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ABSTRACT
Accurate prediction of pathloss radio maps is essential for
the design and optimization of next-generation indoor wire-
less communication systems. Incorporating sparse pathloss
measurements as auxiliary information has demonstrated sig-
nificant potential in improving prediction accuracy. In this
paper, we propose a novel sampling-assisted indoor pathloss
prediction method (SAIPP-Net). First, we design a UNet-
based neural network with variable-channel inputs to adapt
to different levels of sampling availability. Second, we in-
troduce a sampling-aware training strategy that employs tai-
lored training schemes for low and high sampling rates, re-
spectively. Finally, we develop a prioritized hybrid sampling
strategy that jointly considers the transmitter distance and sig-
nal gradient to guide the selection of informative sampling
locations. SAIPP-Net was evaluated in the context of MLSP
2025 The Sampling-Assisted Pathloss Radio Map Prediction
Data Competition, achieving a weighted root mean squared
error of 4.67 dB on the test set and securing 1st place in the
competition.

Index Terms— Indoor pathloss prediction, sampling
strategy, radio map, deep learning

1. INTRODUCTION

Accurate prediction of pathloss radio maps plays a pivotal
role in the design, optimization, and management of wireless
communication systems [1]. A pathloss radio map offers a
spatial representation of large-scale signal attenuation in an
environment, capturing the effects of obstacles, distance, and
environmental characteristics on signal propagation. Tra-
ditionally, such maps are generated through extensive field
measurements or computationally intensive ray-tracing sim-
ulations, both of which face the issue of scalability when
being applied to large-scale or dynamic environments. To
address these limitations, researchers have recently explored
data-driven methods [2]. Levie et al. [3] demonstrate that
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well-designed and properly trained deep neural networks can
effectively estimate pathloss functions from readily available
inputs such as urban maps and transmitter locations. For
indoor environments, Bakirtzis et al. [4] propose a general-
izable data-driven propagation model that incorporates wall
permittivity and coarse-grained propagation priors—namely,
empirical channel models defined by specific formulas (e.g.,
free-space pathloss model). These methods offer significant
gains in efficiency and scalability, enabling real-time and
low-cost radio map prediction.

While deep learning-based methods have shown promis-
ing results, they often neglect the valuable measurements
available in practical deployments. In real-world scenarios,
wireless systems are typically equipped with sparse sensors
or mobile users that can report received signal strength at spe-
cific locations. These sampled measurements provide direct
and reliable observations of the true pathloss in the environ-
ment, acting as strong anchors to guide and refine data-driven
predictions. Integrating such sparse yet informative measure-
ments into the prediction process is thus crucial for improving
model accuracy and generalizability, particularly in heteroge-
neous and dynamic indoor environments.

Building upon this insight, MLSP 2025 The Sampling-
Assisted Pathloss Radio Map Prediction Data Competition
[5] was launched to promote deep learning methods for in-
door pathloss radio map prediction with ground truth pathloss
samples, with a particular focus on the role of sampling strate-
gies. The competition includes two supervised tasks based
on Indoor Radio Map Dataset [6]. Specifically, Task 1 is set
to evaluate prediction performance for a fixed set of random
samples at two sparsity levels (0.02% and 0.5%), while Task 2
allows participants to jointly optimize sampling locations and
pathloss prediction subject to the same sampling constraints.
The overarching goal of this competition is to assess how ef-
fectively different methods can exploit sparse measurements
and choose sampling locations to improve prediction accu-
racy, while ensuring computational efficiency across diverse
indoor environments.

In this paper, we propose a sampling-assisted indoor
pathloss prediction method, termed as SAIPP-Net, to cope
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with the two tasks in the MLSP 2025 competition. SAIPP-
Net achieves a weighted Root Mean Square Error (RMSE)
of 4.67 dB on the official test set and obtains the first overall
ranking. The source code of SAIPP-Net will be available at
https://github.com/xsyl0011/SAIPP-Net. To summarize, the
contributions of this paper are threefold:

1) Network Design with Variable-Channel Inputs. To
accommodate varying levels of data availability, we design
a UNet-based Deep Neural Network (DNN) model with
variable-channel inputs. When no sampling data is available,
the DNN takes as input a five-channel tensor encoding in-
door geometry (reflectance and transmittance), transmitter
distance, an augmented model channel, and the operating
frequency band. Under high sampling rate conditions (i.e.,
0.5%), an additional input channel representing the sam-
pled pathloss values is appended to the five-channel tensor,
forming a six-channel input. This novel input design allows
SAIPP-Net to seamlessly adapt to different sampling scenar-
ios, providing a unified foundation for the training strategies.

