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Abstract

In recent years, particle-based variational infer-
ence (ParVI) methods such as Stein variational
gradient descent (SVGD) have grown in popular-
ity as scalable methods for Bayesian inference.
Unfortunately, the properties of such methods in-
variably depend on hyperparameters such as the
learning rate, which must be carefully tuned by
the practitioner in order to ensure convergence
to the target measure at a suitable rate. In this
paper, we introduce a suite of new particle-based
methods for scalable Bayesian inference based on
coin betting, which are entirely learning-rate free.
We illustrate the performance of our approach on
a range of numerical examples, including several
high-dimensional models and datasets, demon-
strating comparable performance to other ParVI
algorithms with no need to tune a learning rate.

1. Introduction

The task of sampling from complex, high-dimensional
probability distributions is of fundamental importance to
Bayesian inference (Robert & Casella, 2004; Gelman et al.,
2013), machine learning (Neal, 1996; Andrieu et al., 2003;
Wilson & Izmailov, 2020), molecular dynamics (Krauth,
2006; Lelievre & Stoltz, 2016), and scientific computing
(MacKay, 2003; Liu, 2009). In this paper, we consider the
canonical task of sampling from a target probability distri-
bution 7(dz) on R? with density 7(x) with respect to the
Lebesgue measure of the form'
e~ U(®)

n(e) = S, (1)
where U : R¢ — R is a continuously differentiable func-
tion known as the potential, and Z = fRd e~ V@ dz is an
unknown normalising constant.
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'In a slight abuse of notation, we use 7 to denote both the target
distribution and its density.

Recently, there has been growing interest in hybrid sam-
pling methods which combine the non-parametric nature
of Markov chain Monte Carlo (MCMC) sampling with the
parametric approach used in variational inference (VI). In
particular, particle based variational inference (ParVI) meth-
ods (Liu & Wang, 2016; Chen et al., 2018a; Liu et al., 2019a)
approximate the target distribution using an ensemble of in-
teracting particles, which are deterministically updated by
iteratively minimising a metric such as the Kullback-Leibler
(KL) divergence.

Perhaps the most well known of these methods is Stein
variational gradient descent (SVGD) (Liu & Wang, 2016),
which iteratively updates the particles according to a form
of gradient descent on the KL divergence, with the descent
direction restricted to belong to a unit ball in a reproducing
kernel Hilbert space (RKHS). This approach has since given
rise to several variants (Liu, 2017; Han & Liu, 2018; Liu &
Zhu, 2018; Zhuo et al., 2018; Chen et al., 2018b; Detom-
maso et al., 2018; Futami et al., 2019a;b; Wang et al., 2019;
Chen & Ghattas, 2020; Ye et al., 2020; Liu et al., 2022; Sun
& Richtérik, 2022); and found success in a range of prob-
lems, including uncertainty quantification (Zhu & Zabaras,
2018), reinforcement learning (Haarnoja et al., 2017; Liu
et al., 2017; Zhang et al., 2018), learning deep probabilistic
models (Pu et al., 2017; Wang & Liu, 2017), and Bayesian
meta-learning (Feng et al., 2017; Yoon et al., 2018).

In order to construct and analyse sampling algorithms of this
type, one popular approach is to reformulate the sampling
problem as an optimisation problem in the space of measures
(Jordan et al., 1998; Wibisono, 2018; Cheng & Bartlett,
2018; Durmus et al., 2019). In this setting, one views the
target 7 as the solution of an optimisation problem

m = argmin F(u), )
nEP2(RY)

where P5(R?) denotes the set of probability measures {/ :
Jra l|z|Pp(dz) < oo}, and F : P(R?) — Ris a functional
which is uniquely minimised at m. A general strategy for
solving this problem is then to simulate a time-discretisation
of the gradient flow of F over P2(R?), having equipped this
space with a suitable metric (Ambrosio et al., 2008).

Many popular sampling algorithms can be understood from
this perspective. For example, Langevin Monte Carlo
(LMC), a popular MCMC algorithm, corresponds to the
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Figure 1. A comparison between SVGD (Liu & Wang, 2016) and its learning-rate free analogue, Coin SVGD (Alg. 2). We plot the
samples generated by both methods for several two-dimensional target distributions. Further details are provided in Sec. 4 and App. E.1.

so-called forward-flow discretisation of the gradient flow of
the KL divergence with respect to the quadratic Wasserstein
metric (Wibisono, 2018; Durmus et al., 2019).2 Meanwhile,
SVGD can be viewed as the explicit Euler discretisation of
the gradient flow of the KL divergence with respect to a ker-
nelised Wasserstein metric (Liu, 2017; Duncan et al., 2023).
Other more recent examples, designed with this perspec-
tive in mind, include maximum mean discrepancy (MMD)
gradient descent (Arbel et al., 2019), the Wasserstein prox-
imal gradient algorithm (Salim et al., 2020), kernel Stein
discrepancy descent (KSDD) (Korba et al., 2021), Laplacian
adjusted Wasserstein gradient descent (LAWGD) (Chewi
et al., 2020), mollified interaction energy descent (MIED)
(Li et al., 2023), and the various other ParVI methods de-
scribed in Chen et al. (2018a); Liu et al. (2019a;b).

One feature common to all of these approaches is the need
to specify an appropriate learning rate (i.e., step size) -y, or
a learning rate schedule (y;)¢>1. This learning rate must
be sufficiently small to ensure convergence to the target
measure, or a close approximation thereof, but also large
enough to ensure convergence within a reasonable time
period. In theory, for a given target 7, existing convergence
rates allow one to derive an optimal learning rate (see, e.g.,
Korba et al., 2020; Salim et al., 2022; Sun & Richtarik, 2022
for SVGD; Dalalyan, 2017a;b; Durmus & Moulines, 2017;
Dalalyan & Karagulyan, 2019; Durmus & Moulines, 2019

*We note that the connection between the law of the over-
damped Langevin diffusion (i.e., the continuous-time dynamics of
LMC) and the gradient flow of the KL divergence dates back to
Otto et al. (Jordan et al., 1998; Otto, 2001; Otto & Westdickenberg,
2005).

for LMC). Invariably, however, the optimal learning rate is
a function of the unknown target measure (e.g., Corollary
6 in Korba et al., 2020; Theorem 9 in Durmus et al., 2019)
and thus, in practice, cannot be computed.

With these considerations in mind, a natural question is
whether one can obtain a gradient-based sampling method
which does not require a learning rate. In this paper, we an-
swer this question in the affirmative. In particular, inspired
by the parameter-free optimisation methods developed by
Orabona and coworkers (Orabona, 2014; Orabona & Pal,
2016; Orabona & Tommasi, 2017; Cutkosky & Orabona,
2018; Jun & Orabona, 2019; Chen et al., 2022a), and lever-
aging the view of sampling as an optimisation problem in
the space of measures (Wibisono, 2018), we obtain a new
suite of particle-based algorithms for scalable Bayesian in-
ference which are entirely learning rate free. Similar to other
ParVlIs, our algorithms deterministically update an ensem-
ble of interacting particles in order to approximate the target
distribution. However, unlike other ParVlIs, our algorithms
do not correspond to the time-discretisation of any gradient
flow, and thus bear little resemblance to existing methods.

Under the assumption of log-concavity, we outline how to
establish convergence to the target measure in the infinite-
particle regime and obtain a non-asymptotic convergence
rate. We then illustrate the performance of our approach on
a range of numerical examples, including both convex and
non-convex targets. Our results indicate that the proposed
methodology achieves comparable performance to existing
particle-based sampling algorithms in a range of tasks, with
no need to tune a learning rate.
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2. Preliminaries
2.1. Optimisation in Euclidean Space

We begin by reviewing optimisation in Euclidean spaces,
focusing on the learning-rate free stochastic optimisation
method introduced by Orabona & Pal (2016). This will later
provide the foundation for our learning-rate free sampling
algorithms.

2.1.1. NOTATION

Let X C RY, and write ||-|| and (-, -) for the Euclidean norm
and inner product in R%. Let f : X — RU {—o00, 00}, and
let f*: X* — RU{—o00, 00} denote the Fenchel conjugate
of f, sothat f*(u) = sup ey [(u, ) — f(z)].

Suppose that f is m-strongly convex, for some m > 0. Let
x € X. We say that g € X is a subgradient of f at x, and
write g € 9f(x) if, for any z € X,

[E) = f@) 2 g2 —a) + Sl —all. @)

If f is differentiable at x, then the differential set O f (x) con-
tains a single element, 0f(x) = {V f(x)}, where V f(z)
denotes the gradient of f at x.

2.1.2. EUCLIDEAN GRADIENT FLOWS

We begin by considering the optimisation problem

x* = argmin f(x), )
rEX
where f : X — R is m-strongly convex. We can solve this
problem using the gradient flow of f, defined as the solution
x : [0, 00) — R? of the following differential inclusion

@ € —0f(w1), Q)

initialised at xy € X. This inclusion admits a unique,
absolutely continuous solution for almost all ¢ > 0 (e.g.,
Theorem 3.1 in Brézis, 1973, Theorem 2.7 in Peypouquet
& Sorin, 2010; Proposition 2.1 in Santambrogio, 2017).
Moreover, the function ¢t — f(x:) is decreasing, with
limy_y o0 f(2¢) = inf ex f(x) (Peypouquet & Sorin, 2010,
Proposition 3.1).

In practice, it is necessary to use a time-discretisation of
this gradient flow. One standard choice is a backward Euler
discretisation, which results in the proximal point algorithm
(Giiler, 1991; De Giorgi, 1993). Alternatively, one can
utilise a forward Euler discretisation, which results in the
standard subgradient descent algorithm (Shor, 1985)

Tip1 = Te — VG, Gr € Of (xy). (6)

The properties of this algorithm depend, necessarily, on
the choice of learning rate v > 0. For example, given

an L-Lipschitz function, it is well known that the average
of the algorithm iterates T = % Zthl x, satisfies (e.g.,
Zinkevich, 2003)

1 [llay—a|? | L*T
T 2y 2 '

—f@") < ©)
Using this expression, one can obtain the ‘ideal’ learning

llea=z"ll ' \hich implies the optimal error

rate as Yidea = T

bound
L|lzy — 2|

7)) — f(z*) <
f ( T) f ( ) = \/T
In practice, however, it is not possible to achieve this bound.
Indeed, even in hindsight, one cannot compute the ideal

learning rate igeal, since it depends on the unknown ||z —
*

®)

2.1.3. LEARNING-RATE FREE GRADIENT DESCENT

Following Orabona & Pal (2016), we now outline an al-
ternative approach for solving the stochastic optimisation
problem in (4) which is entirely learning-rate free. Consider
a gambler who bets on the outcomes of a series of adver-
sarial coin flips. Suppose that the gambler starts with an
initial wealth wy = ¢ > 0. In the t™ round, the gambler
bets on the outcome of a coin flip ¢; € {—1,1}, where +1
denotes heads and —1 denotes tails. For now, we make no
assumptions on how c; is generated.

We will encode the gambler’s bet in the ¢ round by z; € R.
In particular, sign(z:) € {—1,1} will denote whether the
bet is on heads or tails, and |2¢| € R will denote the size
of the bet. Thus, in the ¢ round, the gambler wins xsc; if
sign(c;) = sign(x;); and loses x;¢; otherwise. Finally, we
will write w; for the wealth of the gambler at the end of the
t™ round. Clearly, we then have that

¢
wy =€+ Z Ci T ©
i=1

We will restrict our attention to the case in which the gam-
bler’s bets satisfy x; = [,w;_1, for some betting fraction
B¢ € [—1, 1]. This is equivalent to the assumption that the
gambler cannot borrow any money.

