

000 001 RE-SEARCHER: ROBUST AGENTIC SEARCH WITH 002 GOAL-ORIENTED PLANNING AND SELF-REFLECTION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Large language models (LLMs) excel at knowledge-intensive question answering
012 and reasoning, yet their real-world deployment remains constrained by knowl-
013 edge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs
014 with external search tools helps alleviate these issues, but it also exposes agents
015 to a complex search environment in which small, plausible variations in query
016 formulation can steer reasoning into unproductive trajectories and amplify errors.
017 We present a systematic analysis that quantifies how environmental complexity
018 induces fragile search behaviors and, in turn, degrades overall performance. To
019 address this challenge, we propose a simple yet effective approach to instantiate
020 a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a
021 concrete search goal and subsequently reflects on whether the retrieved evidence
022 satisfies that goal. This combination of goal-oriented planning and self-reflection
023 enables RE-Searcher to resist spurious cues in complex search environments and
024 perform robust search. Extensive experiments show that our method improves
025 search accuracy and achieves state-of-the-art results. Perturbation studies further
026 demonstrate substantial resilience to noisy or misleading external signals, mitigat-
027 ing the fragility of the search process. We believe these findings offer practical
028 guidance for integrating LLM-powered agents into more complex interactive en-
029 vironments and enabling more autonomous decision-making.

030 031 1 INTRODUCTION 032

033 Large language models (LLMs) have demonstrated remarkable performance in knowledge-intensive
034 question answering and logical reasoning tasks (Shao et al., 2024; Li et al., 2025a; Minaee et al.,
035 2024), and have gradually been deployed in real-world applications. Nevertheless, their further de-
036 velopment remains constrained by several limitations: (1) **Knowledge cutoff**: model knowledge
037 is restricted to the static pre-training corpus and cannot be updated in real time (Shah et al., 2025;
038 Cheng et al., 2024); (2) **Hallucination**: as probabilistic generators, LLMs inevitably produce content
039 that is inconsistent with factual knowledge or user intent (Ji et al., 2023; Huang et al., 2025; Tonmoy
040 et al., 2024); (3) **Interaction constraint**: models typically interact in a conversational form, re-
041 stricting their capacity to perform more complex tasks (Schick et al., 2023; Yao et al., 2023). These
042 challenges substantially limit the applicability of LLMs in open and dynamic real-world scenarios.

043 Recent research has sought to overcome these limitations by augmenting LLMs with external search
044 tools, thereby constructing *search agents* (Jin et al., 2025; Zheng et al., 2025; Wang et al., 2025b;
045 Hao et al., 2025). By leveraging retrieval during response generation, such agents can extend the
046 knowledge boundary of LLMs, alleviate hallucination, and enable more diverse downstream appli-
047 cations. However, while the search environment can enrich the information accessible to models,
048 they can also introduce misleading evidence, resulting in degraded or erroneous response. In fact, as
049 shown in Section 2, our preliminary analysis shows that the complexity of the search environment
050 can lead to fragile interactions, which in turn amplify model errors and ultimately diminish task per-
051 formance. A simple illustrative case is presented in Fig. 1. When presented with the same query, the
052 search agent issued two different sets of search keywords across two independent trials. Although
053 both keyword choices were semantically reasonable, the retrieved results diverged dramatically. The
erroneous trajectory (left) failed to yield useful information, and subsequent refinements along this
trajectory could not recover the correct answer. By contrast, the correct trajectory (right) quickly

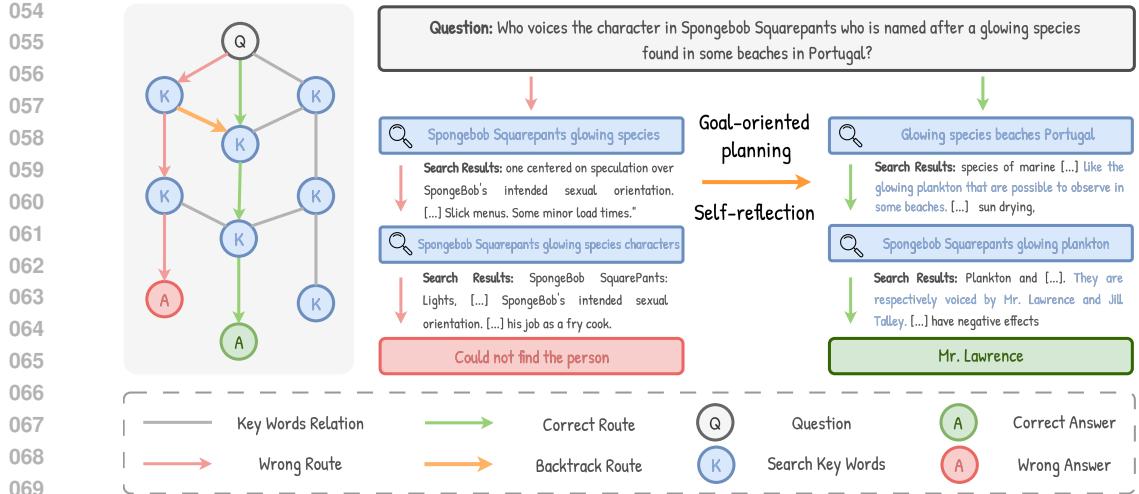


Figure 1: A search path can be viewed as a sample from the keyword graph. When receiving the same query, the search agent generates two distinct sets of keywords during two independent experiments. Although both sets of keywords are semantically sound, the retrieved results differed dramatically. Our RE-Searcher, a search agent endowed with **goal-oriented planning** and **self-reflection** (orange arrow), can recover from such missteps and return to the correct trajectory, thereby enabling robust search behavior.

retrieved the keyword “plankton” enabling the agent to find the correct answer in the second search step.

Such variability and fragility of the search process pose considerable challenges for deploying LLMs in realistic settings. In contrast, humans are remarkably robust when operating under uncertain and dynamic conditions. Prior to executing a task, humans typically form explicit expectations of the desired outcome; after completion, they engage in reflection, evaluating whether the result meets expectations before deciding on subsequent actions. This process of **goal-oriented planning** and **self-reflection** enables humans to adapt flexibly to environmental complexity.

Inspired by this cognitive paradigm, we build a search agent, **RE-Searcher**, that integrates goal-oriented planning with self-reflection. Specifically, in the search process, the agent is required to explicitly articulate its search goal and subsequently reflect on the quality of retrieved results. Our experiments demonstrate that this approach not only achieves state-of-the-art (SOTA) performance in search tasks but also substantially improves robustness. Further perturbation experiments reveal that our method enhances resilience to noisy or misleading external signals, thereby offering stronger adaptability to real-world, dynamic environments. Our contributions are listed below:

- We present a systematic analysis and quantification of how environmental complexity affects agent performance, underscoring the necessity of robustness for reliable deployment.
- We introduce a novel search agent, **RE-Searcher**, that combines goal-oriented planning with self-reflection to mitigate the impact of noisy search results and correct potentially biased trajectories, showcasing a simple yet effective approach to achieving robust search performance.
- Extensive experiments demonstrate that RE-Searcher improves search accuracy and robustness; perturbation analyses further validate the significant gains in resilience against external noise.

2 PRELIMINARY ANALYSIS

The practical application of search agents is severely hampered by a significant instability in their outputs for search and question-answering. In this section, we begin by quantifying this stochasticity, and then leverage our findings to propose a simple but effective methodology aimed at enhancing the agents’ overall performance and robustness.¹

¹We present the main results and our analysis here. Full experimental details are available in Section A.2.

