs/2402.14735>.

623 Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algorithms:  
 624 Language models solve math with a bag of heuristics, 2024. URL <https://arxiv.org/abs/2410.21272>.

625

626 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,  
 627 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.  
 628 *arXiv preprint arXiv:2209.11895*, 2022.

629

630 Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt  
 631 Turner. Steering llama 2 via contrastive activation addition, 2024. URL <https://arxiv.org/abs/2312.06681>.

632

633 Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context  
 634 classification task, 2023. URL <https://arxiv.org/abs/2312.03002>.

635

636 Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What  
 637 needs to go right for an induction head? a mechanistic study of in-context learning circuits and  
 638 their formation, 2024. URL <https://arxiv.org/abs/2404.07129>.

639

640 Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of  
 641 arithmetic reasoning in language models using causal mediation analysis. In Houda Bouamor, Juan  
 642 Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural*  
 643 *Language Processing*, pp. 7035–7052, Singapore, December 2023. Association for Computational  
 644 Linguistics. doi: 10.18653/v1/2023.emnlp-main.435. URL <https://aclanthology.org/2023.emnlp-main.435/>.

645

646 Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.  
 647 Function vectors in large language models. In *Proceedings of the 2024 International Conference*  
 648 *on Learning Representations*, 2024.

648 Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and  
649 Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.  
650 *Advances in neural information processing systems*, 33:12388–12401, 2020.

651

652 Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,  
653 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent,  
654 2023. URL <https://arxiv.org/abs/2212.07677>.

655 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L. Bartlett.  
656 How many pretraining tasks are needed for in-context learning of linear regression?, 2024. URL  
657 <https://arxiv.org/abs/2310.08391>.

658

659 Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. Interpretability  
660 at scale: Identifying causal mechanisms in alpaca. *Advances in neural information processing*  
661 *systems*, 36:78205–78226, 2023.

662

663 Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? 2025  
664 *International Conference on Machine Learning*, July 2025. URL <https://arxiv.org/abs/2502.14010>.

665

666 Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context,  
667 2023. URL <https://arxiv.org/abs/2306.09927>.

668

669 Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in  
670 mechanistic explanation of neural networks, 2023. URL <https://arxiv.org/abs/2306.17844>.

671

672 Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier  
673 features to compute addition. *arXiv preprint arXiv:2406.03445*, 2024.

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

## A SUPPLEMENT FOR §3.1

## A.1 ADDITIONAL FIGURE FOR §3.1

In §3.1, we developed a global optimization method to identify 33 significant heads for Llama-3-8B-instruct. Here we visualize our optimized coefficients as well as the previous method, also comparing their intervention accuracy in Figure 5.



Figure 5: Comparison of significant heads identified by our optimized coefficients (left) and by average indirect effects (AIE) from the previous method (Todd et al., 2024) (right). Colors indicate the magnitude of each head’s importance (coefficients or AIE) on Llama-3-8B-instruct. The top 33 heads identified by both methods are highlighted with frames (13 heads common across both methods in red and other 20 heads in blue). Our identified heads yield an intervention accuracy of 0.85, compared to the previous method’s accuracy of 0.31. Both methods select heads from similar layers, but our optimization approach is significantly more effective.

## A.2 ADDITIONAL MODELS FOR §3.1

We also train coefficients to get sets of important heads responsible for add-k on Llama-3.2-3B-instruct, Llama-3.2-3B, and Qwen-2.5-7B. In all cases, we achieve better accuracies with less number of heads than Todd et al. (2024). We report our results in Table 2.

