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ABSTRACT

Accurate prediction of pathloss radio maps is essential for
the design and optimization of next-generation indoor wire-
less communication systems. Incorporating sparse pathloss
measurements as auxiliary information has demonstrated sig-
nificant potential in improving prediction accuracy. In this
paper, we propose a novel sampling-assisted indoor pathloss
prediction method (SAIPP-Net). First, we design a UNet-
based neural network with variable-channel inputs to adapt
to different levels of sampling availability. Second, we in-
troduce a sampling-aware training strategy that employs tai-
lored training schemes for low and high sampling rates, re-
spectively. Finally, we develop a prioritized hybrid sampling
strategy that jointly considers the transmitter distance and sig-
nal gradient to guide the selection of informative sampling
locations. SAIPP-Net was evaluated in the context of MLSP
2025 The Sampling-Assisted Pathloss Radio Map Prediction
Data Competition, achieving a weighted root mean squared
error of 4.67 dB on the test set and securing Ist place in the
competition.

Index Terms— Indoor pathloss prediction, sampling
strategy, radio map, deep learning

1. INTRODUCTION

Accurate prediction of pathloss radio maps plays a pivotal
role in the design, optimization, and management of wireless
communication systems [1]. A pathloss radio map offers a
spatial representation of large-scale signal attenuation in an
environment, capturing the effects of obstacles, distance, and
environmental characteristics on signal propagation. Tra-
ditionally, such maps are generated through extensive field
measurements or computationally intensive ray-tracing sim-
ulations, both of which face the issue of scalability when
being applied to large-scale or dynamic environments. To
address these limitations, researchers have recently explored
data-driven methods [2]. Levie et al. [3] demonstrate that
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well-designed and properly trained Deep Neural Networks
(DNNSs) can effectively estimate pathloss functions from
readily available inputs such as urban maps and transmit-
ter locations. For indoor environments, Bakirtzis et al. [4]
propose a generalizable data-driven propagation model that
incorporates wall permittivity and coarse-grained propaga-
tion priors—namely, empirical channel models defined by
specific formulas (e.g., free-space pathloss model). These
methods offer significant gains in efficiency and scalability,
enabling real-time and low-cost radio map prediction.

While deep learning-based methods have shown promis-
ing results, they often neglect the valuable measurements
available in practical deployments. In real-world scenarios,
wireless communication systems are typically equipped with
sparse sensors or mobile users that can report received signal
strength at specific locations. These sampled measurements
provide direct and reliable observations of the true pathloss in
the environment, acting as strong anchors to guide and refine
data-driven predictions. Integrating such sparse yet informa-
tive measurements into the prediction process is thus crucial
for improving model accuracy and generalizability, particu-
larly in heterogeneous and dynamic indoor environments.

Building upon this insight, MLSP 2025 The Sampling-
Assisted Pathloss Radio Map Prediction Data Competition
[5] was launched to promote deep learning methods for in-
door pathloss radio map prediction with ground truth pathloss
samples, with a particular focus on the role of sampling strate-
gies. The competition includes two supervised tasks based
on Indoor Radio Map Dataset [6]. Specifically, Task 1 is set
to evaluate prediction performance for a fixed set of random
samples at two sparsity levels (0.02% and 0.5%), while Task 2
allows participants to jointly optimize sampling locations and
pathloss prediction subject to the same sampling constraints.
The overarching goal of this competition is to assess how ef-
fectively different methods can exploit sparse measurements
and choose sampling locations to improve prediction accu-
racy, while ensuring computational efficiency across diverse
indoor environments.

In this paper, we propose a sampling-assisted indoor
pathloss prediction method, termed as SAIPP-Net, to cope



with the two tasks in the competition. SAIPP-Net achieves
a weighted Root Mean Square Error (RMSE) of 4.67 dB
on the official test set and obtains the first overall rank-
ing. The source code of SAIPP-Net is available at https:
//github.com/xsyl0011/SAIPP-Net. To summarize, the con-
tributions of this paper are threefold:

1) Network Design with Variable-Channel Inputs. To
accommodate varying levels of data availability, we design a
UNet-based DNN model with variable-channel inputs. When
no sampling data is available, the DNN takes as input a five-
channel tensor encoding indoor geometry (reflectance and
transmittance), transmitter distance, an augmented model
channel, and the operating frequency band. Under high sam-
pling rate conditions (i.e., 0.5%), an additional input channel
representing the sampled pathloss values is appended to the
five-channel tensor, forming a six-channel input. This novel
input design allows SAIPP-Net to seamlessly adapt to differ-
ent sampling scenarios, providing a unified foundation for the
training strategies.

