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Abstract
Most progress in recent coder models has been001
driven by supervised fine-tuning (SFT), while002
the potential of reinforcement learning (RL) re-003
mains largely unexplored, primarily due to the004
lack of reliable reward data/model in the code005
domain. In this paper, we address this chal-006
lenge by leveraging automated large-scale test-007
case synthesis to enhance code model training.008
Specifically, we design a pipeline that gener-009
ates extensive (question, test-cases) pairs from010
existing code data. Using these test cases, we011
construct preference pairs based on pass rates012
over sampled programs to train reward models013
with Bradley-Terry loss. It shows an average014
of 10-point improvement for Llama-3.1-8B-Ins015
and 5-point improvement for Qwen2.5-Coder-016
7B-Ins through best-of-32 sampling, making017
the 7B model on par with 236B DeepSeek-018
V2.5. Furthermore, we conduct reinforcement019
learning with both reward models and test-020
case pass rewards, leading to consistent im-021
provements across HumanEval, MBPP, Big-022
CodeBench, and LiveCodeBench (V4). No-023
tably, we follow the R1-style training to start024
from Qwen2.5-Coder-base directly and show025
that our RL training can improve model on026
HumanEval-plus by over 25% and MBPP-plus027
by 6% for merely 80 optimization steps. We028
believe our results highlight the huge potential029
of reinforcement learning in coder models.030

1 Introduction031

In recent years, code generation models have ad-032

vanced significantly with compute scaling (Ka-033

plan et al., 2020) and training data quality im-034

provement (Huang et al., 2024; Lozhkov et al.,035

2024; Guo et al., 2024b). The state-of-the-art036

coder models, including Code-Llama (Rozière037

et al., 2023), Qwen2.5-Coder (Hui et al., 2024a),038

DeepSeek-Coder (Guo et al., 2024a) and so on,039

have shown unprecedented performance across a040

wide range of coding tasks like program synthe-041

sis (Chen et al., 2021), program repair (Zheng et al.,042
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Figure 1: Overall Workflow of our model: we start from
the seed code dataset to create well-formatted questions
and corresponding test cases. Then we adopt strong
models to filter the noisy test cases. Finally, we adopt
these test cases to harvest positive and negative program
pairs for reward model training and RL.

2024a), optimization (Shypula et al., 2023), test 043

generation (Steenhoek et al., 2023), SQL (Yu et al., 044

2018), issue fix (Jimenez et al., 2024). These mod- 045

els are all pre-trained and further supervised fine- 046

tuned (SFT) on large-scale coding data from web 047

resources like Common Crawl or Github. 048

Though strong performance has been achieved 049

through SFT (Luo et al., 2023; Wei et al., 2024), 050

very few models have explored the potential of re- 051

inforcement learning (RL) (Ouyang et al., 2022a), 052

which has proven effective in other domains such as 053

mathematical reasoning like DeepSeek-R1 (Shao 054

et al., 2024). We argue that this absence of RL- 055

based training in coder models is primarily due to 056

two key challenges: 057
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(1) Lack of reliable reward signals for code058

