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Abstract

Large Language Models (LLMs) have greatly001
advanced medical Question Answering (QA)002
by leveraging vast clinical data and medical003
literature. However, the rapid evolution of004
medical knowledge and the labor-intensive pro-005
cess of manually updating domain-specific re-006
sources can undermine the reliability of these007
systems. We address this challenge with Adap-008
tive Medical Graph-RAG (AMG-RAG), a com-009
prehensive framework that automates the con-010
struction and continuous updating of Medi-011
cal Knowledge Graphs (MKGs), integrates012
Chain-of-Thought (CoT) reasoning, and re-013
trieves current external evidence (e.g., PubMed,014
WikiSearch). By dynamically linking new find-015
ings and complex medical concepts, AMG-016
RAG not only boosts accuracy but also en-017
hances interpretability for medical queries.018

Evaluations on the MEDQA and MEDM-019
CQA benchmarks demonstrate the effective-020
ness of AMG-RAG, achieving an F1 score of021
74.1% on MEDQA and an accuracy of 66.34%022
on MEDMCQA—surpassing both comparable023
models and those 10 to 100 times larger. Impor-024
tantly, these improvements are achieved with-025
out increasing computational overhead, under-026
scoring the critical impact of automated knowl-027
edge graph generation and external evidence028
retrieval in delivering up-to-date, trustworthy029
medical insights.030

1 Introduction031

Medical knowledge expands at a tremendous pace,032

with new research findings, clinical guidelines, and033

treatment protocols emerging constantly. Large034

Language Models (LLMs) have already demon-035

strated their value in harnessing this vast and evolv-036

ing information for medical question answering by037

processing large corpora of domain-specific liter-038

ature and data (Nazi and Peng, 2024; Liu et al.,039

2023). However, a major challenge lies in ensuring040

that these models remain factually current and can041

Figure 1: Performance vs parameter numbers for medical
Question Answering (QA) on the MEDQA and MEDM-
CQA datasets. Adaptive Medical Graph-RAG (AMG-RAG)
achieves an F1 score of 74.1% on MEDQA and an accuracy of
66.34% on MEDMCQA, surpassing both comparable models
and those that are 10 to 100 times larger in size. See Tables 1
and 2 for more details.

accurately represent complex relationships among 042

medical concepts (Rohanian et al., 2024; Yu et al., 043

2024). Traditional approaches to mitigating these 044

issues involve the use of knowledge graphs, which 045

offer structured, interconnected representations of 046

medical information and can support more nuanced 047

reasoning (Huang et al., 2021). Yet, construct- 048

ing and maintaining such graphs is labor-intensive, 049

time-consuming, and expensive. These burdens 050

are particularly acute in a domain as dynamic as 051

medicine, where new insights quickly render old 052
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information out-of-date (Yang et al., 2024). To ad-053