108
109

2.1 STOCHASTICITY OF SEARCH AGENT'S OUTPUTS

110
111
112
113
114
115
116
117
118
119
120
121
122
123

To quantify the output instability, we evaluated search agents built upon various models. Each agent performed inference twice on an identical QA dataset. We classify questions as *always right* if correctly answered in both runs, and as *random right* if correct in only one. As illustrated in Fig. 2, GPT-4o (Hurst et al., 2024), with its pre-trained tool-use capabilities (OpenAI, 2025), maintains a low, acceptable proportion of *random right* outcomes. Conversely, Qwen2.5 (Qwen et al., 2025), which lacks this prior training, exhibits a *random right* ratio that rivals or even surpasses its *always right* ratio. This highlights a critical model instability that fundamentally limits the model's achievable performance.

124
125

2.2 FRAGILITY OF THE SEARCH PROCESS

126
127
128
129
130
131
132
133
134
135
136
137
138

Analyzing the search trajectories reveals a critical vulnerability: minuscule differences in search queries often lead to correct trajectories and incorrect ones. A single-word change in a query—such as a **synonym substitution**, **keyword addition**, or **keyword deletion**—can trigger drastically different results from the search engine. To demonstrate this, we applied these three types of micro-perturbations to search queries and measured the cosine similarity of the search results before and after. As shown in Fig. 3, even these subtle changes frequently cause a sharp decline in semantic similarity, with many results dropping below a 0.6 threshold.

139
140
141
142
143
144
145
146

The complexity of search environment, therefore, acts as an amplifier for the agent's inherent stochasticity, often derailing its reasoning process towards erroneous conclusions. While a powerful model like GPT-4o can recover from such misleading signals, this underscores a general principle: an agent's ability to maintain a high-level goal and continuously self-reflect is paramount for robust performance. Motivated by this insight, our work focuses on explicitly training agents for **goal-oriented planning** and **self-reflection**. This equips them with the resilience needed to counteract the error amplification from the complex search environment.

147

3 METHODOLOGY

148
149
150
151

Table 1: Chat Template for RE-Searcher, when the model answers questions, it needs to think, plan, search, and reflect to ensure the robustness of the search path.

152
153
154
155
156
157
158
159
160
161

As an expert researcher, provide precise answers to the given question. When new information arrives, first reason within `<think>` and `</think>` tags to analyze the question and determine search keywords. Each search must include a clear `<goal>` specifying the information you aim to find, along with `<query>` items combining initial questions with collected information (e.g., `<search> <query> QUERY </query> <goal> GOAL </goal> </search>`). After receiving search results in `<learnings>` tags, reflect on whether they meet your goal using `<think>` for analysis, then explicitly state the outcome in `<reflect>` True/False `</reflect>` (True = goal met, False = needs refinement). If knowledge gaps exist, perform up to five iterative searches with refined goals/queries. When sufficient information is obtained, present the final answer within `<answer>` `</answer>` tags.

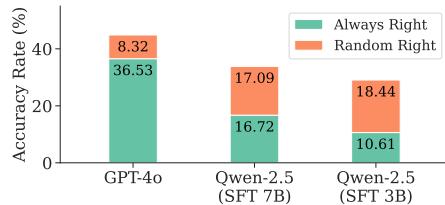


Figure 2: Accuracy rate of search agents based on different models. *always right* is the fraction of instances where all attempts are correct; *random right* is the fraction where at least one attempt is correct

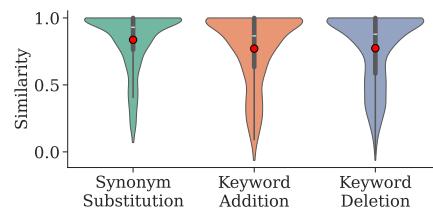


Figure 3: Cosine similarity of the search results obtained from queries before and after perturbation; the red dot indicates the mean similarity.

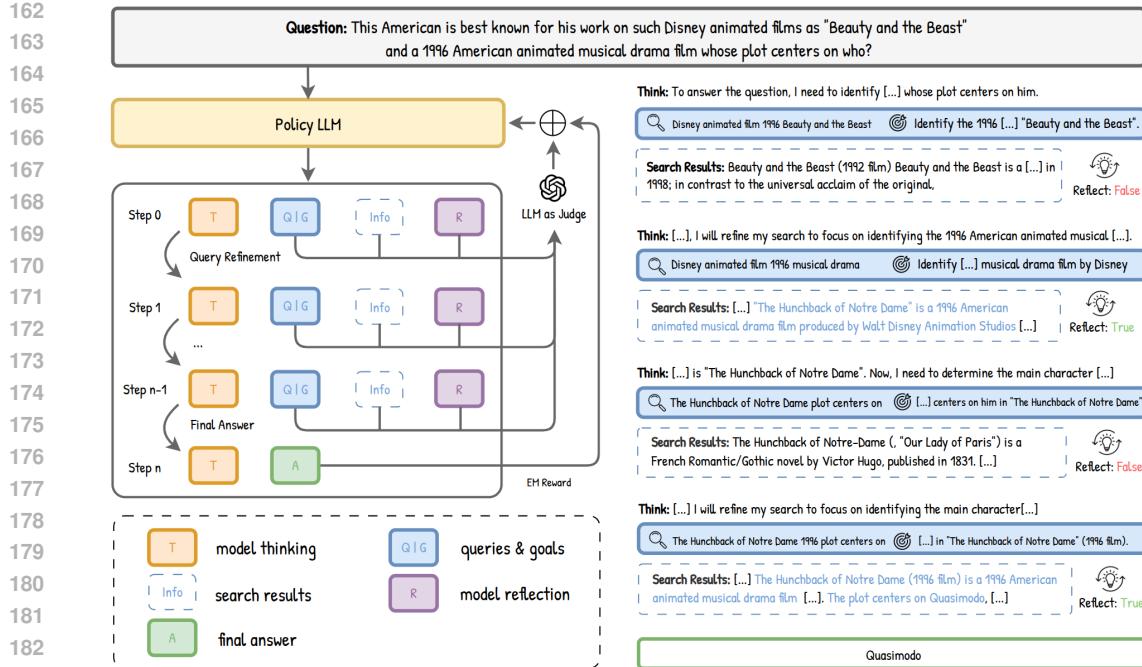


Figure 4: Illustration of the proposed training methods. Left: The model is required to explicitly plan its search goals during the search process and reflect on the results after obtaining them. An external LLM monitors the training model’s reflection results to ensure that its judgments are correct. Right: The search trajectory made by the trained agentic model shows the correct reflection and goal planning.

To enhance model robustness in complex search environments that often lead to fragile interactions, we aim to equip the agent with *goal-oriented planning* and *reflection* capabilities. As illustrated in Fig. 4, during the training phase, the model is explicitly prompted to perform goal-oriented planning and reflection. Furthermore, an advanced LLM is employed to guide the model’s reflective outputs. The resulting supervisory signal is then fed back to the primary model to refine its reflection accuracy.

3.1 EXPLICIT SEARCHING WITH GOAL-REFLECTION BEHAVIOR

To enable the model to perform explicit goal-oriented planning and self-reflection (hereafter referred to as the *goal-reflection mechanism*), we employ a structured generation template, as depicted in Table 1, to constrain the model’s output to one of three discrete actions at each turn: **Search**, **Reflect**, or **Answer**.

