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ABSTRACT

Large language models (LLMs) excel at knowledge-intensive question answering
and reasoning, yet their real-world deployment remains constrained by knowl-
edge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs
with external search tools helps alleviate these issues, but it also exposes agents
to a complex search environment in which small, plausible variations in query
formulation can steer reasoning into unproductive trajectories and amplify errors.
We present a systematic analysis that quantifies how environmental complexity
induces fragile search behaviors and, in turn, degrades overall performance. To
address this challenge, we propose a simple yet effective approach to instantiate
a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a
concrete search goal and subsequently reflects on whether the retrieved evidence
satisfies that goal. This combination of goal-oriented planning and self-reflection
enables RE-Searcher to resist spurious cues in complex search environments and
perform robust search. Extensive experiments show that our method improves
search accuracy and achieves state-of-the-art results. Perturbation studies further
demonstrate substantial resilience to noisy or misleading external signals, mitigat-
ing the fragility of the search process. We believe these findings offer practical
guidance for integrating LLM-powered agents into more complex interactive en-
vironments and enabling more autonomous decision-making.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance in knowledge-intensive
question answering and logical reasoning tasks (Shao et al., 2024; Li et al., 2025a; Minaee et al.,
2024), and have gradually been deployed in real-world applications. Nevertheless, their further de-
velopment remains constrained by several limitations: (1) Knowledge cutoff: model knowledge
is restricted to the static pre-training corpus and cannot be updated in real time (Shah et al., 2025;
Cheng et al., 2024); (2) Hallucination: as probabilistic generators, LLMs inevitably produce content
that is inconsistent with factual knowledge or user intent (Ji et al., 2023; Huang et al., 2025; Tonmoy
et al., 2024); (3) Interaction constraint: models typically interact in a conversational form, re-
stricting their capacity to perform more complex tasks (Schick et al., 2023; Yao et al., 2023). These
challenges substantially limit the applicability of LLMs in open and dynamic real-world scenarios.

Recent research has sought to overcome these limitations by augmenting LLMs with external search
tools, thereby constructing search agents (Jin et al., 2025; Zheng et al., 2025; Wang et al., 2025b;
Hao et al., 2025). By leveraging retrieval during response generation, such agents can extend the
knowledge boundary of LLMs, alleviate hallucination, and enable more diverse downstream appli-
cations. However, while the search environment can enrich the information accessible to models,
they can also introduce misleading evidence, resulting in degraded or erroneous response. In fact, as
shown in Section 2, our preliminary analysis shows that the complexity of the search environment
can lead to fragile interactions, which in turn amplify model errors and ultimately diminish task per-
formance. A simple illustrative case is presented in Fig. 1. When presented with the same query, the
search agent issued two different sets of search keywords across two independent trials. Although
both keyword choices were semantically reasonable, the retrieved results diverged dramatically. The
erroneous trajectory (left) failed to yield useful information, and subsequent refinements along this
trajectory could not recover the correct answer. By contrast, the correct trajectory (right) quickly
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Figure 1: A search path can be viewed as a sample from the keyword graph. When receiving the
same query, the search agent generates two distinct sets of keywords during two independent experi-
ments. Although both sets of keywords are semantically sound, the retrieved results differed dramat-
ically. Our RE-Searcher, a search agent endowed with goal-oriented planning and self-reflection
(orange arrow), can recover from such missteps and return to the correct trajectory, thereby enabling
robust search behavior.

retrieved the keyword “plankton” enabling the agent to find the correct answer in the second search
step.

Such variability and fragility of the search process pose considerable challenges for deploying LLMs
in realistic settings. In contrast, humans are remarkably robust when operating under uncertain and
dynamic conditions. Prior to executing a task, humans typically form explicit expectations of the
desired outcome; after completion, they engage in reflection, evaluating whether the result meets
expectations before deciding on subsequent actions. This process of goal-oriented planning and
self-reflection enables humans to adapt flexibly to environmental complexity.

Inspired by this cognitive paradigm, we build a search agent, RE-Searcher, that integrates goal-
oriented planning with self-reflection. Specifically, in the search process, the agent is required to
explicitly articulate its search goal and subsequently reflect on the quality of retrieved results. Our
experiments demonstrate that this approach not only achieves state-of-the-art (SOTA) performance
in search tasks but also substantially improves robustness. Further perturbation experiments reveal
that our method enhances resilience to noisy or misleading external signals, thereby offering stronger
adaptability to real-world, dynamic environments. Our contributions are listed below:

• We present a systematic analysis and quantification of how environmental complexity affects
agent performance, underscoring the necessity of robustness for reliable deployment.

• We introduce a novel search agent, RE-Searcher, that combines goal-oriented planning with
self-reflection to mitigate the impact of noisy search results and correct potentially biased tra-
jectories, showcasing a simple yet effective approach to achieving robust search performance.

• Extensive experiments demonstrate that RE-Searcher improves search accuracy and robustness;
perturbation analyses further validate the significant gains in resilience against external noise.