We will now outline how to solve the convex optimisation
problem z* = arg min, g f(x) using a coin-betting algo-
rithm. For simplicity, we will restrict our attention to the
simple one-dimensional function f(z) = | — 10|. We
note, however, that this approach can easily be extended to
any convex function f : R? — R (Orabona & Pal, 2016).
Suppose we define the outcome of a coin flip ¢; € {—1,1}
to be equal to —g; € —9[f(x+)], the negative subgradient
of f(x¢). In this case, under a certain assumption on the
betting strategy (3;)7_,, Orabona & Pal (2016) show that
the average of bets f(Zr) converges to f(x*), with a rate
which depends on the quality of the betting strategy.
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Lemma 2.1. Suppose that the betting strategy (3;)~_, guar-
antees that, for any sequence of coin flips (c;)1_, € {—1,1},
there exists a function h : R — R such that the wealth after
T rounds satisfies wr > h(z;‘rzl ct). Then

1 & o RE(af) +
f(Tgxt>—f(x)§($T)€. (10)

Proof. See App. B. O

We can thus use any suitable coin-betting algorithm to obtain
x* = argmin g f(x), given access to the subgradients of
f. Moreover, any such algorithm will be entirely learning-
rate free. There are various bettin% strategies which satisfy
the requirement that wr > h(}",_; ¢;) (e.g., Orabona &
Pal, 2016; Orabona & Tommasi, 2017; Chen et al., 2022a).
Perhaps the simplest such strategy is one based on the
Krichevsky-Trofimov (KT) estimator (Krichevsky & Trofi-
mov, 1981), which defines the betting strategy to be equal to
B = Zf;% ¢;/t. This results in the coin betting algorithm

Zt.fl i t—1
xt:—% 5—Zgixi ) (11)
i=1

In this case, it is possible to show (Orabona & Pal, 2016,
Lemma 14) that the wealth is lower bounded by

h (ZT: ct> - K:S/T exp <(th;ct> ) (12)

t=1

where K is a universal constant. Thus, using Lemma 2.1
and an appropriate bound on the convex conjugate of h, one
obtains (Orabona & Pal, 2016, Corollary 5)

o1/ log (1 + 2TIE ) 4 ¢
VT
(13)

It is instructive to compare this bound with (8), the corre-
sponding bound for subgradient descent with an optimally
chosen learning rate. Although the coin-betting approach
does not quite achieve the optimal bound in (8), it comes
close, containing only an additional log-factor. This can be
viewed as the trade-off for the fact that the algorithm is now
learning-rate free.

f(@r) = f@") <K

3. Coin Sampling for Bayesian Inference

Our approach, summarised in Alg. 1, can be viewed as
a natural extension of the learning-rate free optimisation
methods introduced in Sec. 2.1.3 to the Wasserstein space.
In particular, coin sampling replaces Euclidean gradients
with Wasserstein gradients in the coin-betting framework,
and can thus be used to solve optimisation problems on the
space of probability measures, i.e., for Bayesian inference.

3.1. Optimisation in Wasserstein Space

To extend coin betting to our setting, we will require some
basic concepts from optimal transport, including the defini-
tion of the Wasserstein space, and of a Wasserstein gradient
flow. We provide additional details on geodesic convexity
and subdifferential calculus in App. A; see also the books
of Ambrosio et al. (2008) and Villani (2008).

3.1.1. THE WASSERSTEIN SPACE

Let P,(R%) denote the set of probability measures on R?
with finite 2" moment: [, ||[|?/(dz) < co. Forany p €
Po(R?), let L2(y) denote the set of measurable functions
[+ R* — R such that [o, || f(z)|[*p(dz) < co. We will
write || - ||2L2(u) and (-, -)12(,) to denote, respectively, the
norm and the inner product of this space.

Given a probability measure ;1 € P2(R?) and a mea-
surable function T : R? — RY, we write Ty for the
pushforward measure of p under 7', that is, the measure
such that T4 pu(B) = (T~ (B)) for all Borel measurable
B € B(RY). For every u,v € Po(R?), let T'(u, v) be the
set of couplings (or transport plans) between y and v, de-
fined as T'(u,v) = {y € P2(R?) : QL = 1, Q%y = v},
where Q' and Q? denote the projections onto the first and
second components of R? x R?. The Wasserstein 2-distance
between p and v is then defined according to

W3 (u,v) = inf

/ ||z — y|[Py(dz, dy). (14)
vEl(p,v) JRd x R4

The Wasserstein distance W5 is a distance over Py(R?).
Thus (P2(R%), W5) is a metric space of probability mea-
sures, known as the Wasserstein space.

3.1.2. WASSERSTEIN GRADIENT FLOWS
Recall the optimisation problem from Sec. 1,

m = argmin F(u), (15)
neP2(RY)

where F : P2(R?) — (—o00,00] is a proper, lower semi-
continuous functional uniquely minimised at 7. There are
various possible choices for the dissimilarity functional F
(see, e.g., Simon-Gabriel, 2018). In the context of Bayesian
inference, perhaps the most common choice is KL(u|),
the Kullback-Leibler (KL) divergence of p with respect to
m. Other possibilities include the chi-squared divergence
X?%(pu|m) (Chewi et al., 2020), and the maximum mean dis-
crepancy MMD (u|m) (Arbel et al., 2019), of which the
kernel Stein discrepancy KSD(p|x) (Korba et al., 2021) is
a special case.

Similarly to the Euclidean case, typical solutions to (15) are
based on the use of a gradient flow. In particular, one can
now consider the Wasserstein gradient flow of F, defined
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as the weak solution  : [0, 00) — P2(R?) of the continuity
equation (Ambrosio et al., 2008, Chapter 11)

Oty + V- () =0, vy € =0F(pe),  (16)

where 0F (1) denotes the Fréchet subdifferential 0F (i) of
F at p (see App. A for a precise definition). Under mild
conditions, this equation admits a unique solution for any
initial condition (e.g., Theorem 11.1.4 and Theorem 11.2.1
in Ambrosio et al., 2008; Proposition 4.13 in Santambrogio,
2017). In addition, the function ¢t — F (1) is decreasing, so
that limy_, oo F () = inf,,cp, (ray F (1) (Ambrosio et al.,
2008, Chapter 11).

3.1.3. DISCRETISED WASSERSTEIN GRADIENT FLOWS

For practical purposes, it is once more necessary to discre-
tise the gradient flow in (16). One option is the backward
Euler discretisation, which corresponds to the minimising
movement (Ambrosio et al., 2008, Definition 2.0.6) or JKO
(Jordan et al., 1998) scheme. Another natural choice is
the forward Euler scheme, which yields the Wasserstein
(sub)gradient descent algorithm (e.g., Guo et al., 2022)

pepr = (id = v&) gy, & € OF (pe). (17

For different choices of the functional F, this discretisation
yields the population limit of several existing particle-based
algorithms. These include MMD gradient descent (Arbel
etal., 2019), KSDD (Korba et al., 2021), and, replacing the
Wasserstein gradient (17) by a kernel approximation, SVGD
(Liu & Wang, 2016) and LAWGD (Chewi et al., 2020).

Regardless of the choice of numerical discretisation, the
properties of the resulting algorithm depend, necessarily, on
the choice of learning rate v > 0. To illustrate this point, we
recall the following bound for the Wasserstein subgradient
descent algorithm (Guo et al., 2022, Theorem 8)

_ 1 [W3(u,m) | LPTr
_ < —
Flpr) = F(m) < | =g 4 S5 a)

where fip = % Zf:l ¢, which holds under the assumption
that the Wasserstein subgradients |[£;||2(,,) < L. We note
that a similar bound also holds for the Langevin Monte
Carlo (LMC) algorithm (Durmus et al., 2019, Sec. 3).

Based on (18), one can obtain the optimal worst case learn-

ing rate as Yigeal = %\/ITJ)’ and thus the optimal error
bound is given by
LW:
F (ir) — Fm) < 22l ™), (19)

VT

Similar to the Euclidean case, however, this rate cannot be
achieved in practice. In particular, computing igeos NOW
depends on the unknown Wasserstein distance Wa(p1, 7).

3.2. Coin Wasserstein Gradient Descent

We now introduce an alternative approach to solving (15)
which is entirely learning rate free. Consider a gambler,
indexed by some initial bet zg € R<, who bets on a series
of outcomes ¢; = c4(z) € [—1, 1]¢. Similar to before, we
assume that this gambler has initial wealth wy > 0. In the t"
round, we now suppose that this gambler bets z; — o € R?
on the outcome ¢; € R?. The wealth w; = w;(xo) of the
gambler thus accumulates as

t

Wy :wo—i—Z(cs,xs — o). (20)

s=1

We will assume, similar to before, that the bets x; — zg
satisfy xy — x¢g = fyw;_1, for some vector-valued betting
fraction 5, = B(xo) € [—1, lld. In fact, henceforth we will
always assume that 3, = %25;11 cs, which corresponds to
the KT betting strategy. The sequence of bets is thus given
by

thl ¢ t—1
xt:$0+s;18<w0+z<csaxs_x0>)' (21)
s=1

Suppose, now, that in fact zg ~ g, for some ‘initial betting
distribution’ 119 € P2(R?). In addition, suppose that we
write ¢; : R — R? for the function which maps zq — ;.
We can then define a sequence of ‘betting distributions’ u; €
P5(RY) as the push-forwards of y, under ¢; : R? — R4,
viz,

pt = (pt)#1o- (22)

This implies, in particular, that given xo ~ g, the random
variable x; := @;(x0) is distributed according to fi;.

We propose to use this framework to solve the minimisa-
tion problem in (15). In particular, taking inspiration from
Orabona & Pal (2016), we will consider a betting game in
which the bets are given by (21), and the outcomes are given
by ¢; = —1 Vw, F (i) (¢), where L is an upper bound on
the Wasserstein gradients (see Assumption 3.2). We will
refer to this betting game, summarised in Alg. 1, as coin
Wasserstein gradient descent or coin sampling.

3.3. Theoretical Results

In this case, under a rather strong sufficient condition (see
App. B), we can show that the average of the betting dis-
tributions & ZT converges to the target 7, at a rate

T t=1 Mt g g >
determined by the betting strategy. For this result to hold,
we will also require the following assumptions.

Assumption 3.1. The functional F : P2(R%) — (—00, o]
is (i) proper and lower semi-continuous, and (ii) geodesi-
cally convex.

Assumption 3.2. There exists L. > 0 such that, for all
t € [T], [|Vw, F(pe)(2e)]] < L.
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Algorithm 1 Coin Wasserstein Gradient Descent

Input: initial measure oy € P2(Ry), initial parameter o ~ po, initial wealth wy € Ry, dissimilarity functional

F : P2(RY) — (—o0, ], gradient upper bound L.
fort =1to T do
Compute

Tt = X I

Output: p7 or = 37 1.

Y Vwa Flps) () (wo BSE

vazf(MS)(xS>vxs - l’o>) s e = (06) o (23)

Assumption 3.1(i) is a general technical condition satisfied
in all relevant cases (e.g., Ambrosio et al., 2008, Sec. 10).
Assumption 3.1(ii) is a standard condition used in the anal-
ysis of existing algorithms such as LMC (Wibisono, 2018;
Durmus & Moulines, 2019). This assumptions holds, for ex-
ample, if F () = KL(u|r), and the potential U : RY — R
is convex (Ambrosio et al., 2008, Sec. 9.4).