Each action is preceded by a “thought” process, where the model generates its rationale to ensure the subsequent output is coherent and well-founded. The **Search** action is executed as follows: the model first analyzes the initial question and the information gathered thus far to formulate a specific search *goal* and a corresponding *query*. A search engine then executes this

Algorithm 1 Iterative Search and Reflection

```

Require: User question  $Q$ 
1: Initialize: Context  $\mathcal{C} \leftarrow \{Q\}$ ,  $\mathcal{G}_{\text{pending}} \leftarrow \emptyset$ ,  $\mathcal{G}_{\text{completed}} \leftarrow \emptyset$ 
2: Generate an initial search goal based on the input question  $Q$  and add it to  $\mathcal{G}_{\text{pending}}$ .
3: while  $\mathcal{G}_{\text{pending}} \neq \emptyset$  do
4:   Get current goal  $g_{\text{current}}$  from  $\mathcal{G}_{\text{pending}}$ 
5:    $\text{is\_goal\_met} \leftarrow \text{FALSE}$ 
6:   while NOT  $\text{is\_goal\_met}$  do
7:     Generate query  $q$  based on  $g_{\text{current}}$  and context  $\mathcal{C}$ .
8:     Retrieve results  $R \leftarrow \text{SearchEngine}(q)$ .
9:     Update context:  $\mathcal{C} \leftarrow \mathcal{C} \cup \{R\}$ .
10:    Generate judgment  $J \leftarrow \text{Reflect}(R, g_{\text{current}})$ .
11:    if  $J = \text{TRUE}$  then
12:       $\text{is\_goal\_met} \leftarrow \text{TRUE}$ 
13:      Move  $g_{\text{current}}$  from  $\mathcal{G}_{\text{pending}}$  to  $\mathcal{G}_{\text{completed}}$ .
14:      Identify a new search goal  $g_{\text{new}}$  based on  $\mathcal{C}$ .
15:       $\mathcal{G}_{\text{pending}} \leftarrow \mathcal{G}_{\text{pending}} \cup \{g_{\text{new}}\}$ .
16:    end if
17:  end while
18: end while
19: Generate final answer  $A$  based on the complete context  $\mathcal{C}$ .
20: return  $A$ 

```

216 ‘*query*’ and returns the results. During the **Reflect** action, the model evaluates whether the retrieved
 217 search results align with the stated *goal*. If the goal is met, the model confirms this with a *TRUE*
 218 judgment and proceeds to formulate a new search *goal* and *query*. Conversely, if the results are un-
 219 satisfactory, the model refines the *query* and re-initiates the search process to fulfill the original goal.
 220 Finally, once all necessary information has been gathered and all sub-goals are satisfied, the model
 221 transitions to the **Answer** action, synthesizing the collected evidence to produce the final response
 222 to the user’s question. The full search process is shown in Algorithm 1.

223 To ensure the model adheres to the required output format during training, we construct a small set of
 224 chain-of-thought (CoT) interaction trajectories (approximately 1K) as a warm-up. We build an LLM
 225 agent based on a strong instruction-following model (GPT-4o) to generate interactions that conform
 226 to the above protocol, including the thought process, search steps, reflection, and final answer. These
 227 data are then used to fine-tune the base model, enabling it to produce outputs in the desired format.
 228

229 3.2 GRPO WITH SEARCH ENGINE

231 The use of reinforcement learning algorithms to improve the search capabilities of models has been
 232 widely validated (Li et al., 2025b; Wang et al., 2025b; Hao et al., 2025). In this work, to mitigate the
 233 demand for computational resources, we employ Group Relative Policy Optimization (GRPO) (Shao
 234 et al., 2024) to train the model’s search and reflection abilities. For each input question x in GRPO,
 235 a group of G rollout trajectories, denoted as $\tau = \{y_i\}_{i=1}^G$, is generated using the preceding policy
 236 π_{old} , the current policy model π_θ is subsequently optimized by maximizing the objective function:
 237

$$238 \mathcal{L}(\theta) = \mathbb{E}_{\substack{x \sim \mathcal{D}, \{y_i\}_{i=1}^G \\ y_i \sim \pi_{old}(\cdot|x)}} \left[\frac{1}{G} \sum_{i=1}^G \min(r_i(\theta)A_i, \text{clip}(r_i(\theta), 1 - \epsilon, 1 + \epsilon)A_i) - \beta \mathbb{D}_{KL}[\pi_\theta || \pi_{ref}] \right] \quad (1)$$

242 where π_{ref} denotes reference model, $r_i(\theta) = \frac{\pi_\theta(y_i|x)}{\pi_{old}(y_i|x)}$. ϵ and β are hyperparameter. A_i rep-
 243 presents the advantage, computed based on the relative rewards (which will be mentioned in Sec-
 244 tion 3.3) of outputs within each group. As mentioned in Section 3.1, in each rollout, the model will
 245 take search actions using `<search></search>` tags, and the retrieved tokens that are tagged by
 246 `<learnings></learnings>` will be masked when calculating the loss.
 247

248 3.3 REFLECTION SUPERVISION THROUGH LLM AS JUDGE

250 After the warm-up phase, the model has learned to output in the desired format to some extent.
 251 To further enforce the correct format during the reinforcement learning stage, we integrate format
 252 constraints with the factual reward. Specifically, the output trajectory is encouraged to continuously
 253 include the actions of search and reflection, with the final action being the answer. Following the
 254 method in Jin et al. (2025), we combine the format reward with the factual reward as follows:
 255

$$256 r_{em_format} = \begin{cases} 0.8 + 0.2 \cdot \text{FM}(\tau_{pred}), & \text{if } \text{EM}(a_{pred}, a_{gt}) = 1, \\ 0.2 \cdot \text{FM}(\tau_{pred}), & \text{if } \text{EM}(a_{pred}, a_{gt}) = 0. \end{cases} \quad (2)$$

259 where EM is the exact match function and FM evaluates whether the predicted trajectory τ_{pred}
 260 follows the required output format. a_{pred} and a_{gt} denote the predicted and ground-truth answers,
 261 respectively.

262 We further employ model-based evaluation, i.e., an LLM as a judge to guide the model’s reflection
 263 process. Specifically, we prompt GPT-4o-mini with a triple input, comprising the search goal, the
 264 search result, and the judgment, to evaluate whether the model’s reflection judgment is correct. The
 265 reflection reward is weighted and added to the factual reward with format constraints for the final
 266 reward:
 267

$$r = r_{em_format} + \sum_i 0.1 * \text{MBE}(g_i, s_i, v_i) \quad (3)$$

268 where MBE denotes the model-based evaluation. (g_i, s_i, v_i) is the search goal, the search result,
 269 and the judgment for the i -th search action.

270 Table 2: Exact Match (EM) metrics on question-answering tasks. The best performance is set in
 271 **bold**. Our RE-Searcher outperforms all baselines across most in/out-of-domain datasets using both
 272 Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct as base model.