2) Sampling-Aware Training Strategy. SAIPP-Net em-
ploys a sampling-aware training strategy that adapts to differ-
ent sampling rates. For a low sampling rate (0.02%), we first
pre-train the model without using any sampled values, and
then fine-tune it by using the sparse samples. In contrast, for
a high sampling rate (0.5%), the sampled pathloss radio map
is directly provided as an additional input channel, and the
DNN is trained in an end-to-end learning manner. This dual-
branch strategy ensures robust performance for both sparse
and dense sampling settings.

3) Prioritized Hybrid Sampling Strategy. For Task 2,
in which sampling locations can be actively selected, we in-
troduce a Prioritized Hybrid Sampling Strategy (PHSS) that
guides sampling based on both physical distance and signal
variation. Specifically, PHSS assigns higher sampling prob-
abilities to regions that are farther from the transmitter and
to those with larger signal gradients (estimated from an ini-
tial radio map). Experimental results demonstrate that PHSS
can select more informative samples and improve radio map
prediction performance compared to random sampling.

2. PROBLEM FORMULATION

In this paper, we formulate indoor pathloss prediction as a
deep learning-based image-to-image regression problem. In
the considered indoor scenarios, each indoor environment is
discretized into [ x W grids. H and W vary between differ-
ent indoor environments depending on their physical dimen-
sions. Each indoor environment is represented as a multi-
channel input image X € RE*H#>*W that encodes key phys-
ical properties that can reflect electromagnetic propagation.
The target output Y € RY*H*W g the ground-truth pathloss
radio map generated by ray tracing simulations. Given train-
ing samples [ X, Y], the goal is to learn a mapping f(-) from

X to a pathloss radio map Y € RVH*W defined as
Y = f(X]0) (1)

where © denotes the set of learnable weights. Each pixel in Y
represents the estimated signal attenuation (in dB) at the cor-
responding spatial location. The training process aims to find
the optimal parameter set ©* that minimizes the discrepancy
between Y and the ground truth Y.

3. PROPOSED SAIPP-NET METHOD

3.1. Input Feature Designing and Model Variants

The design of input features plays a critical role in the per-
formance of deep learning models for radio map prediction.
To improve prediction accuracy under different sampling set-
tings, we consider two types of input configurations corre-
sponding to two model variants, as illustrated in Fig. 1:

1) For the base model without samples, referred to as IPP-
Net, we design a five-channel input configuration (C' = 5).
The first three channels correspond to the RGB image in the
competition dataset [6]: the first two channels represent the
reflection and transmission coefficients at each pixel, respec-
tively; the third channel encodes the physical distance from
the transmitter to each pixel location. The first two chan-
nels not only provide electromagnetic properties but also im-
plicitly capture the indoor layout and material distribution.
The third channel contains spatial information about the trans-
mitter location. The fourth channel, referred to as the aug-
mented model channel, is generated using a modified 3GPP
InH model, providing a coarse but informative estimate of the
radio propagation field. Notably, this channel improves upon
the design in our previous work [7]. The fifth channel is the
frequency channel that encodes the operating frequency band.

2) For the sampling-assisted model under high sampling
rate circumstances (0.5%), referred to as IPP-Net+, we intro-
duce a sixth channel representing the sampled pathloss map
(C' = 6). This additional input enables the model to incorpo-
rate partial ground-truth measurements, allowing it to lever-
age direct observations during supervised training.

3.2. Details of Augmented Model Channel Design

The wireless communication domain benefits from a wealth
of theoretical models grounded in well-established electro-
magnetic principles. These models embed valuable domain
knowledge that can be exploited to enhance the performance
of radio map predictions. In particular, incorporating the out-
puts of empirical channel models as input feature maps pro-
vides strong inductive priors, which can improve the general-
izability of deep learning models.

In this work, we adopt the 3GPP InH model as the base-
line for our model channel design, as it is specifically devel-
oped for indoor wireless propagation scenarios. The standard
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Fig. 1. Illustration of input configurations for IPP-Net (five-channel) and IPP-Net+ (six-channel) in SAIPP-Net

formulation of the 3GPP InH model in Line-of-Sight (LoS)
and Non-Line-of-Sight (NLoS) scenarios is defined as [8]

PLint_Los = 32.4 + 17.310g,(dsp) + 201og,(f.),
PL} i Nios = 17.3 4 38.310gy(dsp) + 24.910g,0(f.),

PLinH-NLos = max (PLimu-Los, PLinn_NLos) »

@)
where dsp is the three-dimensional Euclidean distance be-
tween the transmitter and a given location in the environment,
and f. denotes the carrier frequency in GHz. However, the
3GPP InH model only distinguishes between LoS and NLoS
scenarios in a coarse manner, and fails to capture the fine-
grained propagation effects induced by material penetration,
which are critical in indoor environments.

