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Abstract001

Traditional voice conversion (VC) methods002
typically attempt to separate speaker identity003
and linguistic information into distinct004
representations, which are then combined to005
reconstruct the audio. However, effectively006
disentangling these factors remains challeng-007
ing, often leading to information loss during008
training. In this paper, we propose a new009
approach that leverages synthetic speech010
data generated by a high-quality, pretrained011
multispeaker text-to-speech (TTS) model.012
Specifically, synthetic data pairs that share013
the same linguistic content but differ in014
speaker identity are used as input-output pairs015
to train the voice conversion model. This016
enables the model to learn a direct mapping017
between source and target voices, effectively018
capturing speaker-specific characteristics while019
preserving linguistic content. Additionally, we020
introduce a flexible training strategy for any-to-021
any voice conversion that generalizes well to022
unseen speakers and new languages, enhancing023
adaptability and performance in zero-shot024
scenarios. Our experiments show that our025
proposed method achieves a 16.35% relative026
reduction in word error rate and a 5.91%027
improvement in speaker cosine similarity,028
outperforming several state-of-the-art methods.029
Voice conversion samples can be accessed at:030
https://voiceconversion-emnlp-2025.031
github.io/032

1 Introduction033

Voice conversion specifically aims to transform a034

source speaker’s voice to match a target speaker035

while preserving the original linguistic content.036

This is typically done by disentangling speech into037

content and speaker identity representations, which038

are combined during training to reconstruct the au-039

dio. At inference time, the source content is paired040

with a target speaker embedding to generate the041

converted speech.042

Several methods have been proposed for VC, 043

with supervised training being a common approach. 044

Content encoders are trained with text labels to 045

extract linguistic features, and speaker encoders 046

use speaker labels to capture identity-specific traits 047

(Huang, 2023; Liu et al., 2021). Alternatively, pho- 048

netic posteriorgrams (PPGs) can be used directly as 049

content representations (Sun et al., 2016; Tian et al., 050

2018). However, both approaches often struggle 051

to capture speaker-independent prosody and accent 052

information. Moreover, training content encoders 053

as ASR models can introduce alignment errors or 054

recognition errors, which can negatively impact 055

conversion quality (Hussain et al., 2023). 056

On the other hand, some methods avoid using 057

text labels by leveraging self-supervised learning 058

(SSL) to extract high-level phonetic representa- 059

tions (Polyak et al., 2021; Lin et al., 2021; Huang 060

et al., 2022b,c). These approaches aim to remove 061

speaker identity from source audio while preserv- 062

ing speaker-independent features such as accent 063

and content. To achieve this separation, techniques 064

such as vector quantization (Wu and Lee, 2020), 065

instance normalization (Chen et al., 2021b), heuris- 066

tic transformation (Neekhara et al., 2024), bottle- 067

neck, and data augmentation (Li et al., 2023) are 068

commonly applied. However, despite these efforts, 069

such methods still struggle to completely elimi- 070

nate speaker information from the source speech. 071

This often leads to speaker leakage, where the con- 072

verted audio retains unintended characteristics of 073

the source speaker, resulting in mismatches be- 074

tween the synthesized voice and the intended target 075

speaker (Baas et al., 2023). 076

Previous studies have primarily focused on fea- 077

ture disentanglement methods and audio recon- 078

struction in voice conversion systems. However, 079

feature disentanglement remains a challenging task 080

and training models to reconstruct the audio may 081

not be well suited for the voice conversion ob- 082

jective, which inherently involves transforming 083
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speech from one speaker to another. To address084