Methods	In domain			Out of domain				Avg.
	NQ	HotpotQA	TriviaQA	PopQA	2wiki	Musique	Bamboogle	
Qwen2.5-3B								
Direct Inference	0.106	0.149	0.288	0.108	0.244	0.020	0.024	0.134
CoT	0.023	0.021	0.032	0.005	0.021	0.002	0.000	0.015
IRCoT	0.111	0.164	0.312	0.200	0.171	0.067	0.240	0.181
Search-ol	0.238	0.221	0.472	0.262	0.218	0.054	0.320	0.255
RAG	0.348	0.255	0.544	0.387	0.226	0.047	0.080	0.270
SFT	0.249	0.186	0.292	0.104	0.248	0.044	0.112	0.176
R1-base	0.226	0.201	0.455	0.173	0.268	0.055	0.224	0.229
R1-instruct	0.210	0.208	0.449	0.171	0.275	0.060	0.192	0.224
Search-R1-base	0.406	0.284	0.587	0.435	0.273	0.049	0.088	0.303
Search-R1-instruct	0.341	0.324	0.545	0.378	0.319	0.103	0.264	0.325
O ² -Searcher	0.444	0.388	0.597	0.429	0.374	0.160	0.344	0.391
ZeroSearch-base	0.430	0.338	0.616	0.414	0.346	0.130	0.139	0.345
ZeroSearch-instruct	0.414	0.274	0.574	0.448	0.300	0.098	0.111	0.317
OTC	0.444	0.365	0.608	0.441	0.341	0.124	0.266	0.370
RE-Searcher (ours)	0.419	0.404	0.600	0.416	0.420	0.166	0.408	0.405
Qwen2.5-7B								
Direct Inference	0.134	0.183	0.408	0.140	0.250	0.031	0.120	0.181
CoT	0.048	0.092	0.185	0.054	0.111	0.022	0.232	0.106
IRCoT	0.224	0.133	0.478	0.301	0.149	0.072	0.224	0.226
Search-ol	0.151	0.187	0.443	0.131	0.176	0.058	0.296	0.206
RAG	0.349	0.299	0.585	0.392	0.235	0.058	0.208	0.304
SFT	0.318	0.217	0.354	0.121	0.259	0.066	0.112	0.207
R1-base	0.297	0.242	0.539	0.202	0.273	0.083	0.296	0.276
R1-instruct	0.270	0.237	0.537	0.199	0.292	0.072	0.293	0.271
Search-R1-base	0.480	0.433	0.638	0.457	0.382	0.196	0.432	0.431
Search-R1-instruct	0.393	0.370	0.610	0.397	0.414	0.146	0.368	0.385
ZeroSearch-base	0.424	0.320	0.664	0.604	0.340	0.180	0.333	0.409
ZeroSearch-instruct	0.436	0.346	0.652	0.488	0.352	0.184	0.278	0.391
OTC	0.444	0.366	0.597	0.431	0.311	0.130	0.250	0.361
RE-Searcher (ours)	0.453	0.437	0.638	0.454	0.473	0.194	0.496	0.449

4 EXPERIMENTS

301 In this section, we design and conduct a series of experiments to answer the following key research
 302 questions (RQs):

- 304 • **RQ1:** Does the **goal-reflection mechanism** improve problem-solving capabilities in search
 305 tasks? (Section 4.2)
- 306 • **RQ2:** To what extent does the **goal-reflection** mechanism mitigate the negative impacts of
 307 search fragility? (Section 4.3)
- 308 • **RQ3:** How much does the proposed framework enhance the model’s robustness against
 309 external disturbances? (Section 4.4)
- 310 • **RQ4:** Does the **goal-reflection mechanism** lead to unnecessary over-reasoning, or does it
 311 perform adaptive search based on the difficulty of the problem? (Section 4.5)

313 4.1 IMPLEMENTATION DETAILS

315 **Setup.** We adopt Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct (Yang et al., 2024) as the backbone
 316 models of our proposed RE-Searcher. For the cold start stage, we utilize the Adam optimizer with
 317 an initial learning rate of 1×10^{-5} and a warm-up ratio of 0.1. This stage is conducted on 8 A100
 318 GPUs for 2 epochs. During the RL training stage, we employ the Verl framework². We optimize
 319 the policy model using the GRPO algorithm. At each training step on 8 A100 GPUs, we sample
 320 a batch of 64 prompts, generating 8 rollout trajectories for each. The model is updated with the
 321 Adam optimizer at a learning rate of 1×10^{-6} . For GRPO, we set the KL divergence regularization
 322 coefficient β to 0.001 and the clip ratio ϵ to 0.2. The maximum sequence length is configured to be
 323 10k tokens, while retrieved content is restricted to 2k tokens, and the maximum number of action

²<https://github.com/volcengine/verl>

324 Table 3: Ablation on reflection reward on multi-hop datasets. The validation samples are selected
 325 with the protocol of Zheng et al. (2025).

327 Variants	328 HotpotQA		329 2wiki		330 Musique		331 Bamboogle	
	332 EM	333 F1	334 EM	335 F1	336 EM	337 F1	338 EM	339 F1
w/o reflection reward	0.420	0.545	0.414	0.487	0.183	0.270	0.411	0.533
w/ reflection reward	0.431 (+0.011)	0.544 (-0.001)	0.476 (+0.062)	0.549 (+0.062)	0.197 (+0.014)	0.290 (+0.020)	0.480 (+0.069)	0.578 (+0.045)

331 Table 4: Ablation on reward components on in-domain and out-of-domain datasets. The validation
 332 samples are selected with the protocol of Zheng et al. (2025).

335 Variants	336 In domain	337 Out of domain	338 AVG.
			339 baseline
w/o format reward	0.403	0.395	0.397
w/o reflection reward	0.397 (-0.006)	0.388 (-0.007)	0.390 (-0.007)
	0.396 (-0.007)	0.387 (-0.008)	0.389 (-0.008)

340 steps is 11. To accelerate LLM rollouts, we leverage vLLM³ with a tensor parallel size of 1 and a
 341 GPU memory utilization ratio of 0.85. For rollout sampling, we use a temperature of 1.0 and a top- p
 342 value of 1.0.

343 **Datasets.** We assess our proposed RE-Searcher on both in-domain and out-of-domain datasets.
 344 The models are trained on in-domain datasets, including NQ (Kwiatkowski et al., 2019) and Hot-
 345 potQA (Yang et al., 2018), while the out-of-domain datasets encompass TriviaQA (Joshi et al.,
 346 2017), PopQA (Mallen et al., 2022), 2WikiMultiHopQA (Ho et al., 2020), Musique (Trivedi et al.,
 347 2022b), and Bamboogle (Press et al., 2022). In total, these validation tests involve 51,953 questions
 348 with corresponding ground-truth answers.

349 **Baselines.** We follow the setting of Search-R1 (Jin et al., 2025) and compare our RE-Searcher
 350 against two categories of methods: (1) CoT-based approaches, including CoT (Wei et al., 2022),
 351 RAG (Lewis et al., 2020), IRCoT (Trivedi et al., 2022a), and Search-o1 (Li et al., 2025b). These
 352 methods leverage Chain-of-Thought reasoning either for direct inference or in combination with
 353 Retrieval-Augmented Generation (RAG). (2) Train-based methods, such as Supervised Fine-Tuning
 354 (SFT) (Chung et al., 2024), DeepSeek-R1 (Guo et al., 2025), Search-R1 (Jin et al., 2025), Ze-
 355 roSearch (Sun et al., 2025), O²-Searcher (Mei et al., 2025), and OTC (Wang et al., 2025a). SFT and
 356 DeepSeek-R1 perform reasoning and answer steps without a search engine, whereas other methods
 357 incorporate a local search engine.

358 **Metrics.** The Exact Match (EM) and F1 metrics are applied, following Yu et al. (2024); Jin et al.
 359 (2025).

360 4.2 EFFECTIVENESS OF THE GOAL-REFLECTION MECHANISM

361 4.2.1 IMPROVEMENT OF SEARCHING ABILITY

362 We conducted a comprehensive evaluation of RE-Searcher on both in-domain and out-of-domain
 363 tasks, with detailed results presented in Table 2. The findings clearly indicate that our method es-
 364 tablishes a new state-of-the-art, outperforming all baseline methods across both the 7B and 3B model
 365 scales. Using the Qwen2.5-7B-instruct model as the backbone, RE-Searcher achieves the highest
 366 average EM score of 0.449, surpassing all other approaches. Notably, it secures top performance on
 367 both in-domain datasets, NQ and HotpotQA, demonstrating its proficiency on familiar tasks. Fur-
 368 thermore, it shows exceptional generalization to out-of-domain datasets, achieving the best scores
 369 on 2WikiMultiHopQA and Bamboogle. Compared to recent RL-based baselines, such as Search-R1
 370 and ZeroSearch, our method provides a significant improvement in average performance, underscor-
 371 ing the effectiveness of our approach. **Notably, the performance gains of RE-Searcher on single-hop**
 372 **datasets (NQ, TriviaQA, and PopQA) are less pronounced than on multi-hop datasets and are even**
 373 **lower than those of ZeroSearch. This is mainly because, in single-hop settings, the necessary in-**
 374 **formation is often largely contained in the question itself, so complex reasoning is rarely required,**

