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Abstract001

Training large language models (LLMs) from002
scratch is an expensive endeavor, particularly as003
world knowledge continually evolves. To main-004
tain relevance and accuracy of LLMs, model005
editing has emerged as a pivotal research area.006
While these methods hold promise, they can007
also produce unintended side effects. Their008
underlying factors and causes remain largely009
unexplored. This paper delves into a critical010
factor—question type—by categorizing model011
editing questions. Our findings reveal that the012
extent of performance degradation varies sig-013
nificantly across different question types, pro-014
viding new insights for experimental design in015
knowledge editing. Furthermore, we investi-016
gate whether insights from smaller models can017
be extrapolated to larger models. Our results018
indicate discrepancies in findings between mod-019
els of different sizes, suggesting that insights020
from smaller models may not necessarily apply021
to larger models. Additionally, we examine the022
impact of batch size on side effects, discover-023
ing that increasing the batch size can mitigate024
performance drops.025

1 Introduction026

Training large language models (LLMs) from027

scratch is prohibitively expensive when world028

knowledge changes. However, the world evolves029

daily. To keep LLMs updated with current world030

knowledge, model editing (Mitchell et al., 2022a;031

Chen et al., 2024; Hartvigsen et al., 2024; Yu et al.,032

2024) has emerged as a crucial research area in033

the LLM era. Although model editing methods034

show potential in updating knowledge, partially035

modifying the parameters of language models via036

model editing is akin to performing surgery on037

the human brain, potentially leading to side ef-038

fects (Hoelscher-Obermaier et al., 2023; Gu et al.,039

2024; Yang et al., 2024). While there are some040

intuitive discussions on the side effects of model041

editing, identifying the factors and causes of these042

side effects is scarcely addressed. We noticed that 043

the question-answering setting is the most common 044

when editing knowledge. For example, when we 045

want to update the information about the U.S. pres- 046

ident, we typically design a question for models 047

such as “Who is the president of the U.S.?” Fol- 048

lowing this line of thought, we are curious whether 049

different question types will lead to different side 050

effects after editing. 051

A common finding regarding the side effects 052

of model editing is that the model’s performance 053

across different aspects tends to deteriorate after a 054

few edits (Gu et al., 2024; Yang et al., 2024). Given 055

that the severity of surgical side effects varies with 056

the type of surgery, we are curious whether editing 057

the knowledge for different question types will re- 058

sult in varying degrees of performance degradation. 059

To this end, we categorize the questions used for 060

model editing into eight types: who, what, when, 061

where, which, why, how, and others. Our results 062

indicate that the extent of performance degrada- 063

tion significantly differs after editing knowledge 064

for different types of questions. It suggests future 065

directions for experimental design in knowledge 066

editing. 067

Moreover, if the illness issues are related or ad- 068

dressing them together can reduce the overall sur- 069

gical risk, doctors might choose a single surgery 070

to solve multiple problems. Based on this concept, 071

we discuss the side effects under different batch 072

size settings. Our results suggest that enlarging the 073

batch size, i.e., editing several pieces of knowledge 074

at the same time, can mitigate the side effects of 075

the performance drop. 076

Finally, performing the same surgery on adults 077

and children may result in different side effects, 078

and the underlying causes may vary. Following 079

this line of thought, we experiment with GPT-2 080

(1.5 billion parameters) (Radford et al., 2019a) and 081

LLaMA-7B (7 billion parameters) (Touvron et al., 082

2023a) to explore whether findings from smaller 083
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models, which is cheaper and more efficient, can084