these limitations, we propose a novel training strat-085

egy that leverages synthetic data generated by a086

high-quality multi-speaker text-to-speech (TTS)087

system to directly establish input-output mappings088

for voice conversion, bypassing the need for tra-089

ditional reconstruction-based approaches. Despite090

the high fidelity of synthetic data, such TTS sys-091

tems are typically constrained to a fixed set of092

speakers, limiting their applicability to any-to-any093

voice conversion, particularly for unseen speak-094

ers. To mitigate this issue, we introduce a train-095

ing framework that promotes generalization to un-096

seen speakers without relying on additional text097

or speaker labels, thereby enhancing the system’s098

adaptability and performance in zero-shot voice099

conversion scenarios. In summary, we make the100

following contributions:101

• Synthetic data for Voice Conversion Training:102

We propose the use of synthetic data generated103

by a high-quality multi-speaker TTS system to104

train voice conversion models. This approach105

eliminates the need for audio reconstruction106

and feature disentanglement, enabling direct107

learning of input-output mappings.108

• Improved Generalization: We introduce a109

training strategy that allows the model to110

generalize to unseen speakers or unseen lan-111

guages, making it well suited for zero-shot112

voice conversion.113

• We validate the effectiveness of our ap-114

proach through extensive experiments, show-115

ing significant improvements over traditional116

reconstruction-based methods, especially in117

challenging zero-shot settings.118

2 Literature Review119

The goal of voice conversion (VC) is to transform120

the voice of a source speaker into that of a tar-121

get speaker while preserving the original linguis-122

tic content. Achieving this requires an effective123

decomposition of speech signals into distinct com-124

ponents such as linguistic content, speaker timbre,125

and prosodic characteristics. Early VC systems126

were typically trained as speech-to-speech mod-127

els on parallel datasets, where multiple speakers128

uttered the same sentences, defining the task as a129

sequence-to-sequence autoregressive problem (Sun130

et al., 2015; Chen et al., 2014). Recent VC ap-131

proaches have focused on reconstructing speech132

using disentangled representations of linguistic con- 133

tent and speaker identity. 134

2.1 Text-Based Method 135

A common strategy is to leverage pretrained auto- 136

matic speech recognition (ASR) models to extract 137

phonetic features such as PPGs, which provide 138

a speaker-independent representation of the input 139

speech (Sun et al., 2016; Liu et al., 2021; Tian 140

et al., 2018). Specifically, speaker information is 141

obtained using a pretrained speaker verification 142

(SV) model. The speaker embeddings are com- 143

bined with the content features during decoding, 144

allowing the system to generate speech in the target 145

speaker’s voice. Some approaches leverage hidden 146

text representations from pretrained multispeaker 147

text-to-speech (TTS) models, using them either as 148

semantic features or as target representations for 149

learning a mapping from audio to text (Park et al., 150

2020; Zhang et al., 2021). 151

Despite their advantages, text-based methods 152

suffer from several limitations. PPGs and other 153

textual representations often fail to capture fine- 154

grained attributes such as accent, prosody, and 155

speaker-independent speaking style. As a result, 156

these systems often produce speech that lacks ex- 157

pressiveness and sounds overly neutral (Hussain 158

et al., 2023). Although ASR-based disentangle- 159

ment methods have shown progress in separating 160

speaker and content information, their reliance on 161

textual supervision and limited prosodic modeling 162

remain significant challenges for achieving natu- 163

ral and expressive voice conversion across diverse 164

speakers and languages. 165

2.2 Text-Free Method 166

To address the limitations of text-based methods, 167

text-free approaches have emerged, leveraging self- 168

supervised learning models to extract content repre- 169

sentations without requiring transcriptions (Polyak 170

et al., 2021; Lin et al., 2021; Huang et al., 2022b,c). 171

Although self-supervised learning (SSL) features 172

capture high-level information related to linguistic 173

content, they often retain residual speaker charac- 174

teristics. To address this, methods such as bottle- 175

neck layers (Li et al., 2023), vector quantization 176

(Wu and Lee, 2020), and instance normalization 177

(Chen et al., 2021b) have been proposed to com- 178

press SSL features and extract speaker-independent 179

content representations. However, effective disen- 180

tanglement heavily depends on the choice of bot- 181

tleneck configuration: if the bottleneck dimension 182
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is too large, speaker information may be retained;183

