
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING IN-CONTEXT LEARNING OF ADDI-
TION VIA ACTIVATION SUBSPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

To perform few-shot learning, language models extract signals from a few input-
label pairs, aggregate these into a learned prediction rule, and apply this rule to
new inputs. How is this implemented in the forward pass of modern transformer
models? To explore this question, we study a structured family of few-shot learning
tasks for which the true prediction rule is to add an integer k to the input. We
introduce a novel optimization method that localizes the model’s few-shot ability
to only a few attention heads. We then perform an in-depth analysis of individual
heads, via dimensionality reduction and decomposition. As an example, on Llama3-
8B-instruct, we reduce its mechanism on our tasks to just three attention heads
with six-dimensional subspaces, where four dimensions track the unit digit with
trigonometric functions at periods 2, 5, and 10; and two dimensions track magnitude
with low-frequency components. To more deeply understand the mechanism behind
this, we also derive a mathematical identity relating “aggregation” and “extraction”
subspaces for attention heads, allowing us to track the flow of information from
individual examples to a final aggregated concepts. Using this, we identify a
self-correction mechanism where mistakes learned from earlier demonstrations
are suppressed by later demonstrations. Our results demonstrate how tracking
low-dimensional subspaces of localized heads across a forward pass can provide
insight into fine-grained computational structures in language models.

1 INTRODUCTION

Large language models (LLMs) exhibit in-context learning (ICL) abilities; for instance, they can
few-shot learn new tasks from a small number of demonstrations in the prompt. To understand this
ability, past works have constructed detailed models of ICL for small synthetic language models (Garg
et al., 2022; Akyürek et al., 2023; von Oswald et al., 2023) as well as coarser-grained analyses of
large pretrained models (Olsson et al., 2022; Hendel et al., 2023; Todd et al., 2024). However, little is
known about the fine-grained computational structure of ICL for large models.

ICL extracts task information from demonstrations and applies the aggregated information to input
queries. Previous work (Todd et al., 2024) constructed a vector (i.e., the “function” vector) from
demonstrations that encode the task information—for instance, adding it to the residual stream on
zero-shot inputs recovers ICL behavior. However, two questions remain elusive: (1) How precisely
do function vectors encode task information? (2) How do models aggregate information from ICL
examples to form such function vectors?

To address these questions, we perform a case study for few-shot learning of arithmetic (i.e., learning
to add a constant k to the input). This family of tasks has the advantage of providing a large number
of tasks (different integers k) that all share the same input domain, which is important to rule out
domain-based shortcuts when analyzing ICL mechanisms (§2.1). Arithmetic also has the advantage
of being well-studied in other (non-in-context) settings (Zhou et al., 2024; Kantamneni & Tegmark,
2025), allowing us to situate our results with other known mechanisms. Finally, most LLMs perform
this task reliably (e.g. 87% accuracy for Llama3 and 90% for Qwen2.5).

To study this setting, we first introduce a novel optimization method for localizing few-shot ability to a
small number of attention heads. Our approach is inspired by previous work on function vectors (Todd
et al., 2024), which mimic ICL when they are patched into the residual stream (§2.2). While Todd
et al. (2024) selected heads based on their individual effect on ICL performance, we search for

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Prompt: “3 → 15#7 → 19#11 → 23#15 → 27#28 → 30#9 →”

(0,0)

(13, 6)

(15, 1)
(15, 2)

(31, 31)

Finding 4: task 
signals flow from 
output tokens to 
final token via a 
self-correction 

mechanism

Attention heads’ computation at the last token

(layer_idx, head_idx) previous tokens last token

Finding 1: out of 1024 attention heads in Llama-3-8b, only 3 are important for add-k ICL.

…
…

…

Task: add-12 (e.g., 3+12=15)

128-dim
+12
6-dim

Finding 2: projecting head 
activation space from 128-dim to 
6-dim preserves task information.

“+12”

Finding 3: 6-dim subspace factors 
into 4-dim capturing the unit digit 
and 2-dim capturing the ten-digit.

+10
(ten-digit)

+2
(unit-digit)

6-dim

2-dim 4-dim

Figure 1: Key findings of our methods in the specific case of Llama3-8b (illustrated using an
example add-k prompt): (1) out of 1024 attention heads, only three are important for add-k ICL
(§4); (2) each head encodes the task information k in a six-dimensional subspace (§4.1); (3) the
six-dimensional subspace further factors into four dimensions capturing the unit digit of k (encoding
periodic functions at periods 2,5, and 10) and two dimensions capturing its ten digit (encoding higher
frequency functions) (§4.3); and (4) task information flows from output tokens to final token via a
self-correction mechanism (§5).

a continuous set of coefficients that produces a sparse weighted combination of heads, where the
combination maximizes ICL performance (§3.1). Our method succesfully finds a small number of
heads that recover most of the ICL performance (§3.2); for example, Llama3-8B-instruct achieves
79% accuracy using function vectors from just three heads (90% of the original ICL accuracy).

We next perform a detailed analysis of these heads, through dimensionality reduction and decomposi-
tion. We find that the task information from each head can be reduced to a low-dimensional subspace
typically consisting of trigonometric functions. For example, in each of the three important heads in
Llama3-8B-instruct, we get a 6-dimensional subspace, where 4 dimensions are periodic functions
with periods 2, 5, and 10 (tracking the units digit) and 2 dimensions are low-frequency functions
(tracking the tens digit) (§4). This interestingly aligns with recent findings in non-in-context settings
where addition is also encoded by trigonometric (Zhou et al., 2024) or helical functions (Kantamneni
& Tegmark, 2025), suggesting a deeper relation between non-ICL and ICL machinery.

Finally, we further study the flow of information across tokens, by deriving a general mathemat-
ical relation between “extractor” and “aggregator” subspaces, building on the second-order logit
lens (Gandelsman et al., 2025). This lets us study the task-related information that heads extract from
each token. For example, in Llama3-8B-instruct we find that task information is mostly extracted
from output tokens (§5.2). Moreover, we find a self-correction mechanism: if the signal extracted
from one token has an error, signals from later tokens often write in the opposite direction of the error
(§5.3). This suggests that ICL goes beyond simple averaging of inputs and has stateful dynamics.

In summary, we found that task-specific information in ICL can be localized to a small number of
attention heads and low-dimensional subspaces with structured patterns. We also found that models
employ a self-correction mechanism when the task information flows from the “extractor” subspaces
to the “aggregator” subspaces. Our findings show how even in large models, ICL mechanisms can be
localized to specialized activation subspaces from a small number of heads that extract, represent,
and aggregate information in interpretable ways.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our key contributions are thus as follows: (1) we introduce a novel optimization method to identify
relevant attention heads for ICL; (2) we derive a precise mathematical relation between signals from
earlier tokens and the output token; and (3) we perform a focused analysis of ICL addition and are
able to reverse-engineer rich latent structures and sophisticated computational strategies in LLMs.

2 PRELIMINARIES

2.1 MODEL AND TASK

We begin by specifying the model and the task studied in this paper.

Model. We focus on Llama3-8B-instruct in the main body, which has 32 layers and 32 attention
heads per layer and a residual dimension of 4096. We denote each head as a tuple (layer index,
head index), where both indices range from 0 to 31. To make our analysis broader in model size,
training type, and model family, we also experiment on Llama-3.2-3B-instruct, Llama-3.2-3B, and
Qwen2.5-7B and report the results in appendix. The results are consistent across Llama family and
directionally similar for the Qwen model.

Task. We study a structured family of ICL tasks that we call add-k. For a constant k, the add-k task
is to add k to a given input integer x to predict y = x+ k. In an n-shot ICL prompt, the model is
given n demonstrations of the form “xi → yi” with yi = xi + k, concatenated using the separator
“#”, followed by a query “xq →” (see Figure 1 for an example). A key advantage of this family of
tasks is that ICL prompts for different tasks only differ in k (i.e. yi − xi) but not in the input domain,
enabling us to isolate task information from input content so as to dissect the ICL mechanism at a
finer granularity.

