
Under review as a conference paper at ICLR 2021

PODS: POLICY OPTIMIZATION VIA DIFFERENTIABLE
SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Current reinforcement learning (RL) methods use simulation models as simple
black-box oracles. In this paper, with the goal of improving the performance
exhibited by RL algorithms, we explore a systematic way of leveraging the ad-
ditional information provided by an emerging class of differentiable simulators.
Building on concepts established by Deterministic Policy Gradients (DPG) meth-
ods, the neural network policies learned with our approach represent deterministic
actions. In a departure from standard methodologies, however, learning these pol-
icy does not hinge on approximations of the value function that must be learned
concurrently in an actor-critic fashion. Instead, we exploit differentiable simu-
lators to directly compute the analytic gradient of a policy’s value function with
respect to the actions it outputs. This, in turn, allows us to efficiently perform
locally optimal policy improvement iterations. Compared against other state-of-
the-art RL methods, we show that with minimal hyper-parameter tuning our ap-
proach consistently leads to better asymptotic behavior across a set of payload
manipulation tasks that demand a high degree of accuracy and precision.

1 INTRODUCTION

The main goal in RL is to formalize principled algorithmic approaches to solving sequential
decision-making problems. As a defining characteristic of RL methodologies, agents gain experi-
ence by acting in their environments in order to learn how to achieve specific goals. While learning
directly in the real world (Haarnoja et al., 2019; Kalashnikov et al., 2018) is perhaps the holy grail
in the field, this remains a fundamental challenge: RL is notoriously data hungry, and gathering
real-world experience is slow, tedious and potentially unsafe. Fortunately, recent years have seen
exciting progress in simulation technologies that create realistic virtual training grounds, and sim-2-
real efforts (Tan et al., 2018; Hwangbo et al., 2019) are beginning to produce impressive results.

A new class of differentiable simulators (Zimmermann et al., 2019; Liang et al., 2019;
de Avila Belbute-Peres et al., 2018; Degrave et al., 2019) is currently emerging. These simula-
tors not only predict the outcome of a particular action, but they also provide derivatives that capture
the way in which the outcome will change due to infinitesimal changes in the action. Rather than
using simulators as simple black box oracles, we therefore ask the following question: how can the
additional information provided by differentiable simulators be exploited to improve RL algorithms?

To provide an answer to this question, we propose a novel method to efficiently learn control policies
for finite horizon problems. The policies learned with our approach use neural networks to model
deterministic actions. In a departure from established methodologies, learning these policies does
not hinge on learned approximations of the system dynamics or of the value function. Instead,
we leverage differentiable simulators to directly compute the analytic gradient of a policy’s value
function with respect to the actions it outputs for a specific set of points sampled in state space. We
show how to use this gradient information to compute first and second order update rules for locally
optimal policy improvement iterations. Through a simple line search procedure, the process of
updating a policy avoids instabilities and guarantees monotonic improvement of its value function.

To evaluate the policy optimization scheme that we propose, we apply it to a set of control problems
that require payloads to be manipulated via stiff or elastic cables. We have chosen to focus our
attention on this class of high-precision dynamic manipulation tasks for the following reasons:

1

Under review as a conference paper at ICLR 2021

• they are inspired by real-world applications ranging
from cable-driven parallel robots and crane systems to
UAV-based transportation to (Figure 1);

• the systems we need to learn control policies for ex-
hibit rich, highly non-linear dynamics;

• the specific tasks we consider constitute a challeng-
ing benchmark because they require very precise se-
quences of actions. This is a feature that RL algo-
rithms often struggle with, as the control policies they
learn work well on average but tend to output noisy ac-
tions. Given that sub-optimal control signals can lead
to significant oscillations in the motion of the payload,
these manipulation tasks therefore make it possible to
provide an easy-to-interpret comparison of the quality
of the policies generated with different approaches;

• by varying the configuration of the payloads and actu-
ation setups, we can finely control the complexity of
the problem to test systematically the way in which
our method scales.

Figure 1: Real-world applications
that inspire the control problems
we focus on in this paper

The results of our experiments confirm our theoretical derivations and show that our method con-
sistently outperforms two state-of-the-art (SOTA) model-free RL algorithms, Proximal Policy Op-
timization(PPO) (Wang et al., 2019) and Soft Actor-Critic(SAC) (Haarnoja et al., 2018), as well as
the model-based approach of Backpropagation Through Time (BPTT). Although our policy opti-
mization scheme (PODS) can be interleaved within the algorithmic framework of most RL methods
(e.g. by periodically updating the means of the probability distributions represented by stochas-
tic policies), we focused our efforts on evaluating it in isolation to pinpoint the benefits it brings.
This allowed us to show that with minimal hyper-parameter tuning, the second order update rule
that we derive provides an excellent balance between rapid, reliable convergence and computational
complexity. In conjunction with the continued evolution of accurate differentiable simulators, our
method promises to significantly improve the process of learning control policies using RL.

2 RELATED WORK

Deep Reinforcement Learning. Deep RL (DRL) algorithms have been increasingly more suc-
cessful in tackling challenging continuous control problems in robotics (Kober et al., 2013; Li,
2018). Recent notable advances include applications in robotic locomotion (Tan et al., 2018;
Haarnoja et al., 2019), manipulation (OpenAI et al., 2018; Zhu et al., 2019; Kalashnikov et al., 2018;
Gu et al., 2016), and navigation (Anderson et al., 2018; Kempka et al., 2016; Mirowski et al., 2016)
to mention a few. Many model-free DRL algorithms have been proposed over the years, which can
be roughly divided into two classes, off-policy methods (Mnih et al., 2016; Lillicrap et al., 2016; Fu-
jimoto et al., 2018; Haarnoja et al., 2018) and on-policy methods (Schulman et al., 2015; 2016; Wang
et al., 2019), based on whether the algorithm can learn independently from how the samples were
generated. Recently, model-based RL algorithms (Nagabandi et al., 2017; Kurutach et al., 2018;
Clavera et al., 2018; Nagabandi et al., 2019) have emerged as a promising alternative for improving
the sample efficiency. Our method can be considered as an on-policy algorithm as it computes first
or second-order policy improvements given the current policy’s experience.

