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Abstract

The sequential nature of modern LLMs makes them expensive and slow, and spec-
ulative sampling has proven to be an effective solution to this problem. Methods
like EAGLE perform autoregression at the feature level, reusing top-layer features
from the target model to achieve better results than vanilla speculative sampling. A
growing trend in the LLM community is scaling up training data to improve model
intelligence without increasing inference costs. However, we observe that scaling
up data provides limited improvements for EAGLE. We identify that this limitation
arises from EAGLE’s feature prediction constraints. In this paper, we introduce
EAGLE-3, which abandons feature prediction in favor of direct token prediction
and replaces reliance on top-layer features with multi-layer feature fusion via a
technique named training-time test. These improvements significantly enhance
performance and enable the draft model to fully benefit from scaling up training
data. Our experiments include both chat models and reasoning models, evaluated
on five tasks. The results show that EAGLE-3 achieves a speedup ratio up to
6.5x, with about 1.4x improvement over EAGLE-2. In the SGLang framework,
EAGLE-3 achieves a 1.38x throughput improvement at a batch size of 64. The
code is available at https://github.com/SafeAILab/EAGLE.
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Figure 1: Speedup ratios of different methods at temperature=0. For the standard speculative
sampling, Vicuna-13B uses Vicuna-68M as the draft model. In Table|l} we present comparisons
with additional methods, but this figure only showcases a subset. Chat model’s evaluation dataset is
MT-bench, and the reasoning model’s evaluation dataset is GSM8K. DeepSeek R1 LLaMA 8B refers
to DeepSeek-R1-Distill-LLaMA §B.

1 Introduction

Modern Large Language Models (LLMs) are being applied to more domains, with their improved
capabilities driven by scaling model parameters—some LLMs now exceed hundreds of billions of
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Figure 2: Scaling law evaluated on the MT-bench using LLaMA-Instruct 3.1 8B as the target model,
with the x-axis representing the data scale relative to ShareGPT. The new architectural designs in
EAGLE-3 enable an increasing scaling curve, which was never observed in the previous works.

parameters. In autoregressive generation, each token requires accessing all model parameters, making
LLM inference slow and costly.

Recently, test-time scaling up has gained significant attention. Models like ChatGPT ol and DeepSeek-
R1 [[L] engage in deliberate reasoning before responding, pushing the boundaries of LLM capabilities
at the cost of longer inference time. However, these models often require lengthy reasoning processes,
making them extremely costly, while the increased response time severely impacts user satisfaction.
These reasoning models significantly increase the proportion of inference costs in the overall LLM
pipeline, driving researchers to explore cheaper and faster inference optimization methods.
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Recent LLMs have increasingly relied on larger
training datasets to achieve better performance.
For example, LLaMA series models with sizes

Figure 3: Illustration of training-time test (the
bottom part) and its comparison with other draft
methods (the upper and middle parts). f denotes
of 7B (8B) have used 1T, 2T, and 15T tokens of . feature. ¢ denotes the token, and a represents
training data for LLaMA ,1 50, LLaMA‘Z [,6J’ the unconstrained vectors. We use the hat to denote
and LLaMA 3 [7], respectively, resulting in sig- o bredictions from models. For EAGLE and EA-
Illﬁ.CaIlt lmprovements acros§ various me.tI‘lCS GLE + Zfea removal (the upper and middle parts),
while keeping the model architecture and infer- o (aining and test processes are different. How-

ence cost lar}glgely unchanged. Slm(lllarly, lwe am  ever, for EAGLE-3 (the bottom part), the training
to 1mprove the acceptance rate and acceleration ;o 4 tact processes are the same.

ratio of EAGLE by increasing its training data.
Unfortunately, we observe that the gains from additional training data for EAGLE are limited. We
analyze the reasons behind this phenomenon. As shown in the upper part of Figure [3| in the test
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Figure 4: Comparison of acceptance rates across different methods, with the x-axis representing the
data scale relative to ShareGPT.