To our knowledge, Assumption 3.2 has also only explic-
itly appeared in the analysis of the Wasserstein subgradient
descent algorithm in Guo et al. (2022). However, similar
conditions have also been used to analyse the convergence
of SVGD to its population limit (Liu et al., 2017, Theorem
3.2; Korba et al., 2020, Proposition 7). Meanwhile, conver-
gence rates for SVGD (in the infinite particle regime) can be
established under boundedness assumptions for the kernel
function, as well as bounds on either the KSD (Liu et al.,
2017), the Stein Fisher information (Korba et al., 2020),
or the Hessian of the potential (Salim et al., 2022; Shi &
Mackey, 2022) at each iteration.

Proposition 3.3. Let Assumptions 3.1 - 3.2 and Assumption
B.1 (see App. B) hold. Then

T

K272 ||z|?
+/ ||| T1n<1+w>w(dx)
Rd

(24)

Wy
96772 ||| |”
[ el 710 (14 2 o).
Rd U}O
Proof. See App. B. O

The proof of Proposition 3.3 closely follows the proof used
to establish the convergence rate of the parameter-free opti-
misation algorithm in Orabona & Pal (2016). In our case,
however, it is no longer evident how to convert a lower
bound on the wealth into an upper bound on the regret (see
Lemma 2.1). In App. B, we provide a technical sufficient
condition (Assumption B.1) which allow us to obtain the
rate in Proposition 3.3. It is unclear, however, how to verify

this condition in practice. We leave as an open question
whether it is possible to obtain more easily verifiable condi-
tions under which this result still holds.

3.4. Practical Implementation

In principle, Alg. 1 requires knowledge of a bound on
the Wasserstein gradients (see Assumption 3.2). If such a
constant is unknown in advance, then it can be adaptively
estimated using a similar approach to the one proposed in
Orabona & Tommasi (2017). We provide full details of this
adaptive approach, which in practice we use in all of our
numerical experiments, in App. D.

Alg. 1 also assumes that it is possible to observe the se-
quence of vector fields (Vy, F(ut):er)- In practice, this
is unrealistic: these quantities depend on knowledge of the
measures (it )e[r], Which typically we cannot compute
in closed form. Following existing ParVIs, a standard ap-
proach is to approximate these quantities using a set of
(int_e)r]'ilfctiinigd par(ti;le):s. In particular, supp;\;)se v;/e Ziglriltiagise
xh)il, ~ po(dx), with empirical law =Y . 0.
Wg, czari thenlflpdate the paﬂigles accordlfl(ig to 211\;1 engilricla(ljl
version of (23). This yields, after each iteration, particles
(1)), with empirical distribution zz¥ = & SN O -

This approach relies, crucially, on being able to compute or
approximate (Vy, F (11" ))¢e(r), the Wasserstein gradients
of F evaluated at ()" ), [7. Fortunately, this is also central
to existing particle-based sampling algorithms, including
SVGD (Liu & Wang, 2016), KSDD (Korba et al., 2020),
and LAWGD (Chewi et al., 2020). We can thus take inspira-
tion from these methods to compute or to approximate the
required terms. In fact, for different choices of F, and differ-
ent approximations of Vyy, F(ul¥), we obtain learning-rate
free versions of SVGD (Alf. 2), LAWGD (App. C.1), and
KSDD (App. C.2). We refer to these algorithms as Coin
SVGD, Coin LAWGD, and Coin KSDD, respectively.

Coin Stein Variational Gradient Descent. We now pro-
vide further details on Coin SVGD. Let F(u) = KL(u|r),
with Vi, F(p) = VIn 2. Let k: R? x R — R denote
a positive semi-definite kernel, and H;, the associated re-
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Algorithm 2 Coin Stein Variational Gradient Descent (Coin SVGD)

Input: initial measure 1o € P2(Ry), initial particles (z3)Y, X 1o, initial wealth of particles (wi)N., € Ry, kernel k,

gradient upper bound L.
fort =1to 7T do
fori =1to N do

Compute, with P, ,,Vyy, F(ul')(-) defined as in (26),

D Sy Puy,kvwzf(uiv)(zi)< )
- 0

4
Ty = Ty It

N
Define pY = + >, Ogi-

T
Output: Y or =3, ul.

t—1
1 ) ) )
b= 3 (P aTwF Gt~ ot ) ).
s=1

(25)

producing kernel Hilbert space (RKHS). Finally, let P,, j, :
L?(u) — L?(p) denote the integral operator defined ac-

cording to Py, f(-) = [qa k() f(x)pu(dz).

Following Liu & Wang (2016), suppose that we replace
Vw,F (1) by P, Vi, F(u) in Alg. 1, its image under the
integral operator P, ;.. This essentially plays the role of
the Wasserstein gradient in H,. Using integration by parts,
and recalling that 7 oc e, it holds that P, ,, Vy, F (1) =
Eznp [k(x,-)VU(z) — V1k(z,-)]. Thus, in particular,

prv,kar/—:(:uiN)(z;)

= & XLkl a) VU ad) = Vik(af o). 26)
Substituting this expression into Alg. 1, we arrive at a
learning-rate free analogue of SVGD. This algorithm is
summarised in Alg. 2. We note this algorithm is not entirely
tuning free, since it requires a choice of bandwidth for the
kernel. In practice, however, this parameter can be tuned
automatically using the median rule (Liu & Wang, 2016).

4. Numerical Results

In this section, we evaluate the numerical performance of
Coin SVGD (Alg. 2). We provide additional results for Coin
LAWGD (Alg. 3) and Coin KSDD (Alg. 4) in App. E.1.2
and E.1.3. In all experiments, we implement the adaptive
version of Coin SVGD (see App. D). For both Coin SVGD
and SVGD, we use the RBF kernel k(z, 2) = exp(—7||z—
2'||2), with bandwidth chosen using the median heuristic
in Liu & Wang (2016). Additional implementation details
and results are provided in App. E. Code to reproduce

our numerical results can be found at https://github.

com/louissharrock/Coin—-SVGD.

4.1. Toy Examples

We first illustrate the performance of Coin SVGD on a
series of toy examples (see App. E.l for full details). In
Fig. 1 (see Sec. 1), we plot the samples generated by Coin

SVGD and SVGD after T' = 1000 iterations, using N = 20
particles. In all examples, Coin SVGD qualitatively appears
to converge to the correct target distribution.

In Fig. 6 - 9 (App. E.1), we provide a more quantitative
assessment of our method, plotting the KSD and the energy
distance (Székely & Rizzo, 2013) between the targets in
Fig. 1, and the approximations obtained by Coin SVGD and
SVGD. Our results indicate that the performance of Coin
SVGD is competitive with the best performance of SVGD
(i.e., the performance of SVGD using the optimal but a pri-
ori unknown learning rate) (Fig. 6) and that Coin SVGD
often converges more rapidly to the target distribution (Fig.
7). They also confirm, as expected, that Coin SVGD gener-
ates increasingly accurate posterior approximations as the
number of particles /V increases (Fig. 8 and Fig. 9).

4.2. Bayesian Independent Component Analysis

We next consider a Bayesian independent component anal-
ysis (ICA) model (e.g., Comon, 1994). Suppose we ob-
serve © = (21,...,%,) € RP. The task of ICA is to infer
the ‘unmixing matrix’™ W € RP*P such that x = W 1s,
where s = (s1,...,5,) € RP denote the latent indepen-
dent sources. We will assume each s; has the same density:
s; ~ ps. The log-likelihood of this model is then given by
log p(z|W) = log [W| + >-7_, ps([Wx];). For the prior,
we assume that the entries of W are i.i.d., with law A/ (0, 1).
The posterior is then p(W|x) o« p(x|W)p(W), with
(W
Vw logp(Wia) = (W)~ 200
Following Korba et al. (2021), we choose ps such that
() /ps(-) = tanh(-). We are interested in sampling from
p(Wlz). In our experiments, we generate 1000 samples
of « from the ICA model, for p € {2,4,8,16}. We use
N = 10 particles, so that each algorithm returns 10 esti-
mated unmixing matrices (W;)12,. We then repeat each
experiment 50 times, thus obtaining 500 estimates for each
method. To assess convergence, we compute the Amari

~W. 27)
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Figure 2. Results for the Bayesian ICA model. Amari distances
between the true unmixing matrix W, and the 500 approximate
unmixing matrices output by Coin SVGD and SVGD, for three
different values of the learning rate.

distance (Amari et al., 1995) between the true W and the
estimates generated by each algorithm. This is equal to zero
if and only if the two matrices are the same up to scale and
permutation. We run SVGD for three learning rates: an
‘optimal’ rate, which we determine by running SVGD over
a range of six candidate values y € [1 x 107°,1 x 10°], and
selecting the one which returns the lowest average Amari
distance, a smaller rate, and a larger rate. We also include
the results of a random output, where the estimated matrices
have entries which are generated i.i.d. N'(0,1).

Our results are plotted in Fig. 2. For lower dimensional data,
Coin SVGD performs similarly to SVGD with the optimal
learning rate (see Fig. 2(a)). In fact, in this case, using a
smaller or larger learning rate does not have a significant
effect on the performance of SVGD. On the other hand,
for higher dimensions, the gap between the two algorithms
increases, as does the importance of choosing a good learn-
ing rate for SVGD. In particular, for p € {4, 8,16}, Coin
SVGD increasingly outperforms SVGD, for any choice of
the learning rate. These results perfectly illustrate the robust-
ness of Coin SVGD: our algorithm performs consistently
well across these experiments, even as the dimension varies.

4.3. Bayesian Logistic Regression

We next consider the Bayesian logistic regression model
for binary classification, as described in Gershman et al.
(2012). Let D = (z;,y;), be a dataset with feature
vectors &; € RP, and binary labels y; € {—1,1}. We
assume that p(y; = 1|z;,w) = (1 + exp(—wTx;))71,
for some w € RP. We place a Gaussian prior p(w|a) =
N(w|0, @~ 1) on the regression weights w, and a Gamma
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Figure 3. Results for the Bayesian logistic regression model. (a)-
(b). Test accuracy and negative log-likelihood for Coin SVGD and
SVGD, as a function of the learning rate. (c)-(d). Test accuracy and
negative log-likelihood for Coin SVGD and SVGD (three learning
rates) as a function of the number of iterations.

prior p(a)) = Gamma(«|1,0.01) on @ € R;. We would
like to sample from p(@|D), where the parameter of inter-
estis @ = [w,loga]’ € RPTL. We test our algorithm
using the Covertype dataset, which consists of 581,012 data
points and 54 features. We randomly partition the data into
a training dataset (70%), validation dataset (10%), and test-
ing dataset (20%). We run each algorithm with N = 50
particles for 7' = 5000 iterations, and compute stochastic
gradients using mini-batches of size 100. The results are
averaged over 20 random train-test splits.

In Fig. 3(a) - 3(b), we plot the test accuracy and the negative
log-likelihood for Coin SVGD, and for SVGD as a function
of the step size. Meanwhile, in Fig. 3(c) - 3(d), we plot
the test accuracy and the negative log-likelihood against the
number of iterations. Once again, we consider three learning
rates for SVGD: the optimal learning rate as determined by
the results in Fig. 3(a), a smaller learning rate, and a larger
learning rate. Similar to before, the performance of Coin
SVGD is similar to the best performance of SVGD. On the
other hand, when the learning rate is too small or too large,
SVGD either converges slowly (green lines, Fig. 3(c) - 3(d))
or is unstable (red lines, Fig. 3(c) - 3(d)).