generation. In tasks such as mathematical059

problem-solving, rewards can be easily derived060

from rule-based string matches with reference an-061

swers (Guo et al., 2025) or large-scale human an-062

notations (Ouyang et al., 2022b). In contrast, evalu-063

ating code quality typically requires executing test064

cases to measure the pass rate, making reward sig-065

nal design more complex. This also explains why066

existing reward models like Skywork (Liu et al.,067

2024a) can hardly generalize to the coding domain068

(see subsection 4.4).069

(2) Scarcity of large-scale coding datasets with070

reliable test cases. Most existing coding datasets071

like APPS (Hendrycks et al., 2021; Chen et al.,072

2021) heavily rely on costly human expert an-073

notations for test cases, which limits their scala-074

bility for training purposes. The largest data is075

TACO (Li et al., 2023) with 25K examples, which076

are crawled from the popular coding competition077

websites, which were already heavily exploited dur-078

ing the pre-training phase.079

Therefore, we curate ACECODE-87K, on which080

we trained our reward models: ACECODE-RM-7B081

and ACECODE-RM-32B. Comprehensive experi-082

ments of best-of-N sampling show that ACECODE-083

RM can significantly boost existing LLM’s per-084

formance on coding benchmarks. For example,085

ACECODE-RM-7B can improve the performance086

of Llama-3.1-8B-Instruct by an average of 8.4087

points across the 4 coding benchmarks, i.e. Hu-088

manEval (Liu et al., 2023), MBPP (Liu et al.,089

2023), BigCodeBench (Zhuo et al., 2024) and090

LiveCodeBench (Jain et al., 2024). Even for the091

stronger coder model Qwen2.5-Coder-7B-Instruct,092

our "7B+7B" combination still gets an average of093

2.6 improvements. ACECODE-RM-32B is even094

more powerful, which pushes the former two num-095

bers to 10.7 and 4.7 respectively, showcasing the096

effectiveness of ACECODE-RM.097

Furthermore, we adopt ACECODE-RM-7B and098

test case pass rate separately to do reinforcement099

learning with reinforce++ (Hu, 2025) over coder100

models. Experiments show 2.1 and 0.7 points of101

average improvement when starting from Qwen2.5-102

7B-Ins and the Qwen2.5-Coder-7B-Ins respec-103

tively, making the latter even more powerful than104

GPT-4-Turbo on benchmarks like MBPP. Inspired105

by the recent DeepSeek-R1 (Guo et al., 2025),106

we also perform RL training directly from the107

Qwen2.5-Coder-7B-base model and saw a surpris-108

ing 25% improvement on HumanEval-plus and 6%109

improvement on MBPP-plus (Liu et al., 2023) with 110

merely 80 optimization steps (48 H100 GPU hours). 111

These improvements are also generalizable to other 112

more difficult benchmarks. 113

To our knowledge, this is the first work to per- 114

form reward model training and reinforcement 115

learning for code generation using a fully auto- 116

mated pipeline that synthesizes large-scale reliable 117

tests. We believe our ACECODE-87K will unlock 118

the potential of RL training for code generation 119

models and help the community to further push the 120

boundaries of LLM’s coding abilities. 121

2 Methodology 122

In this section, we will introduce the overall 123

methodology of ACECODER. We begin with 124

formulations of the problems we are investigat- 125

ing, including reward model training and rein- 126

forcement learning for LLMs. We then elabo- 127

rate on how we synthesize the test cases and con- 128

struct the ACECODE-87K. Finally, we explain how 129

we perform the reinforcement learning using our 130

ACECODE-RM trained on the ACECODE-87K. 131

2.1 Problem Formulation 132

Reward Model Training Let x denote the cod- 133

ing question and y = {y1, · · · , yt} denote the pro- 134

gram solution, where yi represents the i-th token 135

of the program solution and (x,y) ∈ D. Assum- 136

ing θ represents the parameters of the model, then 137

n responses (y1, ...,yn) will be sampled from the 138

model πθ given the input x. Let (s1, ..., sn) be 139

the target rewards, i.e. the test case pass rates 140

in our scenario, then we define the Bradley-Terry 141

loss (Bradley and Terry, 1952) for every pair of 142

responses yi and yj with scores of si and sj when 143

we are training a reward model Rϕ as follows: 144

Lϕ(x, si, sj)
= 1[si > sj ] log σ(Rϕ(x,y

i)−Rϕ(x,y
j))

145

where 1[·] = 1 if the expression inside the brackets 146

is true, otherwise, it’s 0. The final loss function for 147

the reward training is: 148

L(ϕ) = − 1

n(n− 1)

n∑
i=1

n∑
j=1

Lϕ(x, si, sj) (1) 149

That means the reward model is trained to assign 150

higher values to preferred responses and lower val- 151

ues to non-preferred ones, maximizing the differ- 152

ence between these ratings. 153

2



Best-of-N Sampling After we get the trained re-154

ward model Rϕ, one way to quickly test the perfor-155

mance of the reward model is Best-of-N sampling,156

which is usually used as a test-time scaling ap-157

proach. We will simply select the best response158

according to the predicted value of Rϕ. That is159

y∗ = argmaxyi∈y1,...,yN Rϕ(x,y
i).160

Reinforcement Learning We can finally con-161

duct reinforcement learning for the original pol-162

icy model πθ after we get a well-trained reward163

model Rϕ. Proximal Policy Optimization (PPO)164

is an actor-critic RL algorithm that is widely used165

for LLM’s RL process. Let πθold be the reference166

model and πθ be the current policy model that we167

are updating frequently during the RL training. We168

denote rt(θ) as the probability ratio of the current169

policy model over the old policy model on the t-th170

generated token:171

rt(θ) =
πθ(yt|x,y<t)
πθold(yt|x,y<t)