2 PRELIMINARY ANALYSIS

The practical application of search agents is severely hampered by a significant instability in their
outputs for search and question-answering. In this section, we begin by quantifying this stochasticity,
and then leverage our findings to propose a simple but effective methodology aimed at enhancing
the agents’ overall performance and robustness.1

1We present the main results and our analysis here. Full experimental details are available in Section A.2.
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2.1 STOCHASTICITY OF SEARCH AGENT’S OUTPUTS

GPT-4o Qwen-2.5
(SFT 7B)
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Figure 2: Accuracy rate of search agents
based on different models. always right is
the fraction of instances where all attempts
are correct; random right is the fraction
where at least one attempt is correct

To quantify the output instability, we evaluated
search agents built upon various models. Each
agent performed inference twice on an identical QA
dataset. We classify questions as always right if cor-
rectly answered in both runs, and as random right if
correct in only one. As illustrated in Fig. 2, GPT-
4o (Hurst et al., 2024), with its pre-trained tool-use
capabilities (OpenAI, 2025), maintains a low, ac-
ceptable proportion of random right outcomes. Con-
versely, Qwen2.5 (Qwen et al., 2025), which lacks
this prior training, exhibits a random right ratio that
rivals or even surpasses its always right ratio. This
highlights a critical model instability that fundamen-
tally limits the model’s achievable performance.

2.2 FRAGILITY OF THE SEARCH PROCESS
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Figure 3: Cosine similarity of the search re-
sults obtained from queries before and after
perturbation; the red dot indicates the mean
similarity.

Analyzing the search trajectories reveals a criti-
cal vulnerability: minuscule differences in search
queries often lead to correct trajectories and incor-
rect ones. A single-word change in a query—such
as a synonym substitution, keyword addition, or
keyword deletion—can trigger drastically different
results from the search engine. To demonstrate this,
we applied these three types of micro-perturbations
to search queries and measured the cosine similar-
ity of the search results before and after. As shown
in Fig. 3, even these subtle changes frequently cause
a sharp decline in semantic similarity, with many re-
sults dropping below a 0.6 threshold.

The complexity of search environment, therefore, acts as an amplifier for the agent’s inherent
stochasticity, often derailing its reasoning process towards erroneous conclusions. While a powerful
model like GPT-4o can recover from such misleading signals, this underscores a general principle:
an agent’s ability to maintain a high-level goal and continuously self-reflect is paramount for robust
performance. Motivated by this insight, our work focuses on explicitly training agents for goal-
oriented planning and self-reflection. This equips them with the resilience needed to counteract
the error amplification from the complex search environment.

3 METHODOLOGY

Table 1: Chat Template for RE-Searcher, when the model answers questions, it needs to think, plan,
search, and reflect to ensure the robustness of the search path.

As an expert researcher, provide precise answers to the given question. When new information
arrives, first reason within <think> and </think> tags to analyze the question and determine
search keywords. Each search must include a clear <goal> specifying the information you aim
to find, along with <query> items combining initial questions with collected information (e.g.,
<search> <query> QUERY </query> <goal> GOAL </goal> </search>). After re-
ceiving search results in <learnings></learnings> tags, reflect on whether they meet your
goal using <think> for analysis, then explicitly state the outcome in <reflect> True/False
</reflect> (True = goal met, False = needs refinement). If knowledge gaps exist, perform
up to five iterative searches with refined goals/queries. When sufficient information is obtained,
present the final answer within <answer> </answer> tags.

3
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Figure 4: Illustration of the proposed training methods. Left: The model is required to explicitly
plan its search goals during the search process and reflect on the results after obtaining them. An
external LLM monitors the training model’s reflection results to ensure that its judgments are correct.
Right: The search trajectory made by the trained agentic model shows the correct reflection and goal
planning.

Algorithm 1 Iterative Search and Reflection
Require: User question Q
1: Initialize: Context C ← {Q}, Gpending ← ∅,
Gcompleted ← ∅

2: Generate an initial search goal based on the input ques-
tion Q and add it to Gpending.

3: while Gpending ̸= ∅ do
4: Get current goal gcurrent from Gpending
5: is goal met← FALSE
6: while NOT is goal met do
7: Generate query q based on gcurrent and context C.
8: Retrieve results R← SearchEngine(q).
9: Update context: C ← C ∪ {R}.

10: Generate judgment J ← Reflect(R, gcurrent).
11: if J = TRUE then
12: is goal met← TRUE
13: Move gcurrent from Gpending to Gcompleted.
14: Identify a new search goal gnew based on C.
15: Gpending ← Gpending ∪ {gnew}.
16: end if
17: end while
18: end while
19: Generate final answer A based on the complete context
C.

20: return A

To enhance model robustness in complex
search environments that often lead to frag-
ile interactions, we aim to equip the agent
with goal-oriented planning and reflection
capabilities. As illustrated in Fig. 4, dur-
ing the training phase, the model is ex-
plicitly prompted to perform goal-oriented
planning and reflection. Furthermore, an
advanced LLM is employed to guide the
model’s reflective outputs. The resulting
supervisory signal is then fed back to the
primary model to refine its reflection accu-
racy.

3.1 EXPLICIT SEARCHING
WITH GOAL-REFLECTION BEHAVIOR

To enable the model to perform explicit
goal-oriented planning and self-reflection
(hereafter referred to as the goal-reflection
mechanism), we employ a structured gen-
eration template, as depicted in Table 1, to
constrain the model’s output to one of three
discrete actions at each turn: Search, Re-
flect, or Answer. Each action is preceded by a “thought” process, where the model generates its
rationale to ensure the subsequent output is coherent and well-founded. The Search action is exe-
cuted as follows: the model first analyzes the initial question and the information gathered thus far
to formulate a specific search goal and a corresponding query. A search engine then executes this
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‘query’ and returns the results. During the Reflect action, the model evaluates whether the retrieved
search results align with the stated goal. If the goal is met, the model confirms this with a TRUE
judgment and proceeds to formulate a new search goal and query. Conversely, if the results are un-
satisfactory, the model refines the query and re-initiates the search process to fulfill the original goal.
Finally, once all necessary information has been gathered and all sub-goals are satisfied, the model
transitions to the Answer action, synthesizing the collected evidence to produce the final response
to the user’s question. The full search process is shown in Algorithm 1.