2) Sampling-Aware Training Strategy. SAIPP-Net em-
ploys a sampling-aware training strategy that adapts to differ-
ent sampling rates. For a low sampling rate (0.02%), we first
pre-train the model without using any sampled values, and
then fine-tune it by using the sparse samples. In contrast, for
a high sampling rate (0.5%), the sampled pathloss radio map
is directly provided as an additional input channel, and the
DNN is trained in an end-to-end learning manner. This dual-
branch strategy ensures robust performance for both sparse
and dense sampling settings.

3) Prioritized Hybrid Sampling Strategy. For Task 2,
in which sampling locations can be actively selected, we in-
troduce a Prioritized Hybrid Sampling Strategy (PHSS) that
guides sampling based on both physical distance and signal
variation. Specifically, PHSS assigns higher sampling prob-
abilities to regions that are farther from the transmitter and
to those with larger signal gradients (estimated from an initial
radio map). Experimental results demonstrate that PHSS con-
sistently selects more informative samples and improves radio
map prediction performance compared to random sampling.

2. PROBLEM FORMULATION

In this paper, we formulate indoor pathloss prediction as a
deep learning-based image-to-image regression problem.

In the considered indoor scenarios, each indoor environ-
ment is discretized into H×W grids. H and W vary between
different indoor environments depending on their physical di-
mensions. Each indoor environment is represented as a multi-
channel input image X ∈ RC×H×W that encodes key phys-
ical properties that can reflect electromagnetic propagation.
The target output Y ∈ R1×H×W is the ground-truth pathloss
radio map generated by ray tracing simulations. Given train-
ing samples [X,Y ], the goal is to learn a mapping f(·) from

X to a pathloss radio map Ŷ ∈ R1×H×W , defined as

Ŷ = f(X
∣∣Θ) (1)

where Θ denotes the set of learnable weights. Each pixel in Ŷ
represents the estimated signal attenuation (in dB) at the cor-
responding spatial location. The training process aims to find
the optimal parameter set Θ∗ that minimizes the discrepancy
between Ŷ and the ground truth Y .

3. PROPOSED SAIPP-NET METHOD

3.1. Input Feature Designing and Model Variants

The design of input features plays a critical role in the per-
formance of deep learning models for radio map prediction.
To improve prediction accuracy under different sampling set-
tings, we consider two types of input configurations corre-
sponding to two model variants:

1) For the base model without samples, referred to as IPP-
Net, we design a five-channel input configuration (C = 5).
The first three channels are the RGB image in the competi-
tion dataset: the first two channels represent the reflection and
transmission coefficients at each pixel, respectively; the third
channel encodes the physical distance from the transmitter to
each pixel location. The first two channels not only provide
electromagnetic properties but also implicitly capture the in-
door layout and material distribution. The third channel con-
tains spatial information about the transmitter location. The
fourth channel, referred to as the augmented model channel,
is generated using a modified 3GPP InH model, providing a
coarse but informative estimate of the radio propagation field.
Notably, this channel improves upon the design in our previ-
ous work [7]. The fifth channel is the frequency channel that
encodes the operating frequency band.

2) For the sampling-assisted model under high sampling
rate circumstances (0.5%), referred to as IPP-Net+, we intro-
duce a sixth channel representing the sampled pathloss map
(C = 6). This additional input enables the model to incorpo-
rate partial ground-truth measurements, enabling it to lever-
age direct observations during supervised training.

3.2. Details of Augmented Model Channel Design

The wireless communication domain benefits from a wealth
of theoretical models grounded in well-established electro-
magnetic principles. These models embed valuable domain
knowledge that can be exploited to enhance the performance
of radio map predictions. In particular, incorporating the out-
puts of empirical channel models as input feature maps pro-
vides strong inductive priors, which can improve the general-
izability of deep learning models.

In this work, we adopt the 3GPP InH model as the base-
line for our model channel design, as it is specifically devel-
oped for indoor wireless propagation scenarios. The standard
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Fig. 1. Illustration of input configurations for IPP-Net (five-channel) and IPP-Net+ (six-channel) in SAIPP-Net.

formulation of the 3GPP InH model in Line-of-Sight (LoS)
and Non-Line-of-Sight (NLoS) scenarios is defined as [8]

PLInH−LoS = 32.4 + 17.3 log10(d3D) + 20 log10(fc),

PL′
InH−NLoS = 17.3 + 38.3 log10(d3D) + 24.9 log10(fc),

PLInH−NLoS = max
(
PLInH−LoS, PL′

InH−NLoS

)
,

(2)
where d3D is the three-dimensional Euclidean distance be-
tween the transmitter and a given point in the environment,
and fc denotes the carrier frequency in GHz. However, the
3GPP InH model only distinguishes between LoS and NLoS
scenarios in a coarse manner, and fails to capture the fine-
grained propagation effects induced by material penetration,
which are critical in indoor environments.