phase, EAGLE performs autoregressive prediction at the feature level (as both input and output
of the draft model are with hat), predicting the next feature and then feeding the feature into the
LM head of the target model to obtain the token distribution. In the training phase, EAGLE’s loss
function consists of two components: the feature prediction loss Iz, and the token prediction loss
lioken- Thanks to the feature prediction loss, the draft model after training (when the input of the
draft model is without hat and the output of the draft model is with hat) can adapt to the test case
and acquire multi-step prediction capabilities. However, with token prediction as the ultimate goal,
feature prediction can be seen as an additional constraint, which limits the expressiveness of the draft
model and makes it difficult to benefit from increased data. After removing the feature constraint
and expanding the training data (the middle part of Figure 3), as shown in Figure[d] the acceptance
rate O-« of the first draft token improves significantly. However, the output of the draft model in the
training phase, denoted as a1, is far away from the ground-truth f;, 1, causing the input sequence
fi, fa, -+, ft, G441 in the test phase to deviate significantly from the training distribution, resulting
in a very low acceptance rate 1-« for the second draft token, as shown in Figure[d We can address
this issue by moving the output a;; back into the input of draft model in the training process (the
bottom of Figure[3), similar to autoregressive inference. Using this method, the benefits of increasing
training data become more pronounced. We name this technique as training-time test.

EAGLE and speculative sampling methods such as Medusa [8]] reuse the top-layer features of the
target model, specifically the features immediately before the LM head. For an LM head with a
full-rank weight matrix, the top-layer features corresponding to the logits of the next token are
unique, ensuring that the information contained in these features aligns directly with the logits of the
next token. However, predicting the next-next token based solely on top-layer features—which are
inherently limited to the next token—poses a significant challenge. Fortunately, the training-time test
technique described above enables the use of features from intermediate layers instead of relying
solely on the top layer, as the feature prediction loss /g, has been removed during training.

This paper introduces EAGLE-3, an enhanced version of EAGLE that achieves a significant speedup:

* A training-time test architecture for the draft model: We remove the feature prediction
constraint and directly predict tokens while simulating multi-step generation during training.
This direct token prediction provides complete flexibility in the draft model’s input. Instead
of reusing only the top-layer features, we integrate and leverage low-, mid-, and high-level
features from the target model, capturing rich semantic information from different layers.

* A new scaling law for inference acceleration in LLMs: With the new architecture, we
observe that increasing the amount of training data for the draft model leads to a proportional
increase in the speedup ratio of EAGLE-3. This scaling behavior was not observed in the
original EAGLE architecture, as shown in Figure E]

* Improved inference acceleration: EAGLE-3, trained with approximately 8x more data
than EAGLE, achieves a 1.4x latency speedup over EAGLE-2 at batch size 1. Speculative
sampling is often thought to reduce throughput at large batch sizes. However, in SGLang [9],
a production-grade framework, EAGLE-3 improves throughput by 38% at a batch size of
64. We expect larger data size would lead to further improved speedup ratio.



2 Preliminaries
2.1 Speculative Sampling

Speculative sampling [[10} 11} 12} 113] is a lossless LLM acceleration technique that alternates between
drafting and verification, where drafting is performed at low cost and verification is parallelized,
corresponding to the generation of drafts and the verification process, respectively. We use ¢; to
denote the i-th token and Tj,.; to represent the token sequence t,,tq11,- - - ,t5. When T7.; is used as
the prefix, the two stages of speculative sampling are as follows.

In the drafting stage, speculative sampling utilizes a draft model (a smaller version from the same

series as the target model) to autoregressively generate k tokens to form the draft. TjH: j+k> While
also recording the probability p for each token.

In the verification stage, speculative sampling invokes the target model to evaluate the draft TjH; J+k
and records its probability p. Speculative sampling then determines the acceptance of draft to-
kens sequentially, from front to back. For token fjﬂ, the probability of acceptance is given by
min(1, pj4i(j4:)/Dj+i(tj1:))- If the token is accepted, the process moves to the next token. Other-

wise, a token is sampled from the distribution norm(max (0, p;1; — Pj4.)) to replace fj+i, and the
remaining tokens in the draft are discarded. Appendix A.1 of [10] proves that speculative sampling is
consistent with the distribution of vanilla autoregressive decoding.