Our choice contrasts with prior work, which considers tasks such as product-company (“iPhone
5→apple”) or celebrity->career (“Taylor Swift→singer”) (Todd et al., 2024). In such cases, the input
domain itself leaks information about the task: from the query alone, one could reasonably guess that
‘apple’ or ‘singer’ are likely outputs (Min et al., 2022). This makes it difficult to distinguish whether
the success stems from extracting the task rule or from leveraging domain-specific associations. For
add-k, the query xq alone provides no information about the hidden constant k, so the model must
infer k from the demonstrations, which cleanly dissect the key components of ICL mechanism.

We construct data for the task by varying x ∈ [1, 100] and k ∈ [1, 30] (thus y ∈ [2, 130]) since
Llama-3 models are empirically capable of solving the addition task in this range. We consider the
following three types of prompts:
1. five-shot ICL prompt, where all five demonstrations satisfy yi = xi + k for a fixed k ∈ [1, 30]. We

also call this add-k ICL.
2. mixed-k ICL prompt, where the demonstrations are yi = xi + ki for possibly different ki values.
3. zero-shot prompt, where there are no demonstrations: the prompt is “xq →” for some xq .

We mostly study five-shot ICL prompts as examples of our ICL tasks, and use them to generate
function vectors (§2.2). We also examine the information extracted from demonstrations in mixed-k
ICL prompts, which is a varied version of five-shot ICL prompts with mistaken demonstrations, in
§5.2. We use zero-shot prompts to evaluate the effectiveness of heads and function vectors (§2.2).

2.2 ACTIVATION PATCHING AND FUNCTION VECTORS

Next, we briefly review activation patching, a common interpretability technique that will be used
throughout the paper, and the function vector, a construction that we will use to identify important
heads for our ICL tasks.

Activation patching. Activation patching is performed by taking the activations of a model compo-
nent when the model is run on one prompt, then patching in these activations when the model is run
on a different prompt. Patching can either replace the model’s base activations or add to them; we
will primarily consider the latter.

Specifically, if zl is the original value of the residual stream at layer l at the final token position
“→”, we patch in the replacement zl + v, where v is constructed from activations on a different input

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4096-dim space

Add-k
6-dim subspace (add-k)

4-dim subspace (unit-digit)

2-dim subspace (ten-digit)
head 1

128-dim activation spacehead 1
128-dim activation space

Sec 
3.1

1024 attention heads 33 significant heads
3 main heads
30 mean-ablated heads

Sec 
3.2

Sec 4.2 Sec 4.1

Figure 2: The chain of localization in §3 and §4. We first identify 33 significant attention heads
(out of 1024) via a global optimization method (§3.1), then narrow down to 3 main heads while
mean-ablating the remaining 30 (§3.2). We next study the structure of the representation of each main
head by localizing it to a six-dimensional subspace (§4.1), and decompose it into a four-dimensional
subspace encoding the unit digit and a two-dimensional subspace encoding the tens digit (§4.3).

prompt. We choose the layer l at one third of the network’s depth and construct v from “function
vector” heads, following Todd et al. (2024), as described next.

Function vectors. Function vectors vk are vectors constructed from the outputs of selected attention
heads, designed so that adding vk to the residual stream of a zero-shot prompt approximates the effect
of the five-shot add-k task. For example, vk might be the average output of one or more attention
heads across a set of five-shot add-k examples. We define the intervention accuracy of vk as the
average accuracy obtained on zero-shot prompts when vk is added to the residual stream across all
tasks k. Due to the independency between k and input queries, this metric captures how effectively vk
encodes task-specific information about k. For comparison, we define clean accuracy as the accuracy
on five-shot prompts without any intervention, also averaged across all tasks k.

In more detail, consider an attention head h: let h(p) denote the output of head h on prompt p at the
last token position, and define hk as the average of h(p) across all five-shot add-k prompts.1 Todd
et al. (2024) identified a subset H of attention heads (for a different set of tasks) such that the vector
vk =

∑
h∈H hk has high intervention accuracy—that is, adding it to the residual stream of zero-shot

prompts effectively recovers few-shot task performance.

Building on this framework, we consider multiple ways to construct vk: (1) the task-specific mean hk

over the add-k task (as described above); (2) the overall mean h̄ (i.e., average across all k), which
removes task-specific information about k; or (3) the specific value h(p) on an individual prompt p.
Throughout the paper, we call h̄ the mean-ablation of head h and call hk the head vector of h
with respect to k. Beyond the three choices above, we sometimes project a head’s output onto a
lower-dimensional subspace or scale it by a coefficient. Unlike Todd et al. (2024), we recover a
different set of heads through solving a novel global optimization problem (§3.1) and systematic
ablation studies (§3.2), which achieves higher performance (Figure 3).

3 IDENTIFYING THREE AGGREGATOR HEADS

To understand the mechanism behind the add-k ICL task, we first need to find out what model
components are responsible for performing it. In this section, we find that three heads do most

1Similar to Todd et al. (2024), we approximate this average using 100 randomly generated five-shot add-k
prompts, where each prompt contains random demonstration inputs xi and the final query input xq is chosen
exactly once from each integer in [1, 100].

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of the work for add-k. We find these heads by first solving an optimization problem to identify
33 significant heads out of 1024 (§3.1), and then further narrowing down to three main heads via
systematic ablations (§3.2). This process is illustrated in the first row of Figure 2.

3.1 IDENTIFYING SIGNIFICANT HEADS VIA SPARSE OPTIMIZATION

We will search for a set of heads that store the information for the add-k task, in the sense that their
output activations yield good function vectors for add-k (§2.2).

Formulating the sparse optimization. More formally, define vk(c) =
∑

h ch · hk, the sum of head
outputs weighted by c, where h goes over all 1024 heads in the model. (Recall that hk is the average
output of head h averaged across a large dataset of five-shot add-k prompts.) We will search for a
sparse coefficient vector c ∈ [0, 1]1024 such that adding vk(c) to the residual stream of a zero-shot
prompt achieves high accuracy on the add-k task.

Let ℓ(xq, yq; v) be the cross-entropy loss between yq and the model output when intervening the
vector v onto the input “xq →”(i.e. replacing zl with zl + v in the forward pass on “xq →”, where zl
is the layer-l residual stream at the last token). We optimize c with respect to the loss

L(c) = Ek∈[30]Exq∈[100][ℓ(xq, xq + k; vk(c))] + λ∥c∥1, (1)

where the regularization term with weight λ promotes sparsity.

Training details. We randomly select 25 add-k tasks of the total 30 tasks for training and in-
distribution testing, and use the remaining five tasks only for out-of-distribution testing. For each task
add-k, we generate 100 zero-shot prompts “xq →”, where xq ranges over all integers from [1, 100]
and the target output is xq+k, yielding one data point for each (prompt, task) pair. We randomly split
the data points of the 25 tasks into training, validation, and test sets in proportions 0.7, 0.15, and 0.15,
respectively. We use AdamW with learning rate 0.01 and batch size 128. We set the regularization
rate λ as 0.05, which promotes sparsity while incurring little loss in accuracy. During training, we
clip the coefficients c back to [0, 1] if they go out of range after each gradient step.

Results. We get coefficients that achieves high intervention accuracy. In particular, at the final epoch,
the average accuracies of intervening on test data for the 25 tasks and the five tasks (0.83 and 0.87)
are both close to the average accuracies of doing no intervention (0.89 and 0.92). To identify the
important heads for the tasks, we plot the values of the coefficients in the final epoch for each layer
and head index (Figure 3a). We find 33 heads have coefficients ch greater than 0.2, most (21) of
which are one. In contrast, the other (991) coefficients are all smaller than 0.01, most (889) of which
are zero. We call the 33 heads significant heads and denote the set of them as Hsig.

Comparison to previous approach. We compare our optimization approach with the previous
method from Todd et al. (2024) for identifying important heads, which selects heads based on average
indirect effect (AIE). To perform a fair comparison, we construct our function vector by summing the
outputs of our selected heads directly without weighting by coefficients, matching their methodology.
Using this construction, we achieve an intervention accuracy of 0.85, close to the clean accuracy of
0.87, indicating that our 33 heads captures most of the necessary information for the add-k task. In
contrast, selecting the top 33 heads according to AIE yields a much lower intervention accuracy of
0.31.2 We visualize the coefficients and AIE values of heads from both methods in Figure 3.