To address this limitation, we propose an augmented
model channel that integrates a Learnable Material At-
tenuation Vector with Material Count Map Mc into the
standard 3GPP InH model. This enhancement enables the
model to better fit the complex attenuation behavior caused
by diverse wall and object materials. The details of the aug-
mented model channel are as follows.

1) Material Count Map Mc: We introduce a material
count map Mc ∈ ZNm×H×W , where Nm is the number
of material types (or transmittance values). Each element
Mc(n, h,w) records the number of times the straight line
connecting the transmitter and the pixel location (h,w) in-
tersects material type n, based on a geometric computation
over the transmittance channel. This is computed using Bre-
senham’s line algorithm to trace the straight line between
the transmitter and each pixel location, and count the mate-
rials intersected along the path. Based on the analysis of the
competition dataset, the transmittance channel contains dis-
crete values from the set {1, 2, 3, 4, 6, 10, 23}, corresponding
to Nm = 7 material types.

2) Learnable Material Attenuation Vector ∆: We define
a learnable material attenuation vector ∆ ∈ R1×Nm , where
each entry ∆n represents the per-unit attenuation contributed
by material type n. These parameters are optimized end-to-
end during network training, allowing the model to adaptively
learn how different materials affect signal attenuation.

3) Final Augmented Model Channel Representation: The
final augmented model channel M ∈ R1×H×W is con-

structed as

M = PLInH +

Nm∑
n=1

∆nM
(n)
c , (3)

where PLInH is the pathloss radio map calculated by Equa-
tion (2), ∆n denotes the attenuation coefficient for the n-th
material type, and M

(n)
c ∈ Z1×H×W is the material count

map of the n-th material.
This design offers a more physically grounded and inter-

pretable model channel input, which can guide the network
to better learn the effects of transmission loss under hetero-
geneous indoor scenarios. This is particularly beneficial in
indoor pathloss prediction tasks, where the refracted compo-
nents of the electromagnetic field through walls and furniture
play a more dominant role compared to the reflected compo-
nents that often dominate in outdoor settings. Compared to
our earlier version of model channel proposed in prior work
[7], which relied on a NLoS level matrix without distinguish-
ing between materials, the current design offers a more fine-
grained and learnable representation of material-induced at-
tenuation.

3.3. Network Architecture

Convolutional neural networks constitute a foundational class
of deep learning models for image processing tasks and are
particularly well-suited to radio map prediction, which can be
formulated as an image-to-image regression problem. Among
them, UNet [9] has demonstrated strong performance across
various dense prediction tasks, including medical image seg-
mentation and image-to-image translation. Motivated by its
prior success in pathloss prediction tasks [3, 4], we adopt a
UNet-based architecture to approximate the mapping func-
tion f(·

∣∣Θ) in Equation (1).
The network architecture (shown in Figure 2) is identi-

cal to the architecture in our previous work [7]. This choice is
motivated by empirical evidence from past experiments show-
ing that this architecture already achieves strong performance.
Since the main focus of this competition is on incorporating
and leveraging sampling data, we reuse the proven architec-
ture and instead direct our innovation toward input feature de-
sign and sampling strategies.
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Fig. 2. Network architecture.

3.4. Sampling-Aware Training Strategy

To effectively cope with the sub-tasks under different sam-
pling rates in both Task 1 and Task 2, we design a Sampling-
Aware Training Strategy. The core idea is to adapt the
training procedure to the level of available sampling den-
sity—especially considering the large discrepancy between
low and high sampling rate scenarios.

3.4.1. Strategy for Low Sampling Rate (0.02%)

At a low sampling rate of 0.02%, only extremely sparse
ground-truth pathloss values are available, which makes the
direct training of a DNN model from scratch highly prone to
overfitting. A straightforward and robust approach is using
samples to fine-tune a pre-trained model. As introduced
earlier, IPP-Net takes a five-channel input that does not in-
clude the samples channel. A two-stage curriculum training
scheme is employed to pre-train this base model:

Stage 1: Train the model on multiple indoor environments
at a single frequency (868 MHz).

Stage 2: Further train the model on multi-frequency data
(868 MHz, 1.8 GHz, and 3.5 GHz).

Although the test set includes only 868 MHz data, lever-
aging multiple frequencies enhances model generalization by
introducing greater data diversity and exploiting shared prop-
agation characteristics across frequencies.