2.2 EAGLE and EAGLE-2

The draft model with limited capacity struggles to precisely approximate the large-scale target
model. EAGLE leverages the top-layer features of the target model as additional information and
performs autoregression at the feature level, simplifying the drafting process. EAGLE performs
autoregression at the feature level and then uses the LM head of the target model to obtain the draft
token. Due to the sampling results at the token layer being hidden, feature-level autoregression
introduces uncertainty. EAGLE addresses this issue by feeding the token sequence from the previous
time step, i.e., the sampling results, into the draft model. Unlike the chain-like drafts of Vanilla
speculative sampling, EAGLE generates multiple draft tokens at the same position, resulting in a
tree-like draft. In the verification stage, EAGLE uses tree attention to parallelize the verification
of the draft tree. Interestingly, EAGLE inspired the multi-token prediction technique used in the
pre-training of DeepSeek-v3 [14]], which in turn inspired new architectural designs in EAGLE-3.

EAGLE [2] and Medusa [8], among others, use tree-shaped drafts, where the structure of the draft
tree is predefined, static, and context-independent. The difficulty of drafting is closely related to
the context, and a static draft tree can lead to resource wastage. EAGLE-2 [15]] approximates the
acceptance rate using the confidence of the draft model and dynamically generates the draft tree
based on this, performing pruning of the draft tree at the end of the drafting stage. EAGLE-3 also
adopts the context-aware dynamic draft tree proposed in EAGLE-2.

3 EAGLE-3
In this section, we provide a detailed description of the implementation of EAGLE-3.

3.1 Inference Pipeline

Consistent with other speculative sampling methods, EAGLE-3 alternates between the drafting and
verification stages. The difference between EAGLE-3 and EAGLE lies in the drafting stage, which
we introduce with an example, as shown in Figure[5] Consider the prefix “How can”. During the
prefill phase or the previous verification stage, the target model performs a forward pass to generate
the next token, “I”’. We record the low, middle, and high-level feature sequences from the target
model’s forward pass, denoted as [, m, and h, respectively. We concatenate the k-dimensional vectors
l, m, and h to form a 3k-dimensional vector, then pass it through a fully connected (FC) layer to
reduce it to k-dimensions, obtaining a feature g that integrates information from different layers.
Here, k refers to the hidden size of the target model.

Our goal is to generate a draft token sequence with the prefix “How can I”’. By inputting only ghow and
Jean» the draft model cannot access the random sampling process. Therefore, similar to EAGLE [2],
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Figure 6: Diagram of the attention causal masks during training-time test. It sequentially shows a
native training step (the first step) and two simulated training steps (the second and third steps). The
arrows between tokens represent contextual relationships. The gray tokens represent the training data
while the and tokens represent the first- and second-round predictions by the draft model,
respectively. We use the training dataset as the labels for each token position.

we introduce the embedding ey of the sampled token “I”’. The concatenated vector is then passed
through an FC layer to reduce its dimensionality to &, and subsequently inputted into a single layer
decoder, producing the output a. Finally, we input ay into the LM head and sample to obtain the draft

token “do”.

In Step 1, with the prefix “How can”, we reuse
Jhow and gean from the target model. In Step
2, the prefix becomes “How can I”’. Ideally, we
would reuse gnows Gean, and g; from the target
model. However, this is not possible because
the token “T” has not yet been checked by the
target model, and we cannot obtain g;. Instead,
we use the output a; from the draft model in the
previous step to replace g, and concatenate a;
with the embedding eq, of the sampled result
“do” as the input to the draft model in Step 1.
In Step 3, we similarly cannot obtain gq,, SO
we use aq, as a replacement, concatenating a4,
with ey as the input to the draft model. The same
approach is followed for subsequent steps.

3.2 Draft Model Training

The input to the draft model in EAGLE is ei-
ther, or at least approximately, the top-layer fea-
tures f1, fo, -, f; of the target model. In con-
trast, the input to the draft model in EAGLE-
3 may include the features g1, g2, - - - , g; from
the target model, or it may include the out-
put a¢41,0a¢42 -+ ,a¢y; from the draft model.
Therefore, we need to train the draft model to
adapt to different inputs. During training, we
perform test steps, where we generate a and feed
it back into the draft model for further training.

