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Abstract

Training large language models (LLMs) from
scratch is an expensive endeavor, particularly as
world knowledge continually evolves. To main-
tain relevance and accuracy of LLMs, model
editing has emerged as a pivotal research area.
While these methods hold promise, they can
also produce unintended side effects. Their
underlying factors and causes remain largely
unexplored. This paper delves into a critical
factor—question type—by categorizing model
editing questions. Our findings reveal that the
extent of performance degradation varies sig-
nificantly across different question types, pro-
viding new insights for experimental design in
knowledge editing. Furthermore, we investi-
gate whether insights from smaller models can
be extrapolated to larger models. Our results
indicate discrepancies in findings between mod-
els of different sizes, suggesting that insights
from smaller models may not necessarily apply
to larger models. Additionally, we examine the
impact of batch size on side effects, discover-
ing that increasing the batch size can mitigate
performance drops.

1 Introduction

Training large language models (LLMs) from
scratch is prohibitively expensive when world
knowledge changes. However, the world evolves
daily. To keep LLMs updated with current world
knowledge, model editing (Mitchell et al., 2022a;
Chen et al., 2024; Hartvigsen et al., 2024; Yu et al.,
2024) has emerged as a crucial research area in
the LLM era. Although model editing methods
show potential in updating knowledge, partially
modifying the parameters of language models via
model editing is akin to performing surgery on
the human brain, potentially leading to side ef-
fects (Hoelscher-Obermaier et al., 2023; Gu et al.,
2024; Yang et al., 2024). While there are some
intuitive discussions on the side effects of model
editing, identifying the factors and causes of these

side effects is scarcely addressed. We noticed that
the question-answering setting is the most common
when editing knowledge. For example, when we
want to update the information about the U.S. pres-
ident, we typically design a question for models
such as “Who is the president of the U.S.?” Fol-
lowing this line of thought, we are curious whether
different question types will lead to different side
effects after editing.

A common finding regarding the side effects
of model editing is that the model’s performance
across different aspects tends to deteriorate after a
few edits (Gu et al., 2024; Yang et al., 2024). Given
that the severity of surgical side effects varies with
the type of surgery, we are curious whether editing
the knowledge for different question types will re-
sult in varying degrees of performance degradation.
To this end, we categorize the questions used for
model editing into eight types: who, what, when,
where, which, why, how, and others. Our results
indicate that the extent of performance degrada-
tion significantly differs after editing knowledge
for different types of questions. It suggests future
directions for experimental design in knowledge
editing.

Moreover, if the illness issues are related or ad-
dressing them together can reduce the overall sur-
gical risk, doctors might choose a single surgery
to solve multiple problems. Based on this concept,
we discuss the side effects under different batch
size settings. Our results suggest that enlarging the
batch size, i.e., editing several pieces of knowledge
at the same time, can mitigate the side effects of
the performance drop.

Finally, performing the same surgery on adults
and children may result in different side effects,
and the underlying causes may vary. Following
this line of thought, we experiment with GPT-2
(1.5 billion parameters) (Radford et al., 2019a) and
LLaMA-7B (7 billion parameters) (Touvron et al.,
2023a) to explore whether findings from smaller



models, which is cheaper and more efficient, can
be extrapolated to larger models. Unfortunately,
our results indicate that the findings differ between
models of different sizes, suggesting that insights
from smaller models may not necessarily apply to
larger models.

In sum, this paper makes the following contribu-
tions:

1. We provide an in-depth analysis of how differ-
ent question types affect the performance of
LLMs after model editing.

2. We investigate the impact of batch size on the
side effects of model editing and reveal that
larger batch sizes can mitigate performance
degradation.

3. We explore the applicability of findings from
smaller models to larger models and highlight
the limitations of such applications.