Policy Update as Supervised Learning. Although policy gradient methods are some of the most
popular approaches for optimizing a policy (Kurutach et al., 2018; Wang et al., 2019), many DRL al-
gorithms also update the policy in a supervised learning (SL) fashion by explicitly aiming to mimic
expert demonstration (Ross et al., 2011) or optimal trajectories (Levine & Koltun, 2013a;b; Mor-
datch & Todorov, 2015). Optimal trajectories, in particular, can be computed using numerical meth-
ods such as iterative linear–quadratic regulators (Levine & Koltun, 2013a;b) or contact invariant
optimization (Mordatch & Todorov, 2015). The solutions they provide have the potential to improve
the sample efficiency of RL methods either by guiding the learning process through meaningful sam-
ples (Levine & Koltun, 2013a) or by explicitly matching action distributions (Mordatch & Todorov,
2015). Importantly, these approaches are not only evaluated in simulation but have also been shown

2

Under review as a conference paper at ICLR 2021

to be effective for many real-world robotic platforms, including manipulators (Schenck & Fox, 2016;
Levine et al., 2016) and exoskeletons (Duburcq et al., 2019). Recently, Peng et al. (2019) proposed
an off-policy RL algorithm that uses SL both to learn the value function and to fit the policy to the
advantage-weighted target actions. While our method shares some similarities with this class of
approaches that interleave SL and RL, the updates of our policy do not rely on optimal trajectories
that must be given as input. Rather, we show how to leverage differentiable simulators to compute
locally optimal updates to a policy. These updates are computed by explicitly taking the gradient of
the value function with respect to the actions output by the policy. As such, our method also serves
to reinforce the bridge between the fields of trajectory optimization and reinforcement learning.

Differentiable Models. Our approach does not aim to learn a model of the system dynamics, but
rather leverages differentiable simulators that explicitly provide gradients of simulation outcomes
with respect to control actions. We note that traditional physics simulators such as ODE Drumwright
et al. (2010) or PyBullet Coumans & Bai (2016–2019) are not designed to provide this information.
We build, in particular, on a recent class of analytically differentiable simulators that have been
shown to effectively solve trajectory optimization problems, with a focus on sim-2-real transfer, for
both manipulation (Zimmermann et al., 2019) and locomotion tasks (Bern et al., 2019).

Degrave et al. (2019) embed a differentiable rigid body simulator within a recurrent neural network
to concurrently perform simulation steps while learning policies that minimize a loss corresponding
to the control objective. While their goal is related to ours, we show how to leverage explicitly-
computed gradients to formulate second order policy updates that have a significant positive effect
on convergence. Furthermore, in contrast to Degrave et al. (2019), we show that PODS consistently
outperforms two common RL baselines, PPO (Wang et al., 2019) and SAC (Haarnoja et al., 2018).

Also related to our method is the very recent work of Clavera et al. (2020). Their observation is
that while most model-based RL algorithms use models simply as a source of data augmentation
or as a black-box oracle to sample from (Nagabandi et al., 2017), the differentiability of learned
dynamics models can and should be exploited further. In an approach that is related to ours, they
propose a policy optimization algorithm based on derivatives of the learned model. In contrast, we
directly use differentiable simulators for policy optimization, bypassing altogether the need to learn
the dynamics – including all the hyperparameters that are involved in the process, as well as the
additional strategies required to account for the inaccuracies introduced by the learned dynamics
(Boney et al., 2019). Thanks to the second order update rule that we derive, our method consistently
outperforms SOTA model-free RL algorithms in the tasks we proposed. In contrast, their method
only matches the asymptotic performance of model-free RL (which is a feat for model-based RL). It
is also worth pointing out that while model-based approaches hold the promise of enabling learning
directly in the real world, with continued progress in sim-2-real transfer, methods such as ours that
rely on accurate simulation technologies will continue to be indispensable in the field of RL.

A common approach to leverage differentable models is that of backpropagating through time
(BPTT) as is the main focus of Grzeszczuk et al. (1998), Deisenroth & Rasmussen (2011), Par-
mas (2018), Degrave et al. (2019), and Clavera et al. (2020), where a policy πθ parametrized by θ
is optimized directly in parameter space (PS), coupling the actions at each time step by the policy
parameters. In contrast, our approach alternates between optimizing in trajectory space (TS), fol-
lowing gradient information of the value function for an independent set of actions at = πθ(s)|s=st

,
and in parameter space (PS) by doing imitation learning of the monotonically improved actions at
by πθ. Alternating between TS and PS allows PODS to avoid the well-know problems of BPTT
(vanishing and exploding gradients), that have been reported for a long time (Bengio et al., 1994).

3 POLICY OPTIMIZATION ON DIFFERENTIABLE SIMULATORS

Following the formulation employed by DPG methods, for a deterministic neural network policy πθ
parameterized by weights θ, the RL objective J(πθ) and its gradient∇θJ(πθ) are defined as:

J(πθ) =

∫
S

p(s0)V πθ (s0)ds0, (1)

∇θJ(πθ) =

∫
S

p(s0)∇θV πθ (s0)ds0 ≈
1

k

k∑
i

∇θV πθ (s0,i). (2)

3

Under review as a conference paper at ICLR 2021

where p(s0) is the initial probability distribution over states, V πθ is the value function for πθ, and
the second expression in Eq. 2 approximates the integral with a sum over a batch of k initial states
sampled from S, as is standard.