The core of the draft model in EAGLE-3 is a
Transformer decoder layer. Aside from the self-
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Figure 5: Diagram of the EAGLE-3 inference
pipeline. [, m, and & represent the low, middle,
and high-level features of the target model, respec-
tively. e denotes the embedding.



attention operation, no other components interact with the context, so no further modifications are
required during training or testing. The only component that requires slight modification is the
self-attention, which we will describe in detail below.

Although the actual input consists of features, for clarity, we describe the process using tokens as
input. As shown in Figure[f] the original training data is a sequence of length 3, “How can I”, with
a normal sequential dependency in the context. Therefore, the attention mask is a standard lower

9

triangular matrix. The outputs at the three positions are “are”, “we”, and “do”, which have a tree-like
contextual relationship with “how”, “can”, and “I”. As a result, when the input “are”, “we”, and “do”
is fed into Step 2, the attention mask needs to be adjusted accordingly, as shown in the top-right
corner of Figure[6] All attention masks are diagonal, except when the original training data is used as
the key. Using matrix multiplication in this case would result in significant computational waste, so

we can use vector dot products to calculate the attention score only for the corresponding positions.

HASS [3]] and EAGLE-3 both make similar modifications to the attention mechanism to simulate
the testing process during training, but this is not the main focus of EAGLE-3. The motivations,
methods, and outcomes of the two approaches are distinctly different. The motivation behind HASS
is to mitigate the error accumulation caused by inaccurate feature predictions in EAGLE. HASS still
performs feature prediction, includes a feature prediction loss lf,, and the input to the draft model
must be the top-layer features. In contrast, the motivation behind EAGLE-3 is to remove unnecessary
constraints to enhance the model’s expressive power. EAGLE-3 no longer requires the draft model’s
output to fit the top-layer features of the target model, thus avoiding error accumulation. After
removing feature prediction, the input to EAGLE-3 is completely free, and it is replaced by a fusion
of features from different layers of semantic information. The removal of the feature prediction loss
also enables us to discover a new scaling law for inference acceleration which was never found before.
Figure [T] and Table [T) also shows the speedup of EAGLE-3 and HASS, with EAGLE-3 demonstrating
significantly better performance.

4 Experiments

Models. We conduct experiments with open-source chat and reasoning models, including Vicuna
13B [16], LLaMA-Instruct 3.1 8B, LLaMA-Instruct 3.3 70B [7]], and DeepSeek-R1-Distill-LLaMA
8B [[17]]. Due to the GPU constraint, we are unable to test EAGLE-3 on models larger than 70B.

Draft Models. Same to EAGLE and EAGLE-2, the draft model of EAGLE-3 consists of a single
transformer layer. So, the scale of draft models in EAGLE, EAGLE-2, and EAGLE-3 is nearly the
same.

Tasks. Following EAGLE [2] and Spec-Bench [18]], we evaluate on five tasks, using the same weights
for all tasks without fine-tuning on the respective tasks. For multi-turn conversation, code generation,
mathematical reasoning, instruction following, and summarization,, we chose the MT-bench [19]],
HumanEval [20]], GSM8K [21], Alpaca [22], and CNN/Daily Mail [23]] datasets, respectively.

Metrics. EAGLE-3 does not modify the target model’s weights and uses strict speculative sampling
acceptance conditions, ensuring no loss in performance. Therefore, we do not evaluate generation
quality. Instead, we use the following metrics to assess the acceleration performance:

» Speedup Ratio: The actual test speedup ratio relative to vanilla autoregressive decoding.

* Average Acceptance Length 7: The average number of tokens generated per drafting-
verification cycle, which corresponds to the number of tokens accepted from the draft.

