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Abstract

LLMs rely on safety alignment to produce socially acceptable responses. This is
typically achieved through instruction tuning and reinforcement learning from hu-
man feedback. However, this alignment is known to be brittle: further fine-tuning,
even on benign or lightly contaminated data, can degrade safety and reintroduce
harmful behaviors. A growing body of work suggests that alignment may cor-
respond to identifiable geometric directions in weight space, forming subspaces
that could, in principle, be isolated or preserved to defend against misalignment.
In this work, we conduct a comprehensive empirical study of this geometric per-
spective. We examine whether safety-relevant behavior is concentrated in specific
subspaces, whether it can be separated from general-purpose learning, and whether
harmfulness arises from distinguishable patterns in internal representations. Across
both parameter and activation space, our findings are consistent: subspaces that
amplify safe behaviors also amplify unsafe ones, and prompts with different safety
implications activate overlapping representations. We find no evidence of a sub-
space that selectively governs safety. These results challenge the assumption that
alignment is geometrically localized. Rather than residing in distinct directions,
safety appears to emerge from entangled, high-impact components of the model’s
broader learning dynamics. This suggests that subspace-based defenses may face
fundamental limitations and underscores the need for alternative strategies to pre-
serve alignment under continued training. We corroborate these findings through
multiple experiments on five open-source LLMs. Our code is publicly available at:

1 Introduction

Large Language Models (LLMs) have shown strong performance across a wide range of general-
purpose tasks, including complex reasoning and problem solving [1, 43, 49-51, 58]. To ensure these
models behave responsibly and align with human values, they undergo an additional process of
security alignment. Despite known jailbreak methods that can bypass safeguards, aligned models
are generally considered significantly safer than their base versions [37, 44, 55]. A growing line of
research focuses on the weight difference between the base and aligned models, commonly referred
to as the alignment matrix, which captures the transition from unaligned to aligned behavior. This
difference has been used to interpret alignment mechanisms and develop defenses against adversarial
attacks [3, 10, 18, 25, 28, 30, 57].

However, this alignment is fragile. Since safety is encoded in the model’s weights, any modification,
such as further fine-tuning (FT), can compromise it. While FT adapts models to new tasks by learning
update directions, it offers no guarantee that safety is preserved. This exposes a deeper attack surface
beyond prompt engineering: an adversary could insert a small number of malicious samples into a
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training set to subvert alignment [4, 59, 60, 64]. Recent work shows that even benign FT, low-rank
adaptation, or pruning can degrade a model’s safety profile [15, 16, 29, 42, 54]. Preserving alignment
under continued training is therefore both a practical concern and a theoretically challenging problem.
Given this vulnerability, a natural question arises: Does there exist any subspace, whether in weight
space or activation space, that uniquely encodes safety alignment? 1f safety is a distinct and
structured property of the model, then updates or representations affecting it might consistently
concentrate in identifiable geometric regions. This motivates a broader question: can we isolate or
characterize safety-relevant subspaces that amplify aligned behavior or suppress harmful outputs?

To explore this question, we conduct four experiments probing the geometry of safety-related behavior
across model weights and internal representations. We begin by analyzing FT updates from purely
useful and harmful datasets, projecting them into subspaces derived from the alignment matrix to
test whether safety correlates with energy or behavioral impact. Next, we examine contaminated FT,
where a small fraction of harmful samples is mixed into a benign dataset. By projecting updates into
the orthogonal complement of alignment-derived subspaces, we test whether harmful components
can be selectively removed (see Figure 1). In the third experiment, we directly compare the dominant
subspaces of useful, harmful, and alignment updates to assess whether safety-altering updates share
consistent structure. Finally, we inspect the representation space, comparing internal activations from
useful and harmful prompts to ask whether safety-related inputs occupy distinct subspaces, even
when weight updates do not.

