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ABSTRACT

Adversarial examples pose a security threat to many critical systems built on neu-
ral networks (such as face recognition systems and self-driving cars). While many
methods have been proposed to build robust models, how to build certifiably ro-
bust yet accurate neural network models remains an open problem. For example,
adversarial training improves empirical robustness, but they do not provide certi-
fication of the model’s robustness. Conversely, certified training provides certified
robustness but at the cost of a significant accuracy drop. In this work, we propose
a novel approach that aims to achieve both high accuracy and certified proba-
bilistic robustness. Our method has two parts which together achieve our goal,
i.e., a probabilistic robust training method with an additional goal of minimizing
variance in divergence in a given vicinity and a runtime inference method for cer-
tified probabilistic robustness of the predictions. Compared to alternative methods
such as randomized smoothing and certified training, our approach avoids intro-
ducing strong noise during training, is effective against a variety of perturbations,
and most importantly, achieves certified probabilistic robustness without sacrific-
ing accuracy. Our experiments on multiple models trained on different datasets
demonstrate that our approach significantly outperforms existing approaches in
terms of both certification rate and accuracy.

1 INTRODUCTION

Neural networks are increasingly adopted in many domains, including security-critical systems
such as self-driving cars (Kurakin et al., 2017b) and face-recognition-based authentication sys-
tems (Sharif et al., 2016). Meanwhile, various safety and security issues of neural networks are
identified as well. Arguably the most notable one is the presence of adversarial examples. Adver-
sarial examples are inputs that are carefully crafted by adding human imperceptible perturbation
to normal inputs to trigger wrong predictions (Kurakin et al., 2017a). Their existence poses a sig-
nificant threat when the neural networks are deployed in security-critical scenarios. For example,
adversarial examples can mislead road sign recognition systems of self-driving cars and cause ac-
cidents (Kurakin et al., 2017b). In other use cases, adversarial examples may allow unauthorized
access through face-recognition-based authentication (Sharif et al., 2016).

To defend against adversarial examples, various methods for improving a model’s robustness have
been proposed. Two prominent categories are adversarial training (Bai et al., 2021; Wong et al.,
2020) and certified training (Müller et al., 2022; Shi et al., 2021), both of which aim to improve
a model’s accuracy in the presence of adversarial examples whilst maintaining their accuracy with
normal inputs if possible. Adversarial training works by training the neural network with a mixture
of normal and adversarial examples. The latter may be either generated before hand (Miyato et al.,
2019) or during the training (e.g., min-max training (Zhang et al., 2019a)). While empirical studies
show that adversarial training often improves a model’s robustness whilst maintaining model accu-
racy, it does not offer any formal guarantee of model robustness (Zhang et al., 2019b), rendering it
less than ideal. For instance, a model trained through adversarial training can still be vulnerable to
new threats such as adaptive adversarial attacks (Liu et al., 2019a; Tramer et al., 2020).

Certified training aims to provide a certain guarantee of robustness. These methods typically incor-
porate robustness verification techniques (Xu et al., 2020) during training, i.e., they aim to find a
valuation of network parameters such that the model is provably robust with respect to the training
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samples. While they may certify the model robustness on some input samples, they often reduce the
model’s accuracy significantly (Chiang et al., 2020). Recent studies have shown that state-of-the-art
certified training can result in up to 70% accuracy drop on MNIST and 90% on CIFAR-10 (Chiang
et al., 2020). This is unacceptable for many real-world applications. Furthermore, due to the com-
plexity of neural network verification, such techniques are often limited to small or medium models
and limited kinds of perturbations (Müller et al., 2022). Therefore, there is a pressing need for an
effective and efficient approach that can achieve both high accuracy and certified robustness. An
alternative method to certified training is randomized smoothing (Cohen et al., 2019) which certifies
certain forms of robustness (e.g., robustness within some L2-norm) by systematically introducing
strong noises during training. It however suffers from the same problem of significant accuracy loss.

In this work, we introduce a method that certifies a model’s probabilistic robustness whilst main-
taining its accuracy. Our method is designed based on the belief that deterministic robustness (i.e., a
model always makes the same decision within a certain vicinity) is often infeasible without seriously
compromising accuracy, whereas probabilistic robustness (e.g., a model makes the same prediction
most of the time within a certain vicinity) is often sufficient in practice. Our approach comprises
two parts, i.e., a novel probabilistic robust training method that minimizes divergence variance, and
a runtime inference method to certify the model’s probabilistic robustness. In the training phase,
our approach focuses on minimizing variance across model predictions on similar inputs to improve
the robustness. Unlike existing adversarial training methods that focus on one specific group of
adversarial attacks, e.g., PGD-based adversarial training (Zhang et al., 2019a) relies on the PGD
attack (Madry et al., 2018), our method improves the model’s robustness without overfitting to spe-
cific adversarial attacks. Furthermore, our approach can be easily applied to handle a variety of
different perturbations, such as rotation and scaling. Note that unlike randomized smoothing, our
method does not introduce noise during training. In the inference phase, our approach certifies the
model’s probabilistic robustness by considering a given input in its peripheral region. We show that
the probabilistic certified robustness of a model can be derived from the accuracy of the model in
the peripheral region.

We evaluate our method by training models on multiple standard benchmark datasets and compare
them with state-of-the-art robustness-improving methods, including adversarial training, certified
training and others. We compare our approach with eight baseline approaches in terms of standard
accuracy (i.e., accuracy on normal test data), adversarial accuracy (i.e., accuracy in the presence
of adversarial attacks), certified robustness rate (i.e., the probability of a test sample on which the
model’s probabilistic robustness is successfully certified), and certified robust accuracy (i.e., proba-
bility of a test sample being certified robust and correct). Compared to the state-of-the-art adversarial
training, we show that our method achieves a competitive or higher adversarial accuracy while sac-
rificing significantly less standard accuracy (i.e., up to 50% less). More importantly, we are able to
certify the model’s robustness with regards to most of the test inputs (i.e., up to 96.8% on MNIST
and 92% on CIFAR-10). Compared to the state-of-the-art certified training, our method achieves a
highly robust model whilst maintaining the model’s accuracy, i.e., our standard accuracy is almost
twice as high as that of certified training. Overall, the experiments show our method achieves a high
level of certified robustness whilst maintaining the model accuracy.

2 BACKGROUND AND PROBLEM DEFINITION

In standard supervised learning, a neural network model is a function that takes inputs from X and
produces outputs in Y , where X ,Y are sets of inputs and outputs, respectively. Suppose we have a
hypothetical function h̄ : X → Y that we want to approximate using a neural network model given
as h : X → Y . For any input x in X , the neural network model h produces a prediction h(x).

With ground-truth label h̄(x), we can compare the deviation of h(x) from h̄(x) using a loss func-
tion ℓ(h, x, h̄(x)). The choice of the loss function depends on the specific problem and data, but
common options include the cross-entropy loss for classification and the mean squared error loss
for regression. In this work, we focus on neural classification models and leave other models (e.g.,
generative models) to future work. Therefore, we write Gx = argmax h̄(x) to denote the labelled
category that x belongs to, and h(x) denotes the logits output by model h.
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Adversarial Examples and Robustness in Classification Adversarial examples are inputs that
are carefully crafted by adding human imperceptible perturbation to normal inputs to trigger wrong
predictions (Szegedy et al., 2014; Kurakin et al., 2017a). These perturbations can be hardly percep-
tible to the human eye (Carlini et al., 2019). The existence of an adversarial example can be defined
as the presence of two inputs that are nearly identical but are assigned different classifications by the
model. Formally, an adversarial example exists if and only if the following is satisfied.