To ensure the model adheres to the required output format during training, we construct a small set of
chain-of-thought (CoT) interaction trajectories (approximately 1K) as a warm-up. We build an LLM
agent based on a strong instruction-following model (GPT-4o) to generate interactions that conform
to the above protocol, including the thought process, search steps, reflection, and final answer. These
data are then used to fine-tune the base model, enabling it to produce outputs in the desired format.

3.2 GRPO WITH SEARCH ENGINE

The use of reinforcement learning algorithms to improve the search capabilities of models has been
widely validated (Li et al., 2025b; Wang et al., 2025b; Hao et al., 2025). In this work, to mitigate the
demand for computational resources, we employ Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) to train the model’s search and reflection abilities. For each input question x in GRPO,
a group of G rollout trajectories, denoted as τ = {yi}Gi=1, is generated using the preceding policy
πold, the current policy model πθ is subsequently optimized by maximizing the objective function:

L(θ) = Ex∼D,{yi}G
i=1

yi∼πold(·|x)

[
1

G

G∑
i=1

min (ri(θ)Ai, clip(ri(θ), 1− ϵ, 1 + ϵ)Ai)− βDKL[πθ||πref ]

]
(1)

where πref denotes reference model, ri(θ) = πθ(yi|x)
πold(yi|x) . ϵ and β are hyperparameter. Ai rep-

resents the advantage, computed based on the relative rewards (which will be mentioned in Sec-
tion 3.3) of outputs within each group. As mentioned in Section 3.1, in each rollout, the model will
take search actions using <search></search> tags, and the retrieved tokens that are tagged by
<learnings></learnings> will be masked when calculating the loss.

3.3 REFLECTION SUPERVISION THROUGH LLM AS JUDGE

After the warm-up phase, the model has learned to output in the desired format to some extent.
To further enforce the correct format during the reinforcement learning stage, we integrate format
constraints with the factual reward. Specifically, the output trajectory is encouraged to continuously
include the actions of search and reflection, with the final action being the answer. Following the
method in Jin et al. (2025), we combine the format reward with the factual reward as follows:

rem format =

{
0.8 + 0.2 · FM(τpred), if EM(apred, agt) = 1,

0.2 · FM(τpred), if EM(apred, agt) = 0.
(2)

where EM is the exact match function and FM evaluates whether the predicted trajectory τpred
follows the required output format. apred and agt denote the predicted and ground-truth answers,
respectively.

We further employ model-based evaluation, i.e., an LLM as a judge to guide the model’s reflection
process. Specifically, we prompt GPT-4o-mini with a triple input, comprising the search goal, the
search result, and the judgment, to evaluate whether the model’s reflection judgment is correct. The
reflection reward is weighted and added to the factual reward with format constraints for the final
reward:

r = rem format +
∑
i

0.1 ∗MBE(gi, si, vi) (3)

where MBE denotes the model-based evaluation. (gi, si, vi) is the search goal, the search result,
and the judgment for the i-th search action.
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Table 2: Exact Match (EM) metrics on question-answering tasks. The best performance is set in
bold. Our RE-Searcher outperforms all baselines across most in/out-of-domain datasets using both
Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct as base model.

Methods In domain Out of domain Avg.
NQ HotpotQA TriviaQA PopQA 2wiki Musique Bamboogle

Qwen2.5-3B
Direct Inference 0.106 0.149 0.288 0.108 0.244 0.020 0.024 0.134
CoT 0.023 0.021 0.032 0.005 0.021 0.002 0.000 0.015
IRCoT 0.111 0.164 0.312 0.200 0.171 0.067 0.240 0.181
Search-o1 0.238 0.221 0.472 0.262 0.218 0.054 0.320 0.255
RAG 0.348 0.255 0.544 0.387 0.226 0.047 0.080 0.270
SFT 0.249 0.186 0.292 0.104 0.248 0.044 0.112 0.176
R1-base 0.226 0.201 0.455 0.173 0.268 0.055 0.224 0.229
R1-instruct 0.210 0.208 0.449 0.171 0.275 0.060 0.192 0.224
Search-R1-base 0.406 0.284 0.587 0.435 0.273 0.049 0.088 0.303
Search-R1-instruct 0.341 0.324 0.545 0.378 0.319 0.103 0.264 0.325
O2-Searcher 0.444 0.388 0.597 0.429 0.374 0.160 0.344 0.391
ZeroSearch-base 0.430 0.338 0.616 0.414 0.346 0.130 0.139 0.345
ZeroSearch-instruct 0.414 0.274 0.574 0.448 0.300 0.098 0.111 0.317
OTC 0.444 0.365 0.608 0.441 0.341 0.124 0.266 0.370
RE-Searcher (ours) 0.419 0.404 0.600 0.416 0.420 0.166 0.408 0.405