756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773

| 774 Model                                                | 775 Llama-3.2-3B-instruct | 776 Llama-3.2-3B | 777 Qwen-2.5-7B |
|----------------------------------------------------------|---------------------------|------------------|-----------------|
| 778 ICL accuracy                                         | 0.50                      | 0.64             | 0.91            |
| 779 Our weighted-heads accuracy                          | 0.66                      | 0.83             | 0.61            |
| Our top-heads accuracy                                   | 0.62                      | 0.75             | 0.34            |
| <a href="#">Todd et al. (2024)</a> 's top-heads accuracy | 0.20                      | 0.1              | 0.12            |

780  
781 Table 2: Accuracies comparison between our method and [Todd et al. \(2024\)](#)'s method as well as  
782 the baseline ICL accuracy on add-k task cross other models. Our weighted-heads accuracy is the  
783 intervention accuracy achieved by the weighted sum of all heads where the weights are the raw  
784 coefficients at the last epoch of our training; our top-heads accuracy is the intervention accuracy  
785 achieved by the sum of top heads selected by coefficients at the last epoch of our training; and the  
786 [Todd et al. \(2024\)](#)'s top-heads accuracy is the intervention accuracy achieved by the sum of top  
787 heads selected by their average indirect effect. Here we choose the number of top heads as the one  
788 giving the highest accuracy for each case. For Llama-3 models, we need to choose around 30 heads  
789 while [Todd et al. \(2024\)](#)'s method needs to choose around 60 heads; for Qwen-2.5 model, we both  
790 need to choose 210 heads. Our weighted-heads accuracy get significant higher accuracy than [Todd](#)  
791 [et al. \(2024\)](#)'s, which indicates our method can find better function vectors than [Todd et al. \(2024\)](#)'s.  
792 Our top-heads accuracy are also higher with less number of heads than [Todd et al. \(2024\)](#)'s, which  
793 indicates our method can also find more effective set of heads for ICL tasks.

794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809

810 B SUPPLEMENT FOR §3.2  
811812 B.1 ADDITIONAL TABLE FOR §3.2  
813

814 In §3.2, we did systematic ablation studies to narrow down the tasks to three main heads from 33  
815 significant heads. The first step of the ablation studies is layer-wise ablation, where we mean-ablate  
816 the significant heads in a subset of layers. We include the experimental results here, which narrow  
817 down to layer 13 and 15 in Table 3.

| 819 | Layer              | Accuracy |
|-----|--------------------|----------|
| 820 | No intervention    | 0.87     |
| 821 | [0, 31]            | 0.85     |
| 822 | [0, 15]            | 0.83     |
| 823 | [13, 15]           | 0.83     |
| 824 | {13, 15}           | 0.83     |
| 825 | {14, 15}           | 0.69     |
| 826 | {13, 14}           | 0.25     |
| 827 | {15}               | 0.71     |
| 828 | {13}               | 0.27     |
| 829 | {14}               | 0.03     |
| 830 | [0, 31] \ {13, 15} | 0.05     |

831 Table 3: Intervention accuracies for keeping the significant heads in the selected layers and mean-  
832 ablating the significant heads in the remaining layers on Llama-3-8B-instruct. We first narrow down  
833 to the layers before layer 15, then the range of [13, 15] and finally {13, 15} (in red), which all almost  
834 preserve the clean accuracy of 0.87, while other combinations lead to substantial drops in accuracy,  
835 especially when mean-ablating layers 13 and 15 (in blue).

838 B.2 ADDITIONAL MODELS FOR §3.2  
839

840 We do the same ablation experiments for other three models, narrowing down to one layer and three  
841 heads for all of them. For two Llama-3.2 models, we narrow down to layer 14 and heads (14, 1), (14,  
842 2), and (14, 12), the sum of which achieves accuracy 0.60 and 0.70. For Qwen-2.5-7B model, we  
843 narrow down to layer 21 and heads (21, 0), (21, 2), and (21, 5), the sum of which achieves accuracy  
844 0.29. Note that all of accuracies of these three heads are higher than the corresponding accuracies by  
845 Todd et al. (2024). We report the specific accuracies under different ablation setups in Tables 4, 5, 6,  
846 and 7.