∃ x1, x2 ∈ X . d(x1, x2) ≤ ϵ ∧ argmaxh(x1) ̸= argmaxh(x2) (1)

where d(x1, x2) denotes a distance measure between the two inputs, and this distance needs to be
smaller than a threshold ϵ. Note that the distance function can be defined in a variety of ways (e.g.,
based on some Lp-norm or the degree of rotation). The robustness of a neural network model qual-
ifies its ability to maintain its prediction in the presence of small perturbations, which is expressed
in Equation (2).

Px1∼D

(
P
(
argmaxh(x1) ̸= argmaxh(x2) | d(x1, x2) ≤ ϵ

)
≤ κ

)
(2)

where κ is a constant threshold in the range [0, 1] and D is the distribution of input data. When
κ = 0, it is known as deterministic robustness (Madry et al., 2018; Pang et al., 2022; Li et al., 2023).
Otherwise, it is commonly known as probabilistic robustness (Zhang et al., 2023; Li et al., 2023).

State-of-the-art robustness-aware training methods can be broadly categorized into adversarial train-
ing (Ganin et al., 2016), certified training (Singh et al., 2019), and others. Specifically, the goal of
adversarial training and certified training is captured below by Equation (3) and (4) respectively.

min
h

Ex∼D

[
max

d(x,t)≤ϵ
ℓ
(
h, t,Gt

)]
(3)

min
h

Ex∼D

[
sup

d(x,t)≤ϵ, c ̸=Gt

(
ℓ(h, t,Gt)− ℓ(h, t, c)

)]
(4)

where ℓ is a loss function, Gt is the ground truth prediction for t. Intuitively, adversarial training
approximates the worst loss that can be induced by a perturbation and tunes model h to minimize
this loss, whereas certified training looks for an upper bound of the loss and tunes the model to
minimize it. Known limitations of adversarial training include a trade-off between accuracy and
robustness and the lack of guarantee of robustness against evolving adversarial attacks. Certified
training, on the contrary, guarantees robustness, but often leads to a significantly dropped accuracy.
These limitations call for a technique that certifies robustness as well as maintains accuracy. More
details on how adversarial training and certified training work are presented in the Appendix A.

Problem Definition Achieving certified probabilistic robustness whilst maintaining high accuracy
is the goal of this work. Unlike deterministic robustness, probabilistic robustness allows a small
number of exceptions within the vicinity of a sample to have different labels, which makes it much
more achievable in practice. Furthermore, certified probabilistic robustness provides theoretical
guarantees for the model performance when faced with adversarial inputs, which could be useful for
system-level decision-making. In practice, it is often sufficient to keep the probability of undesirable
events from occurring sufficiently low (ISO, 2014).

However, achieving both (high) certified probabilistic robustness and accuracy is challenging. This
research aims to provide a solution that ensures accuracy on clean test data, robustness against lead-
ing adversarial attacks like AutoAttack (Croce & Hein, 2020b), and certified probabilistic robustness
for test samples. Moreover, the solution expects efficiency during both training and inference, espe-
cially for larger models, and seamless integration with existing architectures and frameworks.

3 OUR METHOD

Our method consists of two complementary parts. The first is a training method that aims to improve
probabilistic robustness by minimizing the variance across the vicinity, illustrated in Figure 1. The
second is an inference method that aims to establish certified robust prediction for a given sample.
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(a) Before training (b) After training

Figure 1: Intuition on how our training method works. Suppose x′ is an adversarial example that is
incorrectly predicted. The yellow shadow represents other adversarial examples. We achieve prob-
abilistic robustness in vicinity B, say P (t correctly predicted | t ∈ B(x′)) ≥ 1/2, by minimizing
the variance within the vicinity which allows occasional misprediction.

3.1 VARIANCE-MINIMIZING TRAINING

To obtain an accurate and likely probablistically robust model, we minimize the variance among
model outputs for inputs within the same vicinity, together with empirical risk minimization
(ERM (Vapnik, 1999)). This training can be formulated as a Pareto optimization problem whose
objective is as follows.

min
h

{
Ex∼D

[
Ed(x,t)≤ϵ ℓ(h, t,Gt)

]
, Ex∼D

[
Vard(x,t)≤ϵ ℓ(h, t,Gt)

]}
(5)

where the first term is essentially the objective of ERM (Vapnik, 1999), and the second term, variance
of individual losses, is the novel part.

Implementation-wise, during each training step where we are given a training sample x, we first
sample a fixed number of (perturbed) inputs within the vicinity of x. Then, we use the neural
network to make a prediction on each of the samples. Next, we compute the individual loss for each
sample against the label of x independently. We then calculate the mean and standard deviation of
these individual losses. Finally, we use a weighted sum of the mean and standard deviation as the
final loss (i.e., Ed(x,t)≤ϵ ℓ(h, t,Gt) + λVar

1
2

d(x,t)≤ϵ ℓ(h, t,Gt)) to back-propagate gradients and
update the parameters of the neural network with the given learning rate. This iterative optimization
can be governed by stochastic gradient descent (SGD) or other optimizers.

Note that the loss function combines mean minimization and variance minimization, with a weight-
ing factor λ determining the importance of each component. Furthermore, we use the square root
of the variance term, allowing a linear combination of mean and standard deviation for the loss
back-propagation. Intuitively, minimizing the variance allows us to improve the model’s robust-
ness without depending on any specific adversarial attacking methods. Instead, we improve model
robustness by minimizing the spread (standard deviation) of model prediction alongside the tradi-
tional ERM method. Random sampling is adopted and the adversarial attack in each training step
is avoided. In the ideal case, if the sample x is correctly predicted by a model and the predictions
of any pair of samples in the vicinity are the same, this model achieves deterministic robustness in
that vicinity. Likely in practice, by minimizing the variance of the loss within the vicinity of each
x, many samples within the vicinity have the same (correct) prediction. In this way, the proposed
training differs from existing adversarial training methods which either rely on pre-computed adver-
sarial examples (Miyato et al., 2019) or adversarial examples generated during training (Zhang et al.,
2019a) (often paying a high training cost). A more formal argument on why minimizing variance
leads to improved robustness is present in the Appendix B.

Note that, both terms in Objective (5) are crucial. Variance in the data represents the difference
between individual observations. High variance means that the observations are scattered, while
low variance means they are tightly clustered around the mean. Namely, by decreasing prediction
variance, the model becomes more robust whereas focusing only on reducing the mean, as seen
with data augmentation (Wen et al., 2021), may leave outliers unpredictable, potentially leading
to adversarial examples. On the other hand, minimising the variance cannot be the sole objective,
as doing so would result in the model consistently making incorrect predictions for all samples.
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Consequently, the hyperparameter λ must be reasonable, i.e., an overly-large λ leads to reduced
model accuracy; and a small λ makes the model less robust.