4.4. Bayesian Neural Network

We next consider a Bayesian neural network model. Our
settings are identical to those given in Liu & Wang (2016);
see also Hernandez-Lobato & Adams (2015). In particular,
we use a two-layer neural network with 50 hidden units
with RELU(z) = max(0, x) as the activation function. We
assume the output is normal, and place a Gamma(1,0.1)



Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates

225
20.0
10 17.5
&
2 15.0
S125
3
#10.0
7.5
== 5.0

12

—— SVGD
Coin SVGD

Test RMSE
o ©

IN

—— SVGD
Coin SVGD

/

10™° 1077 107 1073 107!
Learning Rate

107° 1077 107 1073 107!
Learning Rate

est RMSE

13
1.2
11 \

0.8

T
SVGD
Coin SVGD
SGLD

1.4

:
—— sVGD

13 Coin SVGD

12 —— SGLD

. \\

Test RMSE

1
1.0

0.9

"71077107°107°107*10-31072 1071 10°

Learning Rate

0.8

"71077107°107°107*1031072107* 10°

Learning Rate

(a) Boston.

12

—— SVGD

Coin SVGD

(b) Concrete.

SVGD
Coin SVGD

10

Test RMSE

N B O ®
Test RMSE

0.15 /'
0.10

~

107° 1077 10™° 1073 10-
Learning Rate

(d) Kin8nm.

107 1077 10 1073 107!
Learning Rate

(c) Energy.

Figure 4. Results for the Bayesian neural network. Average test
RMSE for Coin SVGD and SVGD, as a function of the learning
rate, after 7" = 2000 iterations, for several UCI datasets.

prior on the inverse covariance. We then assign an isotropic
Gaussian prior to the neural network weights. We test the
performance of our algorithms on several UCI datasets. The
datasets are partitioned into 90% for training and 10% for
testing, and our results are averaged over 20 random train-
test splits. Finally, we use N = 20 particles, and consider a
snapshot of the performance after 7" = 2000 iterations.

Our results, shown in Fig. 4 (see also Fig. 15 in App. E.4),
indicate that SVGD slightly outperforms Coin SVGD for
well chosen learning rates, but significantly under-performs
Coin SVGD when the learning rate is too small or too large.
For certain datasets, the performance of Coin SVGD is close
to the optimal performance of SVGD, while for others, there
remains a reasonable performance gap. We expect that this
could be reduced using recent advancements in parameter-
free stochastic optimisation (e.g. Chen et al., 2022a;b).

4.5. Bayesian Probabilistic Matrix Factorisation

Finally, we consider a Bayesian probabilistic matrix factori-
sation (PMF) model (Salakhutdinov & Mnih, 2008). This
model is defined as follows. Let R € RY*M be a matrix of
ratings for N users and M movies, where I;; is the rating
user ¢ gave to movie j. Define matrices U and V for users
and movies, respectively, where U; € R? and V; € R? are
d-dimensional latent feature vectors for user ¢ and movie j.
The likelihood for the rating matrix is given by

N M
p(RIU,V,a) = [[[] W(R4[UF V0™, 28)

i=1j=1

where I;; denotes an indicator variable which equals 1 if
users ¢ gave a rating for movie j. The priors for the users and

(a) T' = 1000. (b) T = 2000.
Figure 5. Results for the Bayesian probabilistic matrix factori-

sation model. Test RMSE for Coin SVGD, SVGD, and SGLD, as
a function of the learning rate, after T € {1000, 2000} iterations.

movies are p(U|uy, Ay) = Hﬁvle(UiWU,Aal) and
p(Vipv,Av) = H;Lil N (V,|uu, Agh), with prior distri-
butions on the hyper-parameters, for W = U or V, given by
ww ~ N (puw o, Aw) and Aw ~ T'(ag, bo). The param-
eters of interest are then § = (U, py, Ay, V, puv, Av). In
our experiments, we use hyper-parameters («, (o, ag, bo) =
(3,0,4,5), and set the latent dimension d = 20.

We test our algorithm on the MovieLens dataset (Harper &
Konstan, 2015), which consists of 100,000 ratings, taking
values {1,2,3,4,5}, for 1,682 movies from 943 users. The
data are split into 80% for training and 20% for testing. We
use N = 50 particles; a batch size of 1000 for stochastic
gradients; and average the results over 10 random seeds.
Our results are shown in Fig. 5, where we plot the RMSE
for SVGD and Coin SVGD, as a function of the learning
rate, after 7' = 1000 and T' = 2000 iterations. We also
compare against the stochastic gradient Langevin dynamics
(SGLD) algorithm (Welling & Teh, 2011). In this case, Coin
SVGD outperforms SVGD for almost all learning rates, and
significantly outperforms SGLD.

5. Discussion

In this paper, we introduced a suite of new algorithms for
Bayesian inference which are entirely learning-rate free, in-
spired by coin betting techniques from convex optimisation.
In empirical experiments, our coin sampling algorithms -
most notably Coin SVGD - demonstrated comparable per-
formance to their learning-rate dependent counterparts, with
no need for any hyperparameter tuning.

We highlight several opportunities for future work. In terms
of theory, the main open challenge is to establish the con-
vergence of our algorithms under more easily verifiable
assumptions. In this paper, we were able to obtain a rather
technical condition which was sufficient for convergence.
However, it remains unclear how to verify this condition
in practice, even for relatively simple target distributions.
In terms of methodology, a natural extension of this work
is to apply a similar treatment to the many recent variants
of SVGD (e.g. Detommaso et al., 2018; Wang et al., 2019;
Chen & Ghattas, 2020; Gong et al., 2021).
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A. Background
A.1. Additional Properties of The Wasserstein Space

One important property of the Wasserstein space (P2 (R?), W5) is that, under appropriate regularity conditions, there exists
a unique optimal coupling ~, € T'(y,v) which minimises the transport cost 54, ga || — y||[Pv«(dz, dy). This optimal
coupling is of the form

7= (id x 8) 4, (29)

where id : R? — R? is the identity map, and t,, is known as the optimal transport map (Brenier, 1991; Gigli, 2011). It
follows that (t},)4u = v and

W) = [ lla=slPrldo.dy) = [ llo =t (0)

A.2. Geodesic Convexity

Let p,v € Pa(R?). We define a constant speed geodesic between . and v as a curve (A\47"), c(o.1) such that Ao = g,
A1 = v, and Wa (X, Ay) = (1 — t)Wa(p,v) for all ¢, € [0, 1]. If £ is the optimal transport map between / and v, then a
constant speed geodesic is given by (e.g., Ambrosio et al., 2008, Sec. 7.2)

A= ((1 —n)id—i—ntz)#u. (31)

Let F : Po(R?) — (—00,oc]. The functional F is said to be lower semi-continuous if, for all M € R, {F < M}isa
closed subset of P5(R?). For m > 0, we say that F is m-geodesically convex if, for any u, v € Py(R?), there exists a
constant speed geodesic (A; "), c(0,1] between  and v such that, for all ) € [0, 1],

m
— 35"

FORT) = M =n)F) +0Fv) = 5

(1 =W (n,v). (32)
In the case that this inequality holds for m = 0, we will simply say that F is geodesically convex.

A.3. Subdifferential Calculus in the Wasserstein Space

Let u € P2(R%), and let &€ € L?(u). Let F be a proper and lower semi-continuous functional on P2(R?%). We say that
¢ € L?(p) belongs to the Fréchet subdifferential of F at y, and write ¢ € OF (u) if, for any v € Py (R?),

L F0) = F) — fu€@), (o) — hu(de)
s Wl 1)

> 0. (33)

Suppose, in addition, that F is m-geodesically convex. Then £ € L?(u) belongs to the Fréchet subdifferential O.F (1) if and
only if, for all v € Py(R?),

fM—HMz/

(€ 8@) = ahu(da) + SR (). (34)

For certain functionals F, and under mild regularity conditions, (see Lemma 10.4.13 in Ambrosio et al., 2008), one has that
OF (1) = {Vw,F(u)}, where Vy, F(u) € L*(p) is given by

OF (k)
op

Vw,F(p) =V (x) for p-ae. x € RY, (35)

and agii”) : R? — R denotes the first variation of F at L, that is, the unique function such that

gll)%é (Flu+el)— F(p) = /Rd agff)(ar)C(dx), (36)

where ¢ = v — , and v € Po(R?). We will refer to Vyy, F(11) as the Wasserstein gradient of F at .
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B. Theoretical Results
B.1. Lemma 2.1

Proof of Lemma 2.1. This result is well known; see, e.g., Lemma 1 in Orabona & Pal (2016); Theorem 9.6 in Orabona
(2022); Sec. 4 in Orabona & Tommasi (2017); Part 2 in Orabona & Cutkosky (2020). In particular, we have

T T
f (; ;xt> —f@) < % 2 <f(90t) - f(x*)) (Jensen’s inequality)
< % (Z crar” — Z Ctxt) (convexity)
t=1 t=1
1 [< 4
<z ((Z ct> o —h (Z ct> + a) (definition of A(-))
t=1 t=1
< % (max [vz* — h (v)] + 5) (maximum over v = "1, ¢;)
h*((E*) +e

=— (definition of h*(-))

O

B.2. Proposition 3.3

In this section, we outline how to prove Proposition 3.3. Our proof of this result will rely on a rather strong sufficient
condition, which we provide below (Assumption B.1). Before we state this assumption, we will first require some additional
notation.

First, throughout this section, we will use (4¢)<[7] to denote the sequence of betting measures defined by Alg. 1, and
(¢t )te[r) to denote the transport maps from fig to (41t );e(r) defined by Alg. 1. In addition, we will write (¢, );¢(r) for the
optimal transport maps from (4u)ie(r) + m, and (t4*),(7) for the optimal transport maps from 7 — ( Mt)te[T] Finally,
we let (t4",);c[r) denote the transport maps from 7 to (1¢)¢e[r] defined according to 47, := ¢, o t49, and (¢} N0t )te[T) the
transport maps from /i to 7 defined according to £™ 1ot = Uy, © ¢t With this notation at hand, we are now ready to introduce
the sufficient condition required for our convergence result.

Assumption B.1. Define the functions v : R? — R% and ¥ : R? — R? according to

Z Vi, F(e) (#° () Z Vi, F () (B, (). (37)
t=1
Then there exists a constant X > 0 such that, for all z € R?,
1 -
sz (D@ = 116(@)12] < I K. (38)

We can now proceed to the proof Proposition 3.3. For convenience, we first recall the original statement of this result.

Proposition 3.3. Let Assumptions 3.1 - 3.2 and Assumption B.1 hold. Then

272 2
( Z“t> — ) < % {wo +/ [lz|| | T 1n (l + w>ﬂ(dx) (39)
Rd w

0

9672 ||z||?
+/ 2| | T1n <1+2|x” >u0(dx)}, (40)
Rd Wy

where K > 0 is the constant defined in Assumption B.1.
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Proof of Proposition 3.3. Our proof begins in much the same fashion as the proof of Lemma 2.1. On this occasion, we
consider

T T
F<;gﬂt>_f” <711tz_;f(ut)—f(ﬂ) @
, -
< 32 [ TP, — )
T
< % ; UR { — Vw, Fue) (t (2)), 2)m(da) — /R { = Vi, Fle) (pe (), %(z»uo(dx)}
(43)
L T
= T{ <Z Vi, F ) (84 (), @ /Rd; — Vw, F (1) (9t (2)), @) po(da)

MH\

(= V) 0)eraalaa) + [ |3 (= T Flu) (o))l
t=1

!
T

t=1
(44)
= |:/Rd <Z Vi, F () (2 (2 Z Vi, F () (#,(x)), 10 () ) (dz)
- w/Rd Z < - szj—(/‘t)(SOt(x))» @t(x) - $>M0(d$):| R (45)

where in (41) we have used Jensen’s inequality, in (42) we have used the definition of geodesic convexity (see App. A), in
(43) we have substituted z — t#*(x) and = — ¢¢(z) in the first and second integrals, respectively, used the fact that, by
definition, ()47 = p; and (¢;)4pi0 = it (see Alg. 1), and introduced the notation F = 1 F; in (44) we have added and
subtracted the same integral; and in (45) we have substituted 2 — 9 (z), used the fact that ", (x) = ¢ (t4°(x)), and the
fact that (¢/°)um = o in the second integral; and combined the third and fourth integrals.