(2)172

Then the PPO algorithms optimize the LLM by the173

following surrogate objective:174

LPPO(θ) =

− 1

|y|

|y|∑
t=1

min [rt (θ)At, clip (rt (θ) , 1− ϵ, 1 + ϵ)At]
175

where y ∼ πθold(·|x), and At is the advantage com-176

puted through the Generalized Advantage Estima-177

tion (GAE) (Schulman et al., 2015) via the rewards178

generated by Rϕ and the learned value function Vψ.179

The PPO training objective will force the policy180

model π to increase the probability of generating181

tokens with higher At and decrease the probabil-182

ity ratio of generating tokens with lower At until183

the clipped bounds 1 + ϵ and 1 − ϵ are reached184

respectively.185

However, PPO usually requires training an addi-186

tional value model Vψ and thus makes the training187

inefficient. Recently, there are some other works188

like Reinforecement++ (Hu, 2025) that eliminate189

the need for value model but instead compute ad-190

vantage only using the rewards generated by Rϕ191

and the KL-divergence of the tokens after the t-th192

tokens. This makes the RL process more efficient193

and has also proved to be more stable.194

3 ACECODE-87K195

To be able to train a reward model specifically de-196

signed for code generation, the first thing is to syn-197

thesize reliable test cases for each coding problem198

and use them as training signals. In this section, 199

we explain the whole procedure of constructing 200

ACECODE-87K step by step. We show the overall 201

statistics in Table 1. 202

Test Case Synthesis from Seed Dataset We start 203

from existing coding datasets with provided ques- 204

tion x and corresponding program y. Specifically, 205

we combine Magicoder-Evol-Instruct1, Magicoder- 206

OSS-Instruct-75K2, and StackPyFunction3 as our 207

seed dataset. We only keep the questions written in 208

Python that contain either a function or a class, re- 209

sulting in a total of 124K entries. We find that these 210

datasets contain highly noisy questions that could 211

not be easily evaluated using test cases. Therefore, 212

we feed every question-solution pair (x, y) into a 213

GPT-4o-mini (Hurst et al., 2024) to propose a re- 214

fined LeetCode-style question xr with highly struc- 215

tured instructions. Meanwhile, we also prompt it to 216

‘imagine’ around 20 test cases (t1, ..., tm) for each 217

refined coding question xr based on its understand- 218

ing of the expected behavior of the desired program. 219

See prompt template used in subsection A.2. Please 220

note that we do not use the program solution y 221

from the existing datasets at all in our final curated 222

ACECODE-87K. These datasets are purely used 223

as seeds to help LLM formulate well-structured 224

coding problems. 225

Test Case Filtering These ‘imagined’ test cases 226

generated from the LLM contain severe hallucina- 227

tions. To filter out those hallucinated test cases, 228

we facilitated a stronger coder model Qwen2.5- 229

Coder-32B-Instruct (Hui et al., 2024a) as a proxy 230

to perform quality control. Specifically, we prompt 231

it for each xr to generate a program y′ and then run 232

these programs over the test cases to approximate 233

their quality. We removed all test cases ti where the 234

generated solution program y′ could not pass. Fur- 235

thermore, we removed questions with fewer than 236

5 tests after filtering, as these questions might be 237

overly ambiguous. With the above filtering, we con- 238

structed the ACECODE-87K with 87.1K distinct 239

coding questions and 1.38M cleaned test cases, as 240

represented by (xr, (t1, ..., tmc)), where mc repre- 241

sents the number of test cases after filtering. 242

Preference Pairs Construction We propose to 243

use the Bradley-Terry model to train the reward 244

model as defined in Equation 1. Therefore, we 245

1ise-uiuc/Magicoder-Evol-Instruct-110K
2ise-uiuc/Magicoder-OSS-Instruct-75K
3bigcode/stack-dedup-python-fns
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Subset Evol OSS Stack Python Overall

Before Filtering

# Examples 36,256 37,750 50,000 124,006
# Avg Test Cases 19.33 17.21 18.27 18.26

After Filtering

# Examples 26,920 25,862 34,367 87,149
# Avg Test Cases 15.14 16.33 16.08 15.87

# Pairs 89,089 91,636 126,784 307,509

Table 1: Dataset statistics of ACECODE-87K before
and after test-case filtering.

need to construct (question, [positive program, neg-246

ative program]) data from ACECODE-87K. Specif-247

ically, we sample programs (y1, ...,yn) from ex-248

isting models (e.g. Llama-3.1 (Grattafiori et al.,249

2024)) w.r.t xr and utilize the test-case pass rate to250

distinguish positive and negative programs. Since251

the pass rate si for the sampled program yi can252

be any number between [0, 1], a minor difference253

in pass rate may not represent that one program is254

more accurate than another. Therefore, instead of255

using 1[si > sj ] to select the preference pairs, we256

have thus modified the selection rules to be:257

1[si > sj + 0.4, si > 0.8, sj > 0] (3)258

This is to ensure the preferred program has at least259

a 0.8 pass rate to make sure it represents a more260

correct program. Also, we find many sampled pro-261

grams with 0 pass rates can be caused by some262

small syntax errors or some Python packaging miss-263

ing errors during evaluation, we chose to not in-264

clude them as the preference pair to make sure our265

constructed datasets represent only the preference-266

based on the valid pass rate. We also ensure the267

sampled programs all come from the backbone of268

Rϕ so the reward model is trained in an on-policy269

way. After that, we train our reward model Rϕ by270

fully fine-tuning an instruct coding model. Specifi-271

cally, We extract the last token’s final hidden repre-272

sentations and pass it through a linear model head273

that generates a single scalar output, which is opti-274

mized via the loss function defined in Equation 1.275

4 Experiments276

4.1 Reward Model Training Setup277

We mainly use Qwen2.5-Coder-7B-Instruct 4 as278

the backbone of the reward model and sample 16279

responses from it for each question in ACECODE-280

87K. Finally, following the rule defined in Equa-281

tion 3, around 300K preference pairs were created282

4Qwen/Qwen2.5-Coder-7B-Instruct

out of 46,618 distinct questions (37.34% of the to- 283

tal questions) that have at least one pair satisfying 284

the condition, and other questions are not used. 285

Our reward model is trained using LlamaFac- 286

tory (Zheng et al., 2024b). We apply full fine- 287

tuning with DeepSpeed stage 3. We train for 1 288

epoch using a cosine learning rate schedule, start- 289

ing at 1e-5 with a warmup ratio of 0.1 to gradu- 290

ally increase the learning rate in the initial training 291

phase. Training batch size is set to 128. We enable 292

bf16 precision to reduce memory overhead without 293

compromising model fidelity. The training takes 294

24 hours on 8 x A100 GPUs. 295

4.2 Reinforcement Learning Setup 296

We perform RL training from three policy mod- 297

els: Qwen2.5-7B-Instruct 5 and Qwen2.5-Coder- 298

7B-Base 6 and Qwen2.5-Coder-7B-Instruct. Two 299

types of reward can be used, i.e. the trained reward 300

model ACECODE-RM-7B and the rule-based re- 301

ward, i.e. pass rate over the test cases in ACECODE- 302

87K. During training, we set the pass rate to be 303

a binary reward, which is 1.0 when all test cases 304

passed, otherwise 0. This is similar to the verfi- 305

able reward used in Tulu3 (Lambert et al., 2024a) 306

and DeepSeek-R1 (Guo et al., 2025). Similar to 307

DeepSeek-R1 (Guo et al., 2025), we also experi- 308

ment with RL from the base model because SFT 309

may cause the search space of the model to be 310

stuck in the local minimum. Since coding is also 311

a highly verifiable task like math, we include the 312

Qwen2.5-Coder-7B-Base in our experiments. 313

We have trained different policy model back- 314

bones with different rewards, resulting in 6 RL 315

models in total. All the RL-tuning are based on 316

OpenRLHF (Hu et al., 2024). We adopt the Rein- 317

forcement++ (Hu, 2025) algorithm instead of PPO 318

to improve the training efficiency without training 319

the value model. It’s also proved to be more stable 320

than PPO and GRPO. We train our model on a sub- 321

sampled hard version of ACECODE-87K, where 322

we keep the 25% of the questions with lower av- 323

erage pass rates and higher variance. This is to 324

ensure the question is hard and that the sampled 325

programs are diverse enough. For the training hy- 326

perparameters, we set the rollout batch size to 256, 327

and 8 programs are sampled from per question. The 328

training batch size is 128 with a learning rate of 329

5e-7. All the models are trained for 1 episode and 330

finished in 6 hours on 8 x H100 GPUs. 331

5Qwen/Qwen2.5-7B-Instruct
6Qwen/Qwen2.5-Coder-7B
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Mehod # N HumanEval MBPP BigCodeBench-C BigCodeBench-I LiveCodeBench Average- Plus - Plus Full Hard Full Hard V4