if too small, important content information can be184

lost. A similar trade-off exists in vector quanti-185

zation: large codebooks may retain speaker traits,186

while overly small codebooks may lead to exces-187

sive loss of content information. Moreover, these188

compression techniques often degrade the quality189

of the generated audio, and full disentanglement of190

speaker and content information remains an open191

challenge.192

2.3 KNN Method193

Recent work has introduced k-nearest neighbor194

(kNN)-based voice conversion methods (Baas et al.,195

2023), offering a simpler alternative to traditional196

feature disentanglement approaches. These meth-197

ods operate directly on frame-level self-supervised198

representations extracted from both source and199

target speech, which encode both phonetic and200

speaker-specific information. Voice conversion is201

performed by replacing each frame of the source202

with its nearest neighbor from the target set, fol-203

lowed by vocoder-based synthesis.204

However, in one-shot scenarios, the limited size205

of the target set restricts the pool of candidate neigh-206

bors, often resulting in higher word error rates. To207

address this, the Phoneme Hallucinator (Shan et al.,208

2024) was proposed, leveraging a permutation net-209

work to synthesize additional target representations210

and expand the neighbor set, thereby improving211

intelligibility. Nonetheless, averaging features in212

kNN-based retrieval can lead to oversmoothing, re-213

ducing speaker distinctiveness and clarity in the214

synthesized speech.215

2.4 Diffusion Method216

Diffusion models have shown exceptional perfor-217

mance in generative tasks across a variety of do-218

mains, including images, videos, and audio. In219

speech processing, diffusion models have been suc-220

cessfully applied to tasks such as audio generation221

(Kong et al., 2021; Chen et al., 2021a) and text-to-222

speech (TTS) synthesis (Popov et al., 2021; Huang223

et al., 2022a). Furthermore, diffusion models have224

been investigated for VC tasks with the aim of225

enhancing the conversion process. In particular,226

diffusion-based VC models (Popov et al., 2022)227

have demonstrated high performance in zero-shot228

speaker adaptation through iterative sampling pro-229

cesses. While recent works such as Diff-HierVC230

(Choi et al., 2023) and DDDM-VC (Choi et al.,231

2024) have further improved zero-shot VC perfor-232

mance through source-filter disentanglement and 233

disentangled denoising processes, the audio quality 234

of diffusion models is still limited. 235

3 Methodology 236

In text-free VC systems, content and speaker iden- 237

tity are often not fully disentangled. As a result, 238

speaker information can leak into the content repre- 239

sentation, which undermines the system’s ability to 240

perform clean speaker conversion. This leakage re- 241

duces the system’s generalization to unseen voices 242

or speaking styles and often results in converted 243

speech that retains characteristics of the source 244

speaker. 245

In text-based VC, ASR-derived content repre- 246

sentations are highly sensitive to transcription er- 247

rors, mispronunciations, and noisy labels, which 248

can compromise their reliability and degrade the 249

quality of converted speech (Sun et al., 2016; Liu 250

et al., 2021; Tian et al., 2018). Some approaches at- 251

tempt to leverage knowledge transfer from hidden 252

representations of text encoders in multispeaker 253

TTS models (Park et al., 2020; Zhang et al., 2021). 254

However, mapping audio representations directly 255

to these text-based features is a difficult task. In 256

addition, this process typically requires an explicit 257

alignment mechanism between speech and text, 258

which introduces further complexity. 259

As an alternative solution, synthetic data offers 260

several advantages for voice conversion. When 261

both source and target audio are generated from 262

the same linguistic content, it provides a clean and 263

direct supervisory signal. This shared content al- 264

lows precise frame-level alignment between source 265

and target audio, enabling more stable and fine- 266

grained learning of the conversion function. Unlike 267

traditional approaches that rely on symbolic repre- 268

sentations (e.g., phonemes or characters), synthetic 269

data eliminates the need for such intermediates and 270

avoids issues like label noise commonly found in 271

real-data training. Furthermore, with controlled 272

or predefined durations, speaker-independent fea- 273

tures are inherently aligned across domains, remov- 274

ing the need for forced alignment algorithms used 275

in previous work (Park et al., 2020; Zhang et al., 276

2021). Unlike methods that map audio to hidden 277

text representations from multispeaker TTS mod- 278

els, our approach directly maps source audio to 279

target audio, simplifying the learning process. This 280

enables one-to-one frame alignment, allowing the 281

model to focus more effectively on speaker trans- 282
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formation while preserving linguistic content. Fi-283