Across all experiments, we observe a consistent and surprising result: no subspace, whether defined
by alignment directions, update energies, or input representations, captures safety-specific behavior
in isolation. While certain subspaces, such as the top alignment directions, are behaviorally impactful,
they amplify both helpful and harmful behaviors equally, reflecting general update sensitivity rather
than alignment. Similarly, activations from harmful and helpful prompts occupy overlapping regions
of representation space, offering no evidence for distinct "safety activation" geometry. These findings
point to a fundamental limitation of subspace-based alignment strategies. If safe and unsafe behaviors
cannot be cleanly separated geometrically, then projection- or filtering-based defenses are unlikely to
suppress harmfulness without incurring equivalent losses in utility. Our key contributions are:

* We show that subspaces derived from alignment updates are not safety-specific; they amplify both
helpful and harmful behaviors equally, reflecting general update sensitivity rather than alignment.

* We find that orthogonal projection intended to filter harmful updates leads to proportional losses in
utility, suggesting no selective geometric separation between safe and unsafe behavior.

* We demonstrate that harmful and aligned updates do not share a consistent subspace, and that
harmful prompts do not activate distinct regions of representation space.

» Through consistent results across five open-source LL.Ms evaluated in multiple experiments,
we challenge the view that safety alignment is geometrically localized and reveal fundamental
limitations of subspace-based defenses.

2 Preliminaries

Notation. Let W, denote the parameters of the base model, and let W 5 represent the parameters of
the aligned instruction-tuned model. We further fine-tune the aligned model on a task-specific dataset
Dj, where j € {Useful, Harmful, Contaminated}, resulting in parameters Wer ;. We decompose
the total parameter update as the sum of two components:

Ap =W — Wy (alignment update), €))
A%} = Wgr,; — Wy (task-specific update). )

Importance of Alignment Directions (A4). Alignment training typically emphasizes behavioral
properties such as harmlessness, helpfulness, and honesty. Empirical studies [10, 18, 37] suggest
that the alignment update A encodes directions in parameter space that are strongly correlated
with these safety attributes. Our goal is to systematically control the extent to which the subsequent

task-specific update AZF interacts with these alignment directions.

Constructing the Alignment Subspace. To formalize this notion, we begin by constructing the
alignment subspace. Each tensor in the alignment update A 4 is first reshaped into a matrix (flattened
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Figure 1: The base model W, is instruction-tuned to produce the aligned model W 4. Step 1: The
difference A4 = W4 — W, defines a safety direction, from which projection matrices Py, (top-K
subspace) and P (orthogonal subspace) are derived. T4 is then fine-tuned on three datasets: helpful,
harmful, and contaminated, to yield Wysetu1, Wharmful, and Weontaminated, With updates Atj. Step 2:
Project A, using P and P+, and add back to W4 to obtain projected models for evaluation. In
addition, SVD is performed on the task-specific updates and MSO is computed between the top-K
singular vectors.

if needed) Va € RM*N we perform a thin singular value decomposition (SVD) of the form
Va = USV'T, which reveals the principal directions of parameter change [12, 36], ranked by their
contribution to the Frobenius norm. The top &k (Top-K) right singular vectors in V" are then selected
to define the alignment subspace:

Sy :=span(Uy), U, € RM** k< rank(Vy). 3)

Intuitively, Sy captures the k most significant directions of parameter shifts resulting from alignment
training. The alignment subspace naturally induces projection operators:

P, :=U,U, Pt :=1I-P, 4)

where Py, projects a matrix onto the alignment subspace, and P;- onto its orthogonal complement.

Projection Schemes. Given a fractional rank hyperparameter ¢ € (0,1], we determine k =
|o - min(M, N)] and apply one of two projection-based update schemes to the task-specific update:

Parallel : Al = P,AZ W paatiel = Wa + A%, ©)

Orthogonal : A/, = A7, Worthogona = Wa + A% (6)

Equation 5 retains the update components that align with the alignment directions, while Equation 6
removes this aligned component, retaining only the update orthogonal to the alignment subspace.