By construction, the betting strategy in Alg. 1 guarantees that, for any 2 € R, and any arbitrary sequence c; (), ..., cr(z) €
R4, such that ||c;()|| < 1, there exists an even, logarithmically convex function h : R — R such that the wealth is lower
bounded as (Orabona & Pal, 2016, Proof of Theorem 3, App. C)

z) > . (46)

+ Z<Ct($)a<ﬁt($) —xz)>h (

In particular, the betting strategy in Alg. 1 guarantees that this inequality holds with (Orabona & Pal, 2016, App. F.1, Proof
of Corollary 5)

T

>

h () = wo 2TT( )F(T7+11 +4). (TR - ) @n
r2(DI(T + 1)
Due to Lemma 16 in Orabona & Pal (2016), we also have that
. wo u2
h(u) > i(u) = le/Te p (QT) (48)

where K| = e\/7 is a universal constant. We will apply the inequality in (46) for the sequence ¢ () = — Vi, F (1) (01 ().
In particular, substituting this sequence into (46), and using also the inequality in (48), we have that

w0+2< Vi, F () (e ))"/’t<x)*m> (Z Vi e H) v

t=1
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Suppose now that we define the function I : RY — (—o0, 0o] according to I(u) = i(||u||). Thus, in particular,

2
I(u) = KZU\OE exp (H;zt ) . (50)

By using this definition in (49), and then substituting (49) into (41) - (45), we then have

T
() o=t

ET: /R =V F ) (e @), 2) = (=T F () Ey (@), 4 () ) ()

T
_/Rd I <Z _VWQﬁ(Nt)(<Pt(.’E))> NJO(de') + wy

t=1

T
/ <Z sz /u‘t tﬂt > <Z sz :ut t“ft(ac)),tﬁo(x)>7r(dx)

t=1

61y

L
T

T

[ <Z Vwaﬁ(ﬂt)(fﬁft(x))> r(da) + wo

where, in (52), we have substituted = — #%°(z) in the second integral, used the fact that ¢, (x) = ¢ (4 (x)), and finally
the fact that (t#°).4m = 110. Suppose we also now define

) (52)

T T
— a Kt i f d ( (1‘ dT)
r) = Z —Vw, F(pe) (5 (x) 2:: Jtz@) A= f:d I (u(z))) m(dz)

t=1

(53)

Using this notation, and re-ordering terms, we can now rewrite the previous inequality as

F (} f)u) < e [ ) + [ e, @) - [ )] oo
< % :wo +/Rd (u(z), x) — %I(ﬂ(z))ﬂ(dx) +/Rd (a(x), —tho (z)) — ;I(ﬁ(x)ﬁr(dz)] (55)
=7+ [ 4 (). 5 - gt ) wtas)

+ [ (o) o) - o)) atao)| (56)
Suppose that we now fix € R%, and write 0 = u(x), § = @i(x), F = 11, 2* = £, and 21 = —t# (). Using this notation,

for each = € R%, we can now rewrite the first and second integrands in (56) as

xT

(@), 5) = 31ula)) i= 0,0%) - FO),
(i), ~49 () — 3 T((w) = (m,5") — F(n).

Taking the supremum over § € R? and n € R, respectively, and using the definition of the convex conjugate, we can easily
upper bound these expressions by

(0,2%) — F(0) < sup ((0,2") — F(0)) < F*(z"), (57)
(n,x") — F(n) < sup ((n, ") — F(n)) < F*(al), (58)

where, as elsewhere, F'* denotes the Fenchel conjugate of F'. Returning to our previous notation, and using the fact that
2 € R% was chosen arbitrarily, we thus have that

(o, §) - o) < Gor (5) =57 (5. (59)
(i), 140 (2)) — S T((w) < (51)° (~t40(x)) = 31" (~208(z) (60)
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for all z € RY, where in both lines we have used the fact that (af)*(z*) = af* (%) with @ = 3. Substituting (59) and (60)
into (56), it now follows straightforwardly that

1 <& LT ) 1
F (TZ;L> - Fw) < £+ [ Jar < 2 ) wda) + [ 51 (2tﬁ°(:c))7r(dx)] (61)
LT 1 2t™ 1 1
= T _wo —|—/Rd §A[* (W) po(dx) —|—/Rd 51* (—21‘) ,uo(dx)} (62)
Ll 1 2| 1
L w0+/Rd§Az ( 175, - ||> dz) + /Rd2i*(2||x|)uo(dx)], 63)

where in the second line we have substituted = — ¢, () into both integrals, and used the fact that (], )40 = 7; and, in
the final line, we have used the fact that the Fenchel conjugate of (|| - ||) is *(|| - ||) since ¢* is an even function (Bauschke
& Combettes, 2011, Example 13.7). Now, by Lemma 18 in Orabona & Pal (2016), we have the upper bound

(64)

24T?y? ) wo

7(u) <|uly [Tln |1+ — .

Substituting this into our previous bound (63), we finally arrive at

T
! L A 2|5, (@)l 2472|217 (x)|?
T - ST l—— Ao T gy (1 e I
F <T ;m) F(m) < T [wo ( 2K1\/T) —&—/Rd 5 v n( + ye )Mo(dx)
1 2472||2x||2
+ /Rd 52”%” Tln (1 + ng fo(dz) (65)
L 9672| |
<= Thn(1+—F5"—
< T[wOJ’/Rd ||| n( T m(dx)
96772||x||2
+/ [[f]4/T In <1+ y”)uo(dw)} (66)
Rd wg

where, in the second line, we have substituted = — ¢£°(x) in the first integral, and used the fact that (£40)xm = po. It
remains to bound the constant A from below, or, equivalently, the constant A~ from above. The required bound will follow
directly from our sufficient condition (Assumption B.1). Indeed, from Assumption B.1, we have that

1
2L2T

oG = o)) < mk — e |1 < e [ITEE]. &

Using this bound, and the definition of A in (53), it then follows straightforwardly that

o [M e e[Sl [ ke Sarleen

Lo [t wan [ ew[GE xan [ oo |50

Finally, substituting the bound in (68) into (66), we arrive at

< Eunt [yl o (1 ST
(Tzut> )< |wnt [ 1l 71 (1 o ><d>

96772 ||z||?
+/ [lz]| x| T In (1 + 2|||>,u0(dx)} (69)
Rd ’U)O
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B.3. An Alternative to Proposition 3.3

In this section, we outline how to obtain an alternative bound to the one given in Proposition 3.3, under a slightly different
sufficient condition.

Assumption B.1°. There exists a transport map T™ : RY — R® from pg to w, which does not depend on t € [T, such that,
for some K > 0,

T
DMt 0wt =T || oy < KVT I [poly(T)]. (70)
t=1

Remark. Itis, at present, unclear how to establish the existence of a transport map 77 which satisfies (70), aside from in
one very simple case (see Sec. B.4). In the general case, one possible candidate for 77 is the optimal transport map t7;
from p to 7, so that T7 (z) = ¢}, (). In this case, (70) reads

Ho
T
> T, 0 00 — 171122 (ue) < KVT In [poly(T)] (71)

which can be interpreted as a bound on the sum of the distances between the optimal transport map ¢, from i to 7, and
the maps (t];, © ) [) Which first transport 1o to (41 )se () according to the transport maps (¢ )c[7) defined by Alg. 1,
and then map (4t );e[r) to 7 via the optimal transport maps (¢7;, ) e ([7)-

Another possible candidate for T)7 is the average, over all iterations, of the composition of the optimal trans-

port maps (t; %te[T] from (1¢)ier) to m, and the maps (¢¢)ier) from po to (p¢)ierr) defined by Alg. 1, viz
7 (z) = th 1t (@i(x)). In this case, (70) becomes

Ho

letutwt—th o @sllz2(ue) < KVT In [poly(T)] . (72)
s=1

Proposition 3.3°. Let Assumptions 3.1 - 3.2 and Assumption B.1’ hold. Then
1 Z
F <T ; ut) = F(m) (73)

2||T7 (2) — 2| |?
<L{w0+/ || T o ( z) —z|||TIn <1+24T HTM;}E ) ! )uo(dz)+K\/f1n[poly(T)]

0

where K > 0 and T

Ho

: R — R? are defined in Assumption B.1’.

Proof of Proposition 3.3’. Once again, our proof begins in a similar fashion to the proof of Lemma 2.1. In this case, we
now have

F <;Zut> — F(m) < %Z]:(/Jt) — F(m) (74)

~
I
—

[M]=
;g\

(=VwaF () (), t], (2) — z)pe(dz) (75)

~
Il
-

(—Vw, F (1) (e (), 1, (e (@) — i () po(da) (76)

~
Il
-

I
NS NS e

(1~

7

/ <—VW2.7}(Nt)(<Pt(w)),tﬂt(gat(x)) - 3;> fio(d)
Rd

~
Il
_

M-

T

- [ (T o -y wan].
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where, in (74) we have used Jensen’s inequality, in (75) we have used the definition of geodesic convexity (see App. A), in
(76) we have substituted « — ¢, (z), and used the fact that, by definition, (¢;)xft0 = [, and in (77) we have added and
subtracted the same integral. Following the same argument as in (46) - (51), it then follows that

RS L[« )
F (T ;Ut) — F(m) < T ;/Rd <—VW2f(Mt)(<Pt($)),tzt(gpt(x)) — 1;> po(dx)

) (78)

[ (Z ~ Ve (1) <x>>> po(da) + o
t=1

where I : R? — (—o00, oc] is the function defined in the proof of Proposition 3.3, c.f. (50). To proceed, we will now write

th, (o)) = T5 (2) + 17, (pe(x)) — T (). (79)
S ()

Based on this decomposition, we can rewrite the first term in (78) as

L« )
T ;/Rd <_VW2.7:(Nt)(§0t($)),tzt(got(x)) - x> 1o(de)

T

L [ / d <gvmﬁ<ut><%<x)>wﬁo<w> - w>uo<dfc> >

t—1 /R?