3.2 FURTHER REFINEMENT VIA ABLATIONS

We suspect many heads are primarily responsible for storing formatting information (such as ensuring
the output appears as a number) rather than encoding information about k itself. Intuitively, while
we require the overall signal transmitted by these heads, we do not need any information about the
specific value of k. To test this hypothesis, we perform mean-ablations: replacing each task-specific
signal hk with the overall mean h across all values of k (§2.2).

Specifically, we conduct mean-ablations over subsets of the 33 significant heads and measure the
resulting intervention accuracy of the corresponding function vectors. Formally, when ablating a

2Todd et al. select the top 10 heads in their work, but this yields an even lower accuracy of 0.05 in our setting.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Head Coefficient Accuracy

No intervention N/A 0.87
(15, 2):=Head 1 6 0.85
(15, 1):=Head 2 5 0.83
(13, 6):=Head 3 5 0.66
Any other head Optimal 0.19

Table 1: Intervened accuracies for scaling up each single head’s output by an optimal coefficient.
Each of the top three heads (in red) achieves much higher intervention accuracy compared to any
other significant head in layer 13 and 15 (in blue).

subset H0, the resulting function vector is given by

vk =
∑
h∈H0

h+
∑

h∈Hsig\H0

hk. (2)

Here, heads in H0 contribute only their overall mean signals, while heads in Hsig \ H0 retain their
task-specific information.

Focusing on two layers via layer-wise ablation. To efficiently narrow down the important heads,
we first perform mean-ablations at the level of layers. From Figure 3a, we observe that the significant
heads Hsig are concentrated primarily in the middle and late layers. We speculate that heads in the
late layers mainly contribute to formatting the output, as they appear too late in the computation to
meaningfully interact with the query. After trying different sets of layers, we found that mean-ablating
all significant heads outside layers 13 and 15 still achieves an intervention accuracy of 0.83, while
mean-ablating any other combination of layers causes negligible drops in accuracy (Appendix B.1,
Table 3). After these ablations, only 11 heads located in layers 13 and 15 remain.

Identifying three final heads via head-ablation. To understand the individual contributions of each
head within layers 13 and 15, we perform mean-ablations at the level of individual heads. We first
assess the intervention accuracy when retaining only the output of a single head while mean-ablating
all other significant heads; however, this generally results in low accuracy. We hypothesize that the
output magnitude of a single head is too small to significantly influence the model output, even if it
encodes task-relevant information. To amplify each head’s effect, we scale its output by a coefficient
(e.g., 5). We find that three heads—head 1 = (15, 2), head 2 = (15, 1), and head 3 = (13, 6)—achieve
intervention accuracies close to the clean accuracy when appropriately scaled, while all other heads
show much lower accuracies regardless of scaling (Table 1). This suggests that these three heads
individually encode the task information much better than any others.

Finally, to remove the need for scaling while maintaining high intervention accuracy, we sum the
outputs of these three heads (each with a coefficient of one) and mean-ablate all others. We find that
summing the top three, top two, and only the top head yields intervention accuracies of 0.79, 0.61,
and 0.21, respectively. The three heads are thus collectively sufficient for performing the add-k task.

Validating necessity of the three heads via ablating them in five-shot ICL. So far, we have studied
these three heads mainly through their contribution to the function vector vk. We next directly test
their necessity in the original five-shot ICL setting, by ablating the outputs of these three heads when
running the model on many random five-shot ICL prompts. Our experiment shows that mean-ablating
these three heads in five-shot prompts yields an accuracy of 0.43, sharply decreasing from the clean
accuracy 0.87 by half. For comparison, we mean-ablate 20 random sets of three significant heads
(other than head 1,2,3); their accuracies remain close to the clean accuracy: 95% of them have
accuracy at least 0.86.

4 CHARACTERIZING THE AGGREGATOR SUBSPACE

For the model to perform add-k, it has to infer the task information (the number k) from the ICL
demonstrations. Our next goal is thus to understand how task information is represented in the
activation space. Since we have identified three aggregator heads that carry almost all of this
information, we can now focus on analyzing the representation space of these three heads.

In this section, we dissect their activation spaces in three stages: (1) Localize a six–dimensional task
subspace in each head via principal component analysis (PCA) (§4.1); (2) Rotate this subspace into

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

orthogonal feature directions aligned with sinusoidal patterns across k (§4.2); (3) Decompose the
six-dimensional space into a four-dimensional unit-digit subspace and a two-dimensional magnitude
subspace that separately encode the units and tens of the answer (§4.3).

4.1 LOCALIZING TO SIX-DIMENSIONAL SUBSPACE

To reduce the 128-dimensional head activation to a more tractable space to study, we first perform
PCA on the 30 task vectors and find that just six directions can explain 97% of the task variance
(Appendix C, Figure 4). We then check that the function vectors found earlier remain effective after
projecting onto the subspace. Specifically, we replace each head vector hk with its projection onto
the subspace h̃k to obtain a new function vector ṽk =

∑
h∈H h̃k (a variant of vk =

∑
h∈H hk in

§2.2). We find that ṽk has intervention accuracy 0.76, which is close to the intervention accuracy of
0.79 before projection (§3.2). Thus, we confine our study to the concise six-dimensional subspace
for each head.

4.2 IDENTIFYING FEATURE DIRECTIONS ENCODING PERIODIC PATTERNS

To understand how the six-dimensional subspace of a head represents the task information, we first
examine the coordinates of the head vectors (their inner products with the principal components (PC))
as a function of k. This reveals partially periodic patterns in the first five components (Appendix D.1,
Figure 8, 9, 10).

This motivates us to linearly transform the six PCs to find directions that encode pure periodic patterns.
Mathematically, if we can find a linear transformation of the six PC-coordinate functions that fits
trigonometric functions, then by applying the transformation on the PCs, we can obtain six directions
whose coordinate functions encode the periodicity.

To find trigonometric functions to fit, we searched over different periods and phases and performed
least squares regression. We found six trigonometric functions at periods 2, 5, 10, 10, 25, and 50 that
could be expressed as functions of the top 6 PCs with low regression error (Appendix D.1, Figure 11,
12, 13). We apply the resulting linear transformation to the six PCs to obtain a new set of directions
that encode these six pure periodic patterns, which we call feature directions.

4.3 DECOMPOSING TO SUBSPACES ENCODING SUBSIGNALS

Leveraging the feature directions identified previously, we decompose the head activation subspace
into lower-dimensional components that separately encode different subsignals relevant to the task—
in this case, the units digit and tens digit.

By construction, the coordinate function of each feature direction (viewed as linear projections of hk)
is a periodic function of k. Mathematically, a feature direction with period T carries task information
from the head vectors with “modulo T ”. Based on this, we hypothesize: (i) the feature direction
corresponding to period two, which we call the “parity direction”, encodes the parity of k in add-k
task; (ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit
subspace”, encodes the unit digit of k; (iii) the subspace spanned by the directions with periods 25, 50,
which we call the “magnitude subspace”, encodes the coarse magnitude (i.e., the tens digit) of k.

We verify these hypotheses through causal intervention. We establish (1) sufficiency by showing
that projecting a head vector onto the subspace preserves the relevant task signal; and (2) necessity
by showing that projecting a head vector out of the subspace (i.e., onto its orthogonal complement)
destroys the relevant task signal. We defer experimental results in Appendix E.

5 SIGNAL EXTRACTORS OF ICL DEMONSTRATIONS

Previously, we localized the model’s behavior to three heads and their corresponding six-dimensional
subspaces, then examined how the model represents the task information (k for add-k) inferred
from the ICL demonstrations in one subspace. Now, we analyze how the model extracts the task
information from the ICL demonstrations.

In this section, we find that: (1) the signal is primarily gathered from the yi tokens in each demon-
stration xi → yi; (2) each demonstration xi → yi individually contributes a signal yi − xi in the
subspace even on “mixed” in-context demonstrations with conflicting task information; and (3)
when all demonstrations xi → yi share the same value for yi − xi, the extracted signals exhibit a
self-correction behavior.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1 MATHEMATICAL OBSERVATION: TRACING SUBSPACE BACK TO PREVIOUS TOKENS

We begin with a mathematical observation that lets us trace the subspace at the final token back to
corresponding subspaces at earlier token positions. Intuitively, a head’s output at the last token is
a weighted sum of transformed residual streams from the previous tokens, with the weights given
by the attention scores. Thus, the signal extracted from previous tokens is the transformed residual
stream at that token.