Qwen2.5-7B
Direct Inference 0.134 0.183 0.408 0.140 0.250 0.031 0.120 0.181
CoT 0.048 0.092 0.185 0.054 0.111 0.022 0.232 0.106
IRCoT 0.224 0.133 0.478 0.301 0.149 0.072 0.224 0.226
Search-o1 0.151 0.187 0.443 0.131 0.176 0.058 0.296 0.206
RAG 0.349 0.299 0.585 0.392 0.235 0.058 0.208 0.304
SFT 0.318 0.217 0.354 0.121 0.259 0.066 0.112 0.207
R1-base 0.297 0.242 0.539 0.202 0.273 0.083 0.296 0.276
R1-instruct 0.270 0.237 0.537 0.199 0.292 0.072 0.293 0.271
Search-R1-base 0.480 0.433 0.638 0.457 0.382 0.196 0.432 0.431
Search-R1-instruct 0.393 0.370 0.610 0.397 0.414 0.146 0.368 0.385
ZeroSearch-base 0.424 0.320 0.664 0.604 0.340 0.180 0.333 0.409
ZeroSearch-instruct 0.436 0.346 0.652 0.488 0.352 0.184 0.278 0.391
OTC 0.444 0.366 0.597 0.431 0.311 0.130 0.250 0.361
RE-Searcher (ours) 0.453 0.437 0.638 0.454 0.473 0.194 0.496 0.449

4 EXPERIMENTS

In this section, we design and conduct a series of experiments to answer the following key research
questions (RQs):

• RQ1: Does the goal-reflection mechanism improve problem-solving capabilities in search
tasks? (Section 4.2)

• RQ2: To what extent does the goal-reflection mechanism mitigate the negative impacts of
search fragility? (Section 4.3)

• RQ3: How much does the proposed framework enhance the model’s robustness against
external disturbances? (Section 4.4)

• RQ4: Does the goal-reflection mechanism lead to unnecessary over-reasoning, or does it
perform adaptive search based on the difficulty of the problem? (Section 4.5)

4.1 IMPLEMENTATION DETAILS

Setup. We adopt Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct (Yang et al., 2024) as the backbone
models of our proposed RE-Searcher. For the cold start stage, we utilize the Adam optimizer with
an initial learning rate of 1 × 10−5 and a warm-up ratio of 0.1. This stage is conducted on 8 A100
GPUs for 2 epochs. During the RL training stage, we employ the Verl framework 2. We optimize
the policy model using the GRPO algorithm. At each training step on 8 A100 GPUs, we sample
a batch of 64 prompts, generating 8 rollout trajectories for each. The model is updated with the
Adam optimizer at a learning rate of 1× 10−6. For GRPO, we set the KL divergence regularization
coefficient β to 0.001 and the clip ratio ϵ to 0.2. The maximum sequence length is configured to be
10k tokens, while retrieved content is restricted to 2k tokens, and the maximum number of action

2https://github.com/volcengine/verl

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Ablation on reflection reward on multi-hop datasets. The validation samples are selected
with the protocol of Zheng et al. (2025).

Variants HotpotQA 2wiki Musique Bamboogle

EM F1 EM F1 EM F1 EM F1

w/o reflection reward 0.420 0.545 0.414 0.487 0.183 0.270 0.411 0.533
w/ reflection reward 0.431 (+0.011) 0.544 (-0.001) 0.476 (+0.062) 0.549 (+0.062) 0.197 (+0.014) 0.290 (+0.020) 0.480 (+0.069) 0.578 (+0.045)

Table 4: Ablation on reward components on in-domain and out-of-domain datasets. The validation
samples are selected with the protocol of Zheng et al. (2025).

Variants In domain Out of domain AVG.

baseline 0.403 0.395 0.397
w/o format reward 0.397 (-0.006) 0.388 (-0.007) 0.390 (-0.007)
w/o reflection reward 0.396 (-0.007) 0.387 (-0.008) 0.389 (-0.008)

steps is 11. To accelerate LLM rollouts, we leverage vLLM 3 with a tensor parallel size of 1 and a
GPU memory utilization ratio of 0.85. For rollout sampling, we use a temperature of 1.0 and a top-p
value of 1.0.

Datasets. We assess our proposed RE-Searcher on both in-domain and out-of-domain datasets.
The models are trained on in-domain datasets, including NQ (Kwiatkowski et al., 2019) and Hot-
potQA (Yang et al., 2018), while the out-of-domain datasets encompass TriviaQA (Joshi et al.,
2017), PopQA (Mallen et al., 2022), 2WikiMultiHopQA (Ho et al., 2020), Musique (Trivedi et al.,
2022b), and Bamboogle (Press et al., 2022). In total, these validation tests involve 51,953 questions
with corresponding ground-truth answers.

Baselines. We follow the setting of Search-R1 (Jin et al., 2025) and compare our RE-Searcher
against two categories of methods: (1) CoT-based approaches, including CoT (Wei et al., 2022),
RAG (Lewis et al., 2020), IRCoT (Trivedi et al., 2022a), and Search-o1 (Li et al., 2025b). These
methods leverage Chain-of-Thought reasoning either for direct inference or in combination with
Retrieval-Augmented Generation (RAG). (2) Train-based methods, such as Supervised Fine-Tuning
(SFT) (Chung et al., 2024), DeepSeek-R1 (Guo et al., 2025), Search-R1 (Jin et al., 2025), Ze-
roSearch (Sun et al., 2025), O2-Searcher (Mei et al., 2025), and OTC (Wang et al., 2025a). SFT and
DeepSeek-R1 perform reasoning and answer steps without a search engine, whereas other methods
incorporate a local search engine.