dress this pressing issue, we propose an automated054

framework for constructing and continuously evolv-055

ing Knowledge Graphs (KGs) specifically tailored056

to medical question answering. By leveraging057

LLMs agents and domain-specific search tools,058

our method autonomously generates graph Medical059

Knowledge Graphs (MKGs), enriched with descrip-060

tive metadata, confidence scores, and relevance in-061

dicators. In doing so, it drastically reduces the062

manual effort traditionally required to build and up-063

date knowledge graphs, while ensuring alignment064

with the latest medical advances. Unlike traditional065

Retrieval Augmented Generation (RAG) solutions066

that rely heavily on vector similarity for retrieval067

(Lewis et al., 2020), our knowledge-graph-based068

approach provides more sophisticated reasoning069

capabilities through shared attributes and explicit070

relationships. This facilitates accurate synthesis of071

information across diverse medical domains, rang-072

ing from drug interactions and clinical trial data to073

patient histories and treatment guidelines.074

A central component of our solution is the inte-075

gration of these evolving knowledge graphs into a076

RAG-based pipeline. New and updated graph enti-077

ties are continuously fed into an LLM question an-078

swering module, ensuring that responses draw upon079

the most up-to-date and contextually relevant med-080

ical information (Singhal et al., 2022). Building081

on this dynamic architecture, we introduce an itera-082

tive pipeline, AMG-RAG, which combines insights083

from these automatically maintained graphs with084

traditional textual retrieval and multi-step chain-of-085

thought reasoning. By optimizing retrieval through086

confidence scoring and adaptive graph traversal,087

AMG-RAG demonstrates significantly improved088

accuracy and completeness in medical QA (Trivedi089

et al., 2022).090

We assess AMG-RAG on the MEDQA and091

MEDMCQA benchmarks, which are designed to092

test evidence retrieval, complex reasoning, and093

multi-choice comprehension in the medical do-094

main. Our model achieves an F1 score of 74.1% on095

MEDQA and an accuracy of 66.34% on MEDM-096

CQA, outperforming both similarly sized RAG ap-097

proaches and much larger state-of-the-art models098

(Fig. 1). Crucially, these gains do not necessitate099

additional fine-tuning or higher inference costs;100

instead, they result from seamlessly integrating101

knowledge graphs and domain-specific search tools.102

This efficient and scalable approach underscores103

the value of dynamically evolving knowledge re-104

trieval in medical QA, offering an avenue for en- 105

hancing clinical decision-making by delivering re- 106

liable, relationally enriched insights (Zhou et al., 107

2023). 108

2 Related Work 109

Medical QA systems are essential for enhancing 110

clinical decision-making, research, and patient care 111

(Nazi and Peng, 2024; Liu et al., 2023; Rezaei et al., 112

2024). Over time, the field has evolved with various 113

technological advancements addressing key chal- 114

lenges in processing medical information (Singhal 115

et al., 2022). Domain-specific language models 116

such as BioBERT (Lee et al., 2020), PubMedBERT 117

(Gu et al., 2021), and MedPaLM (Singhal et al., 118

2023) have achieved significant success in biomed- 119

ical tasks (Rohanian et al., 2024). However, these 120

models often struggle with synthesizing complex 121

relationships between medical entities and integrat- 122

ing data from diverse sources, particularly for rare 123

conditions, drug interactions, and comorbidities 124

(Zhou et al., 2023; Yu et al., 2024). 125

To overcome these challenges, RAG frameworks 126

(Lewis et al., 2020) have enhanced LLMs by inte- 127

grating external knowledge sources. Systems like 128

MMED-RAG (Xia et al., 2024) have extended this 129

paradigm to include multimodal data. The intro- 130

duction of Chain-of-Thought (CoT) reasoning has 131

further improved QA performance, with IRCoT 132

(Trivedi et al., 2022) combining CoT reasoning 133

with RAG for more sophisticated inference. Re- 134

cent advancements, such as Gemini’s multimodal 135

and long-context reasoning capabilities, have set 136

new benchmarks in MedQA, surpassing GPT-4 in 137

performance (Saab et al., 2024). However, these 138

systems often struggle to adapt to novel queries 139

and dynamic data due to their rigid architectures. 140

KG-based approaches provide another avenue 141

for advancing medical information processing. Sys- 142

tems like KG-Rank (Huang et al., 2021) utilize 143

structured knowledge representations and ontolo- 144

gies to enable hierarchical reasoning and inference. 145

By combining knowledge graphs with ranking and 146

re-ranking techniques, these systems enhance the 147

factual accuracy of long-form QA (Yang et al., 148

2024). However, KG-based systems face signif- 149

icant challenges in maintaining scalability and stay- 150

ing current with rapidly evolving biomedical dis- 151

coveries. 152

2



Difference and Importance of AMG-RAG153

Our AMG-RAG dynamically constructs relational154

medical KGs integrated with advanced search ca-155

pabilities. Unlike traditional static systems, our156

approach extracts medical terms from queries, en-157

riches them with real-time data, and utilizes LLMs158

to infer relationships. This dynamic mechanism159

ensures continuous alignment with emerging medi-160

cal knowledge, addressing the limitations of static161

knowledge bases and pre-trained models. By com-162

bining dynamic KGs with CoT reasoning and RAG,163

our framework improves the adaptability and relia-164

bility of medical QA systems.165

3 Method166

Knowledge Graphs (KGs) offer structured frame-167

works for evidence-based reasoning. However,168

traditional KGs struggle to adapt to dynamic and169

evolving queries, as well as the continuous influx of170

new research and evidence in the medical domain.171

To overcome this limitation in the medical Question172

Answering (QA) pipeline, we propose a novel ap-173

proach that automatically constructs medical-KGs174

using a combination of a Large Language Model175

(LLM) agent and a specialized medical search tool.176

This Medical Knowledge Graph (MKG) enhances177

medical QA by tailoring the graph’s construction178

and querying processes to each specific query. This179

section outlines the methodologies used to develop180

the MKG and the Adaptive Medical Graph-RAG181

(AMG-RAG) pipeline, aimed at enhancing QA sys-182

tems with advanced capabilities for retrieval, rea-183

soning, and generation.184

3.1 Retrieval Augmented Generation (RAG)185

for QA186

Retrieval Augmented Generation (RAG) is a frame-187

work designed to enhance QA by integrating rel-188

evant external knowledge into the generation pro-189

cess. The framework combines retriever and gener-190

ator components to ensure responses are grounded191

in evidence. Below, we outline various approaches192

within the RAG paradigm:193

3.1.1 RAG194

In the RAG approach, the retriever fetches195

a fixed number of relevant documents,196

{d1,d2, . . . ,dn} ∈ D, based on the query197

q. Here, D represents the set of all domain-198

specific documents utilized. These documents are199

concatenated and passed directly to a LLM-based200

text generator, G, which produces the answer â: 201

â = G(q, {d1, . . . ,dn}). 202

This approach is simple and computationally ef- 203

ficient but may struggle with domain-specific or 204

complex queries that require additional supporting 205

evidence. 206

3.1.2 RAG with Chain-of-Thought (CoT) 207

Enhancing RAG’s performance can be achieved by 208

integrating intermediate reasoning steps prior to 209

producing the final response. The generator pro- 210

duces a chain of thought, c, which serves as an 211

explicit reasoning trace: 212

{d1, . . . ,dk} = Retriever(q;D), 213

214
c = G(q, {d1, . . . ,dk}), â = G(c). 215

This step-by-step approach enhances reasoning and 216

interpretability, leading to improved accuracy in 217

multi-hop reasoning tasks. 218

3.1.3 RAG with Search 219

The RAGs’s performance can improved further 220

by incorporating additional related documents re- 221

trieved from external sources, such as the internet, 222

through a search tool. This variant integrates ex- 223

ternal search capabilities into the retrieval process. 224

For a query q, the retriever’s results are combined 225

with those from external search engines, provid- 226

ing more comprehensive evidence for the LLM to 227

generate a response: 228

{d′
1, . . . ,d

′
m} = Search(q;D′), 229

230
â = G(q, {d1, . . . ,dn,d

′
1, . . . ,d

′
m}). 231

This additional search step significantly enhances 232

performance, particularly in scenarios that require 233

access to extensive and diverse knowledge. 234

3.2 Medical QA with AMG-RAG 235

In scenarios requiring domain expertise, such as 236

medical or scientific QA, traditional methods of- 237

ten fail due to their inability to capture intricate 238

domain-specific relationships or handle ambiguous 239

queries. KG-driven approaches overcome these 240

challenges by integrating explicit relationships and 241

structured knowledge representations. This marks 242

a significant advancement in intelligent QA sys- 243

tems, ensuring robustness and scalability across 244

various applications. 245

3



Figure 2: Model Schema. A) The pipeline for creating the MKG using search tools and an LLM agent. B) An example of the
generated MKG in Neo4J, illustrating nodes and relationships derived from search results and contextual information. C) The
AMG-RAG pipeline. D) A simplified RAG pipeline.

Below, we introduce the proposed AMG-RAG246

pipeline and outline the process for constructing the247

MKG, which is detailed in the following section.248

The AMG-RAG pipeline consists of the follow-249

ing steps:250

1. Question Parsing: Extract medical terms251

{n1,n2, . . . ,nm} from the user query q us-252

ing an LLM agent:253

{n1,n2, . . . ,nm} = LLM(q,M), m ≤ M.254

The LLM agent is instructed to extract the255

medical terms {ni}mi=1 associated with the256

query q.257

2. Node Exploration: For each term ni, query258

the KG to retrieve relevant information while259

applying a confidence threshold. This thresh-260

old determines the minimum level of relation-261

ship confidence required to include informa-262

tion from the KG, filtering out relationships263

with confidence scores below the specified264

threshold. Details on the calculation of con-265

fidence scores can be found in Appendix A.266

Nodes and their children are examined itera-267

tively, with parent confidence scores, s(ni),268

multiplied by their relationship scores, s(rij), 269

to compute child confidence: 270

s(nj) = s(ni) · s(rij), ∀j ∈ children of i. 271

Both Breadth-First Search (BFS) and Depth- 272

First Search (DFS) strategies can be employed 273

to explore child nodes. BFS prioritizes cov- 274

ering all immediate neighbors at the current 275

depth before moving deeper, ensuring compre- 276

hensive breadth-wise exploration. In contrast, 277

DFS delves deeply along one branch before 278

backtracking, enabling a more targeted depth- 279

first traversal. The exploration process con- 280

tinues until either the cumulative confidence 281

meets or exceeds a threshold τ , or the maxi- 282

mum document limit M is reached. 283

3. Chain of Thought Generation: Generate a 284

reasoning trace ci for each entity ni using an 285

LLM, integrating information from nodes and 286

their relationships: 287

ci = LLM(ni, {d(nj) | j ∈ connected nodes}). 288

4. Answer Synthesis: Aggregate reasoning 289

traces {c1, c2, . . . , cm} and pass them to a fi- 290
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nal answer generator, which produces the out-291