To address this limitation, we propose an augmented
model channel that integrates a learnable material attenuation
vector A with material count map M. into the standard 3GPP
InH model. This enhancement enables the model to better fit
the complex attenuation behavior caused by diverse wall and
object materials. The details of the augmented model channel
are as follows.

1) Material Count Map M,: We introduce a material
count map M, € ZNm*HXW where N,, is the number
of material types (or transmittance values). Each element
M. (n, h,w) records the number of times the straight line
connecting the transmitter and the pixel location (h,w) in-
tersects material type n, based on a geometric computation
over the transmittance channel. This is computed using Bre-
senham’s line algorithm to trace the straight line between the
transmitter and each pixel location, and count the materials
intersected along the path. Based on the analysis of the com-
petition dataset, the transmittance channel contains discrete
values from the set {1, 2, 3, 4, 6, 10, 23}, corresponding to
N,,, = 7 material types.

2) Learnable Material Attenuation Vector A: We define
a learnable material attenuation vector A € R*Vm  where
each entry A,, represents the per-unit attenuation contributed
by material type n. These parameters are optimized end-to-
end during network training, allowing the model to adaptively
learn how different materials affect signal attenuation.

3) Final Augmented Model Channel Representation: The
final augmented model channel M € R HxW jg con-

structed as

N
M = PLyu+ Y AM™, 3)

n=1

where P L,y is the pathloss radio map calculated by Equa-
tion (2), A,, denotes the attenuation coefficient for the n-th
material type, and M € ZY*H*W s the material count
map of the n-th material.

This design offers a more physically grounded and inter-
pretable model channel input, which can guide the network
to better learn the effects of transmission loss under hetero-
geneous indoor scenarios. This is particularly beneficial in
indoor pathloss prediction tasks, where the refracted compo-
nents of the electromagnetic field through walls and furniture
play a more dominant role compared to the reflected com-
ponents that often dominate in outdoor settings. Compared
to our earlier version of the model channel proposed in prior
work [7], which relied on a NLoS level matrix without distin-
guishing between materials, the current design offers a more
fine-grained and learnable representation of material-induced
attenuation.

3.3. Network Architecture

Convolutional neural networks constitute a foundational class
of deep learning models for image processing tasks and are
particularly well-suited to radio map prediction, which can be
formulated as an image-to-image regression problem. Among
them, UNet [9] has demonstrated strong performance across
various dense prediction tasks, including medical image seg-
mentation and image-to-image translation. Motivated by its
prior success in pathloss prediction tasks [3, 4], we adopt a
UNet-based architecture to approximate the mapping func-
tion f(-|©) in Equation (1).

The network architecture (shown in Figure 2) is identi-
cal to the architecture in our previous work [7]. This choice is
motivated by empirical evidence from past experiments show-
ing that this architecture already achieves strong performance.
Since the main focus of this competition is on incorporating
and leveraging sampling data, we reuse the proven architec-
ture and instead direct our innovation toward input feature de-
sign and sampling strategies.
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Fig. 2. Network architecture
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3.4. Sampling-Aware Training Strategy

To effectively cope with the sub-tasks under different sam-
pling rates in both Task 1 and Task 2, we design a Sampling-
Aware Training Strategy. The core idea is to adapt the
training procedure to the level of available sampling den-
sity—especially considering the large discrepancy between
low and high sampling rate scenarios.

1) Strategy for High Sampling Rate (0.5%)

When the sampling rate is relatively high (0.5%), more
abundant ground-truth pathloss values are available, enabling
direct supervised learning. In this case, we adopt the IPP-
Net+ variant, which augments the input tensor by including
an additional channel to encode the sampled pathloss values.
This additional input channel explicitly injects partial ground-
truth into the model, allowing the model to directly utilize ob-
served measurements during supervised training. This strat-
egy not only helps the model learn to interpolate between ob-
served samples but also enables better spatial generalization
by preserving local signal patterns.

A two-stage curriculum training scheme is employed for
IPP-Net+:

Stage 1: Train the model on multiple indoor environments
at a single frequency (868 MHz).

Stage 2: Further train the model on multi-frequency data
(868 MHz, 1.8 GHz, and 3.5 GHz).

Although the test set includes only 868 MHz data, lever-
aging multiple frequencies enhances model generalization by
introducing greater data diversity and exploiting shared prop-
agation characteristics across frequencies.