be extrapolated to larger models. Unfortunately,085

our results indicate that the findings differ between086

models of different sizes, suggesting that insights087

from smaller models may not necessarily apply to088

larger models.089

In sum, this paper makes the following contribu-090

tions:091

1. We provide an in-depth analysis of how differ-092

ent question types affect the performance of093

LLMs after model editing.094

2. We investigate the impact of batch size on the095

side effects of model editing and reveal that096

larger batch sizes can mitigate performance097

degradation.098

3. We explore the applicability of findings from099

smaller models to larger models and highlight100

the limitations of such applications.101

2 Related Work102

Model editing is a rapidly evolving field with sev-103

eral key approaches aimed at modifying model104

behavior without extensive retraining (Yao et al.,105

2023). Fine-tuning with constraints (Zhu et al.,106

2021) is a method developed to mitigate the is-107

sue of catastrophic forgetting, where new knowl-108

edge overwrites previously learned information.109

This approach involves updating as few parame-110

ters as possible or only modifying specific parts of111

the model’s structure. Memory-augmented tech-112

niques (Mitchell et al., 2022b) involve storing new113

or corrected knowledge separately from the original114

model, effectively creating a patch model. These115

patches can be implemented in various ways, such116

as through pretrained models or datastores, and117

are combined with the original model using simple118

methods like classifiers. However, this approach119

requires retraining both the classifier and the patch120

model, which is not ideal for continuous updates.121

Hyper networks (Cao et al., 2021) represent a dy-122

namic method where the model continuously up-123

dates its parameters based on incoming knowledge124

without needing retraining or fine-tuning. This125

is achieved by training a network to predict the126

weights of another network, effectively learning127

the process of fine-tuning through gradient descent.128

Despite its promise, the efficacy of hyper networks129

may diminish as the volume of updates increases,130

posing challenges for long-term usability. Addi-131

tionally, current implementations can handle only 132

up to 75 knowledge edits at a time. 133

The locate-and-edit approach (Meng et al., 134

2022a,b) leverages interpretability insights, treating 135

the MLP layers in transformers as key-value memo- 136

ries (Geva et al., 2021). By identifying the specific 137

neurons responsible for storing factual associations 138

(keys and values), this method modifies the values 139

corresponding to the desired knowledge. The pro- 140

cess involves evaluating the influence of individual 141

neurons on the output and adjusting the most im- 142

pactful ones. It offers enhanced interpretability and 143

allows for precise targeting of specific pieces of 144

knowledge within the model. It is favored for sce- 145

narios where understanding and precisely control- 146

ling model behavior is crucial. Therefore, in this 147

paper, we focus on the iconic method of locate-and- 148

edit, MEMIT (Meng et al., 2022b), for in-depth 149

analysis and discussions. 150

3 Experimental Setup 151

3.1 Knowledge Editing Dataset 152

We use RealTimeQA (Kasai et al., 2022) as the 153

base dataset for knowledge editing. RealTimeQA 154

is a collection derived from popular news sources, 155

containing articles from various news websites. 156

Weekly, RealTimeQA gathers news articles along 157

with approximately 30 multiple-choice questions 158

authored by humans from platforms such as CNN, 159

THE WEEK, and USA Today, covering diverse top- 160

ics including politics, business, sports, and enter- 161

tainment. Unlike other datasets such as ZsRE (Levy 162

et al., 2017) or CounterFact (Meng et al., 2022a), 163

which draw from known Wiki knowledge or focus 164

on false facts respectively, we opt for RealTimeQA 165

due to its alignment with real-world scenarios, of- 166

fering a more fitting context for our knowledge 167

updating needs. In our experiment, we randomly 168

selected 80 questions of each question type from a 169

total of 1,781 instances. 170

3.2 General Ability Evaluation 171

To assess the model’s general ability, includ- 172

ing knowledge acquisition, comprehension, and 173

reasoning abilities, we utilize ARC-easy, ARC- 174

challenge (Clark et al., 2018), and Open- 175

BookQA (Mihaylov et al., 2018) as our primary 176

evaluation datasets. The ARC Benchmark, featur- 177

ing over 7,787 science questions spanning from 178

3rd to 9th-grade standardized test levels, presents 179

formidable challenges for both retrieval-based and 180
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Figure 1: General ability of LLaMA-2 with MEMIT. Please note that the scale of the y-axis in different charts
differs for the detailed discussions.