After the two-stage curriculum learning, we fine-tune IPP-
Net using the sparse 0.02% samples. We adopt a full fine-
tuning strategy and introduce a masked loss function Lmask

to supervise only the sampled locations:

Lmask =

√√√√√∑H
h=1

∑W
w=1Mh,w ·

(
Ŷh,w − Yh,w

)2

∑H
h=1

∑W
w=1Mh,w

, (4)

whereM∈ {0, 1}H×W is a binary sampling mask.Mh,w =
1 indicates that pixel (h,w) has a sampled value, andMh,w =
0 otherwise.

3.4.2. Strategy for High Sampling Rate (0.5%)

When the sampling rate increases to 0.5%, the training
paradigm changes significantly due to the availability of

denser supervision. In this setting, we adopt the IPP-Net+
variant, which extends the input tensor to include an addi-
tional samples channel.

This additional input channel explicitly injects partial
ground-truth into the model, allowing it to directly utilize
observed measurements during supervised training. This
strategy not only helps the model learn to interpolate between
observed samples but also enables better spatial generaliza-
tion by preserving local signal patterns. We use the same
two-stage curriculum training strategy for IPP-Net+. Un-
like the low-sampling-rate setting, we train IPP-Net+ from
scratch, as the amount of supervision is sufficient for the
model to generalize well without pretraining.

3.5. Prioritized Hybrid Sampling Strategy

To better exploit sparse sampling resources, we propose
PHSS (Algorithm 1) which combines both physical-domain
knowledge and data-driven insights to optimize sampling lo-
cations for radio map prediction. By targeting regions that are
either physically significant or exhibit high signal variation,
PHSS enables a more efficient allocation of limited sampling
budgets.

Distance-Based Sampling (30% budget): In radio prop-
agation, signal strength typically exhibits greater variation at
locations farther from the transmitter. To capture the global
propagation structure, this stage assigns sampling probabili-
ties proportional to the logarithm of the transmitter distance,
encouraging spatially distributed sampling.

Gradient-Based Sampling (70% budget): Based on an
initial radio map estimated by IPP-Net, this stage computes
gradient magnitudes to identify areas with sharp signal tran-
sitions. Sampling probabilities are assigned proportionally to
the gradient values, prioritizing regions with high spatial vari-
ation, such as boundaries between propagation zones.

By concentrating samples in informative regions, PHSS
consistently outperforms random sampling, particularly at
higher sampling rates. Experimental results confirm its effec-
tiveness in enhancing prediction accuracy while maintaining
the same sampling budget.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

All experiments were implemented using the PyTorch frame-
work on an NVIDIA RTX 3080 Ti GPU. The competition
dataset [6] was split into training and validation sets with a
ratio of 9:1. All input data are resized to 256× 256 to enable
mini-batch training. Standard data augmentation techniques,
including random rotations and horizontal/vertical flips, are
applied to the training set to improve generalizability. Table 1
summarizes the key hyperparameters used throughout the ex-
periments.



Algorithm 1: Prioritized Hybrid Sampling Strategy
Input: Transmitter distance channel Dtx; Target

sampling rate ρ; Radio map size H ×W
Output: Sampling maskM∈ {0, 1}H×W

1 Distance-Based Sampling (30% budget)
2 Compute normalized log-distance weights:

3 Wd =
log(1 +Dtx + ϵ)

max(log(1 +Dtx + ϵ))
;

4 Compute sampling budget
5 n1 = ⌊ρ ·H ·W · 0.3⌋;
6 Sample n1 locations with probability ∝Wd to form

index set I1;

7 Gradient-Based Sampling (70% budget)
8 Estimate radio map Ŷ using IPP-Net;
9 Compute gradient magnitude:

10 G =
√
(∇xŶ )2 + (∇yŶ )2;

11 Mask out previously selected locations:
G[i, j] = 0, ∀(i, j) ∈ I1;

12 Compute remaining sampling budget:
13 n2 = ⌈ρ ·H ·W ⌉ − n1;
14 Sample n2 locations with probability ∝ G to form

index set I2;

15 Final Sampling Mask Generation
16 InitializeM← 0H×W ;
17 SetM[i, j]← 1, ∀(i, j) ∈ I1 ∪ I2;
18 returnM

4.2. Final Evaluation under different settings

The final evaluation was conducted by the competition orga-
nizers on an unseen test set comprising five indoor scenarios,
collectively containing 200 radio map instances. SAIPP-Net
was evaluated under multiple fine-tuning strategies. The
numerical results and run-times are summarized in Table 2.
Results show that fine-tuning on the entire test dataset leads to
lower RMSE but may exploit prior information unavailable
in real deployment. In realistic deployment scenarios, the
target environment is typically assumed to be unseen during
training, including any prior samples from that environment.
Fine-tuning on the full test set may inadvertently introduce
information leakage across transmitter locations within the
same environment, thus potentially inflating performance
and undermining the evaluation of model generalizability.
Therefore, the official scores are based on fine-tuning indi-
vidually on each test radio map instance for 2 epochs, which
is more aligned with the competition’s motivation and run-
time requirements. Under this setting, SAIPP-Net achieves
an RMSE of 5.99 and 6.08 dB on Task 1 and Task 2, respec-
tively.