Restricting our attention to an episodic problem setup with fixed time horizon N and deterministic
state dynamics st+1 = f(st, at), the value function gradient simplifies to:

∇θV πθ (s0) = ∇θ
(
r(s0, πθ(s0)) +

N∑
t=1

r(st, πθ(st))

)
. (3)

Noting that the state st can be specified as a recursive function st = f(st−1, πθ(st−1)), the compu-
tation of the gradient in Eq 3 is equivalent to backpropagating through time (BPTT) into the policy
parameters. However, BPTT can be challenging due to well known problems of vanishing or ex-
ploding gradients (Degrave et al., 2019). We therefore turn our focus to the task of performing policy
improvement iterations. In particular, our goal is to find a new policy ā, in trajectory space, such
that V πθ (s0) < V ā(s0) for a batch of initial states sampled according to s0 ∼ p(s0).

3.1 FIRST ORDER POLICY IMPROVEMENT

While the parametrization of πθ is given in terms of θ (the weights of the neural net), we will
choose TS policy ā to directly have as parameters the actions that are executed at each time step.
By representing the actions independently of each other, rather than having them coupled through θ,
BPTT is therefore not required. Moreover, at the start of each policy improvement step, we initialize
the TS policy ā =

[
a0, a1, . . . , aN−1

]
to match the output of πθ, where the individual terms at

are the actions executed during a rollout of πθ(s)|s=st−1
. Thus, V πθ (s0) = V ā(s0) initially. The

value function gradient of policy ā is then:

∇āV ā(s0) = ∇āV ā(s(ā), ā) = ∇ā
(
r
(
s0, a0

)
+

N∑
t=1

r
(
st(at−1), at

))
. (4)

where s(ā) =
[
s0, s1(a0), . . . , sN (aN−1)

]
is the vector of the state trajectory associated to the

policy rollout. For the sake of clarity we now switch notation from∇ā to d(.)
dā :

dV ā(s0)

dā
=
∂V ā

∂ā
+
∂V ā

∂s

ds

dā
. (5)

For a known, differentiable reward, the terms ∂V ā

∂ā and ∂V ā

∂s can be easily computed analytically. In
contrast, the Jacobian ds

dā , that represents the way in which the state trajectory changes as the policy
ā changes, is the first piece of information that we will require from a differentiable simulator.
Furthermore, notice that even though we are not BPTT, the lower triangular structure of ds

dā encodes
the dependency of a particular point in state space on all the previous actions during a rollout (see
the Appendix A.5 for more details on the Jacobian structure.

The first order update rule for policy ā is then computed as:

ā = πθ + αa
dV ā(s0)

dā
. (6)

Since this update rule uses the policy gradient (i.e. the direction of local steepest ascent), there exists
a value αa > 0 such that V πθ (s0) < V ā(s0). In practice, we use the simulator to run a standard
line-search on αa to ensure the inequality holds. We note, however, that if desired, αa can also be
treated as a hyperparameter that is tuned to a sufficiently small value.

Once the policy ā has been improved, we can use the corresponding state trajectories s(ā) to update
the parameters of the neural net policy πθ by running gradient descent on the following loss:

Lθ =
1

k

k∑
i

N∑
t

1

2
‖πθ(st,i)− at,i‖2, (7)

4

Under review as a conference paper at ICLR 2021

where the gradient and update rule are given by:

∇θLθ =
1

k

k∑
i

N∑
t

∇θπθ(si)(πθ(st,i)− at,i), (8)

θ = θ − αθ∇θLθ. (9)

Here, i indexes the batch of initial states used to approximate the integral in Eq 2. Notice that
gradients ∇θJ(πθ) and ∇θLθ are closely related for the first iteration in the policy improvement
operation, where:

∇θLθ = −αθαa
1

k

k∑
i

∇θπθ(s0,i)
dV ā(s0,i)

dā
, (10)

which explains why minimizing Eq.7 improves the value function formulated in Eq. 1. It is also
worth noting that the stability of the policy improvement process is guaranteed by the parameter αa,
which is found through a line search procedure such that V πθ (s0) < V ā(s0), as well as through the
intermediate targets of Eq. 7, which eliminate potential overshooting problems that might occur if
the gradient direction in Eq.10 was followed too aggressively.

3.2 SECOND ORDER POLICY IMPROVEMENT

For a second order policy update rule, the Hessian d2V ā(s0)
dā2 is required. A brief derivation of this

expression can be found in the Appendix and is summarized as follows:

d2V ā(s0)

dā2
=

d

dā

[
∂V ā

∂ā
+
∂V ā

∂s

ds

dā

]
, (11)

=
∂V ā

∂s

(
ds

dā

T ∂

∂s

ds

dā
+

∂

∂ā

ds

dā

)
+

ds

dā

T(∂2V ā

∂s2

ds

dā
+ 2

∂2V ā

∂s∂ā

)
+
∂2V ā

∂ā2
. (12)

The second order tensors ∂
∂s

ds
dā and ∂

∂ā
ds
dā are additional terms that a differentiable simulator must

provide. As described in Zimmermann et al. (2019), these terms can be computed analytically.
However, they are computationally expensive to compute, and they often lead to the Hessian be-
coming indefinite. As a consequence, ignoring these terms from the equation above results in a
Gauss-Newton approximation of the Hessian:

d2V ā(s0)

dā2
≈ Ĥ =

ds

dā

T ∂2V ā

∂s2

ds

dā
+
∂2V ā

∂a2
. (13)

In the expression above we assume that the rewards do not couple s and a. As long as the second
derivatives of the rewards with respect to states and actions are positive definite, which is almost
always the case, the Gauss-Newton approximation Ĥ is also guaranteed to be positive semi-definite.
A second order update rule for ā can therefore be computed as:

ā = πθ + αaĤ
−1 dV ā(s0)

dā
. (14)

Analogous to the first order improvements discussed in the previous section, the same loss Lθ can
be used to perform a policy update on πθ to strictly improve its value function. In this case, Lθ
incorporates the second order policy updates of Eq. 14 without the need to compute the Hessian
of the neural network policy, and with the additional benefit of allowing the use of well-defined
acceleration methods such as Adam (Kingma & Ba, 2015).