word co-occurrence algorithms, particularly in its181

Challenge Set. This division into Easy and Chal-182

lenge Sets allows for a nuanced examination of per-183

formance across varying difficulty levels. Addition-184

ally, OpenBookQA introduces a novel evaluation185

paradigm inspired by open-book exams, demand-186

ing a profound understanding of elementary-level187

science facts and their practical application in di-188

verse scenarios. Through these datasets, we aim to189

comprehensively evaluate our model’s capabilities190

across varying levels of complexity and real-world191

applicability, from basic knowledge retrieval to so-192

phisticated reasoning tasks.193

3.3 Evaluation Paradigm194

We chose to experiment with GPT-2-XL195

(1.5B) (Radford et al., 2019b) and LLaMA-2196

(7B) (Touvron et al., 2023b) as our testing models197

to explore the impact of model size on performance198

outcomes. GPT-2-XL represents a mid-sized199

model, while LLaMA-2 is substantially larger,200

allowing us to observe potential trade-offs between201

computational efficiency and performance gains.202

To discuss the side effects of model editing, we use203

MEMIT (Meng et al., 2022b) to edit models based204

on the knowledge changes in RealTimeQA with205

different types of questions and different settings206

on the batch size. Then, we test the models’207

general ability with ARC-easy, ARC-challenge,208

and OpenBookQA, and report the average accuracy209

as the evaluation for general ability.210

4 Results and Analysis 211

4.1 Impact of Question Type 212

Figure 1 illustrates the general ability of LLaMA-2 213

7B as the number of knowledge edits increases un- 214

der different batch size settings. We first examine 215

the results for a batch size equal to 1 (upper left 216

subfigure in Figure 1). The results reveal a signifi- 217

cantly different trend in the model’s performance 218

after editing knowledge based on different question 219

types. For all question types, the general ability 220

drops to around 50% after five knowledge edits. 221

This finding is consistent with previous studies (Gu 222

et al., 2024; Yang et al., 2024), indicating that a few 223

edits can lead to model collapse. However, a deeper 224

analysis of this side effect shows that after editing 225

10 knowledge items, the general ability drops sig- 226

nificantly more for “which” or “what” questions, 227

while the general ability for other question types 228

remains stable. 229

Furthermore, as the number of knowledge edits 230

increases, the general ability of the model edited 231

under different question types drops sequentially 232

rather than simultaneously. These results suggest 233

that different question types have varying impacts 234

on the model’s general ability. Notably, “Why” 235

questions have the least adverse effect on model 236

editing. The general ability of the model edited 237

with “Why” questions does not drop a second 238

time, unlike other question types. We hypothe- 239

size that this is because LLMs are trained for con- 240
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Figure 2: General ability of GPT-2 with MEMIT.

tinuous writing, and answers to “Why” questions241

are full sentences, whereas answers to other ques-242

tions mainly involve editing named entities. For243

instance, “where” questions edit knowledge related244

to locations, and many “how” questions are about245

quantities, such as “how many” and “how much”.246

4.2 Mitigating Side Effects247

We compare the effects under different batch size248

settings in Figure 1. Under varying batch sizes, the249

observations of the performance drop across differ-250

ent question types are similar, including the second251

drop and the order of dropping among different252

question types. However, we observed that the tim-253

ing of the second drop is delayed as the batch size254

increases. These results suggest that editing the255

same type of questions simultaneously may help256

mitigate side effects.257

4.3 Observations on Model Size258

As mentioned in Section 1, experimenting with259

LLMs is more expensive and time-consuming than260

with smaller language models. We conducted the261

same experiments with GPT-2, and the results are262

shown in Figure 2. Although there are some minor263

fluctuations, the general ability drops to the lowest264

level directly without a second drop, regardless of265

the question types and batch size. These results266

indicate that the side effects and observations with267

smaller language models may differ from those268

with large language models. It also suggests that269

the behaviors of these two types of models should270

be considered and analyzed independently, despite 271

the side effects occurring in both after a few edits. 272

4.4 Observations on Editing Methods 273

Based on the results presented in previous sec- 274

tions, we emphasize that model editing with LLMs 275

exhibits various side effects depending on ques- 276

tion types, a phenomenon not observable when 277

experimenting with smaller language models. Ac- 278

cordingly, we focus on a more in-depth discus- 279

sion using LLaMA-2 in this section. The central 280

topic under consideration is whether the side ef- 281

fects observed with MEMIT for knowledge up- 282

dates in LLMs remain consistent when employing 283

a fine-tuning approach. To address this question, 284

we replace MEMIT, used in Section 4.1, with a 285

fine-tuning scheme and evaluate the resulting side 286

effects. Specifically, we fine-tune the model using 287

the RealTimeQA dataset and then test its perfor- 288

mance on other general ability test sets. 289

The results are illustrated in Figure 3. First, the 290

side effects on “Why” questions remain less pro- 291

nounced compared to other question types, which 292

is the same when using MEMIT. Second, the per- 293

formance declines continuously as the number of 294

knowledge edits increases. By comparing these 295

results with those in Figure 1, we observe that 296

the general ability degradation patterns differ be- 297

tween the fine-tuning scheme and MEMIT. No- 298

tably, MEMIT exhibits a second performance drop, 299

the timing of which varies based on the question 300

type. Third, when the number of knowledge edits 301
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Figure 3: General ability of LLaMA-2 with fine-tuning approach.