nally, synthetic data enables the creation of diverse284

speaker pairs with uniform content, supporting the285

learning of generalizable speaker conversion map-286

pings. Motivated by these advantages, this work is287

the first to propose using synthetic data as a training288

paradigm for voice conversion models.289

3.1 Synthetic Data Strategy290

Building upon these advantages, we propose a syn-291

thetic data strategy to improve the disentanglement292

of speaker and content representations in voice con-293

version. Instead of relying on real-world utterances,294

we generate high-quality synthetic pairs with iden-295

tical linguistic content but varying speaker identi-296

ties. This provides ideal supervision for isolating297

speaker-independent content.298

We use a multi-speaker TTS system that pro-299

duces natural, intelligible speech across speakers300

from a shared linguistic latent space. Our selection301

criteria for the TTS system are: (1) the generated302

speech must be of high fidelity, exhibiting natu-303

ral prosody and clarity, and (2) the model must304

synthesize source and target utterances from the305

same linguistic latent space, ensuring consistent306

phonetic and prosodic alignment across speakers.307

These criteria ensure that the synthetic speech pairs308

are perfectly aligned in linguistic structure while309

differing only in speaker identity.310

We adopt VITS (Kim et al., 2021) as the back-311

bone of our TTS system because it combines varia-312

tional inference, flows, and adversarial learning to313

generate high-quality speech with precise duration314

control and the ability to sample two audios with315

different speakers conditioned on a shared latent316

linguistic representation. This enables the creation317

of large-scale, controllable training data that im-318

proves disentanglement, reduces speaker leakage,319

and enhances voice conversion robustness.320

Given a text input ctext, source speaker embed-321

ding ssrc, target speaker embedding stgt, and noise322

vector w, we generate a pair of utterances by first323

encoding the linguistic content:324

htext = TextEncoder(ctext) (1)325

We then sample a global speaker token:326

g = random(ssrc, stgt) (2)327

and predict the duration based on speaker condition328

using the duration predictor (DP):329

durtext = DP(htext, g, w) (3)330

Next, we project the encoded content into a linguis- 331

tic latent distribution: 332

µp, σp = Projector(htext) (4) 333

We then sample latent linguistic features with dura- 334

tion expansion, where the length regulator (LR) is 335

defined as: 336

µp, σp = LR(µp, σp, durtext) (5) 337

338

zp = µp + σp · ϵ, ϵ ∼ N (0, I) (6) 339

To generate speaker-specific representations, we 340

apply the inverse flow conditioned on each speaker: 341

zsrc = Flow−1(zp, ssrc) (7) 342

343

ztgt = Flow−1(zp, stgt) (8) 344

345

Finally, we decode both representations into 346

waveform audio: 347

asrc = Decoder(zsrc), atgt = Decoder(ztgt) (9) 348

This process results in a pair of utterances 349

with identical content, prosody, and speaker- 350

independent information, but differing in speaker 351

identity. Such pairs provide a clean and consistent 352

training signal for learning voice conversion. 353

3.2 Model Overview 354

After generating synthetic data consisting of source 355

and target speech pairs for supervised training, 356

these utterances are directly utilized as input-output 357

pairs for the voice conversion model. As the back- 358

bone architecture, we adopt a VITS-base model. 359

Following the design of FreeVC (Li et al., 2023), 360

our model structure retains its core components. 361

However, we note that while the source and target 362

speech pairs share the same underlying linguistic 363

content, the target speech is conditioned on a differ- 364

ent speaker identity, which primarily manifests in 365

variations in pitch. To avoid mismatch between in- 366

put and output during training, we incorporate the 367

fundamental frequency (F0) of the target speech 368

as an additional conditioning feature when decod- 369

ing the final audio. The general model pipeline is 370

illustrated in Figure 1. 371
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Figure 1: Voice conversion with synthetic data.