* Acceptance Rate n-a: The proportion of draft tokens accepted, which directly reflects
the draft model’s approximation to the target model. Following EAGLE’s setup, we use a
chain-like draft rather than a tree-like draft when testing acceptance rates. EAGLE suffers
from error accumulation, meaning that the input to the draft model may be its own estimates
rather than the exact values from the target model. Therefore, EAGLE uses n-« to represent
the acceptance rate when the input contains n estimated features, under the condition that
the previous estimated tokens are all accepted by the target model. In other words, the

acceptance rate for inputs f1, fo,-- -, fi, fi+1, -, fitn, Where f is the exact value and

f is the draft model’s estimate. Similarly, we use n-« to represent the acceptance rate in
EAGLE-3 when the input contains n self-predicted values a, i.e., the acceptance rate for
inputs g1, g2, - , gi, @it1, ** ,Gi+n, Where g is the fused feature from the target model.



Table 1: Speedup ratios and average acceptance lengths 7 of different methods on A100 GPUs. V
represents Vicuna, L31 represents LLaMA-Instruct 3.1, L33 represents LLaMA-Instruct 3.3, and
DSL represents DeepSeek-R1-Distill-LLaMA. SpS denotes standard speculative sampling, with its
draft model being Vicuna-68M. Methods like Medusa relax acceptance conditions under non-greedy
settings, which do not guarantee lossless acceleration. Therefore, we do not compare EAGLE-3 with
these methods when temperature=1.

MT-bench HumanEval GSM8K Alpaca CNN/DM Mean
Model Method Speedup T Speedup T Speedup T Speedup T Speedup T Speedup T

Temperature=0

SpS 1.93x 227 223x 257 177x 201  1.76x 203 193x 233 192x 224
PLD 158x 163 185 193 1.68x 173 1l6x 119 242x 250 174x 1.80

Medusa ~ 2.07x 259  2.50x 278  223x 264 208 245 171x 209 212x 251

Lookahead ~ 1.65x  1.69  1.71x 175 18Ix 190 1l46x 151 146x 150 1.62x 167

V13B Hydra 2.88x 365 328x 387 293x 3.66 2.86x 3.53 205x 281 280x 3.0
EAGLE  3.07x 398 358 439 3.08x 397 3.03x 395 249x 352 3.05x 3.96

EAGLE-2  426x 483 496x 541 422x 479 425x 489 340x 421 422x 483

EAGLE-3  558x  6.65 647x 754 532x 629 516x 617 501x 647 55Ix 662

EAGLE-2 3.16x 4.05 3.66x 4.71 3.39x 424 328x 412 2.65x 3.45 323x 4.1
L31 8B HASS 3.55x 441 3.78x 485 345x 447 357x 455 2.77x 3.55 342x 437
EAGLE-3 4.40x 6.13 4.85x 6.74  4.48x 6.23 482x 670 3.65x 534 444x 623

EAGLE2  2.83x 3.67 3.12x 409 283x 3.69 3.03x 392 244x 355 285x 3.78
L3370B  EAGLE3  4.11x 563 479x 652 434x 615 430x 609 327x 502 412x 588

EAGLE-2 2.92x 380 342x 429 3.40x 440  3.01x 380  3.53x 333 3.26x 3.92
DSL8B  EAGLE-3 405x 558 459 638 5.01x 693 3.65x 537 352x 492 4.16x 584

Temperature=1

SpS 1.62x  1.84 172x 197 146x 173  152x 178 1.66x 189  1.60x  1.84
EAGLE 232x 320  2.65x  3.63 257x 360 245x 357 223x 326 244x 345

VI3B  EAGLE-2 3.80x 440 422x 489 3.77x 441 378x 437 325x 397 376x 44l
EAGLE-3  4.57x 542 515x 622 471x 558 449x 539 433x 572  4.65x  5.67

EAGLE-2  244x 3.16 339x 439 286x 374 283 3.65 244x 3.14 280x 3.62
L318B HASS 258x 331 348 450 287x 377 3.04x 398 242x 311 289 373
EAGLE-3  3.07x 424 413x 582 332x 459 390x 556 299x 439 345x 492

EAGLE-2  2.73x 351 2.89x 381 252x 336 277x 3.73 232x 327 265x 354
L3370B  EAGLE-3 3.96x 545 436x 616 4.17x 595 4.14x 587 3.11x 4.88 3.95x  5.66