375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496<br

378 leaving limited room for RE-Searcher to distinguish itself. By contrast, ZeroSearch uses an LLM
 379 pre-trained on search corpora as its retrieval engine, providing stronger semantic matching and thus
 380 better performance on single-hop benchmarks.
 381

382 To validate the scalability and efficiency of our method, we also evaluated it on the smaller Qwen2.5-
 383 3B-instruct model. The results reinforce our claims, as RE-Searcher again achieves the highest
 384 average EM score of 0.405, outperforming competitive methods like O²-Searcher and OTC. This
 385 consistent superiority highlights the scalability and robust effectiveness of our approach. Fig. 4 shows
 386 a search trajectory of RE-Searcher. The model plans the search goal for each search and reflects on
 387 whether the retrieved content meets the requirements. During the third search, the search engine
 388 incorrectly returned information about a novel with the same title. Through reflection, the model
 389 simply modified a single keyword and obtained the correct result.
 390

390 4.2.2 ANALYSIS ON REFLECTION REWARD

392 We analyze the impact of the reflection reward on training dynamics. As illustrated
 393 in Fig. 5, the model trained without this reward exhibits a reflection score that hovers
 394 around 0.5. This indicates a near-random judgment on the consistency between the
 395 retrieved information and the search goal, underscoring the importance of the explicit
 396 guidance provided by the LLM-as-judge. In
 397 contrast, with the reflection reward, the score stabilizes at a higher value, demonstrating
 398 that the model learns a consistent and effective
 399 reflection policy. These training dynamics are corroborated by quantitative results on
 400 the validation set. As shown in Table 3 and
 401 Table 4, removing the reflection reward of RE-Searcher (7B) and (3B), respectively, leads to a
 402 consistent performance drop across both in-domain and out-of-domain datasets, as well as all evaluated
 403 multi-hop datasets. Conversely, its inclusion yields significant improvements, particularly on the
 404 more challenging 2wiki (+0.062 in both EM and F1) and Bamboogle (+0.069 in EM and +0.045 in
 405 F1) datasets. While the gains on Musique are more modest, they remain consistently positive across
 406 both metrics.
 407

408 To further verify that the robustness of our
 409 model stems from the proposed agent archi-
 410 tecture itself rather than from a stronger
 411 teacher model, we construct a fully LLM-
 412 free, rule-based reflection supervision sig-
 413 nal. Specifically, for HotpotQA, we use the
 414 annotated supporting facts as evidence for
 415 the answer; for single-hop NQ, we use the
 416 final answer text as a proxy for supporting
 417 facts. When the search agent retrieves con-
 418 tent containing these supporting facts, we mark the retrieval as effective and set the ground-truth
 419 reflection label to True; otherwise, the label is set to False. Comparing this rule-based ground-truth
 420 reflection label with the model’s own prediction yields the reflection reward. Note that the sup-
 421 porting facts are span-level text and may not perfectly align semantically with the retrieved passages;
 422 furthermore, the supporting-fact annotations in HotpotQA are known to be noisy. Even so, as shown
 423 in Table 5, the rule-based reward still brings a clear improvement over using no reflection reward,
 424 and its effect is comparable to that of the model-based reward. This suggests that: (i) GPT-4o-
 425 mini does not transfer high-level reasoning ability to the model here, but merely supplies a binary
 426 correctness label for the reflection; and (ii) the robustness of our method primarily arises from the
 427 RE-Searcher agent architecture and its goal-reflection mechanism, rather than the reasoning capa-
 428 bilities of a stronger teacher model.
 429

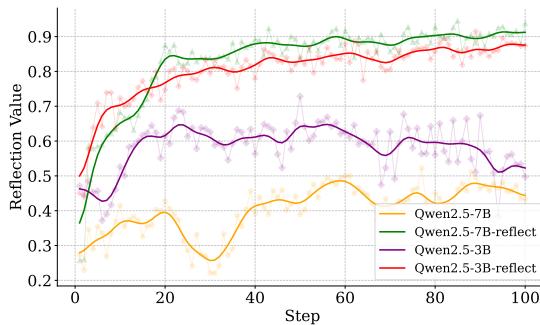


Figure 5: The training dynamics of the reflection value of different models.

429 To-Searcher (7B) and (3B), respectively, leads to a
 430 consistent performance drop across both in-domain and out-of-domain datasets, as well as all evaluated
 431 multi-hop datasets. Conversely, its inclusion yields significant improvements, particularly on the
 432 more challenging 2wiki (+0.062 in both EM and F1) and Bamboogle (+0.069 in EM and +0.045 in
 433 F1) datasets. While the gains on Musique are more modest, they remain consistently positive across
 434 both metrics.
 435

Table 5: Rule-based reflection supervision signal. The validation samples are selected with the protocol of Zheng et al. (2025).

Variants	In domain	Out of domain	AVG.
w/o reflection reward	0.4404	0.4204	0.4261
Rule-based reward	0.4440	0.4376	0.4390
Model-based reward	0.4410	0.4465	0.4450

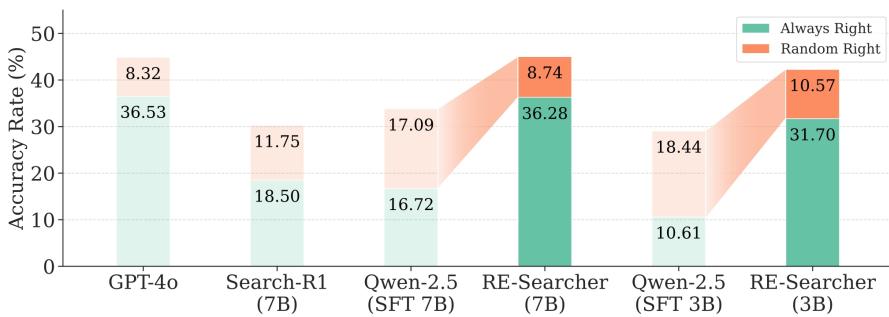


Figure 6: Analysis on the negative impacts of search fragility. The **goal-reflection** mechanism can effectively alleviate the negative impacts of search fragility.

Table 6: Comparison with pure planning and pure reflection. The validation samples are selected with the protocol of Zheng et al. (2025).

Table 7: Adaptive Search of RE-Searcher: uses difficulty-aware search strategies to balance efficiency and performance.

Variants	In domain	Out of domain	AVG.
Planning only	0.4061	0.4362	0.4339
Reflection only	0.4275	0.4234	0.4246
RE-Searcher	0.4410	0.4465	0.4450

	AVG.	Std Dev	Max	Min
Single-hop	1.87	0.94	5	1
Multi-hop	4.20	1.36	7	1
Mixed	3.20	1.08	7	1

4.2.3 FURTHER DISCUSSION ON THE GOAL-REFLECTION MECHANISM

Planning (problem decomposition) and reflection (evaluation of retrieved information) are widely used to improve model reasoning. However, when a model can interact with an external environment, it must not only reason well but also adapt to environmental dynamics. Our goal-reflection mechanism addresses this by requiring the model to set an explicit goal before each action, effectively predicting the action’s outcome. After observing the actual outcome, the model compares it with its prediction, thereby learning more effective interaction with the environment.

We design experiments to show that goal-reflection is not just a simple combination of planning and reflection. We remove the goal-setting and outcome-reflection components from RE-Searcher and separately train models equipped only with planning (problem decomposition) or only with reflection (evaluation of retrieved information). As shown in Table 6, the goal-reflection model consistently outperforms these variants in both in-domain and out-of-domain settings. The results in Section 4.4 further demonstrate the superior robustness of the goal-reflection mechanism to various forms of interference.