3.3 MONOTONIC POLICY IMPROVEMENT

The combination of a simple line search on αa together with the use of Lθ to update πθ provides a
simple and very effective way of preventing overshooting as θ is updated. PODS therefore features

5

Under review as a conference paper at ICLR 2021

monotonic increases in performance, as shown through our experiments. As summarized in Figure 2
for the task of controlling a 2D pendulum such that it goes to stop as quickly as possible (see
the experiments section for a detailed description of task), both the first and second order policy
improvement methods are well-behaved. Nevertheless, there is a drastic difference in convergence
rates, with the second order method winning by a significant margin.

Algorithm 1: PODS: Policy Optimization via Differentiable
Simulators
for epoch = 1, M do

for sample i = 1, k do
Sample initial condition s0,i

Collect πθ by rolling out πθ starting from s0,i

Compute improved policy āi (Eq 6. or Eq 14.)
end
Run gradient descent on Lθ (Eq 7.) such that the output

of πθ matches āi for the entire sequence of states s(āi)
end

0 2 4 6 8
0

1,000

2,000

3,000

Steps (x106)

R
ew

ar
d

2D Simple Pendulum

PODS 1st order update
PODS 2nd order update

Figure 2: Performance of first and
second order update rules.

In contrast to other approaches such as PPO (Wang et al., 2019) and SAC (Haarnoja et al., 2018),
our policy update scheme does not need to be regularized by a KL-divergence metric, demonstrating
its numerical robustness. Our method is only limited by the expressive power of policy πθ, as it
needs to approximate ā well. For reasonable network architectures, this is not a problem, especially
since ā corresponds to local improvements. The overall PODS algorithm is summarized above. For
the experiments we present in the next section, we collected k = 4000 rollouts for each epoch, and
we performed 50 gradient descent steps on Lθ for each policy optimization iteration.

4 EXPERIMENTS

Handle a

Elastic cables or
inextensible rods

Payload x

Figure 3: Experiments left to right; 2D pendulum, 3D double pendulum, Cable driven payload 2D,
Discretized 3D rope

Environments: The environments used in our experiments set up cable-driven payload manipu-
lation control problems that are inspired by the types of applications visualized in Figure 1. For
all these examples, as illustrated in Figure 3, the action space is defined by the velocity of one or
more handles, which are assumed to be directly controlled by a robot, and the state space is defined
by the position of the handle as well as the position and velocity of the payload. We model our
dynamical systems as mass-spring networks by connecting payloads to handles or to each other via
stiff bilateral or unilateral springs. Using a simulation engine that follows closely the description in
Zimmermann et al. (2019), we use a BDF2 integration scheme, as it exhibits very little numerical
damping and is stable even under large time steps. Although this is not a common choice for RL
environments, the use of higher order integration schemes also improves simulation quality and ac-
curacy, as pointed out by Zhong et al. (2020). The Jacobian ds

dā , which is used for both the first order
and second order policy updates, is computed analytically via sensitivity analysis, as described in
detail Zimmermann et al. (2018). The computational cost of computing this Jacobian is significantly
less than performing the sequence of simulation steps needed for a policy rollout.

The control problems we study here are deceptively simple. All the environments fall in the category
of underactuated systems and, in consequence, policies for such environments must fully leverage
the system’s dynamics to successfully achieve a task. The lack of numerical damping in the motion’s
payload, in particular, necessitates control policies that are very precise, as even small errors lead to

6

Under review as a conference paper at ICLR 2021

noticeable oscillations. These environments also enable us to incrementally increase the complexity
of the tasks in order to study the scalability of our method, as well as that of the RL algorithms we
compare against. For comparison purposes, in particular, we use three different types of dynami-
cal systems; 2D Simple Pendulum, 3D Simple Pendulum, and 3D Double Pendulum. A detailed
description of these environments is presented in Appendix A.2.

For all the environments, the action space describes instantaneous velocities of the handles, which
are restricted to remain within physically reasonable limits.

Tasks: In order to encode our tasks, we used continuous rewards that are a function of the fol-
lowing state variables: the position of the handle (p), the position of the mass points representing
the payloads relative to a target position (x), and their global velocities (v). The reward also con-
tains a term that is a function of the actions which are taken. This term takes the form of a simple
regularizer that aims to discourage large control actions.

r(st, at) =
1

1
2wp||pt||2 + 1

2wx||xt||2 + 1
2wv||v||2 + 1

2wa||at||2
, (15)

where the coefficients wp, wx, wv, wa allow each sub-objective to be weighted independently, as is
commonly done. This very general reward formulation allows us to define two different tasks that
we apply to each of the three systems described above:

• Go to stop: Starting from an initial state with non-zero velocity, the pendulum must go to stop
as quickly as possible in a downward configuration. For this task the weights wp = wx = 0.

• Go to stop at the origin: In addition to stopping as fast as possible, the system must come to
rest at a target location, which, without loss of generality, is chosen to be the origin.

The architecture of the neural network policies that we used is detailed in Appendix A.3. For a fair
comparison, the neural network policies for PODS, PPO and SAC were initialized with the same set
of initial weights. We fine tuned hyper parameters of PPO and SAC to get the best performance we
could, and otherwise ran standard implementations provided in Achiam (2018).