EAGLE-2 2.69x 3.41 3.01x 3.82 3.16x 4.05 2.64x 3.29 2.35x 3.13 2.77x 3.54
DSL8B EAGLE-3  3.20x 449 3.77x 528 438k 610 3.16x 430 3.08x 427 3.52x 4.89

Implementation. We use the AdamW optimizer, with beta values (f1, 82) set to (0.9, 0.95) and
implemented gradient clipping of 0.5. The learning rate is set to Se-5. We simulate 5 steps during
training-time test. We use ShareGPT and UltraChat-200K [24] as training data, containing approxi-
mately 68K and 464K data entries, respectively. We call the target model to generate responses rather
than using a fixed dataset. For the reasoning model DeepSeek-R1-Distill-LLaMA 8B, we also use the
OpenThoughts-114k-math dataset for training. We use 16x A100 GPUs for the training of EAGLE-3
head for 70B models in two weeks. If not specified, we use the A100 GPU to test 70B models and
the RTX 3090 for other models. The testing environment for all methods accelerating the same target
model is identical.

Comparison. We use vanilla autoregressive decoding as the baseline, which serves as the benchmark
for speedup ratios (1.00x). We compare EAGLE-3 with recent lossless speculative sampling methods,
including standard speculative sampling [10, [11} 25], PLD [26], Medusa [8], Lookahead [27], Hydra
(28], HASS [3], EAGLE [2]], and EAGLE-2 [15].

4.1 Effectiveness

Figure [I]and Table[I]demonstrate the acceleration performance of EAGLE-3. On all tasks and target
models, EAGLE-3 achieves the highest speedup ratio and average acceptance length. EAGLE-3
provides a speedup of approximately 3.0x-6.5x compared to vanilla autoregressive generation, with
a 20%-40% improvement over EAGLE-2. Different tasks affect the draft model’s acceptance rate,
so both the average acceptance length and speedup ratio are task-dependent. Due to the presence
of many fixed templates in code generation tasks, generating drafts is the easiest, which is why
EAGLE-3 performs best on HumanEval, achieving a speedup ratio of up to 6.5x and an average
acceptance length of up to 7.5. DeepSeek-R1-Distill-LLaMA 8B is an exception, with the highest



speedup ratio on the mathematical reasoning dataset GSMS8K. This may be because we trained the
draft model of DeepSeek-R1-Distill-LLaMA 8B using the OpenThoughts-114k-math dataset.

Figure[7]shows the acceptance rates of EAGLE and EAGLE-3 on MT-bench with LLaMA-Instruct
3.1 8B as the target model. The acceptance rate of EAGLE-3 is significantly higher than that of
EAGLE. As the input from the draft model itself increases, the acceptance rate of EAGLE drops
significantly, whereas EAGLE-3’s acceptance rate remains almost unchanged, demonstrating the
effectiveness of the Training-time test.
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Figure 7: Acceptance rate of EAGLE and EAGLE-3 on MT-bench, with the target model being
LLaMA-Instruct 3.1 8B. Hereby, n-« refers to the acceptance rate when the input contains n estimated
features, under the condition that the previous estimated tokens are all accepted by the target model.

4.2 Ablation Study

The improvements of EAGLE-3 mainly come from three aspects: first, the removal of the feature
regression constraint, second, the improvement from reusing only the top-layer features to reusing a
mix of low, middle, and high-level features, and third, the increase of training data. We conducted an
ablation study on MT-bench with LLaMA-Instruct 3.1 8B as the target model. The results, shown
in Table[2] indicate that the first and second improvements in EAGLE-3 significantly enhance the
acceptance length and speedup ratio, demonstrating the rationality of the EAGLE-3 design. Figure
shows how the speedup ratio increases w.r.t. the amount of training data. The new architectural
designs in EAGLE-3 enable an increasing scaling curve, which was never observed in the previous
works.

Table 2: Ablation study results with LLaMA-Instruct 3.1 8B as the target model. “Remove fea con”
refers to the first improvement of EAGLE-3, which removes the feature prediction constraint. “Fused
features” refers to the second improvement of EAGLE-3, where low, middle, and high-level feature
fusion replaces the use of top-layer features.