4.3 NEGATIVE IMPACTS OF SEARCH FRAGILITY

We further demonstrate that the **goal-reflection** mechanism can effectively alleviate the negative impacts of search fragility. Fig. 6 presents the Pass@k ($k=2$) results for GPT-4o, Search-R1, Qwen-2.5-3B-SFT, Qwen-2.5-7B-SFT, and our RE-Searcher with both Qwen-2.5-3B-instruct and Qwen-2.5-7B-instruct as base model. In this context, the “always right” refers to the proportion of instances where all k attempts yield the correct answer, while the “random right” indicates the proportion of instances where at least one out of k attempts is correct. The results clearly showcase that through training with **goal-reflection**, the random right ratio is substantially reduced, particularly against Qwen-2.5-7B-SFT, where it decreased by approximately 8.35%, and even more significantly against Search-R1, with a reduction of up to 3.01%. A surprising finding is that the random right ratio of our RE-Searcher (7B) is 8.74%, remarkably close to GPT-4o’s 8.32%. This proximity strongly demonstrates the effectiveness of our **goal-reflection** mechanism in alleviating search fragility.

4.4 ROBUSTNESS AGAINST EXTERNAL DISTURBANCES

We demonstrate that our proposed framework significantly enhances the model’s robustness against external disturbances. To simulate real-world noise, we intentionally introduce disturbances to the queries during the first round of the search process. This is designed to both misdirect the

initial search direction and challenge the model’s corrective capabilities. Specifically, we randomly employ one of the following three types of disturbances: i) Randomly reducing a word: A word is randomly removed from the query. ii) Randomly adding a word: A random word is inserted into the query. iii) Randomly replacing a word with similar semantics: A word is replaced by another with a similar meaning. All these disturbance operations are implemented by prompting GPT-4o-mini. We then compare the proportion of instances that transition from correct to incorrect after noise injection, effectively measuring the degradation caused by disturbances. The results, presented in Fig. 7, show that our RE-Searcher exhibits a substantially lower degradation compared to Search-R1. Specifically, our framework achieves an improvement of -8.57% in degradation relative to the Search-R1 with the same size base model. Furthermore, even our 3B model outperforms the Search-R1 (7B) in terms of robustness. Notably, our RE-Searcher (7B) achieves a comparable degradation to GPT-4o, further underscoring the superior ability of our **goal-reflection** mechanism to improve robustness against external disturbances. In addition, the robustness of the 7B models trained with **pure planning** and **pure reflection** mechanisms is substantially lower than that of RE-Searcher (7B), and is only comparable to RE-Searcher (3B). This further underscores the performance gap between the goal-reflection mechanism and simple task decomposition or self-reflection strategies.

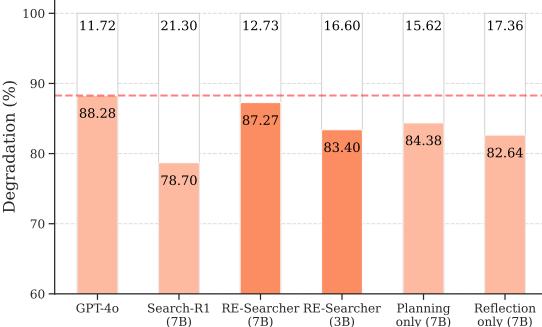


Figure 7: Robustness analysis against disturbances. Our RE-Searcher exhibits a lower degradation.

4.5 ADAPTIVE SEARCH STRATEGY

Training models with enhanced reasoning capabilities often introduces an unintended side effect: when presented with simple problems, the model may engage in unnecessary overthinking, leading to high computational cost and increased inference latency (Chen et al., 2024; Sui et al., 2025). Consequently, adaptive reasoning has become a central focus in recent research. We analyze the number of search rounds performed by RE-Searcher (7B) across different types of data. As shown in Table 7, the number of searches varies substantially across datasets of different difficulty levels. The goal-reflection mechanism enables the model to terminate the search process once it has obtained results that are sufficiently relevant to the goal, thereby allowing it to conclude early and avoid superfluous computation.

5 DISCUSSION AND CONCLUSION

In this paper, we investigate the instability of search agents during search and problem-solving. We identify a critical issue: complex external environments can amplify small initial errors into large deviations in the final output. To address this, we propose RE-Searcher, a novel search agent that integrates goal setting with outcome reflection to counteract the fragility of search processes in complex environments. Through extensive numerical and perturbation experiments, we demonstrate that our approach substantially improves the robustness of search agents. Nevertheless, we acknowledge that this work represents an initial step. The proposed training methodology is relatively simple, and there is considerable scope for enhancement. Future improvements could involve refining the training data, advancing the learning algorithms, and designing more sophisticated supervision signals. We believe that with these enhancements, the agent’s performance in complex environments can be further elevated.

Looking ahead, the rapid progress of LLM-powered agents is enabling them to operate across an ever-wider array of external environments, i.e., often more complex and dynamic than before. While we embrace the convenience and capabilities that greater agent autonomy brings, we must also pay close attention to the complex and potentially unintended consequences of their interactions with the environment. Our future work will delve deeper into these potential issues, aiming to foster the sustainable and responsible advancement of autonomous agents.

540 ETHICS STATEMENT
541542 This study does not involve human subjects, sensitive information, or any applications with foreseeable
543 ethical issues. We have thoroughly reviewed the ICLR Code of Ethics and affirm that our work
544 fully complies with its requirements.
545546 REPRODUCIBILITY STATEMENT
547548 To ensure reproducibility, we provide comprehensive descriptions of all methods in the main text.
549 The experimental section details the computational environment, datasets, algorithms, and all hy-
550 perparameter settings. In addition, we include our code and accompanying documentation in the
551 supplementary materials.
552553 REFERENCES
554555 Muhammad Arslan, Hussam Ghanem, Saba Munawar, and Christophe Cruz. A survey on rag with
556 llms. *Procedia computer science*, 246:3781–3790, 2024.557 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
558 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
559 of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.560 Jeffrey Cheng, Marc Marone, Orion Weller, Dawn Lawrie, Daniel Khashabi, and Benjamin
561 Van Durme. Dated data: Tracing knowledge cutoffs in large language models. *arXiv preprint*
562 *arXiv:2403.12958*, 2024.563 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
564 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
565 guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.566 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
567 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
568 graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.569 Wenfeng Feng, Chuzhan Hao, Yuwei Zhang, Jingyi Song, and Hao Wang. Airrag: Activating
570 intrinsic reasoning for retrieval augmented generation using tree-based search. *arXiv preprint*
571 *arXiv:2501.10053*, 2025.572 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
573 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
574 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.575 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
576 augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.577 Chuzhan Hao, Wenfeng Feng, Yuwei Zhang, and Hao Wang. Dynasearcher: Dynamic knowl-
578 edge graph augmented search agent via multi-reward reinforcement learning. *arXiv preprint*
579 *arXiv:2507.17365*, 2025.580 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
581 qa dataset for comprehensive evaluation of reasoning steps. *arXiv preprint arXiv:2011.01060*,
582 2020.583 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
584 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
585 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
586 *Systems*, 43(2):1–55, 2025.587 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
588 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
589 *arXiv:2410.21276*, 2024.

594 Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
 595 llm hallucination via self reflection. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 1827–1843, 2023.

596

597 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 598 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 599 learning. *arXiv preprint arXiv:2503.09516*, 2025.

600

601 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 602 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

603

604 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 605 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 606 benchmark for question answering research. *Transactions of the Association for Computational
 607 Linguistics*, 7:453–466, 2019.

608

609 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 610 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 611 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 9459–9474, 2020.

612

613 Junlong Li, Daya Guo, Dejian Yang, Runxin Xu, Yu Wu, and Junxian He. Codei/o: Condensing
 614 reasoning patterns via code input-output prediction. *arXiv preprint arXiv:2502.07316*, 2025a.