put â along with an overall confidence score:292

â, ŝ = G({c1, c2, . . . , cm}).293

This pipeline ensures that answers are compre-294

hensive and grounded in the KG, with confidence295

scores providing interpretability and reliability.296

Algorithm 1 KG-Based QA Inference Pipeline
Require: Query q, Knowledge Graph KG, Confidence

Threshold τ , Max Iterations N
Ensure: Final Answer â with Confidence s
1: Extract medical terms: {n1,n2, . . . ,nm} ←

ExtractTerms(q)
2: Initialize reasoning traces: C ← ∅
3: Initialize confidence: si ← 1.0 for all terms ni

4: for i = 1 to m do ▷ Iterate over extracted terms
5: Explore KG: Retrieve relevant nodes {dj} and rela-

tionships rij for ni

6: for each child node nj of ni in KG do
7: Compute child confidence: sj ← si · rij
8: if sj ≥ τ then
9: Include nj in exploration set

10: end if
11: end for
12: Generate Reasoning Trace: ci ← LLM(ni, {dj})
13: Add ci to reasoning traces: C ← C ∪ {ci}
14: end for
15: Synthesize Answer: â, ŝ← G(C)
16: return â, ŝ ▷ Return final answer with confidence

3.3 Dynamic Generation of the Medical297

Knowledge Graph298

The construction of the MKG for QA represents a299

critical step toward enabling structured reasoning300

in our AMG-RAG. This approach extracts key en-301

tities and their interconnections from user queries,302

enriching them with information retrieved through303

external search tools. By organizing information304

into the MKG, we enable efficient, interpretable,305

and evidence-based QA. The methodology is as306

follows:307

3.3.1 Node Extraction308

Medical terms are identified within the user query309

q using an LLM agent named Medical Entity Rec-310

ognizer (MER). These terms are treated as nodes,311

{n1,n2, . . . ,nm}, in the KG. For each extracted312

term, a search tool (e.g., PubMed, or a specialized313

medical search engine) retrieves detailed descrip-314

tions d(ni), providing context for each node:315

d(ni) = Search(ni; knowledge source).316

The retrieved descriptions form the foundational317

data for each node in the MKG, ensuring an ac-318

curate representation of medical terms and their319

attributes.320

3.3.2 Relationship Inference 321

An LLM agent extracts relationships between 322

nodes based on their descriptions and retrieved doc- 323

uments. The LLM analyzes pairs of nodes (ni,nj) 324

to determine potential relationships rij and their 325

nature: 326

rij , sij = LLM(d(ni),d(nj)). 327

The agent generates a summary, infers the relation- 328

ship type (e.g., causation, association), and assigns 329

a confidence score. This process results in a KG 330

rich in structure and semantics. 331

3.3.3 Knowledge Graph Construction 332

The nodes, descriptions, relationships, and confi- 333

dence scores are integrated into the KG structure. 334

The resulting graph supports medical QA by: 335

• Highlighting key medical concepts and their 336

interrelations. 337

• Enabling efficient retrieval and reasoning over 338

medical knowledge. 339

• Providing confidence metrics for each estab- 340

lished relationship in the graph, serving as a 341

source of reliability. 342

4 Experiments 343

The MEDQA dataset is a free-form, multiple- 344

choice open-domain QA data set specifically de- 345

signed for medical QA. Derived from professional 346

medical board exams, this dataset presents a sig- 347

nificant challenge as it requires both the retrieval 348

of relevant evidence and sophisticated reasoning 349

to answer questions accurately. Each question is 350

accompanied by multiple-choice answers that de- 351

mand a deep understanding of medical concepts 352

and logical inference, often relying on evidence 353

found in medical textbooks. For this study, the 354

test partition of the MEDQA dataset, comprising 355

approximately 1,200 samples, was used (Jin et al., 356

2021). 357

The MedMCQA dataset is another multiple- 358

choice question-answering dataset tailored for med- 359

ical QA. Unlike MEDQA, which is derived from 360

board exam questions, MedMCQA offers a broader 361

variety of question types, encompassing both foun- 362

dational and clinical knowledge across diverse med- 363

ical specialties. In this study, the MedMCQA devel- 364

opment set, containing approximately 4,000 ques- 365

tions, was used to benchmark against other models 366

(Pal et al., 2022a). 367
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This study employed the MEDQA and MedM-368