4.1 RESULTS

0 10 20 30 400

1,000

2,000

3,000

4,000

Steps (x106)

R
ew

ar
d

2D Simple Pendulum

0 10 20 30 40

100

200

300

Steps (x106)

R
ew

ar
d

Detail

BPTT PODS 1st order PODS 2nd order

Figure 4: Comparison of PODS
update rules against BPTT

The monotonically improving behaviour of PODS can be seen
in Figure 5. The reward reported is the result of averaging the
reward of 1000 rollouts started from a test bed of unseen initial
states. Even if the initial progress of PODS is not always as fast
as PPO or SAC, it consistently leads to a higher reward after a
small number of epochs. We note that the standard deviations
visualized in this figure are indicative of a large variation in
problem difficulty for the different state-space points that seed
the test rollouts (e.g. a double pendulum that has little momen-
tum is easier to be brought to a stop than one that is swinging
wildly). As can be seen, the tasks that demand the payloads to
be brought to a stop at a specific location are considerably more
challenging. The supplementary video illustrates the result of
the rollouts to provide an intuition into the quality of the control
policies learned with our method. Furthermore, Appendix A.6 presents convergence plots for the
cable driven payload 2D, and the discretized 3D rope environments.

PODS vs BPTT: To further explore the benefits of the PODS second order update rule, we com-
pared against the approach of BPTT which naturally leverages the differentiability of the model. We
found BPTT to be highly sensitive to the weight initialization of the policy. In Figure 4, we report
results using the weight initialization that we found to favor BPTT the most. When training neural
network policies, doing BPTT for a 100 steps rollout is effectively equivalent to backpropagating
through a network that is 100 times deeper than the actual network policy, which is in itself a feat
considering that despite introducing a terminal cost function to stabilize BPPT, Clavera et al. (2020)

7

Under review as a conference paper at ICLR 2021

only reports results of effectively BPTT for a maximum of 10 steps. Nontheless, BPTT is able to
outperform PODS with the 1st order update rule. However, PODS with the 2nd order update rule
is able to significantly outperform BPTT both in terms on convergence rates and final performance.
Even though, a second order formulation of BPTT could be derived, it’s deployment would involve
the hessian of the neural network policy which is computationally expensive. In contrast, PODS first
order and second order formulations are equally easy to deploy.

0 2 4 6 8
0

1,000

2,000

3,000

4,000

Steps (x106)

R
ew

ar
d

2D Simple Pendulum

0 2 4 6 8
0

875

1,750

2,625

3,500

Steps (x106)

R
ew

ar
d

3D Simple Pendulum

0 2 4 6 8
0

35

70

105

140

Steps (x106)

R
ew

ar
d

3D Double Pendulum

0 2 4 6 8
0

62.5

125

187.5

250

Steps (x106)

R
ew

ar
d

2D Simple Pendulum (Stop Origin)

0 2 4 6 8
0

30

60

90

120

Steps (x106)

R
ew

ar
d

3D Simple Pendulum (Stop Origin)

0 2 4 6 8
0

15

30

45

60

Steps (x106)
R

ew
ar

d

3D Double Pendulum (Stop Origin)

SAC PPO Ours

Figure 5: Comparison of reward curves. Our algorithm, PODS, achieves better performance com-
pared to other algorithms, PPO and SAC

PODS, SAC, and PPO: To better understand the relative performance of the control policies
learned with PODS, SAC and PPO, we report the terminal kinetic energy (KE) of the payload (Fig-
ure 6), the average magnitude of control action (Figure 8 – Appendix), and the average distance to the
target location for the Stop At Origin tasks (Figure 7) – note, lower is better, and upon convergence,
control policies learned with PODS adequately solve each individual problem in our randomized
test bed. The shaded areas represent half the standard deviation of each metric. For figures with a
logarithmic scale only the upper side of the standard deviation is presented.

For the task of stopping as fast as possible, PODS leads to a terminal kinetic energy that is typically
orders of magnitude better than the other approaches (Top row Figure 6). For the tasks of stopping
at the origin, SAC achieves very good terminal KE. The policies SAC learns, however, output large,
high frequency handle motions, as seen in the high control cost in Figure 8. These actions end
up counteracting the natural dynamic oscillations of the payload. The same strategy for the 3D
double pendulum, however, is unsuccessful. In contrast, PODS learns control policies that use less
effort to solve the control tasks than both SAC and PPO. This indicates that our policies learn to
leverage the dynamics of the payload much more effectively, a characteristic that we attribute to the
local improvement steps which, by design, monotonically improve the value functions of the control
policies. Furthermore, it should also be noted that the class of fine manipulation tasks that we are
dealing with represents a challenge for policies that output noisy actions.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a highly effective strategy for policy optimization. As a core idea be-
hind our approach, we exploit differentiable simulators to directly compute the analytic gradient of
a policy’s value function with respect to the actions it outputs. Through specialized update rules,

8

Under review as a conference paper at ICLR 2021

0 2 4 6 810−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

2D Simple Pendulum

0 2 4 6 8

10−11

10−9

10−7

10−5

10−3

10−1

101

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

3D Simple Pendulum

0 2 4 6 810−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

3D Double Pendulum

0 9 18 27 3610−35

10−30

10−25

10−20

10−15

10−10

10−5

100

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

2D Simple Pendulum (Stop Origin)

0 9 18 27 36

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

3D Simple Pendulum (Stop Origin)

0 9 18 27 3610−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

3D Double Pendulum (Stop Origin)

SAC PPO Ours

Figure 6: Final Kinetic Energy (averaged over a period of 10 time-steps after the policy is rolled
out)

0 9 18 27 3610−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104

Steps (x106)

D
is

ta
nc

e
to

or
ig

in
[m

]

2D Simple Pendulum (Stop Origin)

0 9 18 27 3610−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

Steps (x106)

D
is

ta
nc

e
to

or
ig

in
[m

]

3D Simple Pendulum (Stop Origin)

0 9 18 27 3610−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Steps (x106)

D
is

ta
nc

e
to

or
ig

in
[m

]
3D Double Pendulum (Stop Origin)

Figure 7: Final distance to Origin

this gradient information is used to monotonically improve the policy’s value function. We demon-
strated the efficacy of our approach by applying it to a series of increasingly challenging payload
manipulation problems, and we showed that it outperforms two SOTA RL methods both in terms of
convergence rates, and in terms of quality of the learned policies.