Metrics. The Exact Match (EM) and F1 metrics are applied, following Yu et al. (2024); Jin et al.
(2025).

4.2 EFFECTIVENESS OF THE GOAL-REFLECTION MECHANISM

4.2.1 IMPROVEMENT OF SEARCHING ABILITY

We conducted a comprehensive evaluation of RE-Searcher on both in-domain and out-of-domain
tasks, with detailed results presented in Table 2. The findings clearly indicate that our method es-
tablishes a new state-of-the-art, outperforming all baseline methods across both the 7B and 3B model
scales. Using the Qwen2.5-7B-instruct model as the backbone, RE-Searcher achieves the highest
average EM score of 0.449, surpassing all other approaches. Notably, it secures top performance on
both in-domain datasets, NQ and HotpotQA, demonstrating its proficiency on familiar tasks. Fur-
thermore, it shows exceptional generalization to out-of-domain datasets, achieving the best scores
on 2WikiMultiHopQA and Bamboogle. Compared to recent RL-based baselines, such as Search-R1
and ZeroSearch, our method provides a significant improvement in average performance, underscor-
ing the effectiveness of our approach. Notably, the performance gains of RE-Searcher on single-hop
datasets (NQ, TriviaQA, and PopQA) are less pronounced than on multi-hop datasets and are even
lower than those of ZeroSearch. This is mainly because, in single-hop settings, the necessary in-
formation is often largely contained in the question itself, so complex reasoning is rarely required,

3https://github.com/vllm-project/vllm
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leaving limited room for RE-Searcher to distinguish itself. By contrast, ZeroSearch uses an LLM
pre-trained on search corpora as its retrieval engine, providing stronger semantic matching and thus
better performance on single-hop benchmarks.

To validate the scalability and efficiency of our method, we also evaluated it on the smaller Qwen2.5-
3B-instruct model. The results reinforce our claims, as RE-Searcher again achieves the highest
average EM score of 0.405, outperforming competitive methods like O2-Searcher and OTC. This
consistent superiority highlights the scalability and robust effectiveness of our approach.Fig. 4 shows
a search trajectory of RE-Searcher. The model plans the search goal for each search and reflects on
whether the retrieved content meets the requirements. During the third search, the search engine
incorrectly returned information about a novel with the same title. Through reflection, the model
simply modified a single keyword and obtained the correct result.

4.2.2 ANALYSIS ON REFLECTION REWARD
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Figure 5: The training dynamics of the reflection
value of different models.

We analyze the impact of the reflection re-
ward on training dynamics. As illustrated
in Fig. 5, the model trained without this re-
ward exhibits a reflection score that hovers
around 0.5. This indicates a near-random
judgment on the consistency between the
retrieved information and the search goal,
underscoring the importance of the explicit
guidance provided by the LLM-as-judge. In
contrast, with the reflection reward, the score
stabilizes at a higher value, demonstrating
that the model learns a consistent and effec-
tive reflection policy. These training dynam-
ics are corroborated by quantitative results on
the validation set. As shown in Table 3 and
Table 4, removing the reflection reward of RE-Searcher (7B) and (3B), respectively, leads to a con-
sistent performance drop across both in-domain and out-of-domain datasets, as well as all evaluated
multi-hop datasets. Conversely, its inclusion yields significant improvements, particularly on the
more challenging 2wiki (+0.062 in both EM and F1) and Bamboogle (+0.069 in EM and +0.045 in
F1) datasets. While the gains on Musique are more modest, they remain consistently positive across
both metrics.

Table 5: Rule-based reflection supervision signal.
The validation samples are selected with the protocol
of Zheng et al. (2025).

Variants In domain Out of domain AVG.

w/o reflection reward 0.4404 0.4204 0.4261
Rule-based reward 0.4440 0.4376 0.4390
Model-based reward 0.4410 0.4465 0.4450

To further verify that the robustness of our
model stems from the proposed agent ar-
chitecture itself rather than from a stronger
teacher model, we construct a fully LLM-
free, rule-based reflection supervision sig-
nal. Specifically, for HotpotQA, we use the
annotated supporting facts as evidence for
the answer; for single-hop NQ, we use the
final answer text as a proxy for supporting
facts. When the search agent retrieves con-
tent containing these supporting facts, we mark the retrieval as effective and set the ground-truth
reflection label to True; otherwise, the label is set to False. Comparing this rule-based ground-truth
reflection label with the model’s own prediction yields the reflection reward. Note that the support-
ing facts are span-level text and may not perfectly align semantically with the retrieved passages;
furthermore, the supporting-fact annotations in HotpotQA are known to be noisy. Even so, as shown
in Table 5, the rule-based reward still brings a clear improvement over using no reflection reward,
and its effect is comparable to that of the model-based reward. This suggests that: (i) GPT-4o-
mini does not transfer high-level reasoning ability to the model here, but merely supplies a binary
correctness label for the reflection; and (ii) the robustness of our method primarily arises from the
RE-Searcher agent architecture and its goal-reflection mechanism, rather than the reasoning capa-
bilities of a stronger teacher model.
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Figure 6: Analysis on the negative impacts of search fragility. The goal-reflection mechanism can
effectively alleviate the negative impacts of search fragility.

Table 6: Comparison with pure planning and
pure reflection. The validation samples are se-
lected with the protocol of Zheng et al. (2025).

Variants In domain Out of domain AVG.