2 Related Work

Model editing is a rapidly evolving field with sev-
eral key approaches aimed at modifying model
behavior without extensive retraining (Yao et al.,
2023). Fine-tuning with constraints (Zhu et al.,
2021) is a method developed to mitigate the is-
sue of catastrophic forgetting, where new knowl-
edge overwrites previously learned information.
This approach involves updating as few parame-
ters as possible or only modifying specific parts of
the model’s structure. Memory-augmented tech-
niques (Mitchell et al., 2022b) involve storing new
or corrected knowledge separately from the original
model, effectively creating a patch model. These
patches can be implemented in various ways, such
as through pretrained models or datastores, and
are combined with the original model using simple
methods like classifiers. However, this approach
requires retraining both the classifier and the patch
model, which is not ideal for continuous updates.
Hyper networks (Cao et al., 2021) represent a dy-
namic method where the model continuously up-
dates its parameters based on incoming knowledge
without needing retraining or fine-tuning. This
is achieved by training a network to predict the
weights of another network, effectively learning
the process of fine-tuning through gradient descent.
Despite its promise, the efficacy of hyper networks
may diminish as the volume of updates increases,
posing challenges for long-term usability. Addi-

tionally, current implementations can handle only
up to 75 knowledge edits at a time.

The locate-and-edit approach (Meng et al.,
2022a,b) leverages interpretability insights, treating
the MLP layers in transformers as key-value memo-
ries (Geva et al., 2021). By identifying the specific
neurons responsible for storing factual associations
(keys and values), this method modifies the values
corresponding to the desired knowledge. The pro-
cess involves evaluating the influence of individual
neurons on the output and adjusting the most im-
pactful ones. It offers enhanced interpretability and
allows for precise targeting of specific pieces of
knowledge within the model. It is favored for sce-
narios where understanding and precisely control-
ling model behavior is crucial. Therefore, in this
paper, we focus on the iconic method of locate-and-
edit, MEMIT (Meng et al., 2022b), for in-depth
analysis and discussions.

3 Experimental Setup

3.1 Knowledge Editing Dataset

We use RealTimeQA (Kasai et al., 2022) as the
base dataset for knowledge editing. RealTimeQA
is a collection derived from popular news sources,
containing articles from various news websites.
Weekly, RealTimeQA gathers news articles along
with approximately 30 multiple-choice questions
authored by humans from platforms such as CNN,
THE WEEK, and USA Today, covering diverse top-
ics including politics, business, sports, and enter-
tainment. Unlike other datasets such as ZsRE (Levy
et al., 2017) or CounterFact (Meng et al., 2022a),
which draw from known Wiki knowledge or focus
on false facts respectively, we opt for RealTimeQA
due to its alignment with real-world scenarios, of-
fering a more fitting context for our knowledge
updating needs. In our experiment, we randomly
selected 80 questions of each question type from a
total of 1,781 instances.

3.2 General Ability Evaluation

To assess the model’s general ability, includ-
ing knowledge acquisition, comprehension, and
reasoning abilities, we utilize ARC-easy, ARC-
challenge (Clark et al., 2018), and Open-
BookQA (Mihaylov et al., 2018) as our primary
evaluation datasets. The ARC Benchmark, featur-
ing over 7,787 science questions spanning from
3rd to 9th-grade standardized test levels, presents
formidable challenges for both retrieval-based and
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Figure 1: General ability of LLaMA-2 with MEMIT. Please note that the scale of the y-axis in different charts

differs for the detailed discussions.

word co-occurrence algorithms, particularly in its
Challenge Set. This division into Easy and Chal-
lenge Sets allows for a nuanced examination of per-
formance across varying difficulty levels. Addition-
ally, OpenBookQA introduces a novel evaluation
paradigm inspired by open-book exams, demand-
ing a profound understanding of elementary-level
science facts and their practical application in di-
verse scenarios. Through these datasets, we aim to
comprehensively evaluate our model’s capabilities
across varying levels of complexity and real-world
applicability, from basic knowledge retrieval to so-
phisticated reasoning tasks.