GPT-4o (0806) 1 92.7 87.2 87.6 72.2 58.9 36.5 48.0 25.0 43.6 61.3
DeepSeek-V2.5 1 90.2 83.5 87.6 74.1 53.2 29.1 48.9 27.0 41.8 59.5
DeepSeek-V3 1 91.5 86.6 87.6 73.0 62.2 39.9 50.0 27.7 63.5 64.6
Qwen2.5-Coder-32B 1 92.1 87.2 90.5 77.0 58.0 33.8 49.0 27.7 48.3 62.6

Inference Model = Mistral-7B-Instruct-V0.3

Greedy 1 36.6 31.1 49.5 41.3 25.9 6.1 20.1 5.4 7.3 24.8
Average 64 37.1 30.8 45.1 38.0 21.7 4.2 17.6 3.0 4.0 22.4
Oracle 64 87.2 78.0 83.9 73.5 68.4 37.8 58.5 31.1 24.3 60.3

AceCodeRM-7B
16 65.9 56.7 59.3 52.4 35.1 10.1 29.3 8.8 11.9 36.6
32 68.3 58.5 59.8 51.6 37.4 8.8 30.7 10.8 14.6 37.8
64 71.3 61.6 59.8 51.6 39.4 6.8 31.8 9.5 15.4 38.6

∆ (RM-greedy) - +34.8 +30.5 +10.3 +11.1 +13.5 +4.1 +11.7 +5.4 +8.1 +13.8

AceCodeRM-32B
16 68.3 61.0 58.7 49.5 37.7 11.5 30.9 10.1 12.9 37.8
32 72.6 65.9 61.6 51.6 40.5 9.5 33.9 13.5 16.1 40.6
64 75.0 64.6 60.6 50.0 42.7 15.5 35.6 13.5 17.4 41.7

∆ (RM-greedy) - +38.4 +34.8 +12.2 +11.1 +16.8 +9.5 +15.5 +8.1 +10.1 +16.9

Inference Model = Llama-3.1-8B-Instruct

Greedy 1 68.9 62.2 67.2 54.8 38.5 12.8 31.8 13.5 18.0 40.9
Average 64 61.7 54.9 64.5 54.5 32.8 10.1 26.6 9.0 13.8 36.4
Oracle 64 93.9 90.2 92.1 82.3 80.0 54.7 67.9 48.6 40.8 72.3

AceCodeRM-7B
16 77.4 70.7 76.5 64.3 45.8 20.3 36.4 12.2 26.1 47.7
32 79.9 72.6 76.2 62.4 47.6 23.0 37.3 13.5 27.3 48.9
64 81.7 74.4 74.6 61.9 47.8 23.6 38.1 13.5 27.6 49.3

∆ (RM-greedy) - +12.8 +12.2 +9.3 +9.5 +9.3 +10.8 +6.2 0.0 +9.6 +8.4

AceCodeRM-32B
16 82.3 74.4 72.8 60.6 49.8 20.3 38.4 13.5 27.5 48.8
32 81.7 76.2 72.8 60.6 50.4 22.3 39.1 13.5 30.3 49.6
64 85.4 79.3 72.0 59.0 48.5 19.6 40.0 13.5 31.0 49.8

∆ (RM-greedy) - +16.5 +17.1 +9.3 +9.5 +11.8 +10.8 +8.2 +0.0 +13.0 +9.0

Inference Model = Qwen2.5-Coder-7B-Instruct

Greedy 1 91.5 86.0 82.8 71.4 49.5 19.6 41.8 20.3 34.2 55.2
Average 64 86.0 80.1 77.9 65.6 45.3 18.6 37.3 16.2 31.8 51.0
Oracle 64 98.2 95.7 97.4 90.7 80.9 62.8 73.5 53.4 57.4 78.9

AceCodeRM-7B
16 90.2 82.9 88.6 74.9 53.8 20.9 45.0 21.6 40.1 57.6
32 90.9 86.0 87.8 74.1 53.4 25.0 43.9 19.6 39.8 57.8
64 90.9 85.4 87.6 73.8 52.9 24.3 43.5 21.6 40.1 57.8

∆ (RM-greedy) - -0.6 0.0 +5.8 +3.4 +4.3 +5.4 +3.2 +1.4 +5.9 +2.6

AceCodeRM-32B
16 90.2 86.6 88.4 74.9 53.9 25.0 45.4 19.6 44.0 58.7
32 90.2 86.6 88.4 75.4 55.4 29.7 45.6 21.6 43.5 59.6
64 89.6 86.0 87.8 75.1 55.0 26.4 46.1 22.3 44.5 59.2

∆ (RM-greedy) - -0.6 +0.6 +5.8 +4.0 +6.0 +10.1 +4.3 +2.0 +10.3 +4.4

Table 2: ACECODE-RM’s best-of-n results on several benchmarks. Specifically, -C means completion split and -I
means instruct split of BigCodeBench. The ∆ might be off by 0.1 due to rounding.