Planning only 0.4061 0.4362 0.4339
Reflection only 0.4275 0.4234 0.4246
RE-Searcher 0.4410 0.4465 0.4450

Table 7: Adaptive Search of RE-Searcher: uses
difficulty-aware search strategies to balance ef-
ficiency and performance.

AVG. Std Dev Max Min

Single-hop 1.87 0.94 5 1
Multi-hop 4.20 1.36 7 1
Mixed 3.20 1.08 7 1

4.2.3 FURTHER DISCUSSION ON THE GOAL-REFLECTION MECHANISM

Planning (problem decomposition) and reflection (evaluation of retrieved information) are widely
used to improve model reasoning. However, when a model can interact with an external environ-
ment, it must not only reason well but also adapt to environmental dynamics. Our goal-reflection
mechanism addresses this by requiring the model to set an explicit goal before each action, effec-
tively predicting the action’s outcome. After observing the actual outcome, the model compares it
with its prediction, thereby learning more effective interaction with the environment.

We design experiments to show that goal-reflection is not just a simple combination of planning
and reflection. We remove the goal-setting and outcome-reflection components from RE-Searcher
and separately train models equipped only with planning (problem decomposition) or only with
reflection (evaluation of retrieved information). As shown in Table 6, the goal-reflection model
consistently outperforms these variants in both in-domain and out-of-domain settings. The results in
Section 4.4 further demonstrate the superior robustness of the goal-reflection mechanism to various
forms of interference.

4.3 NEGATIVE IMPACTS OF SEARCH FRAGILITY

We further demonstrate that the goal-reflection mechanism can effectively alleviate the negative
impacts of search fragility. Fig. 6 presents the Pass@k (k=2) results for GPT-4o, Search-R1, Qwen-
2.5-3B-SFT, Qwen-2.5-7B-SFT, and our RE-Searcher with both Qwen-2.5-3B-instruct and Qwen-
2.5-7B-instruct as base model. In this context, the “always right” refers to the proportion of instances
where all k attempts yield the correct answer, while the “random right” indicates the proportion of
instances where at least one out of k attempts is correct. The results clearly showcase that through
training with goal-reflection, the random right ratio is substantially reduced, particularly against
Qwen-2.5-7B-SFT, where it decreased by approximately 8.35%, and even more significantly against
Search-R1, with a reduction of up to 3.01%. A surprising finding is that the random right ratio of
our RE-Searcher (7B) is 8.74%, remarkably close to GPT-4o’s 8.32%. This proximity strongly
demonstrates the effectiveness of our goal-reflection mechanism in alleviating search fragility.

4.4 ROBUSTNESS AGAINST EXTERNAL DISTURBANCES

We demonstrate that our proposed framework significantly enhances the model’s robustness against
external disturbances. To simulate real-world noise, we intentionally introduce disturbances to
the queries during the first round of the search process. This is designed to both misdirect the
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Figure 7: Robustness analysis against disturbances.
Our RE-Searcher exhibits a lower degradation.

initial search direction and challenge the
model’s corrective capabilities. Specifically,
we randomly employ one of the following
three types of disturbances: i) Randomly re-
ducing a word: A word is randomly removed
from the query. ii) Randomly adding a word:
A random word is inserted into the query. iii)
Randomly replacing a word with similar se-
mantics: A word is replaced by another with
a similar meaning. All these disturbance
operations are implemented by prompting
GPT-4o-mini. We then compare the propor-
tion of instances that transition from correct
to incorrect after noise injection, effectively
measuring the degradation caused by distur-
bances. The results, presented in Fig. 7,
show that our RE-Searcher exhibits a substantially lower degradation compared to Search-R1.
Specifically, our framework achieves an improvement of -8.57% in degradation relative to the
Search-R1 with the same size base model. Furthermore, even our 3B model outperforms the Search-
R1 (7B) in terms of robustness. Notably, our RE-Searcher (7B) achieves a comparable degradation
to GPT-4o, further underscoring the superior ability of our goal-reflection mechanism to improve
robustness against external disturbances. In addition, the robustness of the 7B models trained with
pure planning and pure reflection mechanisms is substantially lower than that of RE-Searcher (7B),
and is only comparable to RE-Searcher (3B). This further underscores the performance gap between
the goal-reflection mechanism and simple task decomposition or self-reflection strategies.

4.5 ADAPTIVE SEARCH STRATEGY

Training models with enhanced reasoning capabilities often introduces an unintended side effect:
when presented with simple problems, the model may engage in unnecessary overthinking, lead-
ing to high computational cost and increased inference latency (Chen et al., 2024; Sui et al., 2025).
Consequently, adaptive reasoning has become a central focus in recent research. We analyze the
number of search rounds performed by RE-Searcher (7B) across different types of data. As shown
in Table 7, the number of searches varies substantially across datasets of different difficulty lev-
els. The goal-reflection mechanism enables the model to terminate the search process once it has
obtained results that are sufficiently relevant to the goal, thereby allowing it to conclude early and
avoid superfluous computation.

5 DISCUSSION AND CONCLUSION

In this paper, we investigate the instability of search agents during search and problem-solving. We
identify a critical issue: complex external environments can amplify small initial errors into large
deviations in the final output. To address this, we propose RE-Searcher, a novel search agent that
integrates goal setting with outcome reflection to counteract the fragility of search processes in com-
plex environments. Through extensive numerical and perturbation experiments, we demonstrate that
our approach substantially improves the robustness of search agents. Nevertheless, we acknowledge
that this work represents an initial step. The proposed training methodology is relatively simple, and
there is considerable scope for enhancement. Future improvements could involve refining the train-
ing data, advancing the learning algorithms, and designing more sophisticated supervision signals.
We believe that with these enhancements, the agent’s performance in complex environments can be
further elevated.