CQA datasets to benchmark and evaluate medical369

QA systems. These datasets serve as challenging370

testbeds for open-domain QA tasks due to their de-371

mands for multi-hop reasoning and the integration372

of domain-specific knowledge. The relevance of373

MEDQA in the real world, together with the di-374

verse question styles and extensive development375

set of MedMCQA make them ideal for advancing376

the development of robust QA models capable of377

addressing medical inquiries. We utilize GPT-4o-378

mini as the backbone of the implementation for379

both MKG and AMG-RAG, leveraging its capabil-380

ities with approximately ∼ 8B parameters. This381

model serves as the core component, enabling ad-382

vanced reasoning, RAG, and structured knowledge383

integration.384

4.1 Medical Knowledge Graph385

The KG was dynamically constructed by inte-386

grating search items, contextual information, and387

relationships derived from textbooks and search388

queries from the PubMed engine for each ques-389

tion in the dataset. This data was processed and390

stored in a Neo4j database. The key features of the391

knowledge graph include:392

1. Dynamic Node and Relationship Creation:393

Nodes are dynamically generated for search394

items, and relationships between these nodes395

are established based on their relevance and396

predefined relationship types.397

2. Bidirectional Relationships: To ensure a398

comprehensive representation, the graph in-399

cludes both forward and reverse relationships400

between nodes, enhancing its utility for di-401

verse queries.402

3. Relevance Scoring: Each relationship is en-403

riched with descriptive annotations and a con-404

fidence score, quantifying the strength of the405

association and aiding in prioritizing relevant406

connections.407

4. Summarization: Concise summaries for each408

search item are included, derived from con-409

textual data. A confidence score accompanies410

each summary to indicate its reliability.411

5. Integration with Neo4j: The entire graph412

is stored in a Neo4j database, leveraging its413

graph-based query capabilities for efficient414

analysis and retrieval.415

A snapshot of a portion of the knowledge graph 416

is shown in Figure 2.B, illustrating its structure and 417

relationships. 418

This MKG serves as the foundational informa- 419

tion source for the AMG-RAG framework during 420

the inference phase. The evaluation of MKG con- 421

firmed its robustness and reliability, with experts 422

LLMs such as GPT-4 achieving high precision 423

(e.g. 9/10). These results underscore the effec- 424

tiveness of MKG in supporting medical reasoning 425

and decision-making, as detailed in Appendix B. 426

4.2 Performance Comparison 427

Table 1 presents a comprehensive comparison of 428

state-of-the-art language models on the MEDQA 429

benchmark. The results highlight the critical role of 430

advanced reasoning strategies in achieving higher 431

performance, such as CoT reasoning, fine-tuning, 432

and the integration of search tools. While larger 433

models like Med-Gemini and GPT-4 achieve the 434

highest accuracy and F1 scores, their performance 435

comes at the cost of significantly larger parame- 436

ter sizes. These models exemplify the power of 437

scaling combined with sophisticated reasoning and 438

retrieval techniques. 439

Significantly, AMG-RAG, despite having just 8 440

billion parameters, attains an F1 score of 74.1% 441

on the MEDQA benchmark, surpassing models 442

like Meditron, which possess 70 billion parame- 443

ters without needing any fine tuning. This high- 444

lights AMG-RAG’s exceptional efficiency and pro- 445

ficiency in utilizing CoT reasoning and external 446

evidence retrieval. The model leverages tools such 447

as PubMedSearch and WikiSearch to dynamically 448

integrate domain-specific knowledge dynamically, 449

thereby improving its ability to address medical 450

questions. Examples of QA interactions, including 451

detailed search items and reasoning for question 452

samples, are provided in Appendix C. These exam- 453

ples are organized in Tables 6, 7, 8, and 9, drawn 454

from the MEDQA benchmark. 455

On the MedMCQA benchmark, as shown in Ta- 456

ble 2, AMG-RAG achieves an accuracy of 66.34%, 457

even outperforming larger models like Meditron- 458

70B and better than Codex 5-shot CoT. This result 459

underscores AMG-RAG’s adaptability and robust- 460

ness, demonstrating that it can deliver competitive 461

performance even against significantly larger mod- 462

els. Its ability to maintain high accuracy on diverse 463

datasets further highlights the effectiveness of its 464

design, which combines CoT reasoning with struc- 465

tured knowledge graph integration and retrieval 466
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Table 1: Comparison of LLM models on the MEDQA Benchmark.

Model Model Size Acc. (%) F1 (%) Fine-Tuned Uses CoT Uses Search

Med-Gemini (Saab et al., 2024) ∼1800B 91.1 89.5 ✓ ✓ ✓
GPT-4 (Nori et al., 2023) ∼1760B 90.2 88.7 ✓ ✓ ✓
Med-PaLM 2 (Singhal et al., 2025) ∼340B 85.4 82.1 ✓ ✓ ✗
Med-PaLM 2 (5-shot) ∼340B 79.7 75.3 ✗ ✓ ✗
AMG-RAG ∼8B 73.9 74.1 ✗ ✓ ✓
Meerkat(Kim et al., 2024) 7B 74.3 70.4 ✓ ✓ ✗
Meditron (Chen et al., 2023) 70B 70.2 68.3 ✓ ✓ ✓
Flan-PaLM (Singhal et al., 2023) 540B 67.6 65.0 ✓ ✓ ✗
LLAMA-2 (Chen et al., 2023) 70B 61.5 60.2 ✓ ✓ ✗
Shakti-LLM (Shakhadri et al., 2024) 2.5B 60.3 58.9 ✓ ✗ ✗
Codex 5-shot CoT (Liévin et al., 2024) – 60.2 57.7 ✗ ✓ ✓
BioMedGPT (Luo et al., 2023) 10B 50.4 48.7 ✓ ✗ ✗
BioLinkBERT (base) (Singhal et al., 2023) – 40.0 38.4 ✓ ✗ ✗

mechanisms.467

Table 2: Comparison of Models on the MedMCQA.

Model Model Size Acc. (%)

AMG-RAG ∼8B 66.34
Meditron (Chen et al., 2023) 70B 66.0
Codex 5-shot (Liévin et al., 2024) – 59.7
VOD (Liévin et al., 2023) – 58.3
Flan-PaLM (Singhal et al., 2022) 540B 57.6
PaLM 540B 54.5
GAL 120B 52.9
PubmedBERT (Gu et al., 2021) – 40.0
SciBERT (Pal et al., 2022b) – 39.0
BioBERT (Lee et al., 2020) – 38.0
BERT (Devlin, 2018) – 35.0

Overall, AMG-RAG’s results on MEDQA and468

MedMCQA benchmarks solidify its position as a469

highly efficient and effective model for medical470

QA. By leveraging CoT reasoning, search tools,471

and external knowledge sources, AMG-RAG not472

only closes the gap with much larger models but473

also sets a new standard for performance among474

smaller-sized models.475

4.3 Impact of Search Tools and CoT476

Reasoning on AMG-RAG Performance477

Figure 3 and Table 3 demonstrate the impact of478

integrating search tools such as PubMedSearch479

and WikiSearch on the performance of AMG-RAG480

when applied to the MEDQA dataset. The inclu-481

sion of these search capabilities significantly im-482

proves accuracy and F1 scores by providing access483

to relevant external evidence, which is critical for484

addressing medical questions. Among the search485

tools, PubMedSearch outperforms WikiSearch,486

likely due to its more focused and domain-specific487

content, which better aligns with the nature of med-488

ical QA tasks.489

Additionally, the impact of CoT reasoning and490

MKG integration on AMG-RAG performance is491

highlighted in the same figure and table. The re- 492

sults reveal that the removal of either CoT reason- 493

ing or KG integration leads to a substantial drop in 494

accuracy and F1 scores. This underscores the indis- 495

pensable role of structured reasoning and domain- 496

specific retrieval in enhancing the system’s ability 497

to generate accurate and evidence-backed answers. 498

Table 3: Performance metrics for AMG-RAG model
with and without CoT and Knowledge Graph integration
with different search tools for MEDQA dataset.