4.3 Evaluation Setup332

We evaluate our method on four established333

code-focused benchmarks: HumanEval(+) (Chen334

et al., 2021), MBPP(+) (Austin et al., 2021),335

BigCodeBench (Zhuo et al., 2024) and Live-336

CodeBench (V4) (Jain et al., 2024). These bench-337

marks collectively cover a diverse array of coding338

tasks, enabling us to assess both the correctness and339

quality of generated code. For Best-of-N sampling,340

we adopt top-p sampling with a temperature of 1.0341

to generate multiple (16/32/64) candidate solutions342

per question and then select the response with the343

highest reward for evaluation. For RL experiments,344

we use each benchmark’s default setting, which is345

greedy sampling most of the time.346

4.4 Main Results 347

Here we show the experimental results of reward 348

model and RL-trained model. 349

RM Results We conduct Best-of-N experi- 350

ments on 3 inference models, specifically Mistral- 351

Instruct-V0.3-7B(AI, 2023), Llama-3.1-Instruct- 352

8B (Grattafiori et al., 2024), and Qwen2.5-Coder- 353

7B-Insutrct (Hui et al., 2024b; Yang et al., 2024a). 354

We additionally report the average score across 355

all generated samples and also the oracle score 356

(pass@N) for better comparison. 357

According to Table 2, ACECODE-RM can con- 358

sistently boost the performance of inference models 359

by a large margin compared to the greedy decoding 360

results. On weaker models like Mistral (AI, 2023) 361
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Model HumanEval MBPP BigCodeBench (C) BigCodeBench (I) LiveCodeBench Average- Plus - Plus Full Hard Full Hard V4

RLEF-8B - 67.5 - 57.0 - - - - - -
RLEF-70B - 78.5 - 67.6 - - - - - -
PPOCoder-7B 78.7 - 67.0 - - - - - - -
StepCoder-7B 76.8 - 63.8 - - - - - - -
CodeGemma-7B 60.5 - 55.2 - - - - - - -
DSTC-33B 79.9 72.0 82.5 70.4 51.6 22.3 41.0 18.2 - -

Baseline = Qwen2.5-7B-Instruct

Baseline 81.7 73.2 79.4 67.7 45.6 16.9 38.4 14.2 29.0 49.6
AceCoderRM 83.5 77.4 83.1 71.2 46.8 16.9 39.0 14.9 30.3 51.5
AceCoderRule 84.1 77.4 80.2 68.3 46.8 15.5 40.2 15.5 30.1 50.9
∆ (RL-baseline) +2.4 +4.3 +3.7 +3.4 +1.2 0.0 +1.8 +1.4 +1.3 +2.0

Baseline = Qwen2.5-Coder-7B-Base

Baseline 61.6 53.0 76.9 62.9 45.8 16.2 40.2 14.2 28.7 44.4
AceCoderRM 83.5 75.6 80.2 67.2 41.9 14.9 36.8 16.2 25.7 49.1
AceCoderRule 84.1 78.0 82.3 69.3 48.6 18.2 43.2 18.2 28.5 52.3
∆ (RL-baseline) +22.5 +25.0 +5.4 +6.4 +2.8 +2.0 +3.1 +4.1 -0.2 +7.9

Baseline = Qwen2.5-Coder-7B-Instruct

Baseline 91.5 86.0 82.8 71.4 49.5 19.6 41.8 20.3 34.2 55.2
AceCoderRM 89.0 84.1 86.0 72.8 50.4 18.9 42.0 19.6 35.0 55.3
AceCoderRule 90.9 84.8 84.1 71.7 50.9 23.0 43.3 19.6 34.9 55.9
∆ (RL-baseline) -0.6 -1.2 +3.2 +1.3 +1.4 +3.4 +1.5 -0.7 +0.8 +0.7

Table 3: ACECODER’s Performance after RL tuning using Reinforcement++ algorithm. We start with 3 different
initial policy models and 2 kind of reward types, where RM means using our trained ACECODE-RM and Rule
means using the binary pass rate. Results show consistent improvement across various benchmarks.