Looking ahead, the rapid progress of LLM-powered agents is enabling them to operate across an
ever-wider array of external environments, i.e., often more complex and dynamic than before. While
we embrace the convenience and capabilities that greater agent autonomy brings, we must also pay
close attention to the complex and potentially unintended consequences of their interactions with
the environment. Our future work will delve deeper into these potential issues, aiming to foster the
sustainable and responsible advancement of autonomous agents.
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A APPENDIX

A.1 RELATED WORKS

Integrating external data is a pivotal strategy for overcoming the inherent limitations of Large Lan-
guage Models (LLMs), notably knowledge cutoff and hallucination. The prevailing approaches can
be broadly categorized into two paradigms: passive Retrieval-Augmented Generation (RAG) and
proactive agentic search.

A.1.1 RETRIEVAL-AUGMENTED GENERATION

Traditional RAG frameworks enhance model outputs by retrieving relevant information from an ex-
ternal corpus. This is typically achieved by encoding queries and knowledge passages into a shared
vector space and fetching the nearest neighbors to augment the generation process for complex
tasks (Ma et al., 2023; Arslan et al., 2024). A significant drawback of these methods is their reliance
on static, manually engineered prompts and workflows. Recent efforts have sought to improve RAG
along two primary axes. On the retrieval front, methodologies like LightRAG (Guo et al., 2024)
and GraphRAG (Edge et al., 2024) leverage knowledge graphs to structure external data, facilitating
more precise and contextually relevant information retrieval. On the generation front, works such as
IRCoT (Trivedi et al., 2022a) integrate Chain-of-Thought (CoT) reasoning to refine both information
seeking and synthesis. Meanwhile, AirRAG (Feng et al., 2025) employs Monte Carlo Tree Search
(MCTS) to systematically explore diverse information pathways. Despite these advancements, these
models remain fundamentally reactive; they do not proactively strategize on query formulation or
dynamically adapt their reasoning based on retrieved results.

A.1.2 AGENTIC SEARCH-AUGMENTED MODELS

A recent surge of interest has focused on developing autonomous agents that treat search engines
as callable tools to support sophisticated reasoning. This agentic search paradigm for question-
answering (QA) places a high demand on a model’s planning and reasoning faculties, leading many
researchers to turn to reinforcement learning (RL) for training. For instance, a series of works in-
cluding Search-R1 (Jin et al., 2025), DeepResearcher (Zheng et al., 2025), and R1-Searcher++ (Song
et al., 2025) have successfully applied RL algorithms like GRPO to train agents for multi-hop
QA (Yang et al., 2018; Kwiatkowski et al., 2019), significantly boosting their search and inference
performance. StepSearch (Wang et al., 2025b) refines this approach by introducing step-wise re-
ward signals within a PPO framework, incentivizing productive actions at each stage of the search.
Concurrently, DynaSearcher (Hao et al., 2025) pioneers a dynamic knowledge graph that evolves
during the search to guide exploration, while also leveraging heterogeneous data sources to enrich
the agent’s knowledge base. These contributions have substantially propelled the field forward,
enabling models to more adeptly harness external knowledge for reasoning.

In this work, we build upon these foundations by performing a rigorous analysis of the search
fragility brought by the complex search environment. We introduce a novel search agent designed
to foster greater robustness during information retrieval, thereby elevating the quality and reliability
of the model’s final responses.

A.2 EXPERIMENTS DETAILS FOR PRELIMINARY ANALYSIS

A.2.1 STOCHASTICITY ANALYSIS

To investigate the instability of search agents during the search process, we constructed agents based
on three distinct models: GPT-4o, Qwen2.5 3B, and Qwen2.5 7B. To ensure that the Qwen2.5
models produced outputs in the required format, we fine-tuned them using the warm-up data detailed
in Section 3.1. Our evaluation was conducted on a dataset of 3,197 instances selected by Zheng et al.
(2025), with Exact Match (EM) serving as the primary metric for accuracy. Each agent was run
k = 2 times on the dataset. We categorize the outcomes as follows: questions answered correctly
in all trials are labeled “always right,” while those answered correctly in some but not all trials are
labeled “random right.” We then calculated the proportions of “always right” (PAR) and “random
right”(PRR) questions by dividing their respective counts by the total number of questions:
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PAR =
1

N

N∑
i=1

1
{ k∑

r=1

c
(r)
i = k

}
(4)

PRR =
1

N

N∑
i=1

1
{
1 ≤

k∑
r=1

c
(r)
i ≤ k − 1

}
(5)

Where N is the total number of the instances. c(r)i is an indicator variable representing whether the
answer is correct for sample i in trial r, where a correct answer is recorded as 1 and an incorrect
answer is recorded as 0.