3.3 Evaluation Paradigm

We chose to experiment with GPT-2-XL
(1.5B) (Radford et al., 2019b) and LLaMA-2
(7B) (Touvron et al., 2023b) as our testing models
to explore the impact of model size on performance
outcomes. GPT-2-XL represents a mid-sized
model, while LLaMA-2 is substantially larger,
allowing us to observe potential trade-offs between
computational efficiency and performance gains.
To discuss the side effects of model editing, we use
MEMIT (Meng et al., 2022b) to edit models based
on the knowledge changes in RealTimeQA with
different types of questions and different settings
on the batch size. Then, we test the models’
general ability with ARC-easy, ARC-challenge,
and OpenBookQA, and report the average accuracy
as the evaluation for general ability.

4 Results and Analysis

4.1 Impact of Question Type

Figure 1 illustrates the general ability of LLaMA-2
7B as the number of knowledge edits increases un-
der different batch size settings. We first examine
the results for a batch size equal to 1 (upper left
subfigure in Figure 1). The results reveal a signifi-
cantly different trend in the model’s performance
after editing knowledge based on different question
types. For all question types, the general ability
drops to around 50% after five knowledge edits.
This finding is consistent with previous studies (Gu
et al., 2024; Yang et al., 2024), indicating that a few
edits can lead to model collapse. However, a deeper
analysis of this side effect shows that after editing
10 knowledge items, the general ability drops sig-
nificantly more for “which” or “what” questions,
while the general ability for other question types
remains stable.

Furthermore, as the number of knowledge edits
increases, the general ability of the model edited
under different question types drops sequentially
rather than simultaneously. These results suggest
that different question types have varying impacts
on the model’s general ability. Notably, “Why”
questions have the least adverse effect on model
editing. The general ability of the model edited
with “Why” questions does not drop a second
time, unlike other question types. We hypothe-
size that this is because LLMs are trained for con-
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Figure 2: General ability of GPT-2 with MEMIT.

tinuous writing, and answers to “Why” questions
are full sentences, whereas answers to other ques-
tions mainly involve editing named entities. For
instance, “where” questions edit knowledge related
to locations, and many “how” questions are about
quantities, such as “how many” and “how much”.

4.2 Mitigating Side Effects

We compare the effects under different batch size
settings in Figure 1. Under varying batch sizes, the
observations of the performance drop across differ-
ent question types are similar, including the second
drop and the order of dropping among different
question types. However, we observed that the tim-
ing of the second drop is delayed as the batch size
increases. These results suggest that editing the
same type of questions simultaneously may help
mitigate side effects.

4.3 Observations on Model Size

As mentioned in Section 1, experimenting with
LLMs is more expensive and time-consuming than
with smaller language models. We conducted the
same experiments with GPT-2, and the results are
shown in Figure 2. Although there are some minor
fluctuations, the general ability drops to the lowest
level directly without a second drop, regardless of
the question types and batch size. These results
indicate that the side effects and observations with
smaller language models may differ from those
with large language models. It also suggests that
the behaviors of these two types of models should

be considered and analyzed independently, despite
the side effects occurring in both after a few edits.

4.4 Observations on Editing Methods

Based on the results presented in previous sec-
tions, we emphasize that model editing with LLMs
exhibits various side effects depending on ques-
tion types, a phenomenon not observable when
experimenting with smaller language models. Ac-
cordingly, we focus on a more in-depth discus-
sion using LL.aMA-2 in this section. The central
topic under consideration is whether the side ef-
fects observed with MEMIT for knowledge up-
dates in LL.Ms remain consistent when employing
a fine-tuning approach. To address this question,
we replace MEMIT, used in Section 4.1, with a
fine-tuning scheme and evaluate the resulting side
effects. Specifically, we fine-tune the model using
the RealTimeQA dataset and then test its perfor-
mance on other general ability test sets.