(~VuF ) @) ) ofate)| 60

Ry (x)

By substituting (80), the previous inequality (78) can now be written as

T

F (} i m) ~Fm <7 [ L < : e E () (1)), T () — $>/~Lo(d$) vy [ R@mota)

-/ I(i Vius ) ) ) o)+ | 81)

T
— % [wo + /Rd [(z(x)7T:0 (x) —z) — I(z(x))] po(dax) + ;/Rd Rt(x)uo(dx)], (82)

where in the final line we have introduced the notation z(z) = Zthl — Vi, Flpe) (@i (). Suppose we now fix z € R?,
and write ¢ = 2(v) and z* = T} (z) — x. Using this notation, we can now rewrite the first integrand in the previous
expression as

(2(2), T7, () — @) = I(2(2)) := (0,27) — 1(0), (83)
for each fixed z € RY. Taking the supremum over # € R? and using the definition of the convex conjugate, we can easily
upper bound this expression by

(0.4) —1(0) < sup (0.2~ 1(0)) < I"(2"). (84)

Returning to our previous notation, and using the fact 2 € R% was chosen arbitrarily, we thus have

(2(2), T}, (2) — ) = I(2(x)) < (T}, (x) — ) (85)

? 7 po

for all z € R?. Substituting this upper bound into (81) - (82), it then follows straightforwardly that

T T
a G ;m> —F(m) < % wo + /R (T (@) = @)po(de) + ; /R . RAx)m(dx)] (86)
T
-7 “’”/Rd i*(||77, (2) = 2] mo(da) +Z/Rd Rt(x)uo(d@] , 87)
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where, in the second line, we have used the fact that the Fenchel conjugate of (|| - ||) is *(]| - ||) since ¢* is an even function
(Bauschke & Combettes, 2011, Example 13.7). Similar to before, Lemma 18 of Orabona & Pal (2016) allows to bound this
Fenchel conjugate as

24722

. wWo
7 (u) < |luly [Tln 1+ — . 88
@ s yfrin (14 55) - 2% &
Substituting this into the previous bound in (87), we then have that
T 2
1 L 1 2472 ||T7 (x) — ||
= — <= 1-— " — Tln|1 Ho d
f(T;ut> f(w)_T[wo< Kl\/T)+/RdH ILO(I) asH n( + w2 o (dx)
T
£ [ Roatan)
t=17R?
L 2472 ||T7 (z) — x|
< Elwot [ 1z —afl i (14 7@ =21, an) (89)
T Rd Ko 'U}O

+ i /Rd Rt(x),uo(dm)] .

It remains to deal with the final term. Unsurprisingly, the bound on this term will follow directly from our alternative
sufficient condition (Assumption B.1"). In particular, recalling the definition of R, from (80), we have

T T )
Z/Rd Ry(x)po(dz) = Z/Rd <—Vw2f(ut)(<pt(x)),5t(m)> pio(da) ©0)
~ [ 2 2
<[ 19w @nit@)] [ [ s @l o
[ :
<[ [ Isi@po(an)] o
t; ] %
-2 /R 18 (e(2)) = T, (x>||2uo(dl’)} < KvT In [poly(T)], (93)

~

1

where in (91) we have used the Cauchy-Schwarz inequality, in (92) we have used the assumed bound on
[|Vw,F () (@ (x))]| (Assumption 3.2), and in (93) we have substituted the definition of S; from (79), and used As-
sumption B.1’. Finally, substituting (93) into (89), we arrive at

1 T
d (Tzﬂt> - F(n) 4
t=1
2472 ||T7 (z) — z||?
< ;[w0+/ || T (x) — || | Tln <1+ ! “ng) a >/‘o(d$)+Kﬁln[pOb’(T)] ‘
Rd “o
0

B.4. A Simple Gaussian Case

In this section, we establish a stronger version of Proposition 3.3’ in a very simple Gaussian setting. In particular, we
consider the case in which the initial distribution is Gaussian, the target distribution is Gaussian, and these two distributions
have the same covariance. In this case, not only can we tighten the bound in Proposition 3.3’, but we no longer require any
additional technical assumptions (Assumption B.1 or B.1").
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Proposition 3.4. Let F (1) = KL(u|m). Let g ~ N (mo,X) and m ~ N (my,X). Suppose that Assumption 3.2 holds.

Then
2UT? ||t (z) — z||?
( Zﬂt)‘ <ﬂwo+/ 165, (@) - || Tln<1+ 1) =] )uo(dm)} (95)
R4 Wy

Proof of Proposition 3.4. We will establish this result as a special case of Proposition 3.3’. We must therefore begin by
verifying the additional assumptions required by Proposition 3.3’, namely, Assumption 3.1 and Assumption B.1’. We begin
with Assumption 3.1. Given ™ ~ A (m.,0?), it follows from standard results that the functional F(p) = KL(u|) is
proper, lower semi-continuous, and geodesically convex (e.g., Ambrosio et al., 2008, Sec. 9.4). Thus, this assumption is
indeed satisfied.

We now turn our attention to Assumption B.1°. We will show that Assumption B.1" is satisfied with 77 = ¢} , and K = 0.
To prove this, it is clearly sufficient to show that for all ¢ € [T,

th (e (@) = 1, (2), (96)

since in this case the LHS of the bound in Assumption B.1" is identically zero. Our proof of (96) will consist of two steps.
We will first establish that ¢, (x) = t}it (x), i.e., the transport map defined by Alg. 1 coincides with the optimal transport
map. We will then show that t7; (¢hi¢ (z)) = t]; (z), i.e., the composition of the optimal transport maps /¢ and ¢, coincides
with the optimal transport map ¢, . By substituting the first of these identities into the second, we obtain the required result
in (96).

We begin by showing that ¢;(x) = ¢} (x). To prove this, we will first establish that p; ~ N(my, %) and ¢i(z) =
my + (z — mg). We proceed by induction. In the base case (¢ = 1), it follows from the update equation (23) in Alg. 1
that 1 () = id(x) = x. We thus have, by definition, that ;13 = (1) = po. Thus, in particular, 11 ~ N (mq, ) and
p1(x) = my + (x — myg), in this case with m; = mg. This proves the base case.

We now proceed to the inductive step. Assume that, for s = 1,...,¢ — 1, it is indeed the case that us ~ N (myg, ) and
ws(x) = ms + (x — mg). We then have

o) = 5 — Y)Y, Lt(m)(%(a:)) (wo - i%v%;ms)(%(@), os(z) — ;@)) (97)
s=1

t—1 -1 t—1

_, X (ms —mg 1

IR Dy L(t ) (wo—Z<LE 1(ms_mﬂ),ms_mo>> =m+(x—mg),  (98)
s=1

=m¢—myo

where in the second line we have used the fact that Vi, F (1) = Vw,KL(pu|7) = Vlog £ = Vlog 1 — Vlog 7, which
implies in particular that

Vi, Fus)(ps(x)) = Vdog ps(zs) — Viog m(ws) (99)
= =37 (ps(2) = ms) + 7 (ps(2) — ma) = B (mys — mr). (100)
Thus, we do indeed have p;(z) = m; + (z — myp). Moreover, using standard properties regarding affine transformations

of normal random variables, it follows that 1, = ()0 N (m¢, ). This completes the inductive step. We have thus
shown that 1y ~ N (my, ¥) and ¢4 (x) = my + (x — myg) for all t € N. The required identity, namely 4 (x) = ¢ (), now
follows using the fact that the optimal transport map between g ~ N (mg, ) and py ~ N (my, X2) is precisely given by
tht (x) = my + (z — mo) (e.g., Chen et al., 2019).

It remains to show that ¢, (¢4 (x)) = 7, (). Based on the previous result, and standard results on the optimal transport
map between Gaussians (e g., Chen et al 2019), we have t], (z) = mg + (z —my) and th! (z) = m; + (x — mg). It
follows straightforwardly that

th, (tg () = mx + ([my + (2 = mo)] = my) = mx + (x —mo) = 17, (). (101)
We have thus proved both of the identities required to establish (96). This verifies Assumption B.1” with 77 = ¢, , and
K = 0. Finally, substituting 7;7 = ¢, and K = 0 into the bound in Proposition 3.3’, we arrive at the required bound in
Proposition 3.4. O
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C. Other Coin ParVI Algorithms

In Sec. 3.4, we presented Coin SVGD, an algorithm which can be viewed as the coin sampling analogue of SVGD (Liu &
Wang, 2016). In this section, we provide details of two other algorithms - Coin LAWGD and Coin KSDD - which represent
coin sampling analogues of two other ParVI algorithms.

C.1. Coin Laplacian Adjusted Wasserstein Gradient Descent

Let F(u) = KL(p|m), with Vi, F(p) = Vin %. Following Chewi et al. (2020), suppose that we replace Vyy, F (1)
in Alg. 1 by VP, . j—ﬁ, the gradient of the image of (di—ﬁ under the integral operator P, ., where k. is the kernel such
that Py, = —L;'. Here, L, denotes the infinitesimal generator of the overdamped Langevin diffusion with stationary
distribution . In this case, one can show that V Py ;. g—ﬁ = Eyzopu[Vike (-, )] (Chewi et al., 2020, Sec. 4), and thus

duN

VPrke =g

. 1 & o
(z) = NZvlkL(x;@,xg). (102)

=1

By using these gradients in Alg. 1, we obtain a learning-rate free analogue of the LAWGD algorithm (Chewi et al., 2020,
Alg. 1). This algorithm is summarised in Alg. 3.

Algorithm 3 Coin Laplacian Adjusted Wasserstein Gradient Descent (Coin LAWGD)

Input: initial measure p19 € P2(Ry), initial particles (x§)Y, BN po, initial wealth of particles (w})Y, € Ry, gradient
upper bound L.
fort =1to T do

for: =1to N do

Compute _ o B
D D DA ST 7 (ot I Sy o
Ty =T — wy — Z N Zvlkg(xs,xs),xs -z ) ). (103)
= j=1

LNt

N
Define ¥ = + 3., Ogi-
T
Output: ¥ or =3, .

C.2. Coin Kernel Stein Discrepancy Descent

Let F(u) = %KSDQ(MM), where KSD(u|m) is the kernel Stein discrepancy, defined according to (Liu et al., 2016;

Chwialkowski et al., 2016; Gorham & Mackey, 2017)

KSD(ulr) = ¢ / d / sy de)n(dy), (104)

and where & is the Stein kernel, defined in terms of the score s = V log 7, and a positive semi-definite kernel k, as
kr(z,y) = 7 (x)s(y)k(z,y) + 87 (2)Vak(z,y) + VikT (2,9)s(y) + V.1 Vak(z,y). (105)
In this case, given a discrete measure pV = % Zjvzl 0,4, the loss function and its gradient are given by

N N
]:(/J'N) = A2 Z kr(2',2?) Vfrl]:(ﬂiv) = N2 ZVQkTF(x%VT;)' (106)

3,J=1 J=1

By substituting these gradients into Alg. 1, we obtain a learning-rate free analogue of KSDD (Korba et al., 2021).% This
algorithm is summarised in Alg. 4.

3In fact, Korba et al. (2021) also propose a learning-rate free version of KSDD based on the quasi-Newton L-BFGS algorithm (Liu &
Nocedal, 1989). Our method provides an alternative approach based on the ‘coin-betting’ paradigm.
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Algorithm 4 Coin Kernel Stein Discrepancy Descent (Coin KSDD)

Input: initial measure p19 € P2(Rg), initial particles (zf)N N Mo, initial wealth of particles (w) ; € R, kernel k,
gradient upper bound L.
fort =1to T do

fori = 1to N do

Compute _ ‘ 1N g k(29,2 ool 1 XN o _ .
%%EMZﬁlz(ys%%ZK ZVMMM@%%»- (107)
Jj=1

LNZ?t LN? <

s=1
N 1 z,N
Define py" = § >2i21 Oai-
T
Output: ) or 73, puf.

D. Coin Sampling with Adaptive Gradient Bounds
D.1. Adaptive Coin Wasserstein Gradient Descent

In principle, Alg. 1 (and Alg. 2) depend on knowledge of a constant L > 0 such that, for all ¢t € [T, ||V, F () (z¢)]| < L.
In practice, however, such a constant may not be not known in advance. In this case, following Orabona & Tommasi (2017),
we can use a modified version of our algorithm in which the gradient bounds are adaptively estimated. This algorithm is
summarised in Alg. 5.