Model Acc. (%) F1-Score Recall
PubMedSearch 73.92 0.7410 0.7392
WikiSearch 70.62 0.7067 0.7062
No Search 67.16 0.6696 0.6716
No Search & CoT 66.69 0.6655 0.6669

4.4 Improving QA in Rapidly Changing 499

Medical Domains 500

Figure 4 illustrates the performance of various mod- 501

els across different question domains, including 502

Neurology and Genetics. The AMG-RAG model 503

consistently outperforms other approaches, show- 504

casing its superior adaptability and robustness in 505

these rapidly evolving and knowledge-intensive 506

fields. This exceptional performance stems from its 507

ability to seamlessly integrate external sources of 508

information and evidence. By leveraging PubMed 509

searches, the AMG-RAG model dynamically re- 510

trieves the latest medical research and continuously 511

updates the MKG, ensuring that it remains relevant 512

and up-to-date. This dynamic updating process not 513

only enhances the model’s ability to reason across 514

multiple domains but also allows it to address com- 515

plex, multi-hop questions with greater accuracy 516

and depth. 517
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Figure 3: Confusion matrix for AMG-RAG with and without
CoT and Knowledge Graph integration on MEDQA dataset.

5 Conclusion518

In this work, we introduce AMG-RAG, an ad-519

vanced QA system that dynamically constructs520

MKG while integrating sophisticated reasoning521

and external domain-specific search tools. The522

model exhibits significant improvements in accu-523

racy and reasoning capabilities, particularly for524

medical question-answering tasks, outperforming525

other approaches of similar model size or 10 to 100526

times larger. Using structured knowledge represen-527

tations and advanced reasoning frameworks, our528

approach establishes a new benchmark for QA in529

highly competitive and highly evolving domains530

such as medicine.531

6 Limitations532

Despite AMG-RAG advancements, our approach533

has certain limitations. Firstly it relies on external534

search tools to introduce latency during the creation535

of MKG. However, this occurs only once, when536

the MKG is built from scratch for the first time.537

Additionally, while the model performs exception-538

ally well in medical domains, its applicability to539

non-medical tasks remains unexplored.540

Another limitation is the need for structured, au-541

thoritative sources of medical knowledge. Cur-542

Figure 4: Performance comparison across different question
domains in the Neurology and Genetics fields.

rently, AMG-RAG retrieves information from di- 543

verse sources, including research articles and medi- 544

cal textbooks. However, as emphasized in clinical 545

decision-making, treatment guidelines serve as es- 546

sential references for standardized diagnosis and 547

treatment protocols (Hager et al., 2024). Future 548

work on AMG-RAG should focus on integrating 549

structured access to these sources to ensure compli- 550

ance with evidence-based medicine. 551

7 Ethics Statement 552

The development of LLMs for medical QA requires 553

careful ethical consideration due to risks of inaccu- 554

racy and bias. Ensuring the reliability of retrieved 555

content is crucial, especially when integrating ex- 556

ternal knowledge sources. To mitigate these risks, 557

we implement a confidence scoring mechanism 558

into the MKG to validate the information. How- 559

ever, bias detection and mitigation remain active 560

research areas. 561
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A Confidence Scoring for the 726

Relationships in the MKG 727

A confidence score, sij , is assigned to each inferred 728

relationship, reflecting its strength and relevance. 729

The scoring criteria are as follows: 730

• 10: The target is directly and strongly re- 731

lated to the item, with clear, unambiguous 732

relevance. 733

• 7-9: The target is moderately to highly rele- 734

vant to the item but may have some ambiguity 735

or indirect association. 736

• 4-6: The target has some relevance to the item 737

but is weak or only tangentially related. 738

• 1-3: The target has minimal or no meaningful 739

connection to the item. 740

B Evaluating the Accuracy and 741

Robustness of the Medical Knowledge 742

Graph 743

The quality and reliability of the dynamically gen- 744

erated MKG are critical for its effectiveness in 745

enhancing medical QA systems. To validate the 746

accuracy, robustness, and usability of the MKG, 747

a structured evaluation involving expert LLMs in 748

the medical domain, such as GPT medical model, 749

was conducted. This section outlines the method- 750

ology used to evaluate the MKG, emphasizing in- 751

terpretability, clinical relevance, and robustness in 752

real-world applications. Additionally, the role of 753

medical experts in verifying the accuracy and ap- 754

plicability of the MKG is discussed, underscoring 755

the necessity of human expertise in validating AI- 756

driven medical knowledge representations. 757

To assess accuracy and robustness, a two-phase 758

evaluation process was employed. In the first phase, 759

a group of expert LLMs specializing in medical do- 760

mains reviewed a subset of the MKG, including 761

dynamically generated nodes, relationships, confi- 762

dence scores, and summaries for various medical 763

queries. They evaluated the accuracy of medical 764

terms and concepts, the relevance of relationships 765

between nodes, the reliability of node summaries, 766

and the alignment of confidence scores with the per- 767

ceived strength and reliability of the connections. 768

Each LLM independently rated the graph compo- 769

nents on a scale of 1 to 10. The results showed 770

an average accuracy score of 8.9/10 for node iden- 771

tification, 8.8/10 for relationship relevance, and 772
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8.5/10 for the clarity and precision of node sum-773