Formally, a head h’s output at the last token of a prompt p can be written as h(p) =
∑

t∈p αt·OhVh·zt,
where αt is the attention score from the last token to each token t, satisfying

∑
t∈p αt = 1, zt is the

residual stream input to the head h at token t, Vh is the value matrix, and Oh is the output matrix
mapping from head-dimensional space to model-dimensional space.

Let Wh denote the projection matrix onto the six-dimensional subspace for head h. Then the projected
signal at the final token, Wh · h(p), can be decomposed into contributions from previous tokens as
Wh · αtOhVhzt, each lying in the transformed head subspace defined by the matrix Wh ·OhVh. In
the following subsection, we analyze the magnitudes and directions of these signals, and study how
signals from different demonstrations interact.

5.2 SIGNAL EXTRACTOR FOR EACH DEMONSTRATION

To understand how demonstrations contribute to model generation at the last token, we identify which
tokens contribute the most, then examine what information they provide. By the analysis above, the
task-signal contribution of each previous token to the final token through the head h is αtWhOhVhzt.
This can be decomposed into two parts: (1) extracted information: WhOhVhzt, the residual stream
input projected into the relevant subspace; and (2) aggregation weight: αt, the attention score of the
final token to the previous token. We plot the norms of the extracted information and the aggregation
weights for a random mixed-k ICL prompt in Appendix F.1. Both the strength of the extracted
information and the aggregation weights peak at yi tokens.

We next examine what specific information is extracted from each of these tokens. To do so, we
measure the inner product ⟨WhOhVhzt, h̃k⟩ between the extracted information and the head vector
(projected onto the subspace and normalized to have unit norm) for each task k. In Figure 34, we
plot this quantity for a random mixed-k ICL prompt for each token yi (i ∈ {1, . . . , 5}) and each task
k ∈ {1, . . . , 30}. We find that the inner product consistently peaks at k = yi − xi, indicating that the
model extracts the information of yi − xi from the corresponding demonstration xi → yi.

5.3 SIGNAL CORRELATION AMONG DEMONSTRATIONS

Having studied the signal extracted from each demonstration in the previous subsection, we next
study how signals from different demonstrations interact to execute ICL task. To do so, we compute
the correlation between the extracted signal from different demonstrations: for each yi token, we first
compute the inner product between the residual stream input to head 1, zt, and the corresponding
task vector hk, where k = yi − xi. Then, we compute the correlation of these measures across each
pair of five positions over 100 add-k prompts, yielding

(
5
2

)
correlations per task.

To analyze the correlation, we sum the negative correlation values and positive correlation values
respectively for each task, and calculate the various statistics (max, average and min) over all tasks
(Appendix G.1, Table 16). The negative correlation sum is significantly higher than the positive
correlation sum for all three statistics, indicating that the signals from any two demonstrations are
mostly negatively correlated. This suggests a self-correction mechanism: intuitively, when the head
extracts a noisy signal from one demonstration, signals from subsequent demonstrations are more
likely to correct the error, thereby stabilizing the final representation.

6 RELATED WORK

Our work builds on a growing body of interpretability research that aims to uncover circuits and inter-
nal computations of language models. Many studies focus on synthetic tasks or models specifically
trained on that task (Hanna et al., 2023; Nanda et al., 2023; Bietti et al., 2023; Reddy, 2023; Singh
et al., 2024). Going beyond to large pretrained language models, some papers study general LLMs
and tasks but provide only coarser-grained analyses (Feng & Steinhardt, 2023; Todd et al., 2024;

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Olsson et al., 2022; Hendel et al., 2023), while others focus on particular model families and specific
task classes to obtain more fine-grained insights (Wu et al., 2023; Zhou et al., 2024; Panickssery
et al., 2024). Our work follows the latter trajectory: we analyze the Llama-3 family on a structured
set of addition ICL tasks, and we provide a deeper and more detailed account of ICL mechanisms
than prior studies of ICL in LLMs (Todd et al., 2024; Olsson et al., 2022; Hendel et al., 2023). Below
we discuss three particular threads that are most relevant to this paper.

Interpreting arithmetic tasks. A recent line of work examines how LLMs perform arithmetic
(Stolfo et al., 2023; Hanna et al., 2023; Nikankin et al., 2024; Maltoni & Ferrara, 2024), and in
particular addition (Nanda et al., 2023; Zhong et al., 2023; Zhou et al., 2024; Kantamneni & Tegmark,
2025). Zhou et al. (2024) find that pre-trained LLMs perform addition using Fourier features, and
Kantamneni & Tegmark (2025) find that mid-sized LLMs compute addition using a “clock” algorithm
via a helix representation of numbers. Different from them, our work is the first to analyze addition
for in-context learning in LLM, and interestingly we find similar representation structures to them.

Interpreting in-context learning. Researchers have constructed detailed models of in-context
learning (ICL) for small transformer models in standard supervised learning problems such as linear
regression (Garg et al., 2022; Akyürek et al., 2023; Zhang et al., 2023; Li et al., 2023; Wu et al., 2024),
as well as more complex settings (von Oswald et al., 2023; Bai et al., 2023; Bietti et al., 2023; Reddy,
2023; Guo et al., 2023; Nichani et al., 2024). For large pretrained models, there exist coarser-grained
treatments attributing ICL performance to either induction heads (Olsson et al., 2022; Singh et al.,
2024; Crosbie & Shutova, 2025; Bansal et al., 2023) or function vector (FV) heads (Todd et al., 2024;
Hendel et al., 2023). Yin & Steinhardt (2025) compares the two types of heads and finds that few-shot
ICL performance depends primarily on FV heads. Motivated by this, we study function vector heads
in details for a family of ICL tasks, introducing a novel optimization method, which achieves better
performance than the method in Todd et al. (2024). Another difference from Todd et al. (2024) is that
our tasks have the same input domain, ensuring that the ICL prompts for different tasks differ only in
the task information, which allows for a clearer understanding of ICL mechanism.

Causal analysis. There has been a line of research that proposes methods to understand the causal
influence of model components on model behavior, such as by probing (Conneau et al., 2018; Hewitt
& Manning, 2019; Clark et al., 2019). Our methodological approach follows recent developments in
revealing causal effects of model components by interventions on internal states of models (Vig et al.,
2020; Geiger et al., 2021). In particular, we draw inspiration from causal mediation analysis used in
Todd et al. (2024), activation patching (Meng et al., 2022), and causal scrubbing (Chan et al., 2022).

7 DISCUSSION

In this work, we provided a detailed mechanistic analysis of in-context learning for addition tasks.
We found that a small number of attention heads operating in low-dimensional subspaces can extract,
represent, and aggregate ICL task information in structured and interpretable ways. We performed
our analysis in five steps:

1. Use sparse optimization to identify important attention heads whose outputs construct effective
function vectors for ICL tasks (§3.1).

2. Localize task information to a smaller subset of heads via ablations (§3.2).
3. Further localize to low-dimensional subspaces via PCA on each remaining head (§4.1).
4. Examine subspace qualitatively, which uncovered periodic patterns in activation space (§4.2) that

decomposed into interpretable subspaces encoding unit-digit and magnitude information (§4.3).
5. Exploit algebraic structure in the transformer to connect “aggregation” subspaces at the final token

position with “extraction” subspaces at the earlier yi tokens (§5).

This same methodology (identify important heads, restrict to relevant subspaces, and examine the
remaining information qualitatively) could be extended to other models and tasks. Most steps in
our methodology also scale easily: the sparse optimization is fully automatic. While mean ablation
involved some qualitative judgment, we can fold both of these steps into a single optimization task
that mean ablates some heads while fully removing others. PCA is also automatic. For the final step
that involves a qualitative examination of the subspaces, future work could explore automating this
step using AI systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models, 2023. URL https://arxiv.
org/abs/2211.15661.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023. URL https://arxiv.
org/abs/2306.04637.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan
Roth. Rethinking the role of scale for in-context learning: An interpretability-based case study at
66 billion scale. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 11833–11856, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.660. URL https://aclanthology.org/2023.acl-long.660/.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint, 2023. URL https://arxiv.org/abs/2306.00802.