3.2.1 Training Procedure372

In the training phase, the source and target audios373

are processed through different stages:374

Source Audio Processing: The source audio is375

passed through WavLM (Chen et al., 2022) and a376

Content Extractor to obtain a distribution of content377

features N (µϕ, σ
2
ϕ).378

Target Audio Processing: The target audio is379

passed through a Speaker Encoder and a Posterior380

Encoder to extract the posterior latent distribution381

N (µϕ, σ
2
ϕ). Then, a latent variable z is sampled382

from this distribution z ∼ N (µϕ, σ
2
ϕ). The sam-383

pled latent vector z is passed through a flow-based384

module to obtain zp, transforming the posterior385

distribution to match the prior distribution. A Kull-386

back–Leibler (KL) divergence loss is calculated387

to minimize the discrepancy between the posterior388

and prior distributions.389

Fundamental Frequency (F0) Adjustment: To390

address the mismatch in F0 between the source391

and target audio, we extract the F0 of the target392

audio and pass it through an F0 encoder to obtain393

pitch-related features. The decoder then takes the394

transformed latent representation along with the395

F0 features to generate the target audio. In this396

work, we extract F0 using Parselmouth1.397

3.2.2 Fine-Tuning Adaptation398

Training with synthetic data often results in poor399

generalization to unseen speakers. Multi-speaker400

TTS models are typically trained with fixed speaker401

embeddings, which can lead to reduced speaker402

similarity for out-of-domain speakers. Moreover,403

slight discrepancies in the linguistic content be-404

tween source and target utterances may persist, de-405

spite both being generated from the same text.406

1https://github.com/YannickJadoul/Parselmouth

To mitigate these challenges, we adopt a two- 407

phase training strategy: 408

• Phase 1: Train the model with synthetic data, 409

where the WavLM and Content Extractor com- 410

ponents are responsible for learning indepen- 411

dent speaker representations. The WavLM 412

Large is frozen during training. 413

• Phase 2: Fine-tune the model using real large 414

multispeaker speech recordings corpus with a 415

reconstruction-based objective, the input and 416

output of the model is the same audio. During 417

this phase, we freeze WavLM and Content Ex- 418

tractor to preserve speaker-independent repre- 419

sentations learned in phase 1. This fine-tuning 420

phase helps the model adapt to new speakers 421

and improves the fidelity of linguistic content. 422

Additionally, the model becomes more versa- 423

tile and can easily adapt to different domains, 424

such as various languages or accents. 425

3.2.3 Inference 426

During inference, the source audio is processed by 427

WavLM and the Content Extractor to obtain the 428

content distribution N (µϕ, σ
2
ϕ). A latent sample zp 429

is drawn and combined with the speaker embedding 430

from the reference audio via the inverse flow model, 431

producing a feature that captures both content and 432

speaker information. 433

To address the mismatch in F0 between the 434

source and reference audio, we shift F0 source 435

to F0 target with same median level, the following 436
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steps are performed:437