maries. Confidence scores generally aligned well774

with the LLMs’s assessments, as illustrated in Ta-775

bles 4 and 5, which highlight strong relationships776

across domains such as ophthalmology, cardiovas-777

cular treatments, and dermatology.778

In the second phase, blind testing was conducted779

to evaluate usability and human-readability. Expert780

LLMs were tasked with answering complex med-781

ical queries requiring multi-hop reasoning, such782

as managing comorbidities or determining multi-783

drug treatment protocols. As shown in Table 4,784

relationships such as the co-usage of Ketotifen and785

Fluorometholone for allergic conjunctivitis or La-786

betalol and Nitroglycerin for acute hypertension787

demonstrated the MKG’s ability to model clini-788

cally relevant associations effectively. The LLMs789

achieved a 89% accuracy rate in these test scenar-790

ios. Additionally, the LLMs rated the MKG 9.4/10791

for interpretability and usability, underscoring its792

strength in visually and contextually representing793

complex medical relationships.794

To further ensure the clinical relevance and prac-795

tical applicability of the MKG, medical experts,796

including practicing physicians and clinical re-797

searchers, were involved in evaluating the gener-798

ated relationships and summaries. Unlike LLMs,799

medical experts provided qualitative assessments,800

identifying potential discrepancies, overlooked nu-801

ances, and contextual dependencies that automated802

models might miss. The medical experts particu-803

larly assessed:804

1. The correctness and completeness of medical805

relationships, ensuring they align with estab-806

lished clinical knowledge and best practices.807

2. The validity of multi-hop reasoning paths, ver-808

ifying whether inferred relationships reflected809

logical clinical decision-making processes.810

3. The utility of the MKG in real-world medical811

applications, particularly in aiding diagnostic812

and treatment decision-making.813

The feedback from medical experts was instru-814

mental in refining the graph, addressing inconsis-815

tencies, and enhancing the confidence scores to bet-816

ter reflect real-world medical reliability. Notably,817

medical expert ratings aligned well with LLM eval-818

uations but provided deeper insights into the con-819

textual limitations of the graph. For example, while820

LLMs accurately linked Diltiazem and Nitroglyc-821

erin in cardiovascular treatment, medical experts822

highlighted additional considerations such as con- 823

traindications in specific patient populations, which 824

were subsequently incorporated into the MKG. 825

The detailed evaluations in Tables 4 and 5 pro- 826

vide further insights into the graph’s performance 827

across diverse medical domains. For instance, the 828

accurate representation of relationships between 829

beta-blockers like Labetalol and Propranolol or 830

the integration of treatments such as Diltiazem 831

and Nitroglycerin for cardiovascular care highlight 832

the MKG’s capacity to support intricate clinical 833

decision-making. 834

These results confirm that the MKG is both 835

human-readable and usable by advanced LLMs, 836

making it an invaluable tool for medical QA and 837

decision-making. The graph’s structured format, 838

enriched with confidence scores and summaries, 839

ensures a clear and interpretable representation of 840

medical knowledge while enhancing the efficiency 841

and accuracy of QA systems in addressing real- 842

world medical scenarios. Moreover, the involve- 843

ment of medical experts in the evaluation process 844

enhances the credibility of the MKG, ensuring that 845

AI-driven insights align with clinical expertise and 846

practical healthcare applications. 847

C QA Samples with reasoning from 848

MEDQA benchmark 849

This section presents a set of QA samples demon- 850

strating the reasoning paths generated by our pro- 851

posed AMG-RAG model when applied to the 852

MEDQA dataset. These examples highlight how 853

the model retrieves relevant content, structures key 854

information, and formulates reasoning to guide an- 855

swer selection. 856

Table 6 provides an example of how the model 857

processes a clinical case question related to the 858

management of acute coronary syndrome (ACS). 859

The search items retrieved for possible answer 860

choices (e.g., Nifedipine, Enoxaparin, Clopidogrel, 861

Spironolactone, Propranolol) are accompanied by 862

key content excerpts relevant to their roles in ACS 863

treatment. Additionally, the reasoning pathways il- 864

lustrate how the model synthesizes evidence-based 865

knowledge to justify the selection of the correct 866

answer (Clopidogrel), while also explaining why 867

the alternative options are not suitable. Additional 868

examples are also provided in Tables 7, 8, and 9 869
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Table 4: Examples from the Medical Knowledge Graph (MKG) with Expert and Blind Analysis (Part 1)

Source Node Relationship Type Target Node LLM Expert Analysis Blind Analysis Medical Expert Analy-
sis

Botulism Directly related as it is
the target concept.

Myasthenia
gravis

Rated 9.2/10 for rel-
evance and clinical
importance, considered
highly accurate.

Demonstrated effective
multi-hop reasoning
with a 92% accuracy
in identifying related
conditions.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Levodopa Levodopa is a primary
treatment for Parkin-
son’s disease.

Parkinson’s dis-
ease

Evaluated as highly re-
liable (9.6/10) for sum-
marizing medical treat-
ments and relationships.

Increases accuracy
by 24% in answering
queries about Parkin-
son’s treatments and
comorbidities.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Zidovudine Zidovudine is an antivi-
ral drug used for HIV
treatment.

HIV/AIDS Experts rated it 9.4/10
for interpretability, high-
lighting the clear repre-
sentation of the relation-
ship.

Provided contextually
accurate responses re-
garding drug interac-
tions and side effects in
queries.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Inhibition of
thymidine
synthesis

Cross-linking of DNA
is directly related to
thymidine synthesis as
both involve nucleic
acid metabolism.

Cross-linking
of DNA

Rated 9.2/10 for rele-
vance to nucleic acid
metabolism and DNA
replication.

Demonstrated high ac-
curacy in answering
multi-hop queries re-
lated to DNA synthesis
pathways.

Rated 9/10 for relevance
and accuracy, consid-
ered accurate.

Hyperstabilization
of microtubules

Cross-linking of DNA
can be related to the
stabilization of micro-
tubules.

Cross-linking
of DNA

Rated 9.0/10 for high-
lighting structural modi-
fications affecting cellu-
lar functions.

Increases the accuracy
by 20% in scenarios in-
volving cellular struc-
ture interactions.

Rated 8/10 for moder-
ated relevance.

Generation of
free radicals

Free radicals can lead
to oxidative damage, af-
fecting DNA integrity
and function.

Cross-linking
of DNA

Rated 8.5/10 for its rele-
vance to oxidative stress
and DNA damage mech-
anisms.

Accurate in providing
causal explanations for
oxidative stress and
DNA cross-linking.

Rated 7.5/10 for rele-
vance.

Renal papillary
necrosis

Allergic interstitial
nephritis can lead to
renal damage.

Allergic intersti-
tial nephritis

Rated 9.0/10 for ex-
plaining the clinical pro-
gression of renal com-
plications.