3.2 INFERENCE AND CERTIFICATION

Unlike certified training, our training method itself does not provide robustness certification. The
second part of our approach is an inference algorithm which aims to provide certified probabilistic
robustness when possible. According to Equation (2), to establish certified probabilistic robustness,
we must show that there is a guaranteed upper bound on the probability of adversarial examples, i.e.,
some threshold κ. Intuitively, we would like to know for sure that among all the samples within the
vicinity around an input, at least 1− κ of them are not adversarial examples.

Our inference method is designed to serve two purposes, i.e., providing a prediction, and offering
certified probabilistic robustness. The general idea is for any x ∈ X and model h,

h†(x) = Ed(x,t)≤ϵ h(t) (6)

where the superscript † is used to distinguish our prediction method from the vanilla inference. What
matters more is how this inference provides a robustness certificate during inference. Specifically,
when deciding a prediction for x, we sample sufficiently many samples in its vicinity and make the
prediction based on the majority of the predictions. Thus, a model would only make mistakes when
more than half of the sampled samples are predicted wrongly. To determine whether the proportion
of minority prediction is bounded by κ, a statistical hypothesis test is conducted, which tells us either
to accept or reject the hypothesis that the probability of minority prediction in this vicinity is lower
than κ. We only generate a robustness certificate if the corresponding hypothesis is accepted.

Particularly, the exact binomial test (Blitzstein & Hwang, 2019) is adopted as the hypothesis test.
The binomial test assesses a hypotheses about population proportions for binary variables based on
sampled observations. It evaluates whether the proportion of a value in a binary variable is less than,
greater than, or not equal to a specific value. To evaluate the hypothesis on whether a certain class
of prediction around an input accounts for more than κ (e.g., 10%), we first express the probability
of observing the given class occurrence as

P (Z ≥ z | p = κ) = 1−
z−1∑
i=0

(
n

i

)
(κ)i(1− κ)n−i (7)

where the number of observed occurrences of this class in the sample is a random variable Z eval-
uated at z. n is the sample size; p is the claimed population proportion (in this case, κ);

(
n
i

)
is the

binomial coefficient, which calculates the number of ways to choose i items from a set of n items.

Then, if the resulting probability is less than a pre-determined significance level (e.g., α = 0.05),
we reject the null hypothesis that the proportion of occurrences is greater than or equal to 10% and
conclude that it is lower. Otherwise, we fail to reject the null hypothesis and conclude that there is
not enough evidence to suggest that the proportion is lower than 10%. Note that, failing to reject the
null hypothesis does not indicate accepting it. Thus, we next perform both left-tail, i.e., P (Z ≤ z),
and right-tail binomial tests to ensure that we can either reject that the probability is less than κ
or greater than κ. Still, we might be able to reject neither because the sample size n is not large
enough. To this end, we use sequential sampling (Wald, 1945) such that the sampling continues
until we manage to reject either hypothesis. This provides certainty as to whether the prediction on
the test case is certified as robust or not. Details of the algorithm are presented in the Appendix B.

4 EXPERIMENT

In this section, we report the experimental results on applying our method. The experiment focuses
on the following research questions: (RQ1) is our method effective in achieving robustness whilst
maintaining accuracy; (RQ2) how effective is our method in defending adversarial attacks; (RQ3)
how efficient is our approach; and (RQ4) how do the hyper-parameters impact the performance
of our approach. To answer the first three RQs, we compare our method against eight existing
methods based on common benchmark datasets. The eight baselines are empirical risk minimization
(ERM) (Vapnik, 1999), data augmented training (DA) (Shorten & Khoshgoftaar, 2019), PGD-based
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Table 1: Performance comparison on L∞-norm based perturbation.

Approach Standard Accuracy Certified Robustness Rate Certified Robust Accuracy
CIFAR-100 CIFAR-10 SVHN MNIST CIFAR-100 CIFAR-10 SVHN MNIST CIFAR-100 CIFAR-10 SVHN MNIST

ERM 81.03 94.85 94.44 99.37 9.28 1.25 52.72 26.01 4.52 1.25 51.04 24.96
DA 78.27 94.21 94.69 99.42 15.04 81.08 82.08 85.23 6.15 76.07 82.01 84.12
PGDT 64.35 84.38 91.19 99.16 57.07 87.07 87.89 94.65 32.93 82.90 86.68 94.63
TRADES 62.55 80.42 86.16 99.10 59.27 88.54 87.89 94.76 38.85 78.80 84.76 94.61
MART 63.68 81.54 90.20 98.94 58.79 78.90 85.23 94.13 49.37 72.21 78.82 94.09
RS 56.87 89.45 88.35 97.16 60.38 90.00 76.29 87.15 47.50 87.98 70.64 86.29
IBP 39.45 48.40 73.09 97.78 49.34 54.70 61.94 89.18 29.20 40.00 57.26 88.51
PRL 64.89 93.82 92.00 99.32 56.71 90.71 93.11 96.03 50.77 90.63 91.07 95.01
Ours 65.56 94.23 94.79 99.32 62.05 95.08 93.15 97.80 52.07 91.75 92.81 96.80

κ = 10−2, 1− α = 0.99; L∞ bound at 0.3 for MNIST, and 8/255 for CIFAR-10, CIFAR-100, or SVHN.

adversarial training (PGDT) (Madry et al., 2018), TRADES (Zhang et al., 2019a), MART (Wang
et al., 2020), Randomized Smoothing (RS) (Cohen et al., 2019), IBP (Shi et al., 2021) (which is a
certified training method), and PRL (Robey et al., 2022) (which is a training method for probabilistic
robustness, with no guarantee). We adopt existing open-source implementations of each method.

Four popular classification datasets are adopted, i.e., MNIST (LeCun et al.), SVHN (Netzer et al.,
2011), CIFAR-10 (Krizhevsky et al., 2009), and CIFAR-100 (Krizhevsky et al., 2009). The original
training set of each dataset comprises a minimum of 50,000 samples, which are partitioned into
training and validation sets with a ratio of 8:2. We adopt multiple standard model architectures
to train the classifiers on the above-mentioned datasets. Further details on the training parame-
ters, the perturbations and model architectures are present in the Appendix C.1. Our implemen-
tation, trained models, and supplementary materials are available at https://github.com/
soumission-anonyme.

RQ1: Is our method effective in achieving robustness whilst maintaining accuracy? To an-
swer this question, we evaluate our method and baseline methods using three metrics, i.e., standard
accuracy, certified robustness rate, and certified robust accuracy. Intuitively, standard accuracy mea-
sures the probability that the model’s prediction is correct for an input from the natural distribution;
certified robustness rate measures the probability that a prediction is certified to be robust; certified
robust accuracy measures the probability that a prediction has certified robustness and is correct.
Note that for the baseline methods that do not inherently report probabilistic certified robustness,
we run the exact same binomial test as in our method to verify their certified robustness rate. The
results based on L∞-norm based perturbation are shown in Table 1.