is small, MEMIT demonstrates fewer side effects302

for certain question types, such as “where,” “when,”303

“who,” and “how.” However, as batch size and304

the number of knowledge edits increase, the fine-305

tuning scheme becomes a more favorable choice.306

4.5 Editing Performance307

In the previous sections, we discussed the side ef-308

fects and examined the differences in side effects309

across various editing methods. In this section, we310

delve deeper into one potential cause: the effec-311

tiveness of different editing methods in knowledge312

editing tasks. Specifically, we evaluate whether the313

model successfully edits the target knowledge. Af-314

ter editing, we verify whether the language model315

can answer questions with the updated knowledge.316

Figures 4 and 5 present the performances of317

MEMIT and fine-tuning as model editing ap-318

proaches, respectively.319

First, consider the results when the batch size320

equals 1. The performance differences between321

MEMIT and fine-tuning are notable. MEMIT ex-322

cels when the number of knowledge edits is small,323

consistently outperforming fine-tuning across all324

question types in this scenario. Regardless of ques-325

tion type, MEMIT demonstrates superior effective-326

ness for limited edits. The performance trends327

of the two approaches also diverge significantly.328

MEMIT’s performance declines steadily as the329

number of knowledge edits increases, whereas fine-330

tuning maintains relatively stable performance, al-331

beit starting from a lower baseline compared to332

MEMIT. 333

Performance across different question types also 334

varies significantly, irrespective of the editing 335

method. For instance, “which” questions expe- 336

rience a severe decline in accuracy, falling below 337

20%, after several rounds of editing with MEMIT. 338

In contrast, fine-tuning achieves approximately 339

50% accuracy for these questions under similar 340

conditions. Conversely, for “where” questions, 341

MEMIT sustains high performance, exceeding 342

70%, while fine-tuning remains limited to around 343

50% accuracy. This contrast underscores the im- 344

portance of question type in evaluating and under- 345

standing model editing methods. 346

Next, consider how performance changes with 347

varying batch sizes. The effect of batch size dif- 348

fers significantly between the two methods. For 349

MEMIT, increasing the batch size mitigates the 350

rapid performance decline, effectively delaying the 351

onset of significant performance drops. In contrast, 352

for fine-tuning, increasing the batch size degrades 353

performance, suggesting a potential sensitivity to 354

this parameter. 355

In summary, the results highlight nuanced trade- 356

offs between MEMIT and fine-tuning in knowledge 357

editing tasks. MEMIT excels when the number of 358

edits is small and remains robust for certain ques- 359

tion types, such as “where,” though it struggles 360

with others, such as “which,” after multiple edits. 361

Fine-tuning, while stable, is less effective overall 362

but exhibits advantages for specific question types 363
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Figure 4: Editing performance of LLaMA-2 with MEMIT.

Figure 5: Editing performance of LLaMA-2 with fine-tuning approach.
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in extended editing scenarios. Batch size further364