Our work opens up exciting avenues for future investigations. For example, although we evaluated
PODS in isolation in order to best understand its strengths, it would be interesting to interleave it
with existing RL methods. This will require extensions of our formulation to stochastic policies, and
it would allow the relative strengths of different approaches to be effectively combined (e.g. explo-
ration vs exploitation, with PODS excelling in the latter but not being designed for the former). We
are also excited about the prospect of applying PODS to other types of control problems, particularly
ones that include contacts (e.g. locomotion, grasping, etc). Although the need for a specialized sim-
ulator makes the application to standard RL benchmark suites (Brockman et al., 2016; Tassa et al.,
2018) challenging, we note that sim-2-real success with a differentiable simulator has been recently
reported in the context of soft locomoting robots (Bern et al., 2019). With continued evolution of
such simulation technologies, we are excited about the prospect of creating a new benchmark suite
applicable to approaches such as PODS that use differentiable simulators at their core.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On
evaluation of embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

James Bern, Pol Banzet, Roi Poranne, and Stelian Coros. Trajectory optimization for cable-driven
soft robot locomotion. In Proc. Robot. Sci. Syst., 2019.

Rinu Boney, Norman Di Palo, Mathias Berglund, Alexander Ilin, Juho Kannala, Antti Rasmus, and
Harri Valpola. Regularizing trajectory optimization with denoising autoencoders. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 32, pp. 2859–2869. Curran Associates, Inc., 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-Based Reinforcement Learning via Meta-Policy Optimization. In Aude Billard, Anca Dra-
gan, Jan Peters, and Jun Morimoto (eds.), Proceedings of The 2nd Conference on Robot Learning,
volume 87 of Proceedings of Machine Learning Research, pp. 617–629. PMLR, 29–31 Oct 2018.
URL http://proceedings.mlr.press/v87/clavera18a.html.

Ignasi Clavera, Yao Fu, and Pieter Abbeel. Model-augmented actor-critic: Backpropagating
through paths. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=Skln2A4YDB.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2019.

Filipe de Avila Belbute-Peres, Kevin A. Smith, Kelsey R. Allen, Josh Tenenbaum, and J. Zico
Kolter. End-to-end differentiable physics for learning and control. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada, pp. 7178–7189, 2018. URL http://papers.nips.cc/paper/
7948-end-to-end-differentiable-physics-for-learning-and-control.

Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A differentiable physics engine
for deep learning in robotics. Frontiers in Neurorobotics, 13:6, 2019. ISSN 1662-5218. doi: 10.
3389/fnbot.2019.00006. URL https://www.frontiersin.org/article/10.3389/
fnbot.2019.00006.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient ap-
proach to policy search. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, pp. 465–472, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

Evan Drumwright, John Hsu, Nathan P. Koenig, and Dylan A. Shell. Extending open dynam-
ics engine for robotics simulation. In Noriaki Ando, Stephen Balakirsky, Thomas Hemker,
Monica Reggiani, and Oskar von Stryk (eds.), Simulation, Modeling, and Programming for
Autonomous Robots - Second International Conference, SIMPAR 2010, Darmstadt, Germany,
November 15-18, 2010. Proceedings, volume 6472 of Lecture Notes in Computer Science, pp.
38–50. Springer, 2010. doi: 10.1007/978-3-642-17319-6\ 7. URL https://doi.org/10.
1007/978-3-642-17319-6_7.

10

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://proceedings.mlr.press/v87/clavera18a.html
http://proceedings.mlr.press/v87/clavera18a.html
https://openreview.net/forum?id=Skln2A4YDB
https://openreview.net/forum?id=Skln2A4YDB
http://pybullet.org
http://papers.nips.cc/paper/7948-end-to-end-differentiable-physics-for-learning-and-control
http://papers.nips.cc/paper/7948-end-to-end-differentiable-physics-for-learning-and-control
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://doi.org/10.1007/978-3-642-17319-6_7
https://doi.org/10.1007/978-3-642-17319-6_7

Under review as a conference paper at ICLR 2021

Alexis Duburcq, Yann Chevaleyre, Nicolas Bredech, and Guilhem Boéris. Online trajectory plan-
ning through combined trajectory optimization and function approximation: Application to the
exoskeleton atalante. arXiv preprint arXiv:1910.00514, 2019.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. CoRR, abs/1802.09477, 2018. URL http://arxiv.org/abs/
1802.09477.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator: Fast neural net-
work emulation and control of physics-based models. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 9–20,
New York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919998. doi:
10.1145/280814.280816. URL https://doi.org/10.1145/280814.280816.

Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. Deep Reinforcement Learning
for Robotic Manipulation. CoRR, abs/1610.00633, 2016. URL http://arxiv.org/abs/
1610.00633.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Al-
gorithms and Applications. CoRR, abs/1812.05905, 2018. URL http://arxiv.org/abs/
1812.05905.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to Walk Via Deep Reinforcement Learning. In Proceedings of Robotics: Science and Systems,
FreiburgimBreisgau, Germany, June 2019. doi: 10.15607/RSS.2019.XV.011.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. QT-
Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. CoRR,
abs/1806.10293, 2018. URL http://arxiv.org/abs/1806.10293.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A sur-
vey. The International Journal of Robotics Research, 32(11):1238–1274, 2013. doi: 10.1177/
0278364913495721. URL https://doi.org/10.1177/0278364913495721.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-Ensemble
Trust-Region Policy Optimization. CoRR, abs/1802.10592, 2018. URL http://arxiv.org/
abs/1802.10592.

Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on Machine
Learning, pp. 1–9, 2013a.

Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimization. In Ad-
vances in neural information processing systems, pp. 207–215, 2013b.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Yuxi Li. Deep Reinforcement Learning. CoRR, abs/1810.06339, 2018. URL http://arxiv.
org/abs/1810.06339.

11

http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://doi.org/10.1145/280814.280816
https://arxiv.org/abs/1610.00633
https://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://www.roboticsproceedings.org/rss15/p11.html
http://www.roboticsproceedings.org/rss15/p11.html
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://journals.sagepub.com/doi/10.1177/0278364913495721
https://journals.sagepub.com/doi/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339

Under review as a conference paper at ICLR 2021

Junbang Liang, Ming C. Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse
problems. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 Decem-
ber 2019, Vancouver, BC, Canada, pp. 771–780, 2019. URL http://papers.nips.cc/
paper/8365-differentiable-cloth-simulation-for-inverse-problems.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1509.
02971.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in
complex environments. arXiv preprint arXiv:1611.03673, 2016.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL http:
//proceedings.mlr.press/v48/mniha16.html.

Igor Mordatch and Emo Todorov. Combining the benefits of function approximation and trajectory
optimization. 2015. doi: 10.15607/rss.2014.x.052.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural Network Dy-
namics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. CoRR,
abs/1708.02596, 2017. URL http://arxiv.org/abs/1708.02596.

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep Dynamics Models for
Learning Dexterous Manipulation. In Conference on Robot Learning (CoRL), 2019.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,
Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech
Zaremba. Learning Dexterous In-Hand Manipulation. CoRR, abs/1808.00177, 2018. URL
http://arxiv.org/abs/1808.00177.

Paavo Parmas. Total stochastic gradient algorithms and applications in reinforcement learning. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems 31, pp. 10204–10214. Curran Associates, Inc.,
2018.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning. In Geoffrey Gordon, David Dunson, and
Miroslav Dudı́k (eds.), Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635,
Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL http://proceedings.mlr.
press/v15/ross11a.html.

Connor Schenck and Dieter Fox. Guided policy search with delayed sensor measurements. arXiv
preprint arXiv:1609.03076, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region
Policy Optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.
press/v37/schulman15.html.

12

http://papers.nips.cc/paper/8365-differentiable-cloth-simulation-for-inverse-problems
http://papers.nips.cc/paper/8365-differentiable-cloth-simulation-for-inverse-problems
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
https://sites.google.com/view/pddm/
https://sites.google.com/view/pddm/
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v37/schulman15
http://proceedings.mlr.press/v37/schulman15
http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html

Under review as a conference paper at ICLR 2021

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation. In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1506.02438.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. DeepMind Control Suite. Technical report, DeepMind, January 2018. URL
https://arxiv.org/abs/1801.00690.

Yuhui Wang, Hao He, Xiaoyang Tan, and Yaozhong Gan. Trust region-guided proxi-
mal policy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
626–636. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8352-trust-region-guided-proximal-policy-optimization.pdf.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learning
hamiltonian dynamics with control. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=ryxmb1rKDS.

H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous Manipulation with Deep
Reinforcement Learning: Efficient, General, and Low-Cost. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 3651–3657, May 2019. doi: 10.1109/ICRA.2019.8794102.

Simon Zimmermann, Roi Poranne, and Stelian Coros. Optimal control via second order sensitivity
analysis. CoRR, abs/1905.08534, 2018. URL http://arxiv.org/abs/1905.08534.

Simon Zimmermann, Roi Poranne, James M. Bern, and Stelian Coros. PuppetMaster: Robotic
animation of marionettes. ACM Trans. Graph., 38(4), July 2019. ISSN 0730-0301. doi: 10.1145/
3306346.3323003. URL https://doi.org/10.1145/3306346.3323003.

13

http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1801.00690
http://papers.nips.cc/paper/8352-trust-region-guided-proximal-policy-optimization.pdf
http://papers.nips.cc/paper/8352-trust-region-guided-proximal-policy-optimization.pdf
https://openreview.net/forum?id=ryxmb1rKDS
https://ieeexplore.ieee.org/document/8794102
https://ieeexplore.ieee.org/document/8794102
http://arxiv.org/abs/1905.08534
https://doi.org/10.1145/3306346.3323003

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 VALUE FUNCTION HESSIAN

d2V ā(s0)

dā2
=

d

dā

[
∂V ā

∂ā
+
∂V ā

∂s

ds

dā

]
,

=
d

dā

[
∂V ā

∂ā

]
+

d

dā

[
∂V ā

∂s

ds

dā

]
,

=

[
ds

dā

T ∂2V ā

∂s∂ā
+
∂2V ā

∂ā2

]
+

d

dā

[
∂V ā

∂s

]
ds

dā
+
∂V ā

∂s

d

dā

[
ds

dā

]
,

=

[
ds

dā

T ∂2V ā

∂s∂ā
+
∂2V ā

∂ā2

]
+

[
ds

dā

T ∂V ā

∂s
+
∂2V ā

∂ā∂s

]
ds

dā
+
∂V ā

∂s

[
ds

dā

T ∂

∂s

ds

dā
+

∂

∂ā

ds

dā

]
,

=
∂V ā

∂s

(
ds

dā

T ∂

∂s

ds

dā
+

∂

∂ā

ds

dā

)
+

ds

dā

T(∂2V ā

∂s2

ds

dā
+ 2

∂2V ā

∂s∂ā

)
+
∂2V ā

∂ā2
.

A.2 DETAILED DESCRIPTION OF ENVIROMENTS

• 2D Simple Pendulum: This system corresponds to a cable-driven pendulum in 2D (Figure 3
left). The handle of the pendulum is constrained to move only along the horizontal axis in order
to test the degree to which a control policy can exploit the natural dynamics of the system.