| 847 | Layer                    | 848 Llama-3.2-3B-instruct Accuracy | 848 Llama-3.2-3B Accuracy |
|-----|--------------------------|------------------------------------|---------------------------|
| 849 | No intervention          | 0.50                               | 0.64                      |
| 850 | [0, 27]                  | 0.62                               | 0.75                      |
| 851 | {14}                     | 0.60                               | 0.70                      |
| 852 | Other single layer (max) | 0.06                               | 0.05                      |

853 Table 4: Intervention accuracies for keeping the significant heads in the selected layers and mean-  
854 ablating the significant heads in the remaining layers on Llama-3.2-3B-instruct and Llama-3.2-3B  
855 models. We both narrow down to the layer 14, which achieves significant higher accuracy than any  
856 other single layer.

864  
865  
866  
867  
868  
869  
870  
871  
872  
873

| Head              | Coefficients | Llama-3.2-3B-instruct Accuracy | Llama-3.2-3B Accuracy |
|-------------------|--------------|--------------------------------|-----------------------|
| (14, 1)           | 5 / 5        | 0.78                           | 0.95                  |
| (14, 2)           | 6 / 4        | 0.51                           | 0.61                  |
| (14, 12)          | 4 / 4        | 0.26                           | 0.26                  |
| Other single head | Optimal      | 0.03                           | 0.08                  |

874  
875  
876  
877  
Table 5: Intervention accuracies for keeping the selected heads scaled by the corresponding coefficients  
878 and mean-ablating all the other significant heads on Llama-3.2-3B-instruct and Llama-3.2-3B  
879 models. We narrow down them both to the same three heads, which achieves significant higher  
880 accuracy than any other single head in layer 14.

881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892

| Layer                    | Qwen-2.5-7B Accuracy |
|--------------------------|----------------------|
| No intervention          | 0.91                 |
| [0, 27]                  | 0.34                 |
| {21}                     | 0.29                 |
| Other single layer (max) | 0.03                 |

893  
894  
895  
896  
Table 6: Intervention accuracies for keeping the significant heads in the selected layers and mean-  
897 ablating the significant heads in the remaining layers on Llama-3.2-3B-instruct and Llama-3.2-3B  
898 models. We both narrow down to the layer 14, which achieves significant higher accuracy than any  
899 other single layer.

900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910

| Head              | Coefficient | Qwen-2.5-7B Accuracy |
|-------------------|-------------|----------------------|
| (21, 5)           | 4           | 0.29                 |
| (21, 0)           | 3           | 0.18                 |
| (21, 2)           | 4           | 0.15                 |
| Other single head | Optimal     | 0.06                 |

911  
912  
913  
914  
Table 7: Intervention accuracies for keeping the selected heads scaled by the corresponding coeffi-  
915 cients and mean-ablating all the other significant heads on Qwen-2.5-7B. We narrow down to three  
916 heads, which achieves significant higher accuracy than any other single head in layer 21.

917

918 C SUPPLEMENT FOR §4.1  
919920 We perform PCA on the 30 task vectors and find that just six directions can explain 97% of the task  
921 variance on Llama-3-8B-instruct (Figure 6a), and similarly for the three models (Figures 6b, 6c and  
922 6d).  
923959 Figure 6: Explained variance ratio vs. number of PCs for each head across models. The first six PCs  
960 make up most of the explained variance (97%) for Llama-3 models, and the first eight PCs do so for  
961 Qwen-2.5-7B.