introduces variability, favoring MEMIT with larger365

batches but adversely affecting fine-tuning. These366

findings emphasize the importance of tailoring edit-367

ing strategies to the specific task requirements, in-368

cluding the expected number of edits, question type,369

and batch size configuration.370

5 Mixture of Editing Approaches371

Based on the discussion in the previous sections,372

we understand that different model editing ap-373

proaches come with distinct advantages and dis-374

advantages. Furthermore, the effectiveness of these375

approaches varies depending on the type of ques-376

tion being addressed. In this section, we aim to377

explore the impact of assigning question types that378

are relatively more suited to specific model editing379

approaches, focusing on differences in side effects380

and editing performance. Additionally, we will381

analyze how the sequence in which model editing382

approaches are applied affects overall performance.383

Specifically, our experiment builds upon the find-384

ings of previous sections. For instance, as shown385

in Figure 1 and Figure 3 (batch size = 1), MEMIT386

demonstrates better performance for “why” ques-387

tions (above 50%) compared to the fine-tuning ap-388

proach (below 50%). Based on these results, we389

chose MEMIT for editing “why” questions. To390

analyze performance differences, we divided the391

questions into two groups: those where MEMIT392

performs better and those where fine-tuning is more393

effective. We then evaluated two experimental se-394

tups: editing the MEMIT group first versus editing395

the fine-tuning group first. Note that the testing data396

remains consistent with prior experiments, with397

only the order and methods adjusted.398

The results of general ability, i.e., side effects,399

are shown in Figure 6. The figure indicates that400

using only the fine-tuning approach (FT) results401

in fewer side effects when the batch size is set to402

1. However, as the batch size increases, the side403

effects of the “MEMIT then FT” approach become404

comparable to those of the fine-tuning approach.405

While MEMIT performs well when tested on data406

where it is advantageous, significant side effects407

arise when the question type shifts to those favoring408

the fine-tuning approach. The results of “MEMIT409

then FT” suggest that switching from MEMIT to410

fine-tuning based on question type could effectively411

mitigate side effects. Conversely, this is not true412

for the “FT then MEMIT” approach, as it fails to413

capitalize on findings from prior experiments. The 414

side effects of “FT then MEMIT” remain compara- 415

ble to those of using MEMIT alone, regardless of 416

batch size. 417

The knowledge editing performance is presented 418

in Figure 7. These results support the conclu- 419

sion that “MEMIT then FT” outperforms “FT then 420

MEMIT,” emphasizing the importance of the order 421

in which editing methods are applied. Furthermore, 422

although the performance of FT and “MEMIT then 423

FT” appears similar when the batch size is 1 or 4, 424

the difference becomes substantial as batch size in- 425

creases. As observed in Figure 5, fine-tuning alone 426

causes a dramatic decline in editing performance 427

for certain question types. Applying MEMIT first 428

for these cases, followed by fine-tuning for other 429

question types, proves effective when the batch size 430

is large. These findings underscore the potential 431

importance of considering question type in model 432

editing and open new avenues for exploring mixed 433

editing approaches. 434

6 Conclusion 435

This paper investigates the factors shaping the side 436

effects of model editing in LLMs, emphasizing 437

the critical influence of question type, batch size, 438

model scale, and editing strategy. Our analysis re- 439

veals that “Why” questions consistently produce 440

the least performance degradation, likely due to 441

their alignment with the sentence-level reasoning 442

capabilities of LLMs. We further highlight the 443

differences between smaller models like GPT-2 444

and larger models like LLaMA-2, demonstrating 445

that observations from smaller models do not al- 446

ways generalize to larger ones. When comparing 447

editing approaches, MEMIT performs better for 448

limited edits or specific question types, such as 449

“where,” while fine-tuning offers stability over more 450

extensive editing scenarios. A mixed approach 451

that applies MEMIT for its strengths and transi- 452

tions to fine-tuning for broader edits balances side 453

effects and accuracy effectively, especially with 454

larger batch sizes. 455

These findings provide a foundation for design- 456

ing adaptive, context-aware editing frameworks 457

that optimize the trade-offs between minimizing 458

side effects and achieving high editing accuracy. 459

Future work should expand on these insights to 460

explore their applicability across different LLM 461

architectures. 462
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Figure 6: General ability of LLaMA-2 with mixture approach.

Figure 7: Editing performance of LLaMA-2 with mixture approach.
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Limitation463

First, our study focuses on eight specific ques-464

tion types. This categorization, while compre-465

hensive, may not cover all possible variations of466

model queries encountered in real-world applica-467

tions. Future work could explore additional ques-468

tion types or more nuanced classifications to pro-469

vide a broader understanding of the impact of ques-470

tion types on model editing. Second, we conducted471

our experiments on two specific models: GPT-2472

and LLaMA-7B. The discrepancies observed be-473

tween these models highlight the need for caution474

when generalizing findings to other models. Third,475

our assessment focused on the general ability of476

models post-editing. However, other important477

metrics, such as interpretability and robustness,478

were not considered. Including these metrics in479

future studies could offer a more holistic view of480

the consequences of model editing. Finally, while481

we identified different impacts of question types482

and batch sizes on model performance, the under-483

lying mechanisms driving these side effects remain484

unclear. Further research is needed to understand485

the causal relationships and develop methods to486

predict and mitigate unintended consequences ef-487

fectively.488
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