The results are illustrated in Figure 3. First, the
side effects on “Why” questions remain less pro-
nounced compared to other question types, which
is the same when using MEMIT. Second, the per-
formance declines continuously as the number of
knowledge edits increases. By comparing these
results with those in Figure 1, we observe that
the general ability degradation patterns differ be-
tween the fine-tuning scheme and MEMIT. No-
tably, MEMIT exhibits a second performance drop,
the timing of which varies based on the question
type. Third, when the number of knowledge edits
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Figure 3: General ability of LLaMA-2 with fine-tuning approach.

is small, MEMIT demonstrates fewer side effects
for certain question types, such as “where,” “when,”
“who,” and “how.” However, as batch size and
the number of knowledge edits increase, the fine-

tuning scheme becomes a more favorable choice.

4.5 Editing Performance

In the previous sections, we discussed the side ef-
fects and examined the differences in side effects
across various editing methods. In this section, we
delve deeper into one potential cause: the effec-
tiveness of different editing methods in knowledge
editing tasks. Specifically, we evaluate whether the
model successfully edits the target knowledge. Af-
ter editing, we verify whether the language model
can answer questions with the updated knowledge.

Figures 4 and 5 present the performances of
MEMIT and fine-tuning as model editing ap-
proaches, respectively.

First, consider the results when the batch size
equals 1. The performance differences between
MEMIT and fine-tuning are notable. MEMIT ex-
cels when the number of knowledge edits is small,
consistently outperforming fine-tuning across all
question types in this scenario. Regardless of ques-
tion type, MEMIT demonstrates superior effective-
ness for limited edits. The performance trends
of the two approaches also diverge significantly.
MEMIT’s performance declines steadily as the
number of knowledge edits increases, whereas fine-
tuning maintains relatively stable performance, al-
beit starting from a lower baseline compared to

MEMIT.

Performance across different question types also
varies significantly, irrespective of the editing
method. For instance, “which” questions expe-
rience a severe decline in accuracy, falling below
20%, after several rounds of editing with MEMIT.
In contrast, fine-tuning achieves approximately
50% accuracy for these questions under similar
conditions. Conversely, for “where” questions,
MEMIT sustains high performance, exceeding
70%, while fine-tuning remains limited to around
50% accuracy. This contrast underscores the im-
portance of question type in evaluating and under-
standing model editing methods.

Next, consider how performance changes with
varying batch sizes. The effect of batch size dif-
fers significantly between the two methods. For
MEMIT, increasing the batch size mitigates the
rapid performance decline, effectively delaying the
onset of significant performance drops. In contrast,
for fine-tuning, increasing the batch size degrades
performance, suggesting a potential sensitivity to
this parameter.

In summary, the results highlight nuanced trade-
offs between MEMIT and fine-tuning in knowledge
editing tasks. MEMIT excels when the number of
edits is small and remains robust for certain ques-
tion types, such as “where,” though it struggles
with others, such as “which,” after multiple edits.
Fine-tuning, while stable, is less effective overall
but exhibits advantages for specific question types
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in extended editing scenarios. Batch size further
introduces variability, favoring MEMIT with larger
batches but adversely affecting fine-tuning. These
findings emphasize the importance of tailoring edit-
ing strategies to the specific task requirements, in-
cluding the expected number of edits, question type,
and batch size configuration.

5 Mixture of Editing Approaches

Based on the discussion in the previous sections,
we understand that different model editing ap-
proaches come with distinct advantages and dis-
advantages. Furthermore, the effectiveness of these
approaches varies depending on the type of ques-
tion being addressed. In this section, we aim to
explore the impact of assigning question types that
are relatively more suited to specific model editing
approaches, focusing on differences in side effects
and editing performance. Additionally, we will
analyze how the sequence in which model editing
approaches are applied affects overall performance.