Effective in multi-hop
reasoning for renal
damage-related queries,
achieving 91% accu-
racy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

D Implementation Details for Dataset870

Ingestion and Vector Database871

This section outlines the pipeline for dataset in-872

gestion and vector database creation for efficient873

medical question-answering. The process involves874

document chunking, embedding generation, and875

storage in a vector database to facilitate semantic876

retrieval.877

D.1 Dataset Processing and Chunking878

The dataset, sourced from medical textbooks in879

the MEDQA benchmark, is provided in plain text880

format. Each document is segmented into smaller881

chunks with a maximum size of 512 tokens and a882

100-token overlap. This overlap ensures context883

preservation across chunk boundaries, supporting884

multi-hop reasoning for long documents.885

D.2 Embedding Model and Vector Storage886

The system utilizes the SentenceTransformer887

model, specifically all-mpnet-base-v2, for gen-888

erating dense vector representations of text chunks889

and queries. To optimize storage and retrieval,890

the embeddings are indexed in the Chroma vector891

database. Metadata, such as document filenames892

and chunk IDs, is also stored to maintain document 893

traceability. 894

D.3 Batch Processing and Vector Database 895

Population 896

To manage memory efficiently during ingestion, 897

document chunks are processed in batches of up to 898

10,000. This ensures a smooth ingestion pipeline 899

while preventing memory overflow. Each pro- 900

cessed file is logged to avoid redundant computa- 901

tions, and error handling mechanisms are in place 902

to manage failed processing attempts. 903

D.4 Query Answering Workflow 904

For retrieval, user queries (e.g., "What are the symp- 905

toms of drug-induced diabetes?") are embedded 906

using the all-mpnet-base-v2 model. The top- 907

ranked relevant chunks are retrieved based on their 908

semantic similarity to the query using Chroma’s 909

similarity search mechanism. The system retrieves 910

the top k relevant passages, which can be further 911

processed in downstream QA models. 912

D.5 Key Configuration Details 913

The system is configured with the following param- 914

eters: 915
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Table 5: Examples from the Medical Knowledge Graph (MKG) with Expert and Blind Analysis (Part 2)

Source Node Relationship Type Target Node LLM Expert Analysis Blind Analysis Medical Expert Analy-
sis

Ketotifen eye
drops

Ketotifen eye drops
are antihistamines
used for allergic con-
junctivitis, which may
be used alongside
Fluorometholone for
managing eye allergies.

Fluorometholone
eye drops

Rated 9.2/10 for rele-
vance in managing aller-
gic conjunctivitis.

Demonstrated 93% ac-
curacy in multi-hop rea-
soning for ophthalmo-
logical conditions.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Ketotifen eye
drops

Latanoprost eye drops
are used to lower in-
traocular pressure in
glaucoma, while Keto-
tifen treats allergic con-
junctivitis.

Latanoprost eye
drops

Rated 9.0/10 for dis-
tinct yet complementary
roles in ophthalmology.

Effective in identifying
separate ophthalmic ap-
plications with 92% ac-
curacy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Diltiazem Nitroglycerin is relevant
in discussions of car-
diovascular treatments
alongside Diltiazem.

Nitroglycerin Rated 8.8/10 for contex-
tual relevance to cardio-
vascular management.

Increases the accuracy
for treatment-based
queries by 20%.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Labetalol Labetalol is closely re-
lated to Propranolol,
both managing hyper-
tension.

Propranolol Rated 9.5/10 for direct
relevance in cardiovas-
cular treatment proto-
cols.

Highly interpretable re-
sponses for hyperten-
sion management, with
95% accuracy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Nitroglycerin Nitroglycerin and La-
betalol are often used
in conjunction for man-
aging hypertension and
heart conditions.

Labetalol Rated 8.7/10 for strong
relevance in acute hyper-
tension protocols.

Supported effective
multi-drug therapy
reasoning with 90%
accuracy.

Rated 9/10 for relevance
and accuracy, consid-
ered highly accurate.

Nitroglycerin Nitroglycerin is often
used with Propranolol
in managing cardiovas-
cular conditions like hy-
pertension and angina.

Propranolol Rated 9.0/10 for its im-
portance in cardiovascu-
lar multi-drug therapy.

Demonstrated robust
performance in connect-
ing treatment protocols,
with 93% query accu-
racy.

Rated 10/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Fluorometholone
eye drops

Fluorometholone
eye drops are corti-
costeroids that treat
inflammation, comple-
menting Ketotifen for
allergic conjunctivitis.

Ketotifen eye
drops

Rated 8.8/10 for their
combined application in
managing inflammation
and allergies.

Improved query rele-
vance for multi-drug
therapy in eye care by
19%.

Rated 9.5/10 for rele-
vance and accuracy, con-
sidered highly accurate.

Lanolin Lanolin is used for
skin care, particularly
for sore nipples during
breastfeeding.

Fluorometholone
eye drops

Rated 8.5/10 for
highlighting non-
overlapping yet clini-
cally useful contexts.

Demonstrated effective
differentiation of clini-
cal uses with high inter-
pretability.

Rated 9/10 for relevance
and accuracy, consid-
ered highly accurate.

• Embedding Model: all-mpnet-base-v2916

from SentenceTransformer.917

• Vector Database: Chroma, stored persis-918

tently on disk for reusability.919

• Chunk Size: 512 tokens per chunk, with a920

100-token overlap for contextual consistency.921

• Batch Size: Up to 10,000 chunks per batch to922

optimize ingestion efficiency.923

D.6 Implementation and System Execution924

The ingestion and query process is implemented us-925

ing Python, leveraging sentence-transformers926

for embeddings and Chroma for vector storage. The927

ingestion pipeline reads and processes text files,928

splits them into chunks, generates embeddings, and929

stores them efficiently in the vector database. The930

querying process retrieves the top k most relevant931

text chunks to respond to user queries.932

E Components Definition 933

E.1 Neo4j 934

As data complexity increases, traditional rela- 935

tional databases struggle with highly intercon- 936

nected datasets where relationships are crucial. 937

Graph databases, like Neo4j, address this challenge 938

by efficiently modeling and processing complex, 939

evolving data structures using nodes, relationships, 940

and properties (Besta et al., 2023). 941

Neo4j, an open-source NoSQL graph database, 942

enables constant-time traversals by explicitly stor- 943

ing relationships, making it ideal for large-scale 944

applications such as social networks, recommen- 945

dation systems, and biomedical research. Unlike 946

relational models, Neo4j avoids costly table joins 947

and optimizes deep relationship queries, enhancing 948

scalability and performance (Besta et al., 2023). 949

Neo4j’s architecture is centered around the prop- 950

erty graph model, which includes(Huang and Dong, 951

2013): 952
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Nifedipine Not typically used for
acute coronary syndrome
(ACS). Associated with re-
flex tachycardia.

Nifedipine is a calcium
channel blocker effective
for hypertension but does
not address the antiplatelet
needs of ACS patients.

Enoxaparin Used for anticoagulation
in ACS but mainly during
hospitalization.

Enoxaparin is not contin-
ued after discharge when
aspirin and another an-
tiplatelet drug are pre-
scribed.

Clopidogrel Standard for dual an-
tiplatelet therapy (DAPT)
in ACS, especially post-
percutaneous coronary in-
tervention (PCI).