972 D SUPPLEMENT FOR §4.2  
973974 We first present additional figures for Llama-3-8B-Instruct, followed by results for the other three  
975 models. The main finding is that three heads in each Llama-3.2 model and one head in the Qwen-  
976 2.5 model consistently encode periodic patterns through trigonometric functions. By contrast, the  
977 remaining two heads in Qwen-2.5 do not encode periodicity; instead, their coordinate functions  
978 exhibit distinct behaviors across the intervals  $[1, 10]$ ,  $[11, 20]$ , and  $[21, 30]$ . We conjecture that this  
979 difference arises from tokenization: Qwen encodes numbers digit by digit, leading to discontinuities  
980 across each 10-interval, whereas the Llama family represents every number below 100 as a single  
981 token.982 D.1 ADDITIONAL FIGURES FOR §4.2  
983984 In §4.2, we found six trigonometric functions that can be linearly fitted by the coordinate functions.  
985 Here we first supplement the plot from which we observe the periodic pattern of the coordinate  
986 functions for the three heads (Figure 7) and then show the fitting functions for three heads (Figure 8).  
987988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079



(a) Head (15, 2)



(b) Head (15, 1)



(c) Head (13, 6)

Figure 7: Coordinates of three heads' vectors (inner products with PCs) for the first six PCs across different add- $k$  tasks on Llama-3-8B-instruct. Periodic patterns are visible in the first few PCs of each head.



Figure 8: Coordinate functions of three heads can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 on Llama-3-8B-instruct.

1134 D.2 LLAMA-3.2-3B-INSTRUCT FOR §4.2  
11351136 The Llama family of models show similar results. We show results for Llama-3.2-3B-instruct here  
1137 and omit Llama-3.2-3B.

1138

1139



(a) Head (14, 1)

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187



(b) Head (14, 2)



(c) Head (14, 12)

Figure 9: Coordinates of three heads' vectors (inner products with PCs) for the first six PCs across different add- $k$  tasks on Llama-3.2-3B-instruct. The first six PCs reveal clear periodic patterns.



Figure 10: Coordinate functions of three heads can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 on Llama-3.2-3B-instruct.

1242 D.3 QWEN-2.5-7B FOR §4.2  
1243

1244 One head (21, 0) shows similar periodic patterns while the other two heads do not encode periodicity;  
1245 instead, their coordinate functions exhibit distinct behaviors across the intervals [1, 10], [11, 20], and  
1246 [21, 30]. We conjecture that this difference arises from tokenization: Qwen encodes numbers digit by  
1247 digit, leading to discontinuities across each 10-interval, whereas the Llama family represents every  
1248 number below 100 as a single token.

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300



(a) Head (21, 0)

1313

1314



(b) Head (21, 2)

1328

1329



(c) Head (21, 5)

1344

1345

1346

1347

1348

1349

Figure 11: Coordinates of three heads' vectors (inner products with PCs) for the first six PCs across different add- $k$  tasks on Qwen-2.5-7B. Head (21, 0) reveals periodic patterns, whereas Heads (21, 2) and (21, 5) show discontinuous behaviors across the intervals [1, 10], [11, 20], and [21, 30].



1401  
1402  
1403

Figure 12: Six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 fitted by coordinate  
functions of three heads on Qwen-2.5-7B. Only head (21, 0) fits the periodic functions well, while  
heads (21, 2) and (21, 5) do not, consistent with their non-periodic coordinate behaviors.

1404  
1405 E SUPPLEMENT FOR §4.3  
14061407 Recall that the three hypotheses in §4.3 are as follows:  
1408

- 1408 (i) the feature direction corresponding to period two, which we call the “parity direction”,  
1409 encodes the parity of  $k$  in the *add- $k$*  task;
- 1410 (ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit  
1411 subspace”, encodes the unit digit of  $k$ ;
- 1412 (iii) the subspace spanned by the directions with periods 25, 50, which we call the “magnitude  
1413 subspace”, encodes the coarse magnitude (i.e., the tens digit) of  $k$ .