Algorithm 5 Adaptive Coin Wasserstein Gradient Descent

Input: initial measure yo € Po(R?), initial parameter zo ~ 19, dissimilarity functional F : P(R?) — (—o00, co].
Initialise: for j = 1,...,d, Lo ; = 0,Go; =0, Ro,; = 0.
fort =1to 7T do
Compute the negative Wasserstein gradient: ¢;—1 = —Vy, F(pe—1)(2t—1)-
for j =1toddo
Update the maximum observed scale L, ; = max(L;_1 j, |ci—1,5])-
Update the sum of the absolute value of the gradients: G ; = Gy—1,; + \ct_L j
Update the reward: R; ; = max(Ri—1,; + ¢;—1,j(2¢—1,; — To,5),0).
Update the parameter

Sl Ry,
- . s=175J (1 4 BIy 108
Tt,j Lo,j Gt,j [t,j ( [t,j ) ( )

Define p1; = ()0, Where o @ g — x4
Output: p7.

D.2. Adaptive Coin Stein Variational Gradient Descent

In the same way, one can also obtain an adaptive version of Coin SVGD (Alg. 2) and, indeed, Coin LAWGD (Alg. 3) and
Coin KSDD (Alg. 4).* The adaptive Coin SVGD algorithm is summarised in Alg. 6. Following Orabona & Tommasi (2017),
we make one further alteration when we use the adaptive version of Coin SVGD to perform inference in Bayesian neural
networks (see Sec. 4.4). In particular, we now modify the denominator of the betting fraction in Alg. 6 such that it is at least

ozL? o for some positive constant « > 0, which as a default we set equal to 100. Thus, the update in (110) now becomes
, . Sl Ri .
[ U 5= 5 (1 DY, 109
mt’j I‘O’j maX(Gé’j +Lé’J7OéL,éJ)( + L;J) ( )

In practice, is is these adaptive algorithms that we use in all of our numerical experiments (Sec. 4), and that we recommend
for use in future work.

“In the interest of brevity, we do not provide the adaptive versions of Coin LAWGD and Coin KSDD in full. However, these are easily
obtained by substituting the relevant gradients into the adaptive version of Coin SVGD.
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Algorithm 6 Adaptive Coin Stein Variational Gradient Descent

Input: initial measure 119 € P (RY); initial particles (z3)Y, "= uq.
Initialise: for:=1,...,N,j=1,....d, Lgyj =0, Gé’j =0, R(’:)’j =0.
fort =1to T do
fori=1to N do ‘ ‘ ‘
Compute the negative gradient ¢;_; = —%; Z;-v:l[k(xifl, i VU (x]_|) — Vik(z]_q,2i_1)].
for j = 1toddo
Update the maximum observed scale: L{ ; = max(L;_; ;, |c;_; ;|). ‘
Update the sum of the absolute value of the gradients: G ; = G}_; ; + |¢;_q 4.
Update the reward Ry ; = max (R}, ; + (¢} j, {1 ; — 2{ ;),0).
Update the parameter
t—1 4 ;
D=1y R

o1 %0 (4 Dty (110)
Gi;+ Li; L; ;

Tiy =0, +
N
Define ) = + >, Ogi-
Output: p.

Computational Complexity. In terms of computational cost and memory requirements, the adaptive variant of Coin SVGD
is similar to SVGD when the latter is paired, as is common, with a method such as Adagrad (Duchi et al., 2011), RMSProp
(Tieleman & Hinton, 2012), or Adam (Kingma & Ba, 2015). The computational cost per iteration is O (N 2) in the number
of particles IV, due to the kernelised gradient. In terms of memory requirements, it is necessary to keep track of the sum of
the previous gradients, the sum of the absolute value of the previous gradients, the maximum observed absolute value of the
previous gradients, and the reward, for each of the particles. Thus, in particular, the memory requirement is O(Nd) in the
number of particles NV and the dimension d. This is identical to, e.g., Adagrad, which must keep track of the sum of the
squares of the previous gradients, for each of the particles (Duchi et al., 2011).

E. Additional Experimental Details and Numerical Results

We implement our methods using Python 3, PyTorch, Theano, and Jax. For our comparisons, we use existing implementations
of SVGD by Liu & Wang (2016), LAWGD by Chewi et al. (2020), and KSDD by Korba et al. (2021). We perform all
experiments using a MacBook Pro 16” (2021) laptop with Apple M1 Pro chip and 16GB of RAM.

E.1. Toy Examples
E.1.1. CoIN SVGD

Experimental Details. In Sec. 1, we compare the performance of SVGD (Liu & Wang, 2016) and Coin SVGD (Alg. 2) on
the following two-dimensional distributions.

Two-Dimensional Gaussian. We first consider an anisotropic bivariate Gaussian distribution, p(x) = N (z|u, 22), where we
setp=(—1,1)Tand X"t = (_3,79%).

Mixture of Two Two-Dimensional Gaussians. For the second example, we consider a mixture of two bivariate Gaussian
distributions, p(z) = a1 N (z;p1,31) + aoN (5 pa, B2), with g = 0.5, 3 = (-2,2)7, and £; = 31; ap = 0.5,
Mo = (2, —Q)T, and 22 = %1

_ (z[=ro)?

5oz ), Where we

Donut Distribution. We next consider an annulus or ‘donut’ distribution, with density p(z) o exp(
set o = 2.5 and 02 = 0.5.

Rosenbrock Distribution. The next example is a variant on the so-called Rosenbrock or ‘banana’ distribution (Pagani et al.,
2022). The target density is given by p(z) o exp[—3 (2’ —p) "7 (2 — p)], where 2} = x1/a, and 2}, = azx +ab(z3+a?).
In our experiments, we seta = —1,b=1,u = (0,1) ", and ¥ = (0?5 0.5 )

Squiggle Distribution. Our penultimate example is a two-dimensional ‘squiggle’ distribution; see, e.g., App. E in Hartmann
et al. (2022). In this case, the target density again takes the form p(z) o exp [—3(z/ — ) 'S (2’ — )], where now
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Figure 6. Additional results for the toy examples in Sec. 4.1. Plots of the kernel Stein discrepancy (KSD) between each of the target
distributions in Fig. 1, and the corresponding approximations generated by Coin SVGD and SVGD. We run SVGD over a grid of 30
logarithmically spaced learning rates v € [1 x 1075,1 x 101]. We run both algorithms for 7" = 1000 iterations, and using N = 20
particles. The results are averaged over 50 random trials.

#} =z and ), = x5 + sin(wz). In our experiments, we set = (1,1) 7, ¥ = (35 %% ), and the frequency w = 2.

Funnel Distribution. Our final example is a two-dimensional ‘funnel’ distribution, with density p(xi,z2)
N (x1; p1, exp(as))N (z2; 2, 03). In our experiments, we set y; = 1, o = 4, and 0o = 3. This example, in ten-
dimensions, was first introduced in Neal (2003) to illustrate the difficulty of sampling from some hierarchical models.

In all cases, we run bogh algorithms using N = 20 particles, and for 7' = 1000 iterations. We initialise the particles
according to (03)Y., "< N(0,0.12). Finally, we use Adagrad (Duchi et al., 2011) to adapt the learning rate for SVGD.

Numerical Results. In Fig. 6 and Fig. 7, we provide a more detailed comparison of SVGD and Coin SVGD. In particular,
in Fig. 6, we plot the the KSD for both algorithms after 7' = 1000 iterations as a function of the learning rate. Meanwhile,
in Fig. 7, we plot the KSD as a function of the iterations, using the optimal learning rate as determined by the results in Fig.
6, and two other learning rates. In both cases, following Gorham & Mackey (2017), we use the inverse multi-quadratic
(IMQ) kernel k(x,2') = (c? + ||z — 2’||3)? to compute the KSD, where ¢ > 0 and 3 € (—1,0). In the interest of a fair
comparison, we also use Adagrad (Duchi et al., 2011) to adapt the learning rate in SVGD.

In these examples, the performance of Coin SVGD is competitive with the best performance of SVGD, using the optimal but
a prior unknown learning rate. Moreover, Coin SVGD clearly outperforms SVGD for sub-optimal choices of the learning
rate, attaining significantly lower values of the KSD. In particular, using a step size which is too small is insufficient to
guarantee convergence within 1000 iterations (Fig. 7, green lines), while using a step size which is too large leads to
non-convergence (Fig. 7, red lines) and, ultimately, numerical instability. It is worth emphasising that it is difficult to
determine a good step size, or to implement a line-search method, since SVGD does not minimise a simple function. On the
other hand, Coin SVGD achieves performance close to, or even better than, the performance of optimally-tuned SVGD,
without any need to tune a step size.

In Fig 8 and 9, we further investigate the performance of our algorithm as a function of the number of particles N. In
particular, we now compute the energy distance (Fig. 8) and the KSD (Fig. 9) for SVGD and Coin SVGD as a function
of N. In terms of tuning the learning rate used by SVGD, we consider two possibilities. The first is that the learning rate
is only tuned once, using a fixed and pre-determined number of particles. This is the case in Fig. 8. More generally, this
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Figure 7. Additional results for the toy examples in Sec. 4.1. Plots of the KSD between each of the target distributions in Fig. 1, and
the corresponding approximations generated by Coin SVGD and SVGD, as a function of the number of iterations. We run SVGD use
three learning rates: the optimal learning rate as determined by Fig. 6 (blue), a smaller learning rate of v = 2 x 10™> (green), and a
larger learning rate of v = 2 x 107" (red). We run both algorithms for 7' = 1000 iterations, and using N = 20 particles. The results are
averaged over 50 random trials.

may be a realistic scenario in settings where one would like to use a large number of particles (e.g., for complex targets),
but it is prohibitively expensive to tune the learning rate using this number (e.g., for high-dimensional targets, or big data
settings). In the second case, the learning rate is re-tuned every time we change the number of particles. In both cases,
we determined the optimal learning rate by running SVGD over a grid of 30 learning rates v € [1 x 1075,1 x 10!], and
selecting the learning rate which achieves the lowest KSD after 1000 iterations (as in Fig. 11).

For both algorithms, the energy distance and the KSD converge towards zero as the number of particles increases, suggesting
that the approximate posterior samples generated provide increasingly accurate approximations of the true posterior (e.g.
Gorham & Mackey, 2017, Theorem 8). Interestingly, our results also suggest that the best choice of learning rate in SVGD
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Figure 8. Additional results for the toy examples in Sec. 4.1. Plots of the energy distance between a subset of the target distributions in
Fig. 1, and the corresponding approximations generated by Coin SVGD and SVGD, as a function of the number of particles. In each case,
we run SVGD using the best learning rate as determined by the results in Fig. 6. We run both algorithms for 7" = 1000 iterations, and
using between N = 10 and N = 250 particles. The results are averaged over 50 random trials.
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Figure 9. Additional results for the toy examples in Sec. 4.1. Plots of the KSD between each of the target distributions in Fig. 1, and the
corresponding approximations generated by Coin SVGD and SVGD, as a function of the number of particles /N. We run both algorithms
for T' = 1000 iterations. For SVGD, we either tune the learning rate once, using a fixed and pre-determined N = 20 particles (blue); or
re-tune the learning rate every time we change the number of particles (green). The results are averaged over 50 random trials.

can be somewhat sensitive to the number of particles. In particular, if one tunes the SVGD learning rate using a small
number of particles (in Fig. 6, we use N = 20), and then runs the full algorithm using a large value of N with the same
learning rate, this can lead to sub-optimal performance (e.g., Fig. 9(b), Fig. 9(d), or Fig. 9(e)). Coin SVGD suffers no such
problems, and provides us with an approach which is robust to the specification of the number of particles.