MT-bench GSMSK
Method Speedup T Speedup T
EAGLE-2 3.16x 4.05 3.39x 4.24
+ remove fea con 3.82x 5.37 3.77x 5.22

+ fused features (ours) 4.40x 6.13 4.48x 6.23

4.3 EAGLE-3in SGLang

Speculative sampling algorithms reduce memory accesses and lower latency during memory-bound
decoding by leveraging redundant computational power. As batch sizes increase, this redundancy
decreases, reducing the effectiveness of speculative sampling. Efficiency improvements are more
challenging in highly optimized production-grade frameworks. The performance of EAGLE-3 for
large batches on a single H100 GPU and LLaMA-Instruct 3.1 8B in the SGLang v0.4.4 environ-
ment [9] was evaluated in Table[3| This part of the experiment did not use the tree structure, the chain
length was set to 3, and the testing dataset was MT-Bench. EAGLE reduces throughput at batch size
of 24, whereas EAGLE-3 still achieves a 38% throughput improvement at a batch size of 64.



Table 3: Throughput improvement under different batch sizes on H100 and LLaMA-Instruct 3.1 8B
for the MT-Bench dataset, with SGLang without speculative sampling as the baseline (1.00x).

Batch size 2 4 8 16 24 32 48 56 64

EAGLE 1.40x 138x 1.23x 1.02x 0.93x 094x 0.88x 0.99x 0.99x
EAGLE-3 1.81x 1.82x 1.62x 148x 1.39x 132x 1.38x 1.34x 1.38x

We also tested the throughput of EAGLE-3 at batch size = 1 on H100 when the target model is
LLaMA-Instruct 3.1 8B and the testing dataset is MT-bench. The results are shown in Table[d]

Table 4: Throughput at batch size = 1 on a single HI00 GPU when the target model is LLaMA-Instruct
3.1 8B and the testing dataset is MT-bench.

Method Throughput (bs=1)
SGLang (w/o speculative, 1x H100) 158.34 tokens/s
SGLang + EAGLE-2 (1x H100) 244.10 tokens/s
SGLang + EAGLE-3 (1x H100) 373.25 tokens/s

44 EAGLE-3in vLLM

We also conducted a study on the impact of EAGLE-3 on throughput for large batch sizes based on
vLLM [29], a widely used production-grade framework, and the results on RTX3090 and LLaMA-
Instruct 3.1 8B are shown in Table 5] EAGLE shows the maximum throughput improvement at a
batch size of 24, while EAGLE-3 shows this at 56. This part of the experiment did not use the tree
structure, the maximum chain length was set to 2, and the testing dataset was MT-Bench.

Table 5: Throughput improvement under different batch sizes on RTX3090 and LLaMA-Instruct 3.1
8B for the MT-Bench dataset, with vLLM without speculative sampling as the baseline (1.00x).

Batch size 2 4 8 16 24 32 48 56

EAGLE 1.30x 1.25x 1.21x 1.10x 1.03x 093x 0.82x 0.71x
EAGLE-3 1.75x 1.68x 1.58x 1.49x 142x 1.36x 1.21x 1.01x

5 Related Work

Many methods have been used to accelerate inference in LLMs, such as quantization [30, 31} 32} 33|
34] and distillation [35]]. These methods generally have trade-offs, where there is a need to balance
model performance with acceleration benefits.

Speculative sampling uses the target model for verification to ensure lossless acceleration. Early
speculative decoding methods [36} 137] accelerated generation in greedy settings, while [10} [11]
introduced speculative sampling to extend the draft verification framework to non-greedy generation.
Many subsequent works have improved upon speculative sampling. EAGLE [2]], EAGLE-2 [15]],
Medusa [8]], and Hydra [28] reused the features of the target model. Based on the framework of
EAGLE, HASS [3]] simulates a multistep draft process during training to mitigate the issues of
training-inference inconsistency and error accumulation in EAGLE. GLIDE and CAPE [38] reuse
the target model’s KV cache, while methods [39, 140} 41} 42, 143|144} 145146\ |47]] like Draft & Verify
[48]] use layer skipping or early exits to reuse parts of the target model’s parameters.