Lawrence Chan, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny Nitishin-
skaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrubbing: A method for
rigorously testing interpretability hypotheses. In AI Alignment Forum, pp. 10, 2022.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of BERT‘s attention. In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and
Dieuwke Hupkes (eds.), Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 276–286, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-4828. URL https://aclanthology.org/
W19-4828/.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. What
you can cram into a single vector: Probing sentence embeddings for linguistic properties, 2018.
URL https://arxiv.org/abs/1805.01070.

Joy Crosbie and Ekaterina Shutova. Induction heads as an essential mechanism for pattern matching
in in-context learning, 2025. URL https://arxiv.org/abs/2407.07011.

Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context? arXiv preprint
arXiv:2310.17191, 2023.

Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. Interpreting the second-order effects of
neurons in clip, 2025. URL https://arxiv.org/abs/2406.04341.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 9574–9586. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/4f5c422f4d49a5a807eda27434231040-Paper.pdf.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions, 2023. URL https://arxiv.org/abs/2310.10616.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https://arxiv.
org/abs/2305.00586.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In Findings
of the Association for Computational Linguistics: EMNLP 2023, 2023.

10

https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2306.04637
https://arxiv.org/abs/2306.04637
https://aclanthology.org/2023.acl-long.660/
https://arxiv.org/abs/2306.00802
https://aclanthology.org/W19-4828/
https://aclanthology.org/W19-4828/
https://arxiv.org/abs/1805.01070
https://arxiv.org/abs/2407.07011
https://arxiv.org/abs/2406.04341
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://arxiv.org/abs/2310.10616
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129–4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URL https://aclanthology.org/N19-1419/.

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873, 2025.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 19565–19594. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/li23l.html.

Davide Maltoni and Matteo Ferrara. Arithmetic with language models: From memorization to
computation. Neural Networks, 179:106550, November 2024. ISSN 0893-6080. doi: 10.1016/j.
neunet.2024.106550. URL http://dx.doi.org/10.1016/j.neunet.2024.106550.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?, 2022.
URL https://arxiv.org/abs/2202.12837.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
gradient descent, 2024. URL https://arxiv.org/abs/2402.14735.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algorithms:
Language models solve math with a bag of heuristics, 2024. URL https://arxiv.org/abs/
2410.21272.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition, 2024. URL https://arxiv.org/
abs/2312.06681.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task, 2023. URL https://arxiv.org/abs/2312.03002.

Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What
needs to go right for an induction head? a mechanistic study of in-context learning circuits and
their formation, 2024. URL https://arxiv.org/abs/2404.07129.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 7035–7052, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.435. URL https://aclanthology.org/2023.
emnlp-main.435/.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models. In Proceedings of the 2024 International Conference
on Learning Representations, 2024.

11

https://aclanthology.org/N19-1419/
https://proceedings.mlr.press/v202/li23l.html
http://dx.doi.org/10.1016/j.neunet.2024.106550
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2402.14735
https://arxiv.org/abs/2410.21272
https://arxiv.org/abs/2410.21272
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2404.07129
https://aclanthology.org/2023.emnlp-main.435/
https://aclanthology.org/2023.emnlp-main.435/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent,
2023. URL https://arxiv.org/abs/2212.07677.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L. Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression?, 2024. URL
https://arxiv.org/abs/2310.08391.

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. Interpretability
at scale: Identifying causal mechanisms in alpaca. Advances in neural information processing
systems, 36:78205–78226, 2023.

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? 2025
International Conference on Machine Learning, July 2025. URL https://arxiv.org/abs/2502.
14010.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context,
2023. URL https://arxiv.org/abs/2306.09927.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in
mechanistic explanation of neural networks, 2023. URL https://arxiv.org/abs/2306.17844.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier
features to compute addition. arXiv preprint arXiv:2406.03445, 2024.

12

https://arxiv.org/abs/2212.07677
https://arxiv.org/abs/2310.08391
https://arxiv.org/abs/2502.14010
https://arxiv.org/abs/2502.14010
https://arxiv.org/abs/2306.09927
https://arxiv.org/abs/2306.17844


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

He
ad

 In
de

x

Intervention Accuracy: 0.85

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

es

(a) Coefficients of heads.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

He
ad

 In
de

x

Intervention Accuracy: 0.31

0.002

0.000

0.002

0.004

Va
lu

es

(b) Average indirect effects of heads (Todd et al., 2024).

Figure 3: Comparison of significant heads identified by our optimized coefficients (left) and by
average indirect effects (AIE) from the previous method (Todd et al., 2024) (right). Colors indicate
the magnitude of each head’s importance (coefficients or AIE) on Llama3-8B-instruct. The top
33 heads identified by both methods are highlighted with frames (13 heads common across both
methods in red and other 20 heads in blue). Our identified heads yield an intervention accuracy of
0.85, compared to the previous method’s accuracy of 0.31. Both methods select heads from similar
layers, but our optimization approach is significantly more effective.

Model Llama3.2-3B-instruct Llama3.2-3B Qwen2.5-7B

ICL accuracy 0.50 0.64 0.91
Our weighted-heads accuracy 0.66 0.83 0.61
Our top-heads accuracy 0.62 0.75 0.34
Todd et al. (2024)’s top-heads accuracy 0.20 0.1 0.12

Table 2: Accuracies comparison between our method and Todd et al. (2024)’s method as well as
the baseline ICL accuracy on add-k task cross other models. Our weighted-heads accuracy is the
intervention accuracy achieved by the weighted sum of all heads where the weights are the raw
coefficients at the last epoch of our training; our top-heads accuracy is the intervention accuracy
achieved by the sum of top heads selected by coefficients at the last epoch of our training; and the
Todd et al. (2024)’s top-heads accuracy is the intervention accuracy achieved by the sum of top
heads selected by their average indirect effect. Here we choose the number of top heads as the one
giving the highest accuracy for each case. For Llama3 models, we need to choose around 30 heads
while Todd et al. (2024)’s method needs to choose around 60 heads; for Qwen2.5 model, we both
need to choose 210 heads. Our weighted-heads accuracy get significant higher accuracy than Todd
et al. (2024)’s, which indicates our method can find better function vectors than Todd et al. (2024)’s.
Our top-heads accuracy are also higher with less number of heads than Todd et al. (2024)’s, which
indicates our method can also find more effective set of heads for ICL tasks.

A SUPPLEMENT FOR §3.1

A.1 ADDITIONAL FIGURE FOR §3.1

In §3.1, we developed a global optimization method to identify 33 significant heads for Llama3-8B-
instruct. Here we visualize our optimized coefficients as well as the previous method, also comparing
their intervention accuracy in Figure 3.

A.2 ADDITIONAL MODELS FOR §3.1

We also train coefficients to get sets of important heads responsible for add-k on Llama3.2-3B-instruct,
Llama3.2-3B, and Qwen2.5-7B. In all cases, we achieve better accuracies with less number of heads
than Todd et al. (2024). We report our results in Table 2. XH TOOD: add training metrics and tricks?

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Layer Accuracy

No intervention 0.87
[0, 31] 0.85
[0, 15] 0.83
[13, 15] 0.83
{13, 15} 0.83
{14, 15} 0.69
{13, 14} 0.25
{15} 0.71
{13} 0.27
{14} 0.03
[0, 31] \ {13, 15} 0.05

Table 3: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama3-8B-instruct. We first narrow down
to the layers before layer 15, then the range of [13, 15] and finally {13, 15} (in red), which all almost
preserve the clean accuracy of 0.87, while other combinations lead to substantial drops in accuracy,
especially when mean-ablating layers 13 and 15 (in blue).

Layer Llama3.2-3B-instruct Accuracy Llama3.2-3B Accuracy

No intervention 0.50 0.64
[0, 27] 0.62 0.75
{14} 0.60 0.70
Other single layer (max) 0.06 0.05

Table 4: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama3.2-3B-instruct and Llama3.2-3B
models. We both narrow down to the layer 14, which achieves significant higher accuracy than any
other single layer.

B SUPPLEMENT FOR §3.2

B.1 ADDITIONAL TABLE FOR §3.2

In §3.2, we did systematic ablation studies to narrow down the tasks to three main heads from 33
significant heads. The first step of the ablation studies is layer-wise ablation, where we mean-ablate
the significant heads in a subset of layers. We include the experimental results here, which narrow
down to layer 13 and 15 in Table 3.