2) Strategy for Low Sampling Rate (0.02%)

In contrast, when the sampling rate drops to a very low
level (0.02%), only extremely sparse ground-truth pathloss
values are available, which makes the direct training of a
DNN model from scratch highly prone to overfitting. A
straightforward and robust approach is using samples to fine-
tune a pre-trained model. As introduced earlier, IPP-Net
takes a five-channel input that does not include the samples
channel. We first pre-train the base IPP-Net using the afore-
mentioned two-stage curriculum learning strategy and then
fine-tune it using the sparse 0.02% samples. We adopt a full
fine-tuning strategy and introduce a masked loss function

L mask to supervise only the sampled locations:

. 2
ZhH:1 Zg/:l Mh,w : <Yh,w - Yh,w)
H W
D=1 2w=1 Mhw
where M € {0, 1}7*W is a binary sampling mask. M, ,, =

1 indicates that pixel (h, w) has a sampled value, and My, ., =
0 otherwise.

G

ﬁmask =

3.5. Prioritized Hybrid Sampling Strategy

To better exploit sparse sampling resources, we propose
PHSS (Algorithm 1) which combines both physical-domain
knowledge and data-driven insights to optimize sampling lo-
cations for radio map prediction. By targeting regions that are
either physically significant or exhibit high signal variation,
PHSS enables a more efficient allocation of limited sampling
budgets.

Distance-Based Sampling (30% budget): In radio prop-
agation, signal strength typically exhibits greater variation at
locations farther from the transmitter. To capture the global
propagation structure, this stage assigns sampling probabili-
ties proportional to the logarithm of the transmitter distance,
encouraging spatially distributed sampling.

Gradient-Based Sampling (70% budget): Based on an
initial radio map estimated by IPP-Net, this stage computes
gradient magnitudes to identify areas with sharp signal tran-
sitions. Sampling probabilities are assigned proportionally to
the gradient values, prioritizing regions with high spatial vari-
ation, such as boundaries between propagation zones.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

All experiments were implemented using the PyTorch frame-
work on an NVIDIA RTX 3080 Ti GPU. The competition
dataset [6] was split into training and validation sets with a
ratio of 9:1. All input data are resized to 256 x 256 to enable
mini-batch training. Standard data augmentation techniques,
including random rotations and horizontal/vertical flips, are
applied to the training set to improve generalizability. Table 1
summarizes the key hyperparameters used throughout the ex-
periments.

4.2. Final Evaluation under different settings

The final evaluation was conducted by the competition orga-
nizers on an unseen test set comprising five indoor scenarios,
collectively containing 200 radio map instances. SAIPP-Net
was evaluated under multiple fine-tuning strategies. The
numerical results and run-times are summarized in Table 2.
Results show that fine-tuning on the entire test dataset leads to
lower RMSE but may exploit prior information unavailable
in real deployment. In realistic deployment scenarios, the
target environment is typically assumed to be unseen during



Algorithm 1: Prioritized Hybrid Sampling Strategy

Input: Distance channel D,y; target sampling rate p;
radio map size H x W
Output: Sampling mask M € {0, 1}7xW
1 Distance-Based Sampling (30% budget) ;
2 Compute normalized log-distance weights:
log(1+ Dy + €)
max(log(1l + Dy +€))
4 Compute budget: ny < |p- H-W -0.3] ;
5 Sample n locations with probability oc W to obtain
index set Z; ;

6 Gradient-Based Sampling (70% budget) ;

7 Estimate radio map Y using IPP-Net ;

8 Compute gradient magnitude:

s G (VY24 (V, V)2

10 Set G[i, j] «+ 0,V(i,5) € Iy ;

11 Compute remaining budget: ny < [p- H-W1] —ny ;

12 Sample no locations with probability oc G to obtain
index set 75 ;

3 Wy +

b}

13 Construct Final Sampling Mask ;
14 Initialize M < 0F*W ;

15 Set M([i, j] < 1,¥(i,5) € Ty ULy ;
16 return M

Table 1. Experiment settings

Hyperparameter Value

Learning rate 1073 ~ 3.125 x 107°; 10~* (fine-tuning)

ReduceLROnPlateau  factor = 0.5, patience = 5
Batch size 8

Optimizer AdamW, weight decay = 1072
Max epochs 120; 2 (fine-tuning)

Loss function RMSE

training, including any prior samples from that environment.
Fine-tuning on the full test set may inadvertently introduce
information leakage across transmitter locations within the
same environment, thus potentially inflating performance
and undermining the evaluation of model generalizability.
Therefore, the official scores are based on fine-tuning indi-
vidually on each test radio map instance for 2 epochs, which
is more aligned with the competition’s motivation and run-
time requirements. Under this setting, SAIPP-Net achieves
an RMSE of 5.99 and 6.08 dB on Task 1 and Task 2, respec-
tively. The final score (4.67 dB) is calculated as a weighted
average: 0.3 x (5.99 + 3.32) + 0.2 x (6.08 + 3.28) = 4.67.