615

616 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 617 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint
 618 arXiv:2501.05366*, 2025b.

619

620 Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting in retrieval-
 621 augmented large language models. In *Proceedings of the 2023 Conference on Empirical Methods
 622 in Natural Language Processing*, pp. 5303–5315, 2023.

623

624 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 625 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 626 memories. *arXiv preprint arXiv:2212.10511*, 2022.

627

628 Jianbiao Mei, Tao Hu, Daocheng Fu, Licheng Wen, Xuemeng Yang, Rong Wu, Pinlong Cai, Xinyu
 629 Cai, Xing Gao, Yu Yang, et al. O2-searcher: A searching-based agent model for open-domain
 630 open-ended question answering. *arXiv preprint arXiv:2505.16582*, 2025.

631

632 Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
 633 atriain, and Jianfeng Gao. Large language models: A survey. *arXiv preprint arXiv:2402.06196*,
 2024.

634

635 OpenAI. Introducing deep research. <https://openai.com/zh-Hans-CN/index/introducing-deep-research/>, February 2025. Accessed: 2025-09-23.

636

637 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 638 and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*,
 2022.

639

640 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 641 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 642 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 643 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 644 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 645 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 646 URL <https://arxiv.org/abs/2412.15115>.

647

648 Timo Schick, Jane Dwivedi-Yu, Roberto Dessim, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 649 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 650 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–
 68551, 2023.

648 Agam Shah, Liqin Ye, Sebastian Jaskowski, Wei Xu, and Sudheer Chava. Beyond the re-
 649 ported cutoff: Where large language models fall short on financial knowledge. *arXiv preprint*
 650 *arXiv:2504.00042*, 2025.

651 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 652 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 653 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

654 Huatong Song, Jinhao Jiang, Wenqing Tian, Zhipeng Chen, Yuhuan Wu, Jiahao Zhao, Yingqian Min,
 655 Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher++: Incentivizing the dynamic knowl-
 656 edge acquisition of llms via reinforcement learning. *arXiv preprint arXiv:2505.17005*, 2025.

657 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 658 Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
 659 for large language models. *arXiv preprint arXiv:2503.16419*, 2025.

660 Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
 661 Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
 662 searching. *arXiv preprint arXiv:2505.04588*, 2025.

663 SMTI Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava
 664 Das. A comprehensive survey of hallucination mitigation techniques in large language models.
 665 *arXiv preprint arXiv:2401.01313*, 6, 2024.

666 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 667 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. *arXiv*
 668 *preprint arXiv:2212.10509*, 2022a.

669 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 670 questions via single-hop question composition. *Transactions of the Association for Computational*
 671 *Linguistics*, 10:539–554, 2022b.

672 Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,
 673 Mengdi Wang, Kam-Fai Wong, and Heng Ji. Otc: Optimal tool calls via reinforcement learning.
 674 *arXiv e-prints*, pp. arXiv–2504, 2025a.

675 Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu.
 676 Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. *arXiv preprint*
 677 *arXiv:2505.15107*, 2025b.

678 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 679 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 680 *neural information processing systems*, 35:24824–24837, 2022.

681 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 682 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 683 *arXiv:2412.15115*, 2024.

684 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 685 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 686 answering. *arXiv preprint arXiv:1809.09600*, 2018.

687 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 688 React: Synergizing reasoning and acting in language models. In *International Conference on*
 689 *Learning Representations (ICLR)*, 2023.

690 Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
 691 Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in
 692 llms. *Advances in Neural Information Processing Systems*, 37:121156–121184, 2024.

693 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 694 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
 695 ments. *arXiv preprint arXiv:2504.03160*, 2025.

702
703 A APPENDIX704
705 A.1 RELATED WORKS706 Integrating external data is a pivotal strategy for overcoming the inherent limitations of Large Lan-
707 guage Models (LLMs), notably knowledge cutoff and hallucination. The prevailing approaches can
708 be broadly categorized into two paradigms: passive Retrieval-Augmented Generation (RAG) and
709 proactive agentic search.710
711 A.1.1 RETRIEVAL-AUGMENTED GENERATION
712713 Traditional RAG frameworks enhance model outputs by retrieving relevant information from an ex-
714 ternal corpus. This is typically achieved by encoding queries and knowledge passages into a shared
715 vector space and fetching the nearest neighbors to augment the generation process for complex
716 tasks (Ma et al., 2023; Arslan et al., 2024). A significant drawback of these methods is their reliance
717 on static, manually engineered prompts and workflows. Recent efforts have sought to improve RAG
718 along two primary axes. On the retrieval front, methodologies like LightRAG (Guo et al., 2024)
719 and GraphRAG (Edge et al., 2024) leverage knowledge graphs to structure external data, facilitating
720 more precise and contextually relevant information retrieval. On the generation front, works such as
721 IRCoT (Trivedi et al., 2022a) integrate Chain-of-Thought (CoT) reasoning to refine both information
722 seeking and synthesis. Meanwhile, AirRAG (Feng et al., 2025) employs Monte Carlo Tree Search
723 (MCTS) to systematically explore diverse information pathways. Despite these advancements, these
724 models remain fundamentally reactive; they do not proactively strategize on query formulation or
725 dynamically adapt their reasoning based on retrieved results.726 A.1.2 AGENTIC SEARCH-AUGMENTED MODELS
727728 A recent surge of interest has focused on developing autonomous agents that treat search engines
729 as callable tools to support sophisticated reasoning. This agentic search paradigm for question-
730 answering (QA) places a high demand on a model’s planning and reasoning faculties, leading many
731 researchers to turn to reinforcement learning (RL) for training. For instance, a series of works in-
732 cluding Search-R1 (Jin et al., 2025), DeepResearcher (Zheng et al., 2025), and R1-Searcher++ (Song
733 et al., 2025) have successfully applied RL algorithms like GRPO to train agents for multi-hop
734 QA (Yang et al., 2018; Kwiatkowski et al., 2019), significantly boosting their search and inference
735 performance. StepSearch (Wang et al., 2025b) refines this approach by introducing step-wise re-
736 ward signals within a PPO framework, incentivizing productive actions at each stage of the search.
737 Concurrently, DynaSearcher (Hao et al., 2025) pioneers a dynamic knowledge graph that evolves
738 during the search to guide exploration, while also leveraging heterogeneous data sources to enrich
739 the agent’s knowledge base. These contributions have substantially propelled the field forward,
740 enabling models to more adeptly harness external knowledge for reasoning.741 In this work, we build upon these foundations by performing a rigorous analysis of the search
742 fragility brought by the complex search environment. We introduce a novel search agent designed
743 to foster greater robustness during information retrieval, thereby elevating the quality and reliability
744 of the model’s final responses.745 A.2 EXPERIMENTS DETAILS FOR PRELIMINARY ANALYSIS
746

747 A.2.1 STOCHASTICITY ANALYSIS

748 To investigate the instability of search agents during the search process, we constructed agents based
749 on three distinct models: GPT-4o, Qwen2.5 3B, and Qwen2.5 7B. To ensure that the Qwen2.5
750 models produced outputs in the required format, we fine-tuned them using the warm-up data detailed
751 in Section 3.1. Our evaluation was conducted on a dataset of 3,197 instances selected by Zheng et al.
752 (2025), with Exact Match (EM) serving as the primary metric for accuracy. Each agent was run
753 $k = 2$ times on the dataset. We categorize the outcomes as follows: questions answered correctly
754 in all trials are labeled “always right,” while those answered correctly in some but not all trials are
755 labeled “random right.” We then calculated the proportions of “always right” (P_{AR}) and “random
right” (P_{RR}) questions by dividing their respective counts by the total number of questions:

756

757

$$P_{\text{AR}} = \frac{1}{N} \sum_{i=1}^N \mathbf{1} \left\{ \sum_{r=1}^k c_i^{(r)} = k \right\} \quad (4)$$

760

761

$$P_{\text{RR}} = \frac{1}{N} \sum_{i=1}^N \mathbf{1} \left\{ 1 \leq \sum_{r=1}^k c_i^{(r)} \leq k-1 \right\} \quad (5)$$

763

764

Where N is the total number of the instances. $c_i^{(r)}$ is an indicator variable representing whether the answer is correct for sample i in trial r , where a correct answer is recorded as 1 and an incorrect answer is recorded as 0.