In terms of standard accuracy, our method exhibits a reasonably small sacrifice on standard accuracy
(whilst achieving robustness), compared to most of the existing methods. On the CIFAR-10, SVHN,
and MNIST datasets, our method has a slight decreased accuracy in comparison to ERM, with a
maximum reduction of less than 0.7% and an average of 0.1%, which is close to that of DA. On
CIFAR-100, although there is a noticeable decrease in accuracy compared to ERM, our method
still ranks the second-best method, only surpassed by DA. Noticeably, adversarial training results
in a minimum 8.35% drop in accuracy, certified training usually leads to over 40% accuracy drop,
and randomised smoothing results in a 10.31% accuracy drop. These baselines sacrifice standard
accuracy significantly for robustness expectedly. The reason is apparent when we consider their
details, e.g., randomised smoothing introduces Gaussian noise during the training process to improve
the model’s robustness to perturbations, which can inadvertently push some of the original samples
farther away from their true labels, leading to a reduction in accuracy.

In terms of certified robust accuracy, it can be observed that our method has the highest certified
robust accuracy on all four datasets, with an average of 83.36% (i.e., we are able to certify that
the prediction is probabilistically robust for most of the time). In comparison, PRL is the best-
performing baseline method, with an average certified robust accuracy of 81.87%. Furthermore,
comparing the results on the different datasets, we observe that our method outperforms PRL more
when the dataset is more complex. Additionally, the average certified robust accuracy of the best
adversarial training method (i.e., PGDT) is 74.29%, which is 11.42% lower than ours. Randomized
smoothing and IBP yield even worse results (e.g., at 73.10% and 53.74% respectively), although
they still outperform vanilla training (i.e., ERM) whose certified robust accuracy is only 20.44%.
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Table 2: Performance comparison on other kinds of perturbations.

Approach Translation
(±0.3)

Rotation
(±35°) Affine Scale

(±0.3)

ERM 92.85 93.95 92.85 93.01
DA 93.97 92.76 92.75 93.23
PGDT 64.35 74.23 61.34 69.46
TRADES 68.72 74.89 64.56 74.45
MART 73.48 81.35 74.23 68.49
RS 87.25 86.29 82.51 87.58
IBP 46.52 46.94 44.41 47.80
PRL 90.68 91.74 89.23 90.92
Ours 93.28 94.15 93.28 93.25

κ = 10−2, 1− α = 0.99

Table 3: Comparing the defence success rates against AutoAttack (Croce & Hein, 2020b).

Approach Defence Success Rate
CIFAR-100 CIFAR-10 SVHN MNIST

ERM 0.01 0.00 2.72 0.01
DA 0.03 0.00 2.08 5.23
PGDT 31.48 40.90 44.89 94.65
TRADES 33.05 44.35 54.89 94.76
MART 32.43 38.10 45.23 94.13
RS 9.25 0.00 56.29 87.15
IBP 29.33 37.10 61.94 89.18
PRL 0.00 0.71 3.11 26.03
Ours 53.05 88.08 92.15 97.8

L∞ bound at 0.3 for MNIST, and 8/255 for CIFAR or SVHN.

In terms of certified robustness rate, our method achieves the best performance on certified robust-
ness rate, with an average value of 87.02%, which is 3.42% and 36.42% higher than PRL and
certified training, respectively. The baselines that achieve higher standard accuracy than ours, i.e.,
ERM and DA, have significantly lower certified robustness rate, with an average rate of 22.32% and
65.86%, respectively.

More than Lp transformation. While the existing robustness certification methods such as certi-
fied training and randomized smoothing primarily focus on Lp transformations of images (Shi et al.,
2021), as presented in Table 1, we are also interested in the certified robustness on other transfor-
mations, such as translation, rotation, affine, and scaling. In our experiments, we randomly perturb
the input within the given range of each transformation and report the corresponding certified ro-
bust accuracy. Similar to the previous experiments, we apply the exact binomial test to verify the
robustness of the model obtained by different training algorithms with respect to non-Lp norm trans-
formation. The hyper-parameters κ and α are set as 10−2 and 0.01, respectively. We present the
results on CIFAR-10 in Table 2 and similar results are obtained on other datasets. It can be observed
that our method consistently achieves the highest certified robust accuracy across all transforma-
tions, surpassing the threshold of 93.49%. The second highest is DA, with all results above 92.23%.
This is likely because, rotation, translation, and scaling are frequently used in data augmentation.
Remarkably, ERM achieves the third-highest certified robust accuracy, which can be attributed to
the inherent robustness of convolutional layers to these non-Lp transformations. This robustness is
due to their ability to capture and extract local patterns and spatial relationships in images through
shared weights, local receptive fields, and spatial pooling operations (He et al., 2016). In addition,
PRL has slightly worse performance than our method, i.e., by 3.05%.

Answer to RQ1: Our approach achieves the highest certified robust accuracy, highest certified
robustness rate, and has a <1% accuracy drop compared to standard training).

RQ2: How effective is our method in defending adversarial attacks? Two methods may
achieve the same probabilistic robustness but have different behaviours when facing adversarial
attacks, i.e., one may be easier to attack as those few adversarial samples may be easier to iden-
tify by existing adversarial attacking methods. We thus adopt the state-of-the-art method, AutoAt-
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tack (Croce & Hein, 2020b), to evaluate the effectiveness of our method and baselines in terms
of how effective the respective models can defend against adversarial attacks. AutoAttack is an
ensemble of different PGD attacks that is parameter-free, computationally affordable, and user-
independent, making it an effective tool for assessing adversarial accuracy. We systematically apply
AutoAttack to each of the models trained with different methods with the same attacking configura-
tion (i.e., same budget for perturbation and time). The results are as shown in Table 3.

The results suggest that our proposed method consistently achieves a higher defence success rate
than any other approach across all four datasets. Specifically, our method achieves an impressive
defence success rate of 82.77% on average, surpassing the best performance of adversarial training,
i.e., TRADES, whose defence rate is 56.76%. Apart from adversarial training, IBP achieves the
highest defence success rate at an average of 54.39%. It is worth noting that although PRL exhibits
relatively high certified robust accuracy, second only to our method, their resilience against adversar-
ial attacks is significantly low, with a defence success rate close to 0 on CIFAR-10 and CIFAR-100.
Intuitively, the reasons why our method is more successful in defending AutoAttack are twofold.
First, existing adversarial training methods are based on specific attacks and are thus fragile to new
attacks, whereas our variance-minimizing training is not. Second, the inference part of our method
forces an attacker to generate “robust” adversarial samples (Athalye et al., 2018b) (i.e., a region
where more than half of the samples are adversarial) to attack successfully, which is much more
challenging given the scarcity of adversarial examples after our variance-minimizing training.

In addition, we evaluate our method and baselines with a comprehensive list of 25 adversarial attacks
from the TorchAttacks library (Kim, 2020) on the CIFAR-10 model and compare the defence success
rates. The results are consistent with the above (i.e., our method always has a higher defence success
rate than baselines). The detailed results are shown in Table 9 of the Appendix C.2.

Overall, our method demonstrates effectiveness in defending against a wide range of adversarial
attacks. We remark while it is true that probabilistic robustness weakens deterministic robustness,
this weakening is perhaps acceptable as evidenced by the above-mentioned results. That is, our
approach does make adversarial attacking much harder.