and Llama-3.1 (Zheng et al., 2024b), the overall362

improvements are greater than 10 points. These im-363

provements can be attributed to our reward model’s364

ability to identify high-quality completions among365

multiple candidates, thereby reducing the impact of366

suboptimal sampling on the final output. Notably,367

these gains become more pronounced on bench-368

marks where the gap between greedy decoding and369

oracle performance (i.e., the best possible comple-370

tion among all samples) is larger. In such cases, the371

variance among sampled completions is relatively372

high, providing greater opportunities for the reward373

model to pinpoint and elevate top-tier responses.374

Greedy decoding systematically outperforms the375

average sampled performance, reflecting the strong376

code generation capability of these inference mod-377

els. Consequently, while most reward models378

achieve best-of-N results above the average, we379

consider a reward model effective only if it sur-380

passes the performance of greedy decoding.381

RL Results We perform RL training over 3 dif-382

ferent initial policy models in Table 3 with model-383

based and rule-based rewards. When starting from384

Qwen2.5-Instruct-7B, we can see the RL tuning can385

consistently improve the performance, especially386

on HumanEval and MBPP. Even for the Plus ver-387

sion with more and harder test cases, the RL-tuned388

model also has more than 3 points of improvement. 389

When starting from the Qwen2.5-Coder-Instruct- 390

7B itself, we can still observe improvements, es- 391

pecially when using the rule-based reward. For 392

example, we get more than 3.4 improvement on 393

BigCodeBench-Full-Hard. Using the reward model 394

for RL can also bring 3.2 improvement on MBPP. 395

This highlights the charm of self-improvement 396

given the reward model backbone is the same with 397

the initial policy model. We compare our method 398

with other RL-based models like RLEF (Chen et al., 399

2024), PPOCoder (Shojaee et al., 2023a), Step- 400

Coder (Dou et al., 2024b), DSTC (Liu et al., 2024c), 401

etc. We show that our 7B model is able to beat these 402

competitors across the evaluation benchmarks. 403

Another experiment we conduct is to perform 404

RL training directly from base model Qwen2.5- 405

Coder-7B-base. We show significant improvement, 406

especially through test-case pass rewards on Hu- 407

manEval, MBPP, and BigCodeBench-I. These re- 408

sults are achieved by only training for 80 steps. We 409

believe further scaling up the training will lead to 410

much larger gains. 411

Comparison with Other RMs We compare 412

our ACECODE-RM with 3 top-ranked RM on 413

the RewardBench, including InternLM2-RM- 414

8B (Cai et al., 2024), Skywork-Llama-3.1-8B, and 415
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Method & RM HumanEval MBPP BigCodeBench-C BigCodeBench-I LiveCodeBench Average
- Plus - Plus Full Hard Full Hard V4

Greedy 68.9 62.2 67.2 54.8 38.5 12.8 31.8 13.5 18.0 40.9
Average 50.1 42.2 57.9 47.2 22.0 10.6 18.2 12.0 14.9 30.6

InternLM2-RM-8B 57.9 55.5 66.7 54.0 38.7 8.8 29.8 8.8 15.1 37.3
Skywork-Gemma-27B 73.8 67.1 64.3 53.4 40.1 14.9 32.5 12.8 23.6 42.5
Skywork-Llama-3.1-8B 67.7 61.6 69.6 56.9 40.6 10.8 31.8 12.2 18.8 41.1
∆ (max(other RM)-greedy) +4.9 +4.9 +2.4 +2.1 +2.1 +2.0 +0.6 -0.7 +5.6 +2.6

ACECODE-RM-7B 77.4 70.7 76.5 64.3 45.8 20.3 36.4 12.2 26.1 47.7
∆ (RM-greedy) +8.5 +8.5 +9.3 +9.5 +7.3 +7.4 +4.6 -1.4 +8.1 +6.8

Table 4: ACECODE-RM’s performance against other open-sourced reward models in terms of Best-of-16 sampling
for Llama-3.1-8B-Inst. We can see the top-ranked RM on Reward Bench get little improvements compared to ours.

Skywork-Gemma-27B (Liu et al., 2024a), where re-416

sults are reported in Table 4. We can see that these417

general-purpose RM can hardly improve and some-418

times decrease the performance through Best-of-N419

sampling compared to greedy sampling, showcas-420

ing the incapability in identifying the correct gener-421

ated programs. On the other hand, our ACECODE-422

RM surpasses all other publicly released reward423

models in our evaluation and consistently gets pos-424

itive gains. These findings further underscore our425

assumption that previous RM training lacks of reli-426

able signals for codes and prove that our RMs can427

generate reliable and state-of-the-art reward signals428

in code generation tasks.429

4.5 Ablation Studies430

Test Case Quality Matters We also conduct ex-431

periments to investigate how filtering the test cases432

with a proxy model can affect the results. As shown433

in Table 5, training RM on data after the filtering434

improve the performance significantly, especially435

for those hard code questions like MBPP-Plus and436

BigCodeBench-Hard (C/I). We believe this is be-437

cause the test case filtering can ensure the remain-438

ing ones are consistent with each other and thus439

point to the same implicit program, which improves440

the quality of the rewards.441

RM Backbone Matters Our results in Table 6442

clearly show that changing the backbone of the re-443

ward model from Llama-3.1 to Qwen2.5 can signifi-444

cantly improve the Best-of-16 performance. This is445

because the Qwen2.5-Coder models have been pre-446

trained on way more code-related data compared to447

the Llama-3.1 models, and thus more knowledge-448

able when tuning it into a reward model.449

Does R1-style Tuning Work? Inspired by the450

recent DeepSeek-R1 (Guo et al., 2025), we also451

conduct the RL directly from the base model with-452

out any SFT. It turns out we get huge improve-453

ments when using rule-based rewards. For ex- 454

ample, we get 25.0 points of improvements on 455

HumanEval-Plus after training only 6 hours from 456

the Base Model, which is way more efficient 457

that the large-scale SFT. What’s more, the ACE- 458

CODER Rule improve the BigCodeBench-Instruct- 459

Full’s performance from 40.2 to 43.2, nearly 460

the same performance with DeepSeek-R1-Distill- 461

Qwen-32B (43.9) which was directly distilled from 462

the DeepSeek-R1 Model. This further consolidates 463

the finding of DeepSeek-Zero. However, we do 464

find that using reward models for RL tuning can 465

lead to worse results. We attribute this to the poten- 466

tial reward hacking during the tuning. 467

5 Related Works 468

5.1 Synthesizing Test Cases 469

Automatic test generation is a widely used ap- 470

proach for verifying the correctness of LLM- 471

generated programs. Prior work has commonly em- 472

ployed the same LLM that generates the programs 473

to also generate test cases, selecting the most con- 474

sistent program from multiple sampled outputs in a 475

self-consistency manner (Chen et al., 2022; Huang 476

et al., 2023; Jiao et al., 2024). However, these 477

generated test cases often suffer from significant 478

hallucinations. To address this issue, Algo (Zhang 479

et al., 2023) introduced the use of an oracle pro- 480

gram solution to improve test case quality. While 481

similar in spirit to our test case filtering approach, 482

Algo constructs its oracle solution by exhaustively 483

enumerating all possible combinations of relevant 484

variables, whereas we leverage a stronger coder 485

LLM to generate the oracle solution. Beyond using 486

test cases as verification signals, Clover (Sun et al., 487

2023) enhances program verification by perform- 488

ing consistency checks between code, docstrings, 489

and formal annotations, incorporating formal veri- 490

fication tools alongside LLMs. 491
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Method HumanEval MBPP BigCodeBench-C BigCodeBench-I LiveCodeBench Average
- Plus - Plus Full Hard Full Hard V4