767

768

A.2.2 FRAGILITY ANALYSIS

769

To quantify the impact of minor variations in search queries on the search results, we introduce three types of single-word perturbations to the keywords within the model’s search trajectory: **synonym substitution**, **keyword addition**, and **keyword deletion**. We use the search engine from Jin et al. (2025) to retrieve results for both the original and the perturbed queries, yielding search result R and R' , respectively. Subsequently, we employ the all-MiniLM-L6-v2 model⁴ to encode each set of search results into a dense vector representation. The similarity between the original and perturbed results is then measured by computing the cosine similarity of their corresponding vectors. The formula for calculating this search result similarity is as follows:

770

771

772

$$S(R, R') = \cos(\theta) = \frac{\vec{v} \cdot \vec{v}'}{\|\vec{v}\| \|\vec{v}'\|} \quad (6)$$

773

774

775

where $S(R, R')$ represents the final similarity score between the original search results R and the perturbed search results R' . \vec{v} and \vec{v}' represents the vector embedding of the original search results R and perturbed search results R' respectively.

776

777

A.2.3 DEEPER ANALYSIS OF SEARCH FRAGILITY

778

Under the setting in Section 4.3, using only two samples per question may yield a biased view. We therefore increase the number of samples to four per question under the same configuration. As shown in Fig. 8, RE-Searcher stays very close to GPT-4o in both the 2-sample and 4-sample settings. With only 7B parameters, it matches the performance of the large proprietary GPT-4o model, indicating that our conclusions are not an artifact of using only two samples.

779

Search-R1 clearly benefits from more samples: its random-right score improves markedly from 2 to 4 samples and becomes close to that of RE-Searcher and GPT-4o, showing that more samples can partially mitigate single-shot instability. However, its upper bound 32.90% (always right + random right) remains noticeably lower than that of GPT-4o and RE-Searcher, leading to a worse random-right rate 50% (random right / union right). This suggests that Search-R1 is limited both in “always right” behavior and in the additional correct behavior recoverable through sampling.

790

By contrast, the Qwen2.5 models adopt a much more aggressive strategy with 4 samples: they improve their up bound mainly by sharply increasing random right, while their always-right scores drop substantially. This strong trade-off between stability and upper-bound performance is exactly the “fragility” we study: the agents’ behaviors and answers vary greatly across samples.

791

Overall, increasing the number of samples from 2 to 4 does not remove the inherent fragility discussed in Section 2.1 and Section 4.3. Models still show substantial across-sample variability, closely tied to their strategy (conservative vs. aggressive) and overall performance.

802

803

A.2.4 NECESSITY OF WARM-UP

804

805

806

807

808

809

⁴<https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>

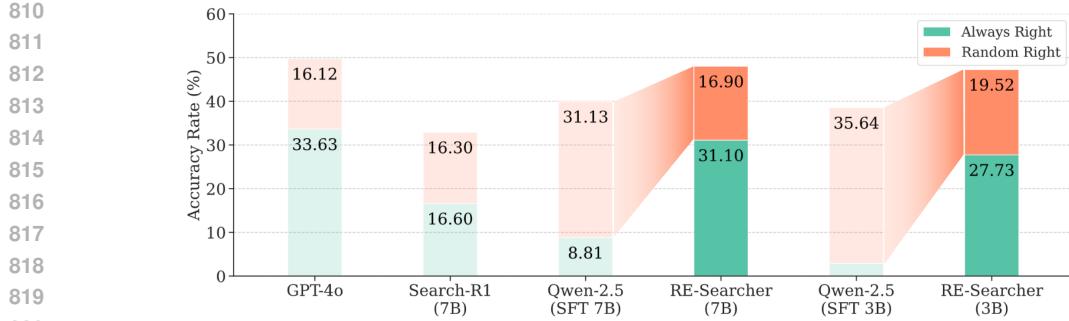


Figure 8: Further Analysis on the negative impacts of search fragility: each question was sampled 4 times.

To verify whether models like Qwen2.5 (3B) can follow our relatively simple instruction template without additional warm-up, we conducted an ablation experiment in which the supervised warm-up phase was removed and the model was trained directly using reinforcement learning (“no warm-up”).

In the no-warm-up setting, the format reward remained consistently low across RL training, indicating that the model failed to reliably follow the predefined response template. As shown in Fig. 9, the format reward of the no-warm-up model plateaus around 0.05–0.10, whereas the model trained with the warm-up stage reaches around 0.30–0.50

These observations suggest that, in our RL setup, the model’s generic instruction-following ability is not sufficient to guarantee stable learning of the specific formatting constraints. The warm-up stage provides the model with explicit supervised signals on the target template, which (i) significantly improves the format reward and (ii) leads to more stable and reliable RL training. Therefore, the warm-up is empirically necessary in our framework, even for a relatively capable base model like Qwen2.5-3B.

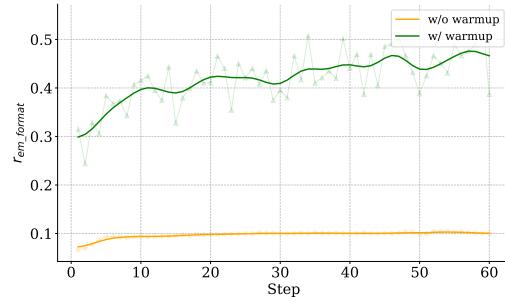


Figure 9: Format reward of Qwen2.5 (3B) during the RL training process.

A.2.5 SENSITIVITY ANALYSIS OF REFLECTION REWARD COEFFICIENT

In Eq. (3), we empirically set the coefficient of the reflection reward to 0.1 in order to balance the contributions of the different reward components. To further validate this choice and obtain better training hyperparameters, we conduct a sensitivity analysis with respect to this coefficient. The results, summarized in Table 8, show that using 0.1 as the coefficient yields the best overall performance in terms of average score, and in particular leads to the largest gains on out-of-domain data. Moreover, all non-zero coefficients (0.1, 0.3, 0.5) outperform the setting without the reflection reward (0.0), suggesting that our approach is not overly sensitive to the precise value of this weight and that the reflection reward consistently provides performance benefits.

A.2.6 STATISTICS OF OUTPUT TOKENS AND SEARCH STEPS

Table 8: Sensitivity analysis of coefficient of reflection reward. The validation samples are selected with the protocol of Zheng et al. (2025).

coefficient	In domain	Out of domain	AVG.
0	0.4404	0.4204	0.4261
0.1	0.4415	0.4465	0.4451
0.3	0.4360	0.4248	0.4280
0.5	0.4425	0.4398	0.4406

864

Table 9: Statistics of output tokens.

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Table 10: Statistics of search steps.

We report the number of output tokens and search steps for RE-Searcher and Search-R1. Our method indeed leads to a higher average number of generated tokens and search steps. However, an average of around 330 output tokens and about 3 search steps per question remains practically acceptable. Moreover, our method improves the stability of the model (with lower Std Dev), making its behavior more reliable on some particularly challenging queries.

A.3 USE OF LARGE LANGUAGE MODELS

We used a large language model solely for copyediting purposes, i.e., correcting typographical errors, refining grammar, and polishing the prose. No other aspects of this work employed LLMs.