Answer to RQ2: Our approach has the highest defence success rate against AutoAttack.

RQ3: How efficient is our approach? To answer this question, we measure the training and
inference time of our method and the baseline approaches. The results on MNIST are shown in
Table 4 and similar results are observed on other models. For inference, the time is collected on the
whole testing set comprised of 10,000 samples.

Table 4: Comparison of overhead for
our training on MNIST dataset with 300
epoch training time. The training cost of
all approaches is collected using a sin-
gle NVIDIA RTX 2080 Ti GPU.

Approach Training time (sec) Inference time (sec)

ERM 4.9× 102 27
DA 8.9× 103 27
PGD 9.9× 103 27
TRADES 9.9× 103 27
MART 9.9× 103 27
RS 5.8× 104 2.7× 105

IBP 2.1× 105 27
PRL 2.8× 104 2.7× 103

Ours 9.6× 103 4.7× 103

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

 

Standard Accuracy
Certified Robust Accuracy
Defence Success Rate

Figure 2: Adjusting hyperparameter λ makes the model
converge with different performance. The experiment is
run on MNIST with an L∞ bound of 0.3.

For training efficiency, we can observe that compared to methods designed to certify robustness,
i.e., IBP and PRL, our method demonstrates significantly higher training efficiency, being 21.93 and
2.89 times faster, respectively. Our method has a similar training cost to data augmentation and
adversarial training, with a total training time around 10 thousand seconds. These findings indicate
that our approach is highly efficient and practical for training deep neural networks with robustness
guarantees. On inference efficiency, as ERM, DA, and the adversarial training methods do not
provide robustness certification, their inference is more efficient (similar to that of IBP as shown
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Figure 3: (a) & (b) Illustrations of loss convergence of the mean term and variance term in Objec-
tive (5). (c) Illustration of model performance in terms of certified robust accuracy, certified robust-
ness rate as well as standard accuracy. The illustrated figures are from experiments on MNIST.

below). We thus focus on comparing our method with certified training algorithms, i.e., RS, IBP,
and PRL. From Table 4, it can be observed that IBP takes the least inference time as it only requires a
single forward propagation on the input to obtain the predictions and certification results. In contrast,
the other three methods provide certification by predicting a large number of samples around the
input. Our inference can be considered reasonably efficient, as it has the same order of magnitude
as PRL and is two orders of magnitude faster than RS. This is mainly attributed to our method using
sequential sampling to reduce processing time. That is, sequential sampling allows for decisions to
be made based on observed data at each step (Wald, 1945) and is known to reduce required sample
sizes while maintaining statistical correctness due to its adaptability (Mead, 1990). In comparison
to fixed-size sampling, sequential sampling may lead to increased efficiency (Chernoff, 1959).

We further show the process of performance coverage in Figure 3 on MNIST. It can be observed that
our method converges efficiently on correctly predicting unperturbed samples, and convergence on
the perturbed samples is slightly delayed, as illustrated in Figure 3(c).

Answer to RQ3: Our approach has a training cost similar to data augmentation and adversarial
training, and is much more efficient than certified training.

RQ4: How do the hyper-parameters impact the performance of our approach? We conduct
an ablation study to assess the effect of the importance factor λ in our method, measured using
standard accuracy, certified robust accuracy, and defence success rate against AutoAttack. The
value of λ ranges from 0 to 5, with an interval of 0.25. Figure 2 presents the trend of changes in
model performance for MNIST, which is representative of other results. Note that a value of λ close
to 1 yields the best performance. When the value of λ decreases, the contribution of the proposed
variance-minimization term decreases. If λ is too small, i.e., close to 0, the training process becomes
similar to data-augmented training with random perturbation, resulting in a drop in the certified
robust rate and thus decreasing the certified robustness accuracy. On the other hand, if the loss
function excessively emphasizes the variance term with a large value of λ, it can lead to a decrease
in standard accuracy and further impact the certified robust accuracy. Additionally, the defence
success rate also decreases by about a quarter when varying λ from 1 to 5.

5 CONCLUSION

We present an approach that improves the robustness of neural networks against adversarial exam-
ples. Our approach includes a training method that minimizes both the mean and variance of the
loss in prediction and an inference method that provides probabilistic-certified robustness. Through
theoretical analysis, we have shown that minimizing variance is the upper bound of the probability
of adversarial examples and that higher quantile accuracy leads to over 91% certified robust ac-
curacy. Our experimental results on standard benchmark datasets show that our method achieves
higher defence success rate and certification rate compared to the state-of-the-art while sacrificing
less standard accuracy.
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A APPENDIX: ADVERSARIAL TRAINING AND CERTIFIED TRAINING

In the past decade, various methods have been proposed to improve the robustness of models, which
have been reviewed in recent studies (Silva & Najafirad, 2020; Li et al., 2023). State-of-the-art
training methods can be broadly categorized into adversarial training (Ganin et al., 2016), certified
training (Singh et al., 2019), and a number of other approaches. In the following, we extend our
discussion in Section 2.

Adversarial training The general idea of adversarial training is given in Equation (3). It aims
at improving a model’s empirical robustness, and there can be many variants of the method. For
instance, the loss function ℓ can can vary in type, (e.g., the 0-1, cross-entropy, or squared loss). A
critical part of adversarial training is how they search for adversarial inputs within the vicinity of the
training samples. Goodfellow et al. introduce a fast gradient sign method (FGSM) to generate ad-
versarial inputs (Goodfellow et al., 2015). Adversarial training with FGSM significantly improves a
model’s robustness against adversarial samples generated through FGSM. Various other adversarial
attacking methods are adopted for adversarial training as well. Among them, Projected Gradient
Descent (PGD (Madry et al., 2018)) based adversarial training is shown to be the most effective, in
various domains, including image classification and reinforcement learning. In the context of large-
scale image classification tasks, an ensemble adversarial training method further improves robust-
ness through utilizing adversarial examples generated from multiple pre-trained models (Kurakin
et al., 2017a).

Despite the advancements made in adversarial training over the years, improving model robustness
remains an open problem. This is partly due to the challenge posed by the trade-off between standard
accuracy and robustness (Tsipras et al., 2019). To this end, TRADES is proposed to balance this
trade-off with a regularization term based on Kullback-Leibler (KL) divergence between the model’s
output on clean inputs and adversarial inputs (Zhang et al., 2019a). This approach has achieved state-
of-the-art performance on several benchmark datasets, including CIFAR-10. Nevertheless, a 15%
accuracy drop is still observed.

More importantly, a significant limitation of adversarial training is that it does not certify a model’s
robustness against adversarial attacks (Balunovic & Vechev, 2020). This lack of certification implies
that the robustness of a model cannot be guaranteed, particularly as new and sophisticated adversarial
attacking methods are being developed (Athalye et al., 2018a). For instance, it has been shown that
a model trained through adversarial training remains vulnerable to new threats such as adaptive
adversarial attacks (Liu et al., 2019a; Tramer et al., 2020). This limitation highlights the need for
techniques that can provide certified robustness, i.e., a guarantee that the model is robust no matter
what adversarial attacks are conducted.