1414 We first show the experimental results validating hypothesis (ii) for head 1 (Figure 13), and then  
1415 show analogous results for hypotheses (i) and (iii). Projecting out of the parity direction doesn’t lead  
1416 to high errors for the parity and the final answer across all tasks, which might be because parity is  
1417 relatively easy to obtain (e.g., random choice leads to 0.5 accuracy).  
14181432 Figure 13: The error rates for the **unit digit** and the **final answer** across tasks when projecting head 1’s  
1433 vectors **onto** (left) and **out of** (right) the “unit subspace”. Projecting onto the unit subspace results in  
1434 a low unit-digit error rate even when the final-answer error remains high, while projecting out leads  
1435 to high unit-digit error rates that almost fully account for the final-answer errors. This confirms that  
1436 the unit subspace specifically encodes the unit-digit signal.  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457



Figure 14: Validation of hypotheses (i) and (iii) for head 1. Each row shows results for the parity and magnitude subspaces (left: projection **onto**; right: projection **out of**). The unit-digit hypothesis (ii) is omitted here since it is already shown in Figure 13.



Figure 15: Validation of hypotheses (i)–(iii) for head 2. Each row shows the projection effects for the parity, unit, and magnitude subspaces respectively.



(a) Head 3 onto parity direction



(b) Head 3 out of parity direction



(c) Head 3 onto unit subspace



(d) Head 3 out of unit subspace



(e) Head 3 onto magnitude subspace



(f) Head 3 out of magnitude subspace

Figure 16: Validation of hypotheses (i)–(iii) for head 3. The evidence is slightly weaker than for heads 1 and 2, consistent with head 3’s lower intervention accuracy (Table 1).

1620 F SUPPLEMENT FOR §5.2  
16211622 We show the strength and direction of the signals extracted from each individual token through a  
1623 random mixed-k ICL prompt as an example below. Since we find out the Llama family of models  
1624 behave similarly in the previous sections, we here just show results for Llama-3-8B-instruct and  
1625 Qwen-2.5-7B as examples.  
16261627 F.1 ADDITIONAL FIGURES FOR §5.2  
16281629 All three heads for Llama-3-8B-instruct behave similarly in the signal strengths and directions. They  
1630 all peak at the  $y$  tokens and extract signal corresponding to  $y_i - x_i$ .  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1670  
1671  
1672  
1673



1728 F.2 QWEN-2.5-7B FOR §5.2  
17291730 Notice that Qwen-2.5-7B has a different tokenizer from the Llama models: it tokenizes numbers  
1731 digit by digit. The three heads behave qualitatively similarly—peaking at  $y$  tokens and extracting  
1732  $y_i - x_i$ —though sometimes with an offset of 10 or 20.

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781



1831      Figure 18: Qwen-2.5-7B. For each head, the **top panel** shows  $\|\alpha_t W_h O_h V_h z_t\|$ , **decomposed into**  
1832      **two parts:** (1) the norm of extracted information  $\|W_h O_h V_h z_t\|$ , and (2) the attention score from  
1833      the final token  $\alpha_t$ . Both consistently peak at the tokens  $t = y_i$  (in **bold**). The **bottom panel** shows  
1834      the inner products between the projected signals from  $y_i$  and head vectors  $\tilde{h}_k$ , which peak near  
1835       $k = y_i - x_i$  (sometimes offset by 10 or 20), consistent with Qwen's digit-wise tokenization.

1836 **G SUPPLEMENT FOR §5.3**  
18371838 We report the concrete numeric variables computed in §5.3 for Llama-3-8B-instruct, Llama-3.2-3B,  
1839 and Qwen-2.5-7B. The self-correction mechanism significantly exists in Llama family of models  
1840 while partially exists in Qwen model.  
18411842 **G.1 ADDITIONAL TABLE FOR §5.3**  
18431844 The signals from any two demonstrations are mostly negatively correlated for all three heads,  
1845 suggesting a *self-correction* mechanism on Llama-3-8B-instruct.  
1846

| Stat | Neg   | Pos  | Stat | Neg   | Pos  | Stat | Neg   | Pos  |
|------|-------|------|------|-------|------|------|-------|------|
| Avg  | -2.01 | 0.27 | Avg  | -1.95 | 0.05 | Avg  | -0.76 | 0.28 |
| Min  | -1.40 | 0.07 | Min  | -1.65 | 0.00 | Min  | -0.15 | 0.00 |
| Max  | -2.34 | 0.54 | Max  | -2.17 | 0.20 | Max  | -1.68 | 1.03 |