In addition to the official test set, the organizers also
provided a test subset on the Kaggle website. This subset
contains 50 radio maps from two unseen scenarios and serves
as a publicly accessible benchmark for model evaluation.
Figure 3 presents several radio maps predicted by SAIPP-
Net from the Kaggle test subset, illustrating SAIPP-Net’s

ability to capture fine-grained spatial variations in pathloss
distribution. Despite the extremely low sampling rate of
0.02%, SAIPP-Net can still recover the general propagation
patterns, while higher sampling density (0.5%) significantly
improves the prediction of local details and sharp transitions.
This demonstrates the model’s robustness under severe spar-
sity and its effectiveness in leveraging minimal ground-truth
values to reconstruct high-fidelity pathloss maps.

4.3. Ablation Studies

We conducted a series of ablation studies to evaluate the im-
pact of different training strategies and model configurations.
All comparison results reported below are based on the Kag-
gle test subset on Task 1, to ensure fair and consistent com-
parisons across methods.

The comparison results on training strategies are summa-
rized in Table 3. For the extremely sparse setting (0.02%),
fine-tuning leads to significantly better performance than us-
ing samples as input, which even underperforms the base
model without any samples. In contrast, under the high sam-
pling rate of 0.5%, incorporating samples as input achieves
the best performance, outperforming fine-tuning. This dis-
crepancy likely stems from the fact that sparse samples at
0.02% are highly random and may not reflect meaningful
propagation patterns, thus acting like noise when used as
input. Fine-tuning, on the other hand, utilizes these values
more cautiously through supervised loss, leading to better
adaptation without hurting generalization.

The comparison results between different models under
the sampling rate of 0.5% are summarized in Table 4. We
observe that the augmented model channel M contributes to
performance improvement, and also outperforms the model
channel in our previous work [7]. However, relying solely on
the extracted features M —while discarding the reflectance,
transmittance, and distance channels—proves inadequate and
leads to performance degradation. Furthermore, our experi-
ments reveal that directly using the radio map generated by
M as the final prediction (computed via Equation (3) with
the learned material attenuation vector A=[-0.3214, -0.1678,
2.2897,0.9304, 5.4183,2.7411, 4.1387]) results in significant
performance gaps. This suggests that while M does enhance
performance, Equation (3) alone cannot adequately capture
the patterns of electromagnetic wave propagation.

5. CONCLUSION

In this paper, we proposed SAIPP-Net, a sampling-assisted
indoor pathloss prediction method for wireless communica-
tion systems. SAIPP-Net integrated a UNet-based backbone
with variable-channel inputs, a sampling-aware training strat-
egy, and a prioritized hybrid sampling strategy. Extensive ex-
periments demonstrated that SAIPP-Net can effectively lever-
age both sparse and dense sampling data to enhance predic-
tion accuracy across different indoor scenarios. SAIPP-Net
achieved a weighted RMSE of 4.67 dB and secured 1st place



Table 2. Performance and run-time of SAIPP-Net under different settings on official test set

Sampling Rate  Fine-tuning Strategy Task 1 RMSE (dB) Task 2 RMSE (dB) Run-time (ms)
0.02% 1 epoch (entire test dataset) 5.86 5.70 60
0.02% 1 epoch (per radio map) 6.35 6.39 60
0.02% 2 epochs (entire test dataset) 5.65 5.47 106
0.02% 2 epochs (per radio map) 5.99 6.08 106
0.5% None 3.32 3.28 18
No samples None 6.90 6.90 18
- T ¥ dB
l 140
Sampling rate 120
0.02%
1 100
- I 80
‘ |
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Fig. 3. V1suahzat10n of predicted pathloss radio maps on the Kaggle test subset (Task 1)

Table 3. Comparison on training strategies

Sampling Rate Training Strategy RMSE
No samples N/A 5.9657
0.02% Samples as input 6.4394

Samples for fine-tuning  5.3663

Samples as input 3.7224

0.5% Samples for fine-tuning ~ 4.5964

Table 4. Comparison between different models

Model Configuration RMSE
SAIPP-Net 3.7224
SAIPP-Net without M 4.1975
IPP-Net [7] with samples channel 4.1057
Only M and samples channel 4.6207
M as final prediction 9.9447

in MLSP 2025 The Sampling-Assisted Pathloss Radio Map
Prediction Data Competition.
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