A.2.2 FRAGILITY ANALYSIS

To quantify the impact of minor variations in search queries on the search results, we introduce three
types of single-word perturbations to the keywords within the model’s search trajectory: synonym
substitution, keyword addition, and keyword deletion. We use the search engine from Jin et al.
(2025) to retrieve results for both the original and the perturbed queries, yielding search result R
and R′, respectively. Subsequently, we employ the all-MiniLM-L6-v2 model4 to encode each set of
search results into a dense vector representation. The similarity between the original and perturbed
results is then measured by computing the cosine similarity of their corresponding vectors. The
formula for calculating this search result similarity is as follows:

S(R,R′) = cos(θ) =
v⃗ · v⃗′

∥v⃗∥∥v⃗′∥
(6)

where S(R,R′) represents the final similarity score between the original search results R and the
perturbed search results R′. v⃗ and v⃗′ represents the vector embedding of the original search results
R and perturbed search results R′ respectively.

A.2.3 DEEPER ANALYSIS OF SEARCH FRAGILITY

Under the setting in Section 4.3, using only two samples per question may yield a biased view.
We therefore increase the number of samples to four per question under the same configuration.
As shown in Fig. 8, RE-Searcher stays very close to GPT-4o in both the 2-sample and 4-sample
settings. With only 7B parameters, it matches the performance of the large proprietary GPT-4o
model, indicating that our conclusions are not an artifact of using only two samples.

Search-R1 clearly benefits from more samples: its random-right score improves markedly from 2 to
4 samples and becomes close to that of RE-Searcher and GPT-4o, showing that more samples can
partially mitigate single-shot instability. However, its upper bound 32.90% (always right + random
right) remains noticeably lower than that of GPT-4o and RE-Searcher, leading to a worse random-
right rate 50% (random right / union right). This suggests that Search-R1 is limited both in “always
right” behavior and in the additional correct behavior recoverable through sampling.

By contrast, the Qwen2.5 models adopt a much more aggressive strategy with 4 samples: they
improve their up bound mainly by sharply increasing random right, while their always-right scores
drop substantially. This strong trade-off between stability and upper-bound performance is exactly
the “fragility” we study: the agents’ behaviors and answers vary greatly across samples.

Overall, increasing the number of samples from 2 to 4 does not remove the inherent fragility dis-
cussed in Section 2.1 and Section 4.3. Models still show substantial across-sample variability,
closely tied to their strategy (conservative vs. aggressive) and overall performance.

A.2.4 NECESSITY OF WARM-UP

4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Further Analysis on the negative impacts of search fragility: each question was sampled 4
times.
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Figure 9: Format reward of Qwen2.5 (3B) dur-
ing the RL training process.

To verify whether models like Qwen2.5 (3B) can
follow our relatively simple instruction template
without additional warm-up, we conducted an ab-
lation experiment in which the supervised warm-
up phase was removed and the model was trained
directly using reinforcement learning (“no warm-
up”).

In the no-warm-up setting, the format reward re-
mained consistently low across RL training, in-
dicating that the model failed to reliably fol-
low the predefined response template. As shown
in Fig. 9, the format reward of the no-warm-up
model plateaus around 0.05–0.10, whereas the
model trained with the warm-up stage reaches
around 0.30–0.50

These observations suggest that, in our RL setup, the model’s generic instruction-following ability is
not sufficient to guarantee stable learning of the specific formatting constraints. The warm-up stage
provides the model with explicit supervised signals on the target template, which (i) significantly
improves the format reward and (ii) leads to more stable and reliable RL training. Therefore, the
warm-up is empirically necessary in our framework, even for a relatively capable base model like
Qwen2.5-3B.

A.2.5 SENSITIVITY ANALYSIS OF REFLECTION REWARD COEFFICIENT

Table 8: Sensitivity analysis of coefficient of re-
flection reward. The validation samples are se-
lected with the protocol of Zheng et al. (2025).

coefficient In domain Out of domain AVG.

0 0.4404 0.4204 0.4261
0.1 0.4415 0.4465 0.4451
0.3 0.4360 0.4248 0.4280
0.5 0.4425 0.4398 0.4406

In Eq. (3), we empirically set the coefficient of
the reflection reward to 0.1 in order to balance the
contributions of the different reward components.
To further validate this choice and obtain better
training hyperparameters, we conduct a sensitiv-
ity analysis with respect to this coefficient. The
results, summarized in Table 8, show that using
0.1 as the coefficient yields the best overall per-
formance in terms of average score, and in partic-
ular leads to the largest gains on out-of-domain
data. Moreover, all non-zero coefficients (0.1,
0.3, 0.5) outperform the setting without the reflection reward (0.0), suggesting that our approach
is not overly sensitive to the precise value of this weight and that the reflection reward consistently
provides performance benefits.

A.2.6 STATISTICS OF OUTPUT TOKENS AND SEARCH STEPS
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Table 9: Statistics of output tokens.

Model AVG. Std Dev Max Min

Search-R1-instruct (7B) 186.23 156.33 1331 48
RE-Searcher (7B) 330.46 111.47 906 73

Table 10: Statistics of search steps.

Model AVG. Std Dev Max Min

Search-R1-instruct (7B) 1.72 1.31 5 1
RE-Searcher (7B) 3.20 1.08 7 1

We report the number of output tokens and search steps for RE-Searcher and Search-R1. Our method
indeed leads to a higher average number of generated tokens and search steps. However, an average
of around 330 output tokens and about 3 search steps per question remains practically acceptable.
Moreover, our method improves the stability of the model (with lower Std Dev), making its behavior
more reliable on some particularly challenging queries.

A.3 USE OF LARGE LANGUAGE MODELS

We used a large language model solely for copyediting purposes, i.e., correcting typographical er-
rors, refining grammar, and polishing the prose. No other aspects of this work employed LLMs.
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