B.2 ADDITIONAL MODELS FOR §3.2

We do the same ablation experiments for other three models, narrowing down to one layer and three
heads for all of them. For two Llama3.2 models, we narrow down to layer 14 and heads (14, 1), (14,
2), and (14, 12), the sum of which achieves accuracy 0.60 and 0.70. For Qwen2.5-7B model, we
narrow down to layer 21 and heads (21, 0), (21, 2), and (21, 5), the sum of which achieves accuracy
0.29. Note that all of accuracies of these three heads are higher than the corresponding accuracies
from Todd et al. (2024). We report the specific accuracies under different ablation setups in Tables 4,
5, 6, and 7.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Head Coefficients Llama3.2-3B-instruct Accuracy Llama3.2-3B Accuracy

(14, 1) 5 / 5 0.78 0.95
(14, 2) 6 / 4 0.51 0.61
(14, 12) 4 / 4 0.26 0.26
Other single head Optimal 0.03 0.08

Table 5: Intervention accuracies for keeping the selected heads scaled by the corresponding coeffi-
cients and mean-ablating all the other significant heads on Llama3.2-3B-instruct and Llama3.2-3B
models. We narrow down them both to the same three heads, which achieves significant higher
accuracy than any other single head in layer 14.

Layer Qwen2.5-7B Accuracy

No intervention 0.91
[0, 27] 0.34
{21} 0.29
Other single layer (max) 0.03

Table 6: Intervention accuracies for keeping the significant heads in the selected layers and mean-
ablating the significant heads in the remaining layers on Llama3.2-3B-instruct and Llama3.2-3B
models. We both narrow down to the layer 14, which achieves significant higher accuracy than any
other single layer.

Head Coefficient Qwen2.5-7B Accuracy

(21, 5) 4 0.29
(21, 0) 3 0.18
(21, 2) 4 0.15
Other single head Optimal 0.06

Table 7: Intervention accuracies for keeping the selected heads scaled by the corresponding coeffi-
cients and mean-ablating all the other significant heads on Qwen2.5-7B. We narrow down to three
heads, which achieves significant higher accuracy than any other single head in layer 21.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Va
ria

nc
e 

Ra
tio

Head 1

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 2

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 3

Figure 4: The explained variance ratio vs. number of PCs for each head on Llama3-8B-instruct. The
first six PCs make up most of the explained variance (97%) for each head.

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Va
ria

nc
e 

Ra
tio

Head 1

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 2

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 3

Figure 5: The explained variance ratio vs. number of PCs for each head on Llama3.2-3B-instruct.
The first six PCs make up most of the explained variance for each head.

C SUPPLEMENT FOR §4.1

We perform PCA on the 30 task vectors and find that just six directions can explain 97% of the task
variance on Llama3-8B-instruct (Figure 4), and similarly for the three models (Figures 5, 6 and 7).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Va
ria

nc
e 

Ra
tio

Head 1

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 2

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head 3

Figure 6: The explained variance ratio vs. number of PCs for each head on Llama3.2-3B. The first
six PCs make up most of the explained variance for each head.

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Va
ria

nc
e 

Ra
tio

Head (21, 0)

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head (21, 5)

1 2 3 4 5 6 7 8 9 10
Number of Principal Components

Head (21, 2)

Figure 7: The explained variance ratio vs. number of PCs for each head on Qwen2.5-7B. The first
eight PCs make up most of the explained variance for each head.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.5

0.0

0.5

1.0

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0.5

0.0

0.5

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 8: Coordinates of head (15, 2)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Llama3-8B-instruct. The coordinates in the first five PCs reveal
periodic patterns.

D SUPPLEMENT FOR §4.2

We first present additional figures for Llama-3-8B-Instruct, followed by results for the other three
models. The main finding is that three heads in each Llama3.2 model and one head in the Qwen2.5
model consistently encode periodic patterns through trigonometric functions. By contrast, the
remaining two heads in Qwen2.5 do not encode periodicity; instead, their coordinate functions exhibit
distinct behaviors across the intervals [1, 10], [11, 20], and [21, 30]. We conjecture that this difference
arises from tokenization: Qwen encodes numbers digit by digit, leading to discontinuities across each
10-interval, whereas the Llama family represents every number below 100 as a single token.

D.1 ADDITIONAL FIGURES FOR §4.2

In §4.2, we found six trigonometric functions that can be linearly fitted by the coordinate functions.
Here we first supplement the plot from which we observe the periodic pattern of the coordinate func-
tions for the three heads (Figure 8, 9, 10) and then show the fitting functions for three heads(Figure 11,
12, 13).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.5

0.0

0.5

1.0

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0.25

0.00

0.25

0.50

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 9: Coordinates of head (15, 1)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Llama3-8B-instruct. The coordinates in the first five PCs reveal
periodic patterns.

0.5

0.0

0.5

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0.0

0.5

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 10: Coordinates of head (13, 6)’s vectors (their inner products with a PC) for the first six PCs
across different add-k tasks on Llama3-8B-instruct. The coordinates in the first four and the last PCs
reveal periodic patterns.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 20
1

0

1

Am
pl

itu
de

Modulo 2

0 20

Modulo 5

0 20

Modulo 10(cos)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25

0 20
Task Add-k Index (k)

Modulo 50

Targeted periodic function Constructed coordinate function

Figure 11: The coordinate functions (inner product with feature directions) of head 1’s vectors can fit
six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation.

0 20

1

0

1

Am
pl

itu
de

Modulo 2

0 20

Modulo 5

0 20

Modulo 10(cos)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25

0 20
Task Add-k Index (k)

Modulo 50

Targeted periodic function Constructed coordinate function

Figure 12: The coordinate functions (inner product with feature directions) of head (15, 1)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3-8B-instruct.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 20
1

0

1

Am
pl

itu
de

Modulo 2

0 20

Modulo 5

0 20

Modulo 10(cos)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25

0 20
Task Add-k Index (k)

Modulo 50

Targeted periodic function Constructed coordinate function

Figure 13: The coordinate functions (inner product with feature directions) of head (13, 6)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3-8B-instruct.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1

0

1

2

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0

1

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 14: Coordinates of head (14, 1)’s vectors (their inner products with a PC) for the first six PCs
across different add-k tasks on Llama3.2-3B-instruct. The coordinates in the first six PCs reveal
periodic patterns.

0.5

0.0

0.5

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0.5

0.0

0.5

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 15: Coordinates of head (14, 2)’s vectors (their inner products with a PC) for the first six PCs
across different add-k tasks on Llama3.2-3B-instruct. The coordinates in the first six PCs reveal
periodic patterns.

D.2 LLAMA3.2-3B-INSTRUCT FOR §4.2

The Llama family of models show similar results. We show results for Llama3.2-3B-instruct here
and omit Llama3.2-3B.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0

1
Co

or
di

na
te

s
Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0.5

0.0

0.5

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 16: Coordinates of head (14, 12)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Llama3.2-3B-instruct. The coordinates in the first six PCs reveal
periodic patterns.

0 20
1

0

1

Am
pl

itu
de

Modulo 2

0 20

Modulo 5

0 20

Modulo 10(cos)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25

0 20
Task Add-k Index (k)

Modulo 50

Targeted periodic function Constructed coordinate function

Figure 17: The coordinate functions (inner product with feature directions) of head (14, 1)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3.2-3B-instruct.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 20
1

0

1
Am

pl
itu

de

Modulo 2

0 20

Modulo 5

0 20

Modulo 10(cos)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25

0 20
Task Add-k Index (k)

Modulo 50

Targeted periodic function Constructed coordinate function

Figure 18: The coordinate functions (inner product with feature directions) of head (14, 2)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3.2-3B-instruct.

0 20

1

0

1

Am
pl

itu
de

Modulo 2

0 20

Modulo 5

0 20

Modulo 10(cos)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25

0 20
Task Add-k Index (k)

Modulo 50

Targeted periodic function Constructed coordinate function

Figure 19: The coordinate functions (inner product with feature directions) of head (14, 12)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Llama3.2-3B-instruct.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0

10

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

5

0

5

10

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 20: Coordinates of head (21, 0)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Qwen2.5-7B. The coordinates in the first six PCs reveal periodic
patterns.