Inference Model = Llama-3.1-8B-Instruct

RM w/o Test Case Filter 73.8 65.9 73.3 61.4 44.6 17.6 35.5 9.5 25.1 45.2
RM w/ Test Filter 77.4 70.7 76.5 64.3 45.8 20.3 36.4 12.2 26.1 47.7
∆ (w/ Filter - w/o Filter) +3.7 +4.9 +3.2 +2.9 +1.2 +2.7 +0.9 +2.7 +1.0 +2.5

Inference Model = Qwen2.5-Coder-7B-Instruct

RM w/o Test Case Filter 91.5 86.0 86.0 72.2 52.5 21.6 43.4 19.6 36.9 56.6
RM w/ Test Filter 90.2 82.9 88.6 74.9 53.8 20.9 45.0 21.6 40.1 57.6
∆ (w/ Filter - w/o Filter) -1.2 -3.0 +2.6 +2.6 +1.3 -0.7 +1.6 +2.0 +3.2 +1.0

Table 5: Ablation study on test-case filtering. Results are Best-of-16 sampling performance.

Method HumanEval MBPP BigCodeBench-C BigCodeBench-I LiveCodeBench Average
- Plus - Plus Full Hard Full Hard V4

Inference Model = Llama-3.1-8B-Instruct

ACECODE-RM (LLama) 65.9 59.1 69.6 57.9 42.7 12.8 32.9 13.5 19.9 41.6
ACECODE-RM (Qwen) 77.4 70.7 76.5 64.3 45.8 20.3 36.4 12.2 26.1 47.7
∆ (Qwen-Llama) +11.6 +11.6 +6.9 +6.3 +3.1 +7.4 +3.5 -1.4 +6.2 +6.1

Inference Model = Qwen2.5-Coder-7B-Instruct

ACECODE-RM (LLama) 87.8 81.7 82.0 67.7 50.5 25.0 39.0 19.6 32.4 54.0
ACECODE-RM (Qwen) 90.2 82.9 88.6 74.9 53.8 20.9 45.0 21.6 40.1 57.6
∆ (Qwen-Llama) +2.4 +1.2 +6.6 +7.1 +3.2 -4.1 +6.0 +2.0 +7.7 +2.4

Table 6: Comparison of ACECODE-RM’s performance trained on different base model, where ACECODE-RM
(Llama) is based on Llama-3.1-Inst-8B and ACECODE-RM (Qwen) is based on Qwen-Coder-2.5-7B-Inst. Results
are Best-of-16 sampling performance.

5.2 Reinforcement Learning for LLM492

Reinforcement Learning from Human Feedback493

(RLHF)(Ouyang et al., 2022b) has been widely494

adopted to enhance the capabilities of large lan-495

guage models (LLMs) in various tasks, including496

conversational interactions and mathematical rea-497

soning(Yang et al., 2024b). Reinforcement learn-498

ing (RL) algorithms such as PPO(Schulman et al.,499

2017), GRPO(Shao et al., 2024), and Reinforce-500

ment++(Hu, 2025) have been employed to fine-501

tune models using reward signals derived from ei-502

ther learned reward models(Shao et al., 2024) or503

predefined rule-based heuristics (Guo et al., 2025;504

Wang et al., 2025).505

Given that coding is an inherently verifiable506

task, recent studies have explored RL techniques507

that leverage direct execution accuracy as a re-508

ward signal. PPOCoder (Shojaee et al., 2023b)509

and CodeRL (Le et al., 2022) demonstrated the510

effectiveness of PPO-based RL for coding tasks,511

while RLEF (Gehring et al., 2024) extended this512

approach to multi-turn settings by incorporating513

execution feedback at each step. StepCoder (Dou514

et al., 2024a) refined the reward mechanism by515

assigning rewards at a more granular level, con-516

sidering only successfully executed lines of code.517

Additionally, DSTC (Liu et al., 2024d) explored518

the application of Direct Preference Optimization 519

(DPO) to code generation by using self-generated 520

test cases and programs. 521

Despite these advancements, most prior RL- 522

based approaches for coding have been constrained 523

by the use of pre-annotated datasets such as 524

APPS (Hendrycks et al., 2021), which consists of 525

only 5,000 examples, with most problems having a 526

single test case. This limited data availability poses 527

challenges to scalable RL training. Furthermore, 528

the potential of reward models for coding remains 529

largely unexplored. In this work, we address these 530

limitations by automatically synthesizing test cases 531

and leveraging trained reward models for reinforce- 532

ment learning, demonstrating the scalability and 533

effectiveness of our approach. 534

6 Conclusion 535

We introduced ACECODER as the first approach 536

to reward model training and RL tuning for code 537

generation using large-scale, reliable test case syn- 538

thesis. Our data pipeline produces high-quality ver- 539

ifiable code without relying on the most advanced 540

models, enabling effective reward model training 541

and reinforcement learning. Our method signifi- 542

cantly improves Best-of-N performance. However, 543

RL training gains are less pronounced, leaving it 544

as a future work to enhance. 545
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Limitations546