Clopidogrel complements
aspirin in preventing
thrombotic events post-
angioplasty. Its use is
supported by evidence-
based guidelines.

Spironolactone Useful in heart failure or
reduced ejection fraction
but not indicated for ACS
management when EF is
normal.

This patient’s EF is 58%,
so spironolactone is not
necessary. Focus should
be on antiplatelet therapy.

Propranolol Effective for reducing my-
ocardial oxygen demand
but not part of standard
DAPT.

While beneficial for stress-
related heart issues, it
does not address throm-
botic risks in ACS man-
agement.

Table 6: Examples of Summary of search items for the question "A 65-year-old man is brought to the emergency
department 30 minutes after the onset of acute chest pain. He has hypertension and asthma. Current medications
include atorvastatin, lisinopril, and an albuterol inhaler. He appears pale and diaphoretic. His pulse is 114/min, and
blood pressure is 130/88 mm Hg. An ECG shows ST-segment depressions in leads II, III, and aVF. Laboratory
studies show an increased serum troponin T concentration. The patient is treated for acute coronary syndrome and
undergoes percutaneous transluminal coronary angioplasty. At the time of discharge, echocardiography shows a left
ventricular ejection fraction of 58%. In addition to aspirin, which of the following drugs should be added to this
patient’s medication regimen?" and Their Influence on the Correct Answer (Clopidogrel) and the reasoning paths

• Nodes: Entities representing data points.953

• Relationships: Directed, named connections954

between nodes that define how entities are955

related.956

• Properties: Key-value pairs associated with957

both nodes and relationships, providing addi-958

tional metadata.959

This model allows for intuitive representation960

of complex data structures and supports efficient961

querying and analysis. The system’s internal mech-962

anisms facilitate rapid traversal of relationships, en-963

abling swift query responses even in large datasets964

(Huang and Dong, 2013).965
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

A history of stroke
or venous throm-
boembolism

Contraindicated for hor-
monal contraceptives due
to increased risk of throm-
bosis.

Copper IUDs do not carry
the same thrombotic risk,
making this option irrele-
vant for contraindication
in IUD placement.

Current tobacco
use

Increases cardiovascular
risk with hormonal contra-
ceptives but not with cop-
per IUDs.

Tobacco use does not
contraindicate IUD place-
ment, though it may influ-
ence other contraceptive
choices.

Active or re-
current pelvic
inflammatory
disease (PID)

Direct contraindication for
IUD placement due to the
risk of exacerbating infec-
tion and complications.

Insertion of an IUD can
worsen active PID, lead-
ing to infertility or other
severe complications.

Past medical his-
tory of breast can-
cer

Contraindicates hormonal
contraceptives, but copper
IUDs are considered safe.

This option does not con-
traindicate copper IUD
placement, as it is non-
hormonal and unrelated to
breast cancer.

Known liver neo-
plasm

Contraindicates hormonal
contraceptives but not cop-
per IUDs.

Copper IUDs are safe for
patients with liver neo-
plasms as they are free of
systemic hormones.

Table 7: Examples of Summary of Search Items for the Question "A 37-year-old-woman presents to her primary
care physician requesting a new form of birth control. She has been utilizing oral contraceptive pills (OCPs) for
the past 8 years, but asks to switch to an intrauterine device (IUD). Her vital signs are: blood pressure 118/78
mm Hg, pulse 73/min and respiratory rate 16/min. She is afebrile. Physical examination is within normal limits.
Which of the following past medical history statements would make copper IUD placement contraindicated in this
patient?" and Their Influence on the Correct Answer (Active or recurrent pelvic inflammatory disease (PID)) and
the Reasoning Paths
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Dementia Typically presents as a
gradual decline in cogni-
tive function.

The sudden onset of symp-
toms after surgery and
acute confusion makes de-
mentia less likely.

Alcohol with-
drawal

Requires significant and
sustained alcohol use to
cause withdrawal symp-
toms.

The patient’s weekly con-
sumption of one to two
glasses of wine is insuffi-
cient to support this diag-
nosis.

Opioid intoxica-
tion

Oxycodone can cause se-
dation and confusion, but
stable vital signs and lack
of severe respiratory de-
pression are inconsistent.

While oxycodone use is
relevant, the observed fluc-
tuating agitation and im-
pulsivity are more consis-
tent with delirium.

Delirium Characterized by acute
changes in attention and
cognition with fluctuating
levels of consciousness.

The patient’s recent
surgery, medication use,
and fluctuating symptoms
align strongly with a
diagnosis of delirium.

Urinary tract in-
fection (UTI)

Confusion in elderly pa-
tients can result from
UTIs, but a normal urine
dipstick test does not sup-
port this.

The absence of urinary
findings on examination
makes UTI less likely as
the cause of symptoms.

Table 8: Examples of Search Items for the Question: "Six days after undergoing surgical repair of a hip fracture, a
79-year-old woman presents with agitation and confusion. Which of the following is the most likely cause of her
current condition?" and Their Influence on the Correct Answer (Delirium) and the Reasoning Paths.
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Search Item/ Ques-
tion Options

Key Content Highlighted Reasoning Guiding the
Answer

Primary sperma-
tocyte

Nondisjunction events dur-
ing meiosis I often occur
at this stage, leading to
chromosomal abnormali-
ties.

Klinefelter syndrome
(47,XXY) is typically due
to nondisjunction during
meiosis, specifically at
this stage.

Secondary sper-
matocyte

Meiosis II occurs here, di-
viding chromosomes into
haploid cells, but errors at
this stage are less likely to
lead to 47,XXY.

The chromosomal abnor-
mality associated with
Klinefelter syndrome usu-
ally arises before this
stage.

Spermatid Spermatids are post-
meiotic cells where
genetic material is already
finalized.

Errors at this stage would
not result in a cytogenetic
abnormality like 47,XXY.

Spermatogonium Errors here affect the
germline but are less likely
to cause specific meiotic
nondisjunction errors.

While germline mutations
can occur, meiotic nondis-
junction leading to Kline-
felter syndrome occurs
later.

Spermatozoon These are fully mature
sperm cells that inherit
abnormalities from earlier
stages.

By this stage, chromoso-
mal errors have already
been established.

Table 9: Examples of Search Items for the Question: "A 29-year-old man with infertility, tall stature, gynecomastia,
small testes, and an elevated estradiol:testosterone ratio is evaluated. Genetic studies reveal a cytogenetic abnormality
inherited from the father. At which stage of spermatogenesis did this error most likely occur?" and Their Influence
on the Correct Answer (Primary spermatocyte) and the Reasoning Paths.
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