In addition to the official test set, the organizers also
provided a test subset on the Kaggle website. This subset

Table 1. Experiment settings
Hyperparameter Value

Learning rate 10−3 ∼ 3.125× 10−5; 10−4 (fine-tuning)
ReduceLROnPlateau factor = 0.5, patience = 5
Batch size 8
Optimizer AdamW, weight decay = 10−2

Max epochs 120; 2 (fine-tuning)
Loss function RMSE

contains 50 radio maps from two unseen scenarios and serves
as a publicly accessible benchmark for model evaluation.
Figure 3 presents several radio maps predicted by SAIPP-
Net from the Kaggle test subset, illustrating SAIPP-Net’s
ability to capture fine-grained spatial variations in pathloss
distribution. Despite the extremely low sampling rate of
0.02%, SAIPP-Net can still recover the general propagation
patterns, while higher sampling density (0.5%) significantly
improves the prediction of local details and sharp transitions.
This demonstrates the model’s robustness under severe spar-
sity and its effectiveness in leveraging minimal ground-truth
values to reconstruct high-fidelity pathloss maps.

4.3. Comparative Studies

We conducted a series of comparative experiments to evaluate
the impact of different training strategies under low and high
sampling rates. All comparison results reported below are
based on the Kaggle test subset to ensure fair and consistent
comparisons across methods. Specifically, we compared the
following three settings: 1) IPP-Net: without access to any
ground-truth samples. 2) IPP-Net+: ground-truth samples are
incorporated as an additional input channel. 3) Fine-tuning
IPP-Net: ground-truth samples are used to fine-tune the pre-
trained IPP-Net model.

The results are summarized in Table 3. For the extremely
sparse setting (0.02%), fine-tuning leads to significantly better
performance than using samples as input, which even under-
performs the base model without any samples. In contrast,
under the high sampling rate of 0.5%, incorporating sampled
values as input achieves the best performance, outperforming
fine-tuning. This discrepancy likely stems from the fact that
sparse samples at 0.02% are highly random and may not re-
flect meaningful propagation patterns, thus acting like noise
when used as input. Fine-tuning, on the other hand, utilizes
these values more cautiously through supervised loss, leading
to better adaptation without hurting generalization.

5. CONCLUSION

In this paper, we proposed SAIPP-Net, a sampling-assisted
indoor pathloss prediction method for wireless communica-
tion systems. SAIPP-Net integrated a UNet-based backbone
with variable-channel inputs, a sampling-aware training strat-
egy, and a prioritized hybrid sampling strategy. Extensive ex-



Table 2. Performance and run-time of SAIPP-Net under different settings on official test set
Sampling Rate Fine-tuning Strategy Task 1 RMSE (dB) Task 2 RMSE (dB) Run-time (ms)

0.02% 1 epoch (entire test dataset) 5.86 5.70 60
0.02% 1 epoch (per radio map) 6.35 6.39 60
0.02% 2 epochs (entire test dataset) 5.65 5.47 106
0.02% 2 epochs (per radio map) 5.99 6.08 106

0.5% None 3.32 3.28 18

No samples None 6.90 6.90 18

Sampling rate
0.02%

Sampling rate
0.5%

Fig. 3. Visualization of predicted pathloss radio maps on the Kaggle test subset (Task 1).

Table 3. Performance comparison on training strategies
(RMSE on Kaggle subset in dB)

Sampling Rate Training Strategy RMSE

No samples IPP-Net 5.9657

0.02%
Samples as input 6.4394
Samples for fine-tuning 5.3663

0.5%
Samples as input 3.7224
Samples for fine-tuning 4.5964

periments demonstrated that SAIPP-Net can effectively lever-
age both sparse and dense sampling data to enhance predic-
tion accuracy across different indoor scenarios. SAIPP-Net
achieved a weighted RMSE of 4.67 dB and secured 1st place
in MLSP 2025 The Sampling-Assisted Pathloss Radio Map
Prediction Data Competition.
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