F0src = Get_F0(Source Audio) (10)438

F0ref = Get_F0(Reference Audio) (11)439

logF0shifted = log(F0src)− med(log(F0src))440

+ med(log(F0ref)) (12)441

F0shifted = exp(logF0shifted) (13)442

The shifted F0 is then used as a conditioning fea-443

ture along with the fused linguistic and speaker444

representation to generate the final audio output.445

3.2.4 Objective Function446

Following the methodology proposed in (Li et al.,447

2023), we formulate the objective function by448

combining losses from conditional variational au-449

toencoders (CVAE) and generative adversarial net-450

works (GAN) (Mao et al., 2017; Larsen et al.,451

2016). CVAE-related losses include the KL di-452

vergence loss Lkl, which measures the discrepancy453

between the prior and posterior distributions of the454

flow-based model, and a phase-dependent recon-455

struction/conversion loss, either Lrec in phase 2 or456

Lcv in phase 1, defined as the L1 distance between457

the predicted and target mel-spectrograms. GAN-458

related losses include the adversarial loss for the459

discriminator Ladv(D), the adversarial loss for the460

generator Ladv(G), and the feature matching loss461

Lfm(G). We further incorporate two distillation462

losses into the total objective. The final loss func-463

tion is defined as:464

L(D) = Ladv(D) (14)465

466
L(G) = Lrec/cv + Lkl + Ladv(G) + Lfm(G) (15)467

4 Experiment Setup468

4.1 Datasets469

For phase 1 of training, we use synthetic speech470

generated by a publicly available pretrained VITS471

model2. Specifically, we adopt the model released472

in the official repository. The amount of synthetic473

data corresponds to the VCTK training set used474

in the original VITS implementation. For each475

sample, the target audio is synthesized using the476

ground-truth text and speaker ID, while the source477

audio is generated by sampling a different random478

speaker ID. In phase 2, we fine-tune the model on479

the LibriSpeech dataset (Panayotov et al., 2015),480

2https://github.com/jaywalnut310/vits

using the train-clean-360 and train-clean-100 sub- 481

sets, totaling approximately 460 hours of speech 482

from 1,172 speakers. Evaluation is conducted on 483

the test-clean subset under any-to-any voice con- 484

version scenarios. 485

4.2 Model Configuration and Training Details 486

We follow the implementation and hyperparameter 487

setup of FreeVC (Li et al., 2023). Training oc- 488

curs in two phases: up to 450k steps on synthetic 489

data, followed by 150k steps of fine-tuning on real 490

speech. All experiments are conducted on four 491

NVIDIA Tesla A100 GPUs. 492

We compare our method with several recent 493

state-of-the-art voice conversion models, including 494

FreeVC (Li et al., 2023), DDDM-VC (Choi et al., 495

2024), Diff-HierVC (Choi et al., 2023), FaCodec 496

(NaturalSpeech 3) (Ju et al., 2024), and KNN-VC 497

(Baas et al., 2023). For all baselines, we use official 498

publicly released pretrained models. For KNN-VC, 499

we use an 8-minute real speech segment as the 500

reference pool for nearest-neighbor retrieval. 501

4.3 Evaluation Metrics 502

Objective Evaluation: We evaluate system perfor- 503

mance using four objective metrics: Character Er- 504

ror Rate (CER), Word Error Rate (WER), Speaker 505

Encoder Cosine Similarity (SECS), and Objective 506

Naturalness. CER and WER assess intelligibility 507

of both source and converted speech, using the 508

HuBERT model3 (Hsu et al., 2021). SECS mea- 509

sures speaker similarity using the cosine similarity 510

between embeddings extracted by Resemblyzer4. 511

Naturalness is assessed using NISQA (Mittag et al., 512

2021), which estimates perceptual speech quality 513

without reference audio. We compute these met- 514

rics on 1,000 randomly sampled audio pairs from 515

LibriSpeech test-clean. 516

Subjective Evaluation: For human evaluation, we 517

use Mean Opinion Score (MOS) and Speaker Sim- 518

ilarity Mean Opinion Score (SMOS). MOS rates 519

naturalness, while SMOS rates speaker similarity, 520

both on a 1–5 scale. We randomly select 30 au- 521

dio pairs from the objective set, each evaluated by 522

three different annotators, resulting in a total of 523

540 labeled audio samples. A total of 12 volunteer 524

listeners participate in the evaluation. Final scores 525

are calculated by averaging the ratings across an- 526

notators for each pair to ensure reliability. In voice 527

3https://huggingface.co/facebook/
hubert-large-ls960-ft

4https://github.com/resemble-ai/Resemblyzer
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Model Objective Evaluation Subjective Evaluation
SECS↑ WER↓ CER↓ NISQA↑ MOS↑ SMOS↑ B-MOS↑

FreeVC 75.66 2.37 0.78 4.60 3.60 ± 0.26 3.01± 0.28 3.31

KNN-VC 78.33 2.16 0.62 3.92 3.17± 0.23 2.89± 0.21 3.03
Diff-Hier 81.42 3.82 1.51 3.80 2.87± 0.28 3.42± 0.25 3.15
DDDM-VC 81.86 6.84 2.92 3.91 2.89± 0.28 3.61 ± 0.23 3.25
Facodec 81.54 2.08 0.64 3.90 2.49± 0.29 2.66± 0.27 2.58
O_O-VC (Ours) 86.70 1.74 0.53 4.04 3.42± 0.24 3.48± 0.23 3.45

Table 1: Any-to-any voice conversion results. Blue indicates best performance, Underline indicates second best.
Subjective evaluation results showing MOS and SMOS scores, along with 95% confidence intervals.