E.1.2. CoINLAWGD

Experimental Details. We next compare the performance of LAWGD (Chewi et al., 2020) and Coin LAWGD (Alg. 3) on
the following examples.

One-Dimensional Gaussian. We begin by considering a simple one-dimensional Gaussian, with density p(x) = N (z; u, 02),
where 4 = 3 and 02 = 1.5.

Mixture of Three One-Dimensional Gaussians. We also consider a mixture of three one-dimensional Gaussians, with
3

plx) = > N (x|, 0?), where we set oy = % 1 =6,02 =20 = % po = —3,and 03 = 1;and a3 = %, w3 = 2,

and 03 = 1.

We use either NV = 100 particles (Fig. 10(a)) or N = 25 particles (Fig. 10(b)). The initial particles are i.i.d. U(—1, 1), or
iid. U(—2,2). In both cases, we run the algorithms for 7' = 2500 iterations.

To compute the kernel k. required to implement LAWGD and Coin LAWGD, it is necessary to approximate the eigenfunc-
tions and eigenvalues of the operator £ (Chewi et al., 2020, Sec. 5). Following Chewi et al. (2020), we approximate these
quantities using a basic finite difference scheme. For the target in Fig. 10(a), we use a finite difference scheme based on
1000 equally spaced grid points between -8 and 8, and use the first 150 eigenvalues and eigenfunctions. For the target in Fig.
10(b), we use 500 equally spaced grid points between -16 and 16, and again use the first 150 eigenvalues and eigenfunctions.

Numerical Results. In Fig. 10, we plot an illustrative set of samples obtained using Coin LAWGD and LAWGD for these
two examples. Similar to our other coin sampling algorithms, we see that Coin LAWGD converges to the target distribution
for both of our test cases, and enjoys a similar performance to the standard LAWGD algorithm.
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Figure 10. A comparison between LAWGD (Chewi et al., 2020) and its learning-rate free analogue, Coin LAWGD (Alg. 3). We plot
the samples generated by both methods for the two target distributions detailed in App. E.1.2.

E.1.3. CoIN KSDD

Experimental Details We next compare the performance of KSDD (Korba et al., 2021) and Coin KSDD (Alg. 4). We
consider the following examples.

Anistropic Two-Dimensional Gaussian. We first consider a single bivariate Gaussian, p(z) = N (z; u, X), where p =
(=3,3) " and 271 = (555 017)-

Symmetric Mixture of Two Two-Dimensional Gaussians. For our second and third examples, we consider a symmetric
mixture of two, two-dimensional, isotropic Gaussians with different covariances. In particular, p(z) = %N (x5, 031) +
SN (x5 —p,031), where = (6,0) ", 0% = 2,03 = LinFig. 11(b); and pn = (5,5) ", 0§ = 2, 03 = 2 in Fig. 12.

We use N = 20 particles, and run both methods for 7" = 5000 iterations. We initialise the particles according from
N(0,0.5%) in Fig. 11(a), or (0, 22) in Fig. 11(b).

Numerical Results. In Fig. 11, we plot the samples obtained using KSDD and Coin KSDD after 5000 iterations. Similar to
before, the samples generated by our coin sampling method are very similar to those generated by the original algorithm. In
fact, even the dynamics of the two algorithms share many of the same properties. For example, the Coin KSDD particles
seem initially to be guided by the final repulsive term in the update, which determine their global arrangement. They are
then transported towards the mode(s), driven by the remaining score-based terms. This is in contrast to the Coin SVGD
particles, which are first driven by the score term, before being dispersed around the mode by the repulsive term. These
dynamics were first observed in Korba et al. (2021) for the standard SVGD and KSDD algorithms, and also to be present for
their step-size free analogues.

I Coin KSDD

S

I Coin KSDD

(a) Anisotropic Gaussian. (b) Symmetric Mixture of Gaussians.

Figure 11. A comparison between KSDD (Korba et al., 2021) and its learning-rate free analogue, Coin KSDD (Alg. 4). We plots the
samples generated by both methods for the two target distributions detailed in App. E.1.3.
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Figure 12. A comparison between annealing KSDD (Korba et al., 2021) and annealing Coin KSDD (Alg. 4). Samples generated by
both methods using no annealing (8 = 1), after the first step of the annealing method (8 = 0.02), and after the full annealing method
(=002—=p=1).

Unsurprisingly, Coin KSDD also inherits some of the shortcomings of KSDD. Given a symmetric target, and a radial
kernel, it is known that any plane of symmetry is invariant under the KSD gradient flow (Korba et al., 2021, Lemma 11).
Thus, if KSDD is initialised close to a plane of symmetry, it can become stuck there indefinitely. In practice, this also
appears to holds true for Coin KSDD (see Fig. 11). Korba et al. (2021) propose an annealing strategy can be used to
resolve this behaviour; see also Wenliang & Kanagawa (2021). One first runs KSDD to obtain samples from the target
7(x) o exp(—BU(x)), where the inverse temperature 3 ~ 0. One then runs the algorithm a second time, initialised at
these samples, on the true target m(x) o exp(—U(z)). A similar strategy can also be used for Coin KSDD (see Fig. 12).

E.2. Bayesian Independent Component Analysis

Additional Experimental Details. For the results in Fig. 2 (Sec. 4.2) and Fig. 13 (below), we tune the SVGD learning rate by
running SVGD for T = 1000 iterations, using learning rates v € {1x 107>, 1x 1074, 1x1073,1x1072,1x 1071, 1x 10°}.
We then define the optimal learning rate as the one for which SVGD outputs approximate unmixing matrices (W;)2, with
the lowest Amari distance to the true unmixing matrix W, averaged over 10 random trials. The small and large learning
rates are then chosen to be one order of magnitude smaller or greater than the optimal learning rate, respectively.

Additional Numerical Results. In Fig. 13, we provide a further comparison between Coin SVGD and SVGD, plotting the
KSD (Fig. 13(a)) and the clock time (Fig. 13(b)) as a function of the number of particles IV, in the case p = 4. Similar to
elsewhere, the performance of Coin SVGD is similar to the best performance of SVGD (out of the learning rates considered),
and both algorithms provide increasingly accurate approximations of the posterior as the number of particles increases. The
computational cost of both algorithms is essentially identical.
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Figure 13. Additional results for the Bayesian ICA model. (a) KSD between the target posterior and the posterior approximations
generated by Coin SVGD and SVGD after 7' = 1000 iterations, as a function of the number of particles N. (b) Time (s) to run Coin
SVGD and SVGD for 7" = 1000 iterations as a function of the number of particles. For both sets of results, we average the results over 10
random trials.
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Figure 14. Additional results for the Bayesian logistic regression model. (a) KSD between the target posterior and the posterior
approximations generated by Coin SVGD and SVGD after T' = 2500 iterations, as a function of the number of particles N. (b) Time (s)
to run Coin SVGD and SVGD for T" = 2500 iterations as a function of the number of particles. For both sets of results, we average the
results over 20 random train-test splits.

E.3. Bayesian Logistic Regression

Additional Experimental Details. For the results in Fig. 3(a) and Fig. 3(b), we run SVGD using a grid of 10 logarithmically
spaced learning rates v € [1 x 107°,1 x 10°]. For the results in Fig. 3(c) and Fig. 3(d), we then define the ‘optimal’
learning rate to be the one which obtained the highest test accuracy after 7" = 5000 iterations. Meanwhile, the ‘small’ and
‘big’ learning rates correspond to those with indices two smaller or two larger than the index of the optimal learning rate in
the original grid of learning rates. As in Liu & Wang (2016), we use Adagrad (Duchi et al., 2011) to adapt the learning rate
for SVGD on the fly.

Additional Numerical Results. In Fig. 14, we provide additional numerical results for the Bayesian logistic regression
considered in Sec. 4.3. In Fig. 14(a), we plot the KSD between the posterior approximations generated by SVGD and Coin
SVGD, and the true target posterior, as a function of the number of particles. For SVGD, we consider several fixed learning
rates, namely v € {2 x 1072,5 x 1072, 1 x 1071} across all values of IV, which are determined based on the results in Fig.
3(a) and Fig. 3(b). Our results suggest, as we would expect, that the KSD achieved by both methods decreases as a function
of the number of particles; i.e., both methods generate increasingly accurate approximations of the target posterior as the
number of particles increases. Meanwhile, the performance of Coin SVGD is broadly comparable to the best performance
of SVGD (among the learning rates considered), as measured by the KSD.

In Fig. 14(b), we plot the time taken by Coin SVGD and SVGD to complete 7' = 2500 iterations, again as a function of the
number of particles. Here, we see no meaningful difference between the two algorithms. This is unsurprising on the basis of
our earlier discussion on computational cost in Sec. D.2.

E.4. Bayesian Neural Network

Additional Experimental Details. For the results in Fig. 4 (Sec. 4.4) and Fig. 15 (see below), we run SVGD using a grid
of 20 logarithmically spaced learning rates v € [1 x 1071°,1 x 107°:5]. Following Liu & Wang (2016), for the Protein and
Year datasets in Fig. 15, we use 100 hidden units (rather than 50). In addition, we use a mini-batch size of 1000 for Year
(rather than 100). We report results averaged over 20 random train-test splits for all datasets other than Year, for which we
just report a single run. Once again, we use Adagrad (Duchi et al., 2011) to adapt the learning rate for SVGD.

Additional Numerical Results. In Fig. 15, we plot the average test RMSE achieved by Coin SVGD and SVGD after
T = 2000 iterations, for several additional UCI datasets. As noted in the main text, for certain datasets there remains a
considerable gap between the optimal performance of SVGD, and the performance of Coin SVGD (see, e.g., Fig. 15(b)).
We expect, however, that this performance gap could be significantly reduced by appropriately extending recent advances in
parameter-free stochastic optimisation to our setting (e.g. Chen et al., 2022a;b).

Finally, in Fig. 16, we plot the average time (s) for both methods to complete 7" = 2000 iterations. As in our previous
experiments, there is no meaningful difference between the two methods in terms of clock time.

32



Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates

8.0 —— SVGD —— SVGD —— SVGD 13 —— SVGD

Coin SVGD Coin SVGD : Coin SVGD Coin SVGD
75 15.0
g 7.0 : Z» 12.5
x 6.5 N\ € 10.0
" N wn
6.0 \ 2 75
. . 5.0
5.0 2.5

g
=}

o

©
-
N

Test RMSE
o
oo

Test RMSE
-
=

v
wn

o

~
-
o

0.6 9
10 1077 1075 1073 107! 10° 1077 10 1073 10- 10° 1077 10> 1073 10- 10° 1077 10° 1073 10°
Learning Rate Learning Rate Learning Rate Learning Rate
(a) Protein. (b) Wine. (c) Yacht. (d) Year.

Figure 15. Additional results for the Bayesian neural network. Average test RMSE for Coin SVGD and SVGD, as a function of the
learning rate, after 7" = 2000 iterations, for several additional UCI datasets.
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Figure 16. Additional results for the Bayesian neural network. Time (s) to run Coin SVGD and SVGD for T = 2000 iterations, for
each of the UCI datasets considered in Fig. 4 and Fig. 15.
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