0

10

Co
or

di
na

te
s

Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

0

5

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 21: Coordinates of head (21, 2)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Qwen2.5-7B. The coordinates in the first six PCs exhibit distinct
behaviors across the intervals [1, 10], [11, 20], and [21, 30].

D.3 QWEN2.5-7B FOR §4.2

One head (21,0) show similar periodic patterns while the other two heads do not encode periodicity;
instead, their coordinate functions exhibit distinct behaviors across the intervals [1, 10], [11, 20], and
[21, 30]. We conjecture that this difference arises from tokenization: Qwen encodes numbers digit by
digit, leading to discontinuities across each 10-interval, whereas the Llama family represents every
number below 100 as a single token.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0

10
Co

or
di

na
te

s
Component 1 Component 2 Component 3

0 20
Task Add-k Index (k)

5

0

5

Co
or

di
na

te
s

Component 4

0 20
Task Add-k Index (k)

Component 5

0 20
Task Add-k Index (k)

Component 6

Figure 22: Coordinates of head (21, 5)’s vectors (their inner products with a PC) for the first six
PCs across different add-k tasks on Qwen2.5-7B. The coordinates in the first six PCs exhibit distinct
behaviors across the intervals [1, 10], [11, 20], and [21, 30].

0 20

1

0

1

Am
pl

itu
de

Modulo 2(cos)

0 20

Modulo 5(cos)

0 20

Modulo 5(sin)

0 20
Task Add-k Index (k)

1

0

1

Am
pl

itu
de

Modulo 10(cos)

0 20
Task Add-k Index (k)

Modulo 10(sin)

0 20
Task Add-k Index (k)

Modulo 25(cos)

Targeted periodic function Constructed coordinate function

Figure 23: The coordinate functions (inner product with feature directions) of head (21, 0)’s vectors
can fit six trigonometric functions with periods 2, 5, 10, 10, 25, and 50 well by linear transformation
on Qwen2.5-7B.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E SUPPLEMENT FOR §4.3

Recall that the three hypotheses in §4.3 are as follows:

(i) the feature direction corresponding to period two, which we call the “parity direction”,
encodes the parity of k in the add-k task;

(ii) the subspace spanned by the feature directions with periods 2, 5, 10, which we call the “unit
subspace”, encodes the unit digit of k;

(iii) the subspace spanned by by the directions with periods 25, 50, which we call the “magnitude
subspace”, encodes the coarse magnitude (i.e., the tens digit) of k.

We first show the experimental results validating the hypotheses (ii) for head 1 (Figure 24) and then
show analogous results for hypothesis (i) and (iii). Projecting out of the parity direction doesn’t lead
to high errors for the parity and the final answer across all tasks, which might be because parity is
relatively easy to obtain (e.g., random choice leads to 0.5 accuracy).

5 10 15 20 25 30
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Projecting onto unit subspace

5 10 15 20 25 30
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Projecting out of unit subspace

Unit-Digit Error Answer Error

Figure 24: The error rates for the unit digit and the final answer across tasks when projecting head
1’s vectors onto the “unit subspace” (left) and out of the “unit subspace” (right). Projecting onto the
unit subspace results in a low unit-digit error rate even when final-answer error remains high, while
projecting out leads to high unit-digit error rates that almost fully account for the final-answer errors.
This confirms that the unit subspace specifically encodes the unit-digit signal.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Parity Error
Answer Error

(a) Head 1 projected onto parity direction

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Parity Error
Answer Error

(b) Head 1 projected out of parity direction

Figure 25: Validation of hypothesis (i) for head 1.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Magnitude Error
Answer Error

(a) Head 1 projected onto magnitude subspace

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r R

at
e

Magnitude Error
Answer Error

(b) Head 1 projected out of magnitude subspace

Figure 26: Validation of hypothesis (iii) for head 1.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

We then show analogous results for head 2.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r R

at
e

Parity Error
Answer Error

(a) Head 2 projected onto parity direction

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Parity Error
Answer Error

(b) Head 2 projected out of parity direction

Figure 27: Validation of hypothesis (i) for head 2.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Unit-Digit Error
Answer Error

(a) Head 2 projected onto unit subspace

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Unit-Digit Error
Answer Error

(b) Head 2 projected out of unit subspace

Figure 28: Validation of hypothesis (ii) for head 2.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Magnitude Error
Answer Error

(a) Head 2 projected onto magnitude subspace

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Magnitude Error
Answer Error

(b) Head 2 projected out of magnitude subspace

Figure 29: Validation of hypothesis (iii) for head 2.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Finally, we show analogous results for head 3. The evidence for head 3 is slightly weaker than the
first two heads, which aligns with the fact that the intervened accuracy of head 3 is slightly weaker
than the ones of the first two heads (Tabel 1).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Parity Error
Answer Error

(a) Head 3 projected onto parity direction

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Parity Error
Answer Error

(b) Head 3 projected out of parity direction

Figure 30: Validation of hypothesis (i) for head 3.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Unit-Digit Error
Answer Error

(a) Head 3 projected onto unit subspace

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r R

at
e

Unit-Digit Error
Answer Error

(b) Head 3 projected out of unit subspace

Figure 31: Validation of hypothesis (ii) for head 3.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Magnitude Error
Answer Error

(a) Head 3 projected onto magnitude subspace

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Task add-k Index (k)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

Magnitude Error
Answer Error

(b) Head 3 projected out of magnitude subspace

Figure 32: Validation of hypothesis (iii) for head 3.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F SUPPLEMENT FOR §5.2

We show the strength and direction of the signals extracted from each individual token through a
random mixed-k ICL prompt as an example below. Since we find out the llama family of models
behave similarly in the previous sections, we here just show results for llama3-8B-instruct and
qwen2.5-7B as examples.

F.1 ADDITIONAL FIGURES FOR §5.2

All three heads for Llama3-8B-instruct behave similarly in the signal strengths and directions. They
all peak at the y tokens and extract signal corresponding to yi − xi.

Projection norm

EO
S 3 -> 9 # 15 -> 17 # 62 -> 78 # 20 -> 24 # 11 -> 30 # 35 ->

Token-wise strings in prompt

Attention score

0.01
1.42

0.00
0.33

Figure 33: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (15, 2) on Llama3-8B-instruct. Decomposing it
into two parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention
score from the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).

1 2 4 6 16 19 30
Addition task signal

"3->9"(+6)
"15->17"(+2)

"62->78"(+16)
"20->24"(+4)

"11->30"(+19)
-0.91

1.38
Examples in mixed-k ICL prompt

Figure 34: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k, of
head (15, 2) on Llama3-8B-instruct. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.

Projection norm

EO
S 3 -> 9 # 15 -> 17 # 62 -> 78 # 20 -> 24 # 11 -> 30 # 35 ->

Token-wise strings in prompt

Attention score

0.00
1.18

0.00
0.31

Figure 35: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (15, 1) on Llama3-8B-instruct. Decomposing it
into two parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention
score from the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

1 2 4 6 16 19 30
Addition task signal

"3->9"(+6)
"15->17"(+2)

"62->78"(+16)
"20->24"(+4)

"11->30"(+19)
-1.03

1.16
Examples in mixed-k ICL prompt

Figure 36: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k, of
head (15, 1) on Llama3-8B-instruct. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.

Projection norm

EO
S 3 -> 9 # 15 -> 17 # 62 -> 78 # 20 -> 24 # 11 -> 30 # 35 ->

Token-wise strings in prompt

Attention score

0.01
1.43

0.00
0.52

Figure 37: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (13, 6) on Llama3-8B-instruct. Decomposing it
into two parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention
score from the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).

1 2 4 6 16 19 30
Addition task signal

"3->9"(+6)
"15->17"(+2)

"62->78"(+16)
"20->24"(+4)

"11->30"(+19)
-0.54

1.38
Examples in mixed-k ICL prompt

Figure 38: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k, of
head (13, 6) on Llama3-8B-instruct. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F.2 QWEN2.5-7B FOR §5.2

Notice that Qwen2.5-7B has a different tokenizer from Llama3 models: Qwen2.5 model tokenizes
each number digit by digit. The three heads for Qwen2.5 model behave qualitatively similarly to
Llama3 model, i.e., they alomst always peak at the y tokens and extract signal corresponding to
yi − xi except for having an offsey of 10 or 20 sometimes.