conversion systems, both MOS and SMOS help528

evaluate model quality. To provide an overall com-529

parison, we introduce a new metric called balance-530

MOS (B-MOS), defined as the average of these two531

scores.532

5 Results and Analysis533

5.1 Zero-Shot Voice Conversion534

We evaluate our model in a zero-shot setting, where535

the target speaker is unseen during training. The536

results in Table 1 demonstrate that our model537

achieves the best performance in terms of content538

consistency, with the lowest WER and CER. Fur-539

thermore, our model archives the second highest540

MOS, only slightly behind FreeVC. This can be541

attributed to the fact that FreeVC is trained on a542

high-quality speech dataset, whereas our model is543

fine-tuned using LibriSpeech, which is of compara-544

tively lower quality. Despite FreeVC’s strong MOS,545

it performs notably worse in terms of speaker sim-546

ilarity and content intelligibility compared to our547

model. Although DDDM-VC achieves the highest548

Similarity Mean Opinion Score (SMOS), its speech549

quality is comparatively poor. Overall, our model550

achieves the best intelligibility while maintaining551

a strong balance between naturalness (MOS) and552

speaker similarity (SMOS), outperforming recent553

systems in a zero-shot scenario.554

5.2 Ablation Study555

We conduct an ablation study by modifying or re-556

moving key modules to evaluate their individual557

contributions, summarized in Table 2. We observe558

that removing the use of synthetic data, the F0559

encoder, or phase 2 fine-tuning each leads to a560

noticeable drop in intelligibility, highlighting the561

importance of all three components. Eliminating562

phase 2 fine-tuning also causes a significant reduc-563

tion in speaker similarity, likely due to the limited564

Model SECS↑ WER↓ CER↓ NISQA↑
O_O-VC (Ours) 86.70 1.74 0.53 4.04
w/o F0 Encoder 87.00 2.07 0.61 3.85
w/o Finetuning 70.78 2.18 0.66 4.59
FreeVC 75.66 2.37 0.78 4.60

Table 2: Ablation study results.

speaker diversity in the phase 1 dataset. However, 565

since the phase 1 data is of higher quality, the phase 566

2 adaptation may slightly reduce speech quality. 567

We quantitatively evaluate how effectively the 568

prior encoder removes speaker information by com- 569

paring our model to FreeVC, which shares the same 570

backbone architecture. Our goal is to demonstrate 571

that training with synthetic data significantly im- 572

proves the removal of speaker identity from source 573

audio. To assess this, we use three clustering eval- 574

uation metrics: Adjusted Rand Index (ARI), Nor- 575

malized Mutual Information (NMI) and Silhou- 576

ette Score. The ARI measures the similarity be- 577

tween predicted clusters and true speaker labels, 578

adjusted for chance. A lower ARI indicates that the 579

clusters do not correspond well to speaker identi- 580

ties, suggesting better speaker information removal. 581

NMI measures the amount of shared information 582

between the predicted and true clusters; lower val- 583

ues indicate weaker correlation and thus stronger 584

speaker anonymization. The Silhouette Score re- 585

flects how well each embedding fits within its clus- 586

ter compared to the others. Lower scores imply that 587

the model’s embeddings are not tightly grouped 588

by speaker, further indicating that speaker iden- 589

tity has been suppressed. The quantitative results 590

are shown in Table 3. Our model, trained with 591

synthetic data, consistently achieves lower scores 592

across all metrics, demonstrating its improved abil- 593

ity to remove speaker-specific information com- 594

pared to FreeVC. 595

To provide an intuitive understanding, we visu- 596

7



Figure 2: T-SNE visualization of speaker-independent features. More distributed points with no clusters indicate
better speaker independence.

Model ARI↓ NMI↓ Silhouette↓
O_O-VC (Ours) 0.07 0.31 0.15
FreeVC 0.13 0.41 0.17

Table 3: Evaluation of speaker information removal.