Specifically, our experiment builds upon the find-
ings of previous sections. For instance, as shown
in Figure 1 and Figure 3 (batch size = 1), MEMIT
demonstrates better performance for “why” ques-
tions (above 50%) compared to the fine-tuning ap-
proach (below 50%). Based on these results, we
chose MEMIT for editing “why” questions. To
analyze performance differences, we divided the
questions into two groups: those where MEMIT
performs better and those where fine-tuning is more
effective. We then evaluated two experimental se-
tups: editing the MEMIT group first versus editing
the fine-tuning group first. Note that the testing data
remains consistent with prior experiments, with
only the order and methods adjusted.

The results of general ability, i.e., side effects,
are shown in Figure 6. The figure indicates that
using only the fine-tuning approach (FT) results
in fewer side effects when the batch size is set to
1. However, as the batch size increases, the side
effects of the “MEMIT then FT” approach become
comparable to those of the fine-tuning approach.
While MEMIT performs well when tested on data
where it is advantageous, significant side effects
arise when the question type shifts to those favoring
the fine-tuning approach. The results of “MEMIT
then FT” suggest that switching from MEMIT to
fine-tuning based on question type could effectively
mitigate side effects. Conversely, this is not true
for the “FT then MEMIT” approach, as it fails to

capitalize on findings from prior experiments. The
side effects of “FT then MEMIT” remain compara-
ble to those of using MEMIT alone, regardless of
batch size.

The knowledge editing performance is presented
in Figure 7. These results support the conclu-
sion that “MEMIT then FT” outperforms “FT then
MEMIT,” emphasizing the importance of the order
in which editing methods are applied. Furthermore,
although the performance of FT and “MEMIT then
FT” appears similar when the batch size is 1 or 4,
the difference becomes substantial as batch size in-
creases. As observed in Figure 5, fine-tuning alone
causes a dramatic decline in editing performance
for certain question types. Applying MEMIT first
for these cases, followed by fine-tuning for other
question types, proves effective when the batch size
is large. These findings underscore the potential
importance of considering question type in model
editing and open new avenues for exploring mixed
editing approaches.

6 Conclusion

This paper investigates the factors shaping the side
effects of model editing in LLMs, emphasizing
the critical influence of question type, batch size,
model scale, and editing strategy. Our analysis re-
veals that “Why” questions consistently produce
the least performance degradation, likely due to
their alignment with the sentence-level reasoning
capabilities of LLMs. We further highlight the
differences between smaller models like GPT-2
and larger models like LLaMA-2, demonstrating
that observations from smaller models do not al-
ways generalize to larger ones. When comparing
editing approaches, MEMIT performs better for
limited edits or specific question types, such as
“where,” while fine-tuning offers stability over more
extensive editing scenarios. A mixed approach
that applies MEMIT for its strengths and transi-
tions to fine-tuning for broader edits balances side
effects and accuracy effectively, especially with
larger batch sizes.

These findings provide a foundation for design-
ing adaptive, context-aware editing frameworks
that optimize the trade-offs between minimizing
side effects and achieving high editing accuracy.
Future work should expand on these insights to
explore their applicability across different LLM
architectures.
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Limitation

First, our study focuses on eight specific ques-
tion types. This categorization, while compre-
hensive, may not cover all possible variations of
model queries encountered in real-world applica-
tions. Future work could explore additional ques-
tion types or more nuanced classifications to pro-
vide a broader understanding of the impact of ques-
tion types on model editing. Second, we conducted
our experiments on two specific models: GPT-2
and LLaMA-7B. The discrepancies observed be-
tween these models highlight the need for caution
when generalizing findings to other models. Third,
our assessment focused on the general ability of
models post-editing. However, other important
metrics, such as interpretability and robustness,
were not considered. Including these metrics in
future studies could offer a more holistic view of
the consequences of model editing. Finally, while
we identified different impacts of question types
and batch sizes on model performance, the under-
lying mechanisms driving these side effects remain
unclear. Further research is needed to understand
the causal relationships and develop methods to
predict and mitigate unintended consequences ef-
fectively.
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