Certified Training Certified training aims to train models that are certified to be robust (Vaishnavi
et al., 2022). The idea is to soundly approximate the effect of any adversarial attack method and
optimize the parameters of model h so that the effect of any adversarial attack method is kept within
a certain bound such that deterministic robustness is guaranteed (Li et al., 2023).

To soundly approximate the effect of any adversarial attack method, existing certified training meth-
ods use neural network verification techniques to soundly approximate the worst loss that can be
induced by any perturbation within the vicinity of each training sample. If the label remains the
same in the presence of such worst loss, the model is certified to be robust with respect to the sam-
ple. Note that after years of development, many neural network verification techniques have been
proposed, e.g., (Zhang et al., 2018; Singh et al., 2019; Balunovic & Vechev, 2020).

Certified training methods however suffer from multiple shortcomings. First, they are computa-
tionally expensive. Although there has been a lot of development in neural network verification
techniques, it is perhaps fair to say that such methods are still limited to relatively small neural net-
works. Given that certified training requires verifying the neural network robustness against each
and every training sample, certified training is limited to small neural networks as of now. Second,
existing certified training methods often result in a significant drop in the model’s clean accuracy,
i.e., accuracy on clean, non-adversarial inputs (Cohen et al., 2019; Raghunathan et al., 2018). The
best clean accuracy achieved by certified training is typically 70% of that from adversarial training
on the CIFAR-10 dataset (Tsipras et al., 2019; Shi et al., 2021). Such dramatic accuracy drop makes
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their application in real-world systems rare as of now. Lastly, existing certified training methods usu-
ally only work for robustness defined based on the Lp norms or in rare cases, simple transformation
such as image rotation (Cohen et al., 2019).

B APPENDIX: DETAILS ON THE PROPOSED METHOD

In the following, we present details of the intuition and implementation of our method, including
both training and inference. For training, we want to show why models with lower variance among
nearby predictions are more robust.

Proposition B.1. If two distributions with the same mean have different variances, where the vari-
ance of one is less than the other, then for any quantile level q in the range 0 < q < 1, the upper
bound of the q-th quantile of the distribution with the lower variance is less than the upper bound of
the q-th quantile of the distribution with the higher variance.

Proof. We start with Chebyshev’s inequality. Chebyshev’s inequality provides an upper bound on
the tail probabilities of a random variable based on its variance. Let Z (integrable) be a random
variable with finite expected value µ and finite non-zero variance σ2. Then for any real number
λ > 0,

P
(
|Z − µ| ≥ λσ

)
≤ 1

λ2
(8)

which states that for any probability distribution, the proportion of data within λ standard deviations
of the mean is at least 1− 1/λ2, and we can further derive:

P
(
|Z − µ| ≥ λσ

)
= P

(
Z − µ > λσ

)
≤ 1

λ2

P
(
Z ≤ λσ + µ

)
≥ 1− 1

λ2

(9)

Let λσ = µ− z, we can have the inequality flipped like:

P
(
Z ≤ z

)
≥ 1− σ2

(z − µ)2
(10)

For any given z, When the variance σ2 decreases, the lower bound for P
(
Z ≤ z

)
increases. Hence,

minimizing the variance is essentially reducing the probability of examples far away from the mean.

By minimizing the variance across the perturbation space for each sample in the training set, proba-
bilistic robustness can be improved. Then, we show the detailed and practical training algorithm in
Algorithm 1.

Specifically, in line 7, the sampling follows a uniform distribution because the vicinity is usually
defined to be a small region and there is hardly a reason why some samples have higher probability
than others. Here, we use B to represent the vicinity, similar to the case in Figure 1. Formally, it
is equivalent to the distance notation used throughout in this work, e.g., in Equation (3), and for all
x ∈ X , B(x) = { t | d(x, t) ≤ ϵ }. Generally, vicinity of x can be defined to be some Lp norm of x
(where p = 0, 1, 2,∞) (Kurakin et al., 2017a), or domain-specific label-preserving transformations
(e.g., tilting and zoom in/out) (Athalye et al., 2018b; Bhattacharya & Gupta, 2019). Specifically,
when a vicinity is characterised by a distance function d and a predefined threshold ϵ, common
notations of distances include

d(x1, x2) = ∥x1 − x2∥p , (Additive in Lp norm), or

d(x1, x2) =

{
|ϵ′| , if ftransform(x1, ϵ

′) = x2,

ϵ+ 1, otherwise
(11)

where the transform function mapping from X to X can be understood as a specific transformation
(e.g., whether an image is rotated or horizontally shifted) and its parameters (ϵ′, e.g., the degree of
rotation).
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Algorithm 1 Variance-Minimizing Training

1: Input: Training data { (xi, Gxi
) | i = 1, 2, . . . , k;xi ∈ X }, predefined vicinity B, network ar-

chitecture hθ parametrized by θ, step size η, sample size n, batch size m, and λ.
2: Initialization: Standard random initialization of hθ

3: Output: Robust network hθ

4: repeat
5: Uniformly sample { (xi, Gxi

) | i = 1, 2, . . . ,m }, a minibatch of training data where m < k
6: for i = 1, 2, . . . ,m do
7: Draw { tj | j = 1, 2, . . . , n } ∼ U(B(xi)) where U is a uniform distribution
8: for all j = 1, 2, . . . , n do
9: uj ← lCross-entropy(hθ(tj), Gxi)

10: end for
11: µi ←

∑n
j=1 uj/n

12: σi ← (
∑n

a=1

∑n
b=1(ua − ub)

2/n)1/2

13: end for
14: θ ← θ − η

∑m
i=1∇θ[µi + λ σi]/m

15: until convergence

In line 14, the loss function (mentioned in Section 3.1) is constructed by a weighted sum of mean
and standard deviation with importance factor λ.

For inference, a feasible step-by-step implementation of this idea is presented in Algorithm 2.
Specifically, in lines 7-21, the binomial test is described. The level of statistical significance is
determined by α. As α decreases, the statistical significance increases, which means that the cer-
tification is less likely to result in a false positive. Additionally, those cases that are not certified
as robust have a lower likelihood of being false negatives. Although κ and α are typically selected
within the range of 10−1 to 10−4, decreasing both values, i.e., κ → 0 and α → 0, can make the
certification more reliable. In line 19, we can see that the stop criterion for collecting data is the
probability of either the right or left tail crossing a predefined false positive rate. We make a de-
cision based on which tail has crossed the threshold and certify the prediction as either robust or
non-robust accordingly.
Theorem B.2. Let x be a sample. If Algorithm 2 returns that x has certified robustness, i.e., pright <
α, then the probabilistic robustness of x is greater than 1− κ is satisfied.

C APPENDIX: DETAILS ON EXPERIMENTS

C.1 EXPERIMENT SETUP

The details of the model architectures are summarized in Table 5. These architectures all have been
studied by existing robustness improving methods, as shown in the Works column. In short, the
model size ranges from 378,562 parameters for the small CNN7 model, to 11,689,512 parameters
for the more complex ResNet-18 model.