There are several key differences between HASS [3] and EAGLE-3. First, HASS drafts using only
top-layer features, whereas EAGLE-3 integrates low-, mid-, and high-level features. Second, HASS
retains the token 10ss /ioken, While EAGLE-3 removes it to improve model capacity. Third, unlike
HASS, EAGLE-3 exhibits a clear scaling law trend. Finally, EAGLE-3 significantly outperforms
HASS, as demonstrated in Figure [[]and Table



6 Conclusion

In this paper, we introduce EAGLE-3. Building upon EAGLE, EAGLE-3 incorporates two key
improvements. First, it removes the feature prediction constraint, instead directly predicting draft
tokens through a Training-time test. Second, it replaces the use of the target model’s top-layer
features with a fusion of the target model’s lower, middle, and upper-layer features to obtain richer
information. With these improvements, EAGLE-3 continues to benefit from the augmentation of
training data, achieving a maximum speedup of 6.5x.
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A Implementation Details

Vanilla: We use models from the Huggingface.transformers library with the PyTorch backend and
pre-allocated KV cache. Other methods also use these models as their base.

(Standard) Speculative Sampling: We use the assisted generation feature from the HuggingFace
Transformers library.

PLD, Lookahead, Medusa, and Hydra: We use the default settings and the officially released
weights.

EAGLE: Vicuna and LLaMA?2-Chat draft models use the officially released weights, while LLaMA3-
Instruct is trained using the ShareGPT dataset (consistent with Medusa and Hydra).

EAGLE-2: For the 7B (8B), 13B, and 70B original LLMs, we set the total number of draft tokens to
60, 50, and 48, respectively, with a draft tree depth of 6, and select 10 nodes during the expansion
phase.

EAGLE-3: EAGLE-3’s draft model achieves a significantly higher acceptance rate, allowing us to
increase the draft tree depth from 6 to 8 while keeping the number of nodes the same as in EAGLE-2.

B A Comparative Study of EAGLE-3 and HASS

The work most similar to EAGLE-3 is HASS. Both approaches simulate multi-step prediction during
training, but this is neither the main focus of EAGLE-3 nor HASS. Training-time testing primarily
involves adjusting the attention mask to enforce correct dependencies, which essentially simplifies
tree attention into a fixed-shape form (as illustrated in Figure[6). In fact, tree attention has been widely
adopted in nearly all speculative decoding methods proposed in recent years. Feeding model outputs
instead of ground truth during training, known as scheduled sampling, was also widely explored in
the RNN era.

The core contribution of HASS lies in identifying the train-test mismatch in EAGLE and mitigating
it through tree attention-based simulation. In contrast, EAGLE-3 focuses on a different issue: the
inability of EAGLE to benefit from data scaling. EAGLE-3 attributes this limitation to the feature
prediction constraint—an issue also present in HASS. EAGLE-3 removes this constraint and uses
tree attention for simulation. This modification enables EAGLE-3 to scale effectively with increased
training data, whereas HASS does not. The ability to scale with data is the core contribution of
EAGLE-3.

Figure§]illustrates the performance of EAGLE-3 and HASS across different training data scales. Sim-
ilar to EAGLE-2, HASS fails to scale up, while EAGLE-3 exhibits rapid performance improvements
as more training data becomes available. Moreover, EAGLE-3 identifies that the top-layer features
(used in EAGLE and subsequent works including HASS) tend to overfit to next-token prediction and
are not well-suited for multi-step draft generation. To address this, EAGLE-3 replaces the top-layer
features with a fusion of multi-level features. Therefore, EAGLE-3 also outperforms HASS when
trained on smaller datasets.
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Figure 8: Scaling law evaluated on the MT-bench using LLaMA-Instruct 3.1 8B as the target model,
with the x-axis representing the data scale relative to ShareGPT.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please see abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Please see Section[6]

14



Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section[d]
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: See supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section [l
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: This field of study does not include statistical significance in its experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section [l
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research described in this paper fully complies with the NeurIPS Code of
Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section[@l
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.

Guidelines:
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14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Section 4]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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