Projection norm

EO
S 1 1 -> 1 4 # 3 4 -> 5 0 # 2 2 -> 3 0 # 6 -> 3 0 # 5 6 -> 6 8 # 1 7 ->

Token-wise strings in prompt

Attention score

0.05
15.14

0.00
0.44

Figure 39: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (21, 0) on Qwen2.5-7B. Decomposing it into two
parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention score from
the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).

1 3 8 12 16 24 30
Addition task signal

"11->14" (+3)
"34->50" (+16)

"22->30" (+8)
"6->30" (+24)

"56->68" (+12) -12.27

14.86
Examples in mixed-k ICL prompt

Figure 40: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k,
of head (21, 0) on Qwen2.5-7B. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.

Projection norm

EO
S 1 1 -> 1 4 # 3 4 -> 5 0 # 2 2 -> 3 0 # 6 -> 3 0 # 5 6 -> 6 8 # 1 7 ->

Token-wise strings in prompt

Attention score

0.10
16.95

0.00
0.34

Figure 41: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (21, 2) on Qwen2.5-7B. Decomposing it into two
parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention score from
the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

1 3 8 12 16 24 30
Addition task signal

"11->14" (+3)
"34->50" (+16)

"22->30" (+8)
"6->30" (+24)

"56->68" (+12) -11.58

13.16
Examples in mixed-k ICL prompt

Figure 42: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k,
of head (21, 2) on Qwen2.5-7B. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.

Projection norm

EO
S 1 1 -> 1 4 # 3 4 -> 5 0 # 2 2 -> 3 0 # 6 -> 3 0 # 5 6 -> 6 8 # 1 7 ->

Token-wise strings in prompt

Attention score

0.06
13.73

0.00
0.32

Figure 43: For a mixed-k ICL prompt, the strength of the task-signal contribution of each previous
token t to the final token, ∥αtWhOhVhzt∥, of head (21, 5) on Qwen2.5-7B. Decomposing it into two
parts: (1) the norm of the extracted information ∥WhOhVhzt∥ (top), and (2) the attention score from
the final token αt (bottom), both parts consistently peak at the tokens t = yi (in bold).

1 3 8 12 16 24 30
Addition task signal

"11->14" (+3)
"34->50" (+16)

"22->30" (+8)
"6->30" (+24)

"56->68" (+12) -8.87

12.86
Examples in mixed-k ICL prompt

Figure 44: For a random mixed-k ICL prompt, the inner product between the projected signal from
each yi and each head vector (projected onto the subspace and normalized to have unit norm) h̃k,
of head (21, 5) on Qwen2.5-7B. For each demonstration xi → yi, the inner product peaks for
k = yi − xi, indicating that the model extracts the information of yi − xi from the corresponding
demonstration xi → yi.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

G SUPPLEMENT FOR §5.3

We report the concrete numeric variables computed in §5.3 for Llama3-8B-instruct, Llama3.2-3B,
and Qwen2.5-7B. The self-correction mechanism significantly exists in Llama family of models
while partially exists in Qwen model.

G.1 ADDITIONAL TABLE FOR §5.3

The signals from any two demonstrations are mostly negatively correlated for all three heads,
suggesting a self-correction mechanism on Llama3-8B-instruct.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −2.01 0.27
Min −1.40 0.07
Max −2.34 0.54

Table 8: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (15, 2) on Llama3-8B-instruct. The
negative correlation sum is significantly higher than the positive correlation sum for all three statistics,
which indicates that the signals from any two demonstrations are mostly negatively correlated,
suggesting a self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −1.95 0.05
Min −1.65 0.0
Max −2.17 0.20

Table 9: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (15, 1) on Llama3-8B-instruct. The
negative correlation sum is significantly higher than the positive correlation sum for all three statistics,
which indicates that the signals from any two demonstrations are mostly negatively correlated,
suggesting a self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −0.76 0.28
Min −0.15 0.0
Max −1.68 1.03

Table 10: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (13, 6) on Llama3-8B-instruct. The
negative correlation sum is significantly higher than the positive correlation sum for all three statistics,
which indicates that the signals from any two demonstrations are mostly negatively correlated,
suggesting a self-correction mechanism.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G.2 LLAMA3.2-3B FOR §5.3

The signals from any two demonstrations are mostly negatively correlated for the two more important
heads within the three, aligning with the self-correction mechanism as Llama3-8B-instruct.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −2.12 0.23
Min −1.96 0.0
Max −2.41 0.53

Table 11: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (14, 1) on Llama3.2-3B. The negative
correlation sum is significantly higher than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly negatively correlated, suggesting a
self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −2.07 0.05
Min −1.89 0.0
Max −2.24 0.22

Table 12: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (14, 2) on Llama3.2-3B. The negative
correlation sum is significantly higher than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly negatively correlated, suggesting a
self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average 0.27 0.75
Min 0.0 0.0
Max −0.90 0.75

Table 13: The statistics (min, max, and average) of the absolute values of negative correlation sum
and positive correlation sum respectively over the 30 tasks for head (14, 12) on Llama3.2-3B. The
negative correlation sum is similar to the positive correlation sum for all three statistics, which doesn’t
align with the other two heads. Noting that this head achieves way lower accuracy than the other two
heads (see Table 5), it’s possible that the self-correction mechanism doesn’t appear in this head.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

G.3 QWEN2.5-7B FOR §5.3

For Qwen model, it’s interesting that the signals from any two demonstrations are differently corre-
lated for each head. For the one head that also encodes periodic patterns, they are mostly negatively
correlated, indicating the self-correction mechanism partially exists in Qwen2.5-7B.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −1.84 0.08
Min −1.44 0.0
Max −2.15 0.67

Table 14: The statistics (min, max, and average) of the absolute values of negative correlation sum and
positive correlation sum respectively over the 30 tasks for head (21, 0) on Qwen2.5-7B. The negative
correlation sum is significantly higher than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly negatively correlated, suggesting a
self-correction mechanism.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −0.64 0.50
Min −1.44 0.03
Max −2.19 1.57

Table 15: The statistics (min, max, and average) of the absolute values of negative correlation sum
and positive correlation sum respectively over the 30 tasks for head (21, 5) on Qwen2.5-7B. The
negative correlation sum is a little higher than the positive correlation sum for all three statistics,
which doesn’t indicates a strong signal of how two demonstrations are correlated.

Statistics over tasks Sum of negative correlations Sum of positive correlations

Average −0.37 2.62
Min −0.0 0.0
Max −1.85 5.54

Table 16: The statistics (min, max, and average) of the absolute values of negative correlation sum
and positive correlation sum respectively over the 30 tasks for head (21, 2) on Qwen2.5-7B. The
negative correlation sum is a lower than the positive correlation sum for all three statistics, which
indicates that the signals from any two demonstrations are mostly positively correlated.

37


	Introduction
	Preliminaries
	Model and Task
	Activation Patching and Function Vectors

	Identifying Three Aggregator Heads
	Identifying Significant Heads via Sparse Optimization
	Further Refinement via Ablations

	Characterizing the Aggregator Subspace
	Localizing to Six-dimensional Subspace
	Identifying Feature Directions Encoding Periodic Patterns
	Decomposing to Subspaces Encoding Subsignals

	Signal Extractors of ICL Demonstrations
	Mathematical Observation: Tracing Subspace back to Previous Tokens
	Signal Extractor for each Demonstration
	Signal Correlation among Demonstrations

	Related Work
	Discussion
	Supplement for §3.1
	Additional figure for §3.1
	Additional models for §3.1

	Supplement for §3.2
	Additional table for §3.2
	Additional models for §3.2

	Supplement for §4.1
	Supplement for §4.2
	Additional figures for §4.2
	Llama3.2-3B-instruct for §4.2
	Qwen2.5-7B for §4.2

	Supplement for §4.3
	Supplement for §5.2
	Additional figures for §5.2
	Qwen2.5-7B for §5.2

	Supplement for §5.3
	Additional table for §5.3
	Llama3.2-3B for §5.3
	Qwen2.5-7B for §5.3