Table 5: Details of model architectures

Model # Parameters Works

ResNet-18 (He et al., 2016; Zhang et al., 2019a) 11,689,512 (Zhang et al., 2019a; Wang et al., 2020; Robey et al., 2022)
Wide-ResNet-8 (Zagoruyko & Komodakis, 2016) 3,000,074 (Shi et al., 2021)
CifarResNet-110 (He et al., 2016) 1,730,474 (Cohen et al., 2019)
CNN7 378,562 (Shi et al., 2021)
Basic ConvNet 1,663,370 (Zhang et al., 2019a; Wang et al., 2020; Robey et al., 2022)

Note that not all methods can be applied all model architectures. Table 7 summarizes the compat-
ibility between the methods and model architectures. It should be noted that our method, along
with ERM, DA, and PRL, applies to all architectures. We systematically evaluate each method
for each model architecture to find the best-suited architecture for each method and dataset, e.g.,
TRADES (Zhang et al., 2019a) eventually finds that ResNet-18 is the best matching architecture
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Algorithm 2 Inference With Certified Robustness

1: Input: Test data { (xi, Gxi
) | i = 1, 2, . . . , k }, given vicinity B, model (network) h, threshold

κ, (statistical) significance level α
2: Initialization: Certified Robustness rate c← 0
3: Output: Model prediction { (xi,pred(xi)) | i = 1, 2, . . . , k } for each case in test data; certified

robustness for model h on each case in test data against adversary at in vicinity B; certified
robustness rate for model h.

4: for i = 1, 2, . . . , k do
5: Predictions S ← empty dictionary
6: repeat
7: Sample t ∼ U(B(xi)) where U is a uniform distribution
8: Prediction s← argminc ℓ(h, t, c) where ℓ depends on loss choice
9: if s in S then

10: S[s]← S[s] + 1
11: else
12: S[s]← 0
13: end if
14: Most likely prediction u = argmaxS
15: Highest count v = S[u]
16: Total count w =

∑
j S[j]

17: pleft ← Left-binomial-test(v, w, p0 = 1− κ)
18: pright ← Right-binomial-test(v, w, p0 = 1− κ)
19: until pleft < α or pright < α
20: if pleft < α then
21: Inference on xi is without certified robustness
22: else
23: Inference on xi has certified robustness
24: c← c+ 1/k
25: end if
26: Prediction pred(xi)← u for xi

27: end for

Table 6: Details on image classification datasets, and perturbation bounds for each task

Task MNIST SVHN CIFAR-10 CIFAR-100

Training Images 48,000 58,606 40,000 40,000
Validation Images 12,000 14,651 10,000 10,000
Testing Images 10,000 26,032 10,000 10,000
Image size 28× 28 32× 32
Color Channels 1 3
Classes 10 100

L∞ bound 0.1 or 0.3 2/255 or 8/255
Translation ±0.3
Rotation ±35°
Scaling Factor ±0.3

for SVHN, and the basic ConvNet for MNIST, while being not compatible to CNN7 (refer to Ta-
ble 7). The most suitable architecture for each approach on different tasks is as follows: 1) For
the MNIST dataset, all approaches except IBP can utilize the basic ConvNet architecture, while IBP
adopts CNN7. 2) For the SVHN or CIFAR-10/100 datasets, all approaches except IBP or RS can use
ResNet-18, while IBP utilizes Wide-ResNet-8 and RS adopts CifarResNet-110. In the following,
we report the experimental results according to the most suited architecture.

In our training, we use different optimization strategies for different benchmarks to obtain the best
performance. For example, we use Adadelta optimizer (Zeiler, 2012) with a learning rate of 1.0
for 150 epochs to optimize Basic ConvNet on MNIST. For the other three tasks, we use the SGD
optimizer with an initial learning rate of 0.01 and weight decay of 3.5e-3. The learning rate for SGD
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Table 7: Compatibility between different methods and model architectures

Approach ResNet
-18

Wide-
ResNet

-8

Cifar
ResNet

-110
CNN7 Basic

ConvNet

ERM ✓ ✓ ✓ ✓ ✓
DA ✓ ✓ ✓ ✓ ✓
PGDT ✓ ✓ × × ✓
TRADES ✓ ✓ × × ✓
MART ✓ ✓ × × ✓
RS × × ✓ × ✓
IBP × ✓ × ✓ ✓
PRL ✓ ✓ ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

The Basic ConvNet architecture is suitable exclusively for the MNIST
dataset, while tasks involving SVHN and CIFAR datasets require
the utilization of residual networks with more parameters.

Table 8: Effectiveness metrics. To evaluate a model h on any input data from some distribution D,
we assume that a test set S generalises the distribution, and |S| is the number of testing samples.

Metric Formula Meaning

Standard
Accuracy

1
|S|

∑
(x,Gx)∈S

(
I
(
argmaxh(x)

= Gx

)) The probability that the model’s prediction is
correct for an input from the data distribution
D.

Certified
Robust-
ness Rate

1
|S|

∑
(x, )∈S

(
I
(
h(x) is with

certified robustness
)) The probability that the model’s prediction

has certified robustness for an input from the
data distribution D.

Certified
Robust
Accuracy

1
|S|

∑
(x,Gx)∈S

(
I
(
h(x) is with

certified robustness
)
× I

(
argmaxh(x) =

Gx

))
The probability that the model’s prediction
has certified robustness and this prediction is
correct, for an input from the data distribution
D.

Defence
Success
Rate

1
|S|

∑
(x,Gx)∈S(

I
(
argmaxh(A(h, x,Gx)) = Gx

)) The probability that the model’s prediction is
correct when the input has been perturbed by
adversarial attack A, for an input from the
data distribution D.

I(ϕ) a function that returns 1 if ϕ is satisfied and 0 otherwise

is reduced by a factor of 10 at epochs 55, 75, and 90. Our experiments are conducted on a server
with an x86 64 CPU featuring 8 cores running at 3.22GHz, 54.93GB of RAM, and an NVIDIA RTX
2080Ti GPU with 11.3 GB of memory.

C.2 DEFENDING AGAINST ADVERSARIAL ATTACKS

We evaluate our proposed method under 25 adversarial attacks on CIFAR-10 and compare its de-
fence success rates with several baseline methods, as shown in Table 9. Row No Attack is the
standard accuracy on the original testing set. It is evident that our approach outperforms all baseline
methods across all adversarial attack algorithms. Except for the Pixle (Pomponi et al., 2022) attack,
our method achieves a defence success rate of over 88% for all other attack methods. This is because
Pixle attack focuses on searching for adversarial examples using the L0-norm, which is not the focus
of our method. Moreover, baseline methods with better average defence success rates, i.e., PGDT,
TRADES, and MART, exhibit a significant decrease in standard accuracy (more than 10%). PRL
continues to show poor performance against these adversarial attacks, achieving a success rate of
less than 5% in most of the cases (17/25). This is because the adversarial examples of a PRL model,
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although only account for a small number (less than 9.38% on CIFAR-10, SVHN, or MNIST), are
relatively easy to be searched by attack algorithms.

Table 9: Model defence success rates against adversarial attacks on standard benchmarks. Experi-
ments are run on CIFAR-10 for all baselines and attacks.