Test Case Synthesis Despite our efforts to en-547

hance the reliability of synthesized test cases548

through prompt engineering and filtering with a ref-549

erence solution, inaccuracies can still arise. These550

errors may stem from an incorrect reference solu-551

tion or test cases that are too simple, failing to cap-552

ture challenging edge cases. Consequently, passing553

all test cases does not necessarily guarantee a pro-554

gram’s correctness, leading to noise in the reward555

model training and reinforcement learning (RL)556

tuning signals. To address this, future work can557

leverage stronger large language models (LLMs) to558

synthesize more rigorous test cases, ensuring the in-559

clusion of harder corner cases. Additionally, using560

more advanced coding LLMs to generate reference561

solutions could further improve test case filtering,562

preserving only high-quality examples.563

Reinforcement Learning for Coding In this pa-564

per, we explored RL tuning using three models and565

two types of rewards: RM-based and rule-based.566

While significant improvements are observed when567

tuning Qwen2.5-7B-Instruct and Qwen2.5-Coder-568

7B-Base, tuning on Qwen2.5-Coder-7B-Instruct569

exhibited less pronounced gains due to it’s strong570

ability originally. This suggests that the current571

reward signals may still contain noise. Further-572

more, there remains considerable room for im-573

provement, particularly in tuning the Qwen2.5-574

Coder-7B-Base. Given recent advancements in575

models such as DeepSeek-R1, future work could576

further refine RL tuning strategies to achieve better577

performance with more fine-grained reward design.578

Ethical Statements579

This work fully complies with the ACL Ethics Pol-580

icy. We declare that there are no ethical issues in581

this paper, to the best of our knowledge.582
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A Appendix934

A.1 More related works935

LLM for Code Generation Large language936

models (LLMs) have demonstrated significant po-937

tential in code generation. Due to the unique na-938

ture of coding tasks, specialized coding models939

such as Code Llama (Rozière et al., 2023) and940

Qwen Coder (Hui et al., 2024b; Yang et al., 2024a)941

were developed shortly after the emergence of942

general-purpose LLMs. These models typically943

undergo a two-phase training process: pre-training944

and fine-tuning. During pre-training, they are ex-945

posed to extensive coding corpora sourced from var-946

ious internet platforms, including raw text, GitHub947

repositories, and pull requests. This is followed948

by supervised fine-tuning, which enhances their949

instruction-following capabilities. To assess the950

performance of these models in code generation,951

several benchmarks have been established, includ-952

ing MBPP (Austin et al., 2021), HumanEval (Chen953

et al., 2021), EvalPlus (Liu et al., 2023, 2024b),954

Big Code Bench (Zhuo et al., 2024), and Live Code955

Bench (Jain et al., 2024). These benchmarks usu-956

ally include a series of prompts or problems for the957

LLMs to solve, and they also contain test cases to958

assess the correctness of the generated code.959

Reward Models Reward models play a crucial960

role in aligning LLMs by assigning scalar values961

to response pairs based on specific evaluation cri-962

teria, such as human preference (Ouyang et al.,963

2022b) and accuracy (Zhang et al., 2025). They are964

widely used in reinforcement learning with human965

feedback (RLHF) to refine model behavior and in966

Best-of-N sampling to enhance test-time perfor-967

mance. However, while general-purpose reward968

models are effective for assessing human prefer-969

ence, they often struggle with specialized domains970

like mathematics and coding due to the complex-971

ity of these tasks. For instance, even top-ranked972

reward models from Reward Bench (Lambert et al.,973

2024b), such as Skywork-RM (Liu et al., 2024a),974

have difficulty providing reliable rewards for these975

domains. To address this issue, task-specific reward976

models have been developed, such as Qwen-2.5-977

Math-PRM (Zhang et al., 2025) for mathematical978

reasoning. However, coding reward models have979

remained largely absent due to the lack of reli-980

able training signals—an issue that our proposed981

ACECODE-RM aims to address.982

13



A.2 Prompt Template983

system:
You are an AI assistant that helps people with python coding tasks.
user:
You are the latest and best bot aimed at transforming some code snippet into a leetcode style
question. You will be provided with a prompt for writing code, along with a reference program
that answers the question. Please complete the following for me:
1. Come up with a leetcode style question which consists of a well-defined problem. The
generated question should meet the following criteria:

a. The question is clear and understandable, with enough details to describe what the input
and output are.

b. The question should be solvable by only implementing 1 function instead of multiple
functions or a class. Therefore, please avoid questions which require complicated pipelines.

c. The question itself should not require any access to external resource or database.
d. Feel free to use part of the original question if necessary. Moreover, please do not ask for

runtime and space complexity analysis or any test cases in your response.
2. Based on the modified question that you generated in part 1, you need to create around 20
test cases for this modified question. Each test case should be independent assert clauses. The
parameters and expected output of each test case should all be constants, **without accessing
any external resources**.

Here is the original question:
{instruction}

Here is the reference program that answers the question:
```python
{program}
```

Now give your modified question and generated test cases in the following json format:
{"question": ..., "tests":["assert ...", "assert ..."]}.

Table 7: Prompt Used for Converting Seed Code Dataset into LeetCode-style Questions and Test Cases
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system:
You are an AI assistant that helps people with python coding tasks.
user:
You are the latest and best bot aimed at transforming some code snippet into a leetcode style
question. You will be provided with a reference program. Please complete the following for
me:
1. Come up with a leetcode style question which consists of a well-defined problem. The
generated question should meet the following criteria:

a. The question is clear and understandable, with enough details to describe what the input
and output are.

b. The question should be solvable by only implementing 1 function instead of multiple
functions or a class. Therefore, please avoid questions which require complicated pipelines.

c. The question itself should not require any access to external resource or database.
d. Feel free to use part of the original question if necessary. Moreover, please do not ask for

runtime and space complexity analysis or any test cases in your response.
2. Based on the modified question that you generated in part 1, you need to create around 20
test cases for this modified question. Each test case should be independent assert clauses. The
parameters and expected output of each test case should all be constants, **without accessing
any external resources**.

Here is the reference program:
```python
{program}
```

Table 8: Prompt Used for Converting Seed Code Dataset using only the reference program without instruction into
LeetCode-style Questions and Test Cases
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