1852 (a) Head (15, 2)

1852 (b) Head (15, 1)

1852 (c) Head (13, 6)

1853 Table 8: Llama-3-8B-instruct: Statistics (min, max, average) of the absolute values of negative  
1854 and positive correlation sums over the 30 tasks for three heads. The negative correlation sum is  
1855 significantly higher for all heads, indicating that signals from any two demonstrations are mostly  
1856 negatively correlated — a hallmark of the *self-correction* mechanism.  
18571858 **G.2 LLAMA-3.2-3B FOR §5.3**  
18591860 The signals from any two demonstrations are mostly negatively correlated for the two stronger heads,  
1861 consistent with the *self-correction* mechanism observed in Llama-3-8B-instruct.  
1862

| Stat | Neg   | Pos  | Stat | Neg   | Pos  | Stat | Neg   | Pos  |
|------|-------|------|------|-------|------|------|-------|------|
| Avg  | -2.12 | 0.23 | Avg  | -2.07 | 0.05 | Avg  | 0.27  | 0.75 |
| Min  | -1.96 | 0.00 | Min  | -1.89 | 0.00 | Min  | 0.00  | 0.00 |
| Max  | -2.41 | 0.53 | Max  | -2.24 | 0.22 | Max  | -0.90 | 0.75 |

1868 (a) Head (14, 1)

1868 (b) Head (14, 2)

1868 (c) Head (14, 12)

1870 Table 9: Llama-3.2-3B: Statistics (min, max, average) of the absolute values of negative and positive  
1871 correlation sums over the 30 tasks for three heads. Heads (14, 1) and (14, 2) show clear negative  
1872 correlation dominance, while head (14, 12) does not — consistent with its weaker task accuracy  
1873 (Table 5).  
18741875 **G.3 QWEN-2.5-7B FOR §5.3**  
18761877 For Qwen-2.5-7B, the correlation pattern varies by head. The head encoding periodic patterns  
1878 (21, 0) still shows strong negative correlations, while the others exhibit weaker or even positive  
1879 correlations—indicating that the *self-correction* mechanism only partially exists.  
18801881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889

1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1910  
1911

|      | Stat | Neg   | Pos  |
|------|------|-------|------|
| 1912 | Avg  | -1.84 | 0.08 |
| 1913 | Min  | -1.44 | 0.00 |
| 1914 | Max  | -2.15 | 0.67 |

1917 (a) Head (21, 0)

1918  
1919  
1920  
1921  
1922

|      | Stat | Neg   | Pos  |
|------|------|-------|------|
| 1912 | Avg  | -0.64 | 0.50 |
| 1913 | Min  | -1.44 | 0.03 |
| 1914 | Max  | -2.19 | 1.57 |

(b) Head (21, 5)

|      | Stat | Neg   | Pos  |
|------|------|-------|------|
| 1912 | Avg  | -0.37 | 2.62 |
| 1913 | Min  | 0.00  | 0.00 |
| 1914 | Max  | -1.85 | 5.54 |

(c) Head (21, 2)

1919 Table 10: Qwen-2.5-7B: Statistics (min, max, average) of the absolute values of negative and positive  
1920 correlations sums over the 30 tasks for three heads. Head (21, 0) shows clear negative correlations,  
1921 while Heads (21, 5) and (21, 2) show mixed or positive correlations, suggesting that *self-correction*  
1922 partially exists in Qwen-2.5-7B.

1923  
1924  
1925  
1926  
1927  
1928  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1940  
1941  
1942  
1943