• 3D Simple Pendulum: For this system the pendulum is free to move in 3D, but the handle is
restricted to moving along a horizontal plane.

• 3D Double Pendulum: Extending the dynamical system above, the payload for this problem
consists of two mass points that are coupled to each other via a stiff bilateral spring. The dimen-
sionality of the state space doubles, and the system exhibits very rich and dynamic motions.

• Cable drive payload 2D: For this environment we have a densely connected network of 4 point
masses and two handles that are constrained to move along the horizontal axis.

• Rope in 3D: For this environment we use 5 point masses to descretize a rope in 3D and one
handle that is constrained to move on the horizontal plane.

Table 1: Summary of environments

Environment State
space

Action
space

Total
mass Constraints Additional Info

2D Simple
Pendulum 2 1 50gr Handle along

horizontal axis
3D Simple
Pendulum 3 2 50gr Handle on

horizontal plane
3D Double
Pendulum 6 2 100gr Handle on

horizontal plane
Cable driven
payload 2*4 = 8 2 200gr Handles along

horizontal axis
Attachment to handle
uses deformable cables

Rope in 3D 3*5=15 2 250gr Handle on
horizontal plane

All conections are
deformable cables

A.3 ARCHITECTURE OF NEURAL NETWORK POLICIES

The neural networks representing the control policies for all our environments share the same archi-
tecture, 2 fully connected layers of 256 units each with ReLU activations and one output layer with
Tanh activation, to ensure that the policy only outputs commands that are within the velocity limits.

14

Under review as a conference paper at ICLR 2021

A.4 PODS: ADDITIONAL FIGURES

0 2 4 6 810−7

10−6

10−5

10−4

10−3

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

2D Simple Pendulum

0 2 4 6 810−7

10−6

10−5

10−4

10−3

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

3D Simple Pendulum

0 2 4 6 810−6

10−5

10−4

10−3

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

3D Double Pendulum

0 9 18 27 3610−7

10−6

10−5

10−4

10−3

10−2

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

2D Simple Pendulum (Stop Origin)

0 9 18 27 3610−7

10−6

10−5

10−4

10−3

10−2

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

3D Simple Pendulum (Stop Origin)

0 9 18 27 3610−6

10−5

10−4

10−3

10−2

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

3D Double Pendulum (Stop Origin)

SAC PPO Ours

Figure 8: Average handle velocity (control effort)

0 2 4 6 8
0

1,000

2,000

3,000

4,000

Steps (x106)

R
ew

ar
d

2D Simple Pendulum

0 2 4 6 8
0

875

1,750

2,625

3,500

Steps (x106)

R
ew

ar
d

3D Simple Pendulum

0 2 4 6 8
0

35

70

105

140

Steps (x106)

R
ew

ar
d

3D Double Pendulum

0 9 18 27 36
0

67.5

135

202.5

270

Steps (x106)

R
ew

ar
d

2D Simple Pendulum (Stop Origin)

0 9 18 27 36
0

30

60

90

120

Steps (x106)

R
ew

ar
d

3D Simple Pendulum (Stop Origin)

0 9 18 27 36
0

15

30

45

60

Steps (x106)

R
ew

ar
d

3D Double Pendulum (Stop Origin)

SAC PPO Ours

Figure 9: Extended Reward

15

Under review as a conference paper at ICLR 2021

A.5 DIFFERANTIABLE SIMULATOR

Following the approach in Zimmermann et al. (2018), the sensitivity ds
dā has the structure of the

figure below.

ds

dā
= −

(
∂G

∂s

)−1
dG

dā
.

Figure 10: Structure of sensitivity matrix ds
dā that encodes the dependency of a state on all the

previous actions 1

A.6 ADDITIONAL DEMOS

See the accompanying video for more details of the following environments.

0 6 12 18 24
0

30

60

90

120

Steps (x106)

R
ew

ar
d

Cable-driven payload 2D (Stop Origin)

0 6 12 18 2410−6

10−5

10−4

10−3

10−2

10−1

100

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

Cable-driven payload 2D (Stop Origin)

0 6 12 18 2410−6

10−5

10−4

10−3

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

Cable-driven payload 2D (Stop Origin)

0 6 12 18 2410−4

10−3

10−2

10−1

100

101

Steps (x106)

D
is

ta
nc

e
to

or
ig

in
[m

]

Cable-driven payload 2D (Stop Origin)

Ours

Figure 11: Cable driven payload 2D

1Figure reproduced with authorization of the authors (http://arxiv.org/abs/1905.08534)

16

http://arxiv.org/abs/1905.08534

Under review as a conference paper at ICLR 2021

0 9 18 27 36
0

10

20

30

40

Steps (x106)

R
ew

ar
d

Rope (Stop Origin)

0 9 18 27 3610−6

10−5

10−4

10−3

10−2

10−1

100

101

Steps (x106)

Te
rm

in
al

K
in

et
ic

E
ne

rg
y

[J
]

Rope (Stop Origin)

0 9 18 27 36

10−5

10−4

10−3

Steps (x106)

A
ct

io
ns

co
st

1 2
||a

t||
2

Rope (Stop Origin)

0 9 18 27 3610−4

10−3

10−2

10−1

100

101

102

Steps (x106)

D
is

ta
nc

e
to

or
ig

in
[m

]

Rope (Stop Origin)

Ours

Figure 12: Rope in 3D

17

	Introduction
	Related work
	Policy Optimization on Differentiable simulators
	First order policy improvement
	Second order policy improvement
	Monotonic policy improvement

	Experiments
	Results

	Conclusion and future work
	Appendix
	Value function hessian
	Detailed description of enviroments
	Architecture of neural network policies
	PODS: Additional figures
	Differantiable simulator
	Additional demos