alize the speaker-independent features using t-SNE597

in Figure 2. Our model’s embeddings are more598

evenly dispersed across speakers (different colors),599

indicating greater speaker independence. In con-600

trast, FreeVC shows noticeable clustering, such as601

6563 and 5192, which indicates that its features602

preserve a greater degree of speaker-specific infor-603

mation.604

We provide further ablation studies on how syn-605

thetic alignment data and emotion information are606

preserved in the Appendices A.1 and A.2.607

5.3 Adaptation to New Languages608

We evaluate the adaptability of our approach to609

new languages by applying the model to speech610

data from previously unseen linguistic domains. In611

this experiment, we fine-tune the model in phase 2612

using speech from three languages: Chinese (ZH),613

Italian (IT), and Vietnamese (VI). For Chinese, we614

use the AISHELL-3 training dataset (Shi et al.,615

2021); for Vietnamese, we use the same dataset as616

(Tu et al., 2025); and for Italian, we use the training617

subset from the Multilingual LibriSpeech (MLS)618

dataset (Pratap et al., 2020). We reserve a portion619

of each training set as a test set and randomly pair620

400 utterances for evaluation. To measure content621

intelligibility, we use language-specific automatic622

speech recognition (ASR) tools: FunASR (Gao623

et al., 2023) with paraformer-zh (Gao et al., 2022)624

for Chinese, Chunkformer-large-vi (Le et al., 2025)625

for Vietnamese, and Whisper-large (Radford et al., 626

2023) for Italian. Figure 3 suggests that our phase 627

2 fine-tuning significantly improves the model’s 628

performance and allows it to adapt to any language 629

using only audio, without requiring labeled data. 630

Figure 3: Performance of new language adaptation:
CER for Chinese, WER for Vietnamese and Italian.

6 Conclusion 631

We presented a robust voice conversion framework 632

based on synthetic data and a two-phase training 633

strategy. Our method enhances speaker similar- 634

ity, speech quality, and content consistency, par- 635

ticularly in zero-shot scenarios with unseen target 636

speakers. Experiments and ablation studies confirm 637

the effectiveness of our approach and demonstrate 638

its ability to prevent speaker information leakage 639

from the source audio. Additionally, we showed 640

that the model generalizes well to unseen languages 641

without requiring labeled data, making it highly 642

suitable for low-resource settings. 643

Limitations 644

Although our model improves speaker similarity 645

and content intelligibility, it still depends on ac- 646

cess to a high-quality, labeled corpus to train the 647

8



TTS system. Furthermore, the effectiveness of syn-648

thetic data generation and its influence on the per-649

formance of voice conversion across different TTS650

systems remain insufficiently explored. Therefore,651

in future work, we plan to investigate alternative652

TTS models to gain a deeper understanding of their653

impact on overall system performance.654
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A Appendix884

A.1 Semantic Alignment of Synthetic Audio885

Pairs886

(a) Cosine Pairwise Semantic Similarity

(b) Top-1 Cosine Similarity Alignment Path

Figure 4: Semantic Alignment of Source and Target
Audio via Synthetic Data

In this section, we evaluate the alignment be-887

tween the source and target audio generated using888

a synthetic data strategy. To assess alignment qual-889

ity, we extract semantic features with a pretrained890

HuBERT ASR model, as described in Section 4.3.891

We then compute the cosine similarity between all892

pairs of frames from the source and target audio,893

resulting in a pairwise similarity matrix. This ma- 894

trix is visualized as a cosine similarity heatmap in 895

Figure 4a. 896

The heatmap displays a clear diagonal of high 897

similarity values, indicating strong frame-level 898

alignment between the source and target audio. 899

Furthermore, the top-1 cosine similarity alignment 900

path, shown in Figure 4b, lies precisely along the 901

diagonal, confirming perfect alignment. These 902

results demonstrate that the synthetic data input- 903

output pairs are ideal training examples for voice 904

conversion, enabling the model to learn effective 905

one-to-one mapping. 906

A.2 Emotional Information Preservation 907

(a) Our Proposal

(b) FreeVC

Figure 5: Emotion representation of converted audio
using t-SNE

To evaluate how well emotional information is 908

preserved, we compare our proposed model with 909

the baseline FreeVC, which shares the same back- 910

bone. For this experiment, we use the ESD dataset 911

(Zhou et al., 2021), which contains emotional 912

speech. We randomly sample 10 audio clips from 913

each of the 10 speakers across 4 emotions, resulting 914

in a total of 400 source audio samples. For the tar- 915

get speakers, we randomly select a speaker from the 916
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LibriSpeech test set. After performing voice con-917

version, we extract emotion embeddings from the918

converted audio using the emotion2vec_plus_large919

model (Ma et al., 2024) and visualize them using920

t-SNE. As shown in Figure 5, our proposed model921

produces more distinct emotion clusters, such as922

sad and surprise, while FreeVC exhibits little to923

no clustering, indicating that our model better pre-924

serves emotional characteristics.925
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