Attack ERM DA PGDT TRADES MART RS IBP PRL Ours

No Attack 94.85 94.21 84.38 80.42 81.54 89.45 48.40 93.82 94.23
TIFGSM (Dong et al., 2019) 35.10 33.00 65.70 62.90 69.10 45.40 40.20 34.00 92.80
MIFGSM (Dong et al., 2018) 0.00 0.00 50.90 51.90 50.50 5.80 38.10 0.00 92.80
DIFGSM (Xie et al., 2019) 1.00 0.00 51.75 50.50 53.60 4.10 38.10 3.10 92.80
VMIFGSM (Wang & He, 2021) 0.00 0.00 51.10 50.90 51.90 4.10 38.10 0.00 93.90
TPGD 38.10 39.20 69.30 69.10 70.10 48.50 50.00 28.90 91.80
FGSM (Goodfellow et al., 2015) 29.90 25.80 57.95 54.60 61.90 28.90 38.10 25.80 93.80
RFGSM (Tramèr et al., 2018) 0.00 0.00 49.15 50.40 48.50 3.70 38.10 0.00 90.00
BIM (Kurakin et al., 2017a) 0.00 0.00 52.00 57.20 47.40 2.10 38.10 0.00 90.70
FAB (Croce & Hein, 2020a) 1.00 2.10 43.00 46.40 40.20 5.30 38.10 4.10 90.10
CW (Carlini & Wagner, 2017) 0.00 0.00 32.20 35.10 29.90 1.00 40.20 1.00 92.90
UPGD 0.00 0.00 49.85 50.50 49.80 5.10 38.10 0.00 93.80
FFGSM (Wong et al., 2020) 19.60 23.70 60.55 55.70 66.00 33.00 42.30 29.90 92.80
Jitter (Schwinn et al., 2023) 11.30 12.40 48.15 47.40 49.50 34.00 39.20 24.70 90.70
PGD 0.00 0.00 57.40 54.60 60.80 7.20 40.20 0.00 91.80
EOTPGD (Liu et al., 2019b) 0.00 0.00 50.10 50.30 50.50 3.00 38.10 0.00 90.70
APGD (Croce & Hein, 2020b) 0.00 0.00 48.40 51.00 46.40 1.00 38.10 0.00 90.70
NIFGSM (Lin et al., 2020) 0.00 0.00 57.95 56.70 59.80 7.20 38.10 1.00 92.80
SiniFGSM (Lin et al., 2020) 4.10 1.00 59.00 56.70 61.90 23.70 38.10 12.40 93.70
VNIFGSM (Wang & He, 2021) 0.00 0.00 50.45 53.00 48.50 5.10 38.10 0.00 92.90
APGDT (Croce & Hein, 2020b) 0.00 0.00 40.90 44.30 38.10 0.00 38.10 0.00 88.70
Square (Andriushchenko et al., 2020) 0.00 1.00 50.40 54.00 47.40 3.10 38.10 2.10 88.08
Add Gaussian Noise 25.80 43.30 79.10 78.40 80.40 74.20 42.30 45.40 87.60
OnePixel (Su et al., 2019) 79.40 83.50 78.05 74.20 82.50 83.50 42.50 80.40 89.70
Pixle (Pomponi et al., 2022) 0.00 0.00 12.55 11.30 14.40 1.00 10.30 0.00 17.50
PGDL2 1.00 0.00 35.80 36.10 36.10 5.20 36.10 0.00 92.90

L∞ bound at 8/255. L2 bound at 10/255. For Gaussian noise, std=0.1. More detailed parameter setting is according to
https://adversarial-attacks-pytorch.readthedocs.io/en/latest/index.html

C.3 IMPACTS OF HYPERPARAMETERS

In the following, we present the experiment results for adjusting hyperparameters other than λ.

Vicinity size ϵ. To investigate the impact of the vicinity size on certified robust accuracy, we eval-
uate the models with altered L∞-norm radius ϵ on each dataset. Specifically, for MNIST, values
of ϵ are selected from { 0.1, 0.3 }, while for the other three datasets, its values are chosen from
{ 2/255, 8/255 }. The results are shown in Table 10. We observe a trade-off between certified
robust accuracy and the usefulness of certification, i.e., decreasing the vicinity radius increases cer-
tified robust accuracy. Our approach achieves high certified robust accuracy (> 85%) within a
reasonable range of the vicinity and experiences a 0.36% increase with a one-third reduction and a
2.98% average increase with a one-quarter reduction.

Percentage to certify κ. To investigate how the strictness of certification requirement influences the
certified robust accuracy, we vary the acceptable level κ and significance level α. The certified robust
accuracy with regard to different acceptable level and significance level is presented in Table 11 and
Table 12, respectively. Note that κ = 0 means conducting deterministic robustness certification
on the model, which can only be achieved by IBP. The remaining baselines and our method can
only provide probabilistic robustness certification results for the model. It can be observed that the
variation of both the acceptable level κ and significance level α does not have a significant impact
on the certified robust accuracy, except ERM and DA. Specifically, for our method, when κ has
changed from 10−3 to 10−1, the certified robust accuracy has only improved by 1.05%; no increase
in certified robust accuracy is observed when α varies from 10−3 to 5× 10−2.
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Table 10: The certified robust accuracy of different approaches on various datasets within smaller
vicinity.

Approach Certified Robust Accuracy

CIFAR-100 CIFAR-10 SVHN MNIST
ERM 33.45 48.85 59.34 48.01
DA 54.43 83.50 84.79 81.23
PGDT 44.59 83.23 87.98 95.89
TRADES 58.86 80.57 82.45 95.39
MART 56.73 81.35 73.84 95.22
RS 53.93 88.98 86.03 90.48
IBP 33.45 54.41 67.34 97.74
PRL 53.99 91.74 91.97 98.99
Ours 57.27 93.58 92.85 97.15

κ = 10−2, 1− α = 0.99; L∞ bound at 0.1 for MNIST,
and 2/255 for CIFAR and SVHN. See Table 1 for L∞

bound at 0.3 for MNIST, and 8/255 for CIFAR and SVHN.

Table 11: Comparison of the influence of different κ values on the certified robust accuracy of
CIFAR-10.

Approach κ = 0
(Deterministic)

κ = 10−3 κ = 10−2 κ = 10−1

ERM - 1.25 1.25 25.09
DA - 73.50 76.07 86.59
PGDT - 82.82 82.90 82.95
TRADES - 78.69 78.80 79.60
MART - 71.42 72.21 73.43
RS - 87.63 87.98 88.08
IBP 35.13 39.98 40.00 44.41
PRL - 89.88 90.63 91.97
Ours - 91.73 91.75 92.78

For κ > 0, α takes 10−2.

Table 12: Comparison of the influence of different α values on the certified robust accuracy of
CIFAR-10 where κ = 10−2.

Approach 1− α = 0.95 1− α = 0.99 1− α = 0.999

ERM 2.55 1.25 1.25
DA 77.56 76.07 76.07
PGDT 82.90 82.90 82.90
TRADES 78.80 78.80 78.80
MART 72.21 72.21 72.21
RS 87.98 87.98 87.98
IBP 40.00 40.00 40.00
PRL 90.63 90.63 90.63
Ours 91.75 91.75 91.75
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