Control Experiments. To further assess the specificity and effectiveness of the alignment subspace,
we introduce two control experiments:

* Random-K: Instead of using the top-k singular vectors from the SVD of V, we randomly sample
k singular vectors from the full set to construct a randomized alignment subspace.

* Random: We replace Vz with a random matrix of the same dimensions, perform its SVD, and use
the top-k singular vectors to define a synthetic alignment subspace.

Energy-Kept Ratio. We introduce the fractional energy metric to quantify the extent of overlap
between the task update and the alignment subspace:

_IPARE

Ex(AL) R EH(AL) =1 — E(A)). (7)

Mode Subspace Overlap (MSO). Let V € R¥*™ and W € R¥"™W be two matrices with a
shared ambient dimension d but possibly different column counts. We extract their principal directions
using thin SVD:

V=UySy V), W=UpZpyViy. (8)



For a chosen energy-retention fraction 7 € (0, 1], we select the smallest ky and &y such that the
top ky (resp. kw) left singular vectors capture at least an n-fraction of |2y ||% (resp. || Sw||%). This

yields orthonormal bases Qv € RY*v and Qy € R¥**wW  The overlap matrix is then defined as:

S = QuQw € RFvxkw, ©)
To quantify the similarity between these n-energy subspaces, we use MSO metric:
S 2
MSO(V,W;7) = 151 0 <MSO < 1. (10)

min(kv, kw) ’

Intuitively, MSO(V, W; 1)) measures the overlap between the top-7 energy components of V and
‘W it equals O for orthogonal subspaces and 1 for identical spans. As a baseline, the expected overlap
between random subspaces of dimensions kv and ky in R is given analytically by:

max(kv s kw)

E[overlap] = 7

(1)

Models Used. Throughout our work, we evaluate both base and instruction-aligned versions of
several open-source LLMs. For example, we consider Qwen-2.5 3B (base) alongside its aligned
variant, Qwen-2.5 3B Instruct. We report results for base and aligned versions of five models: LLaMA
3.21B [11], LLaMA 2 7B [51], Qwen-2.5 1B [58], Qwen-2.5 3B, and Qwen-2.5 7B.

3 Do Alignment Subspaces Encode Safety?
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Figure 2: Parallel projection-based update schemes across varying SVD fractions. We report the
energy-kept ratio for models fine-tuned on Full Useful and Full Harmful data, utility for models
fine-tuned on Full Useful, and harmfulness for models fine-tuned on Full Harmful.

A central question in understanding safety alignment is whether specific directions in weight space,
such as those defined by the difference between a base model and its RLHF-aligned counterpart,
encode information unique to safety. If this is the case, then constraining FT updates to lie within
these subspaces could offer a principled way to guard against harmful optimization. We begin our
investigation by examining whether task-specific FT updates align differently with the top directions
of the alignment matrix, depending on whether the task is helpful or harmful.

Experimental Setup. We fine-tune an aligned instruction-tuned model on two distinct datasets.
The first is a 20K subset of MetaMathQA [63], a benchmark of math word problems representing
a useful task without safety concerns. The second is a 4K unsafe subset of BeaverTails [26], a
synthetic dataset of harmful instruction—response pairs designed to elicit unsafe behavior. We denote
the resulting weight updates as AP and Al regpectively. To quantify behavioral effects, we
evaluate harmfulness using the AdvBench dataset [68], with GPT-40-mini [24] scoring each response



from 1 (least harmful) to 5 (most harmful); the final score is the average across samples. Utility is
measured by accuracy on the GSM8Kk test set [8], using final answer correctness. We compute these
metrics, energy-kept ratio, utility, and harmfulness, for the projected models W ratie; and W grnogonat
as well as for the base, aligned, fine-tuned, and control models.

Results: Energy Is Uniform Across Subspaces, Performance Is Not. As shown in Figure 2,
the fraction of energy retained in projected updates increases linearly with subspace rank and is
consistent across all three subspace types. This pattern holds for both helpful and harmful updates.
There is no evidence that update energy is preferentially concentrated in the top directions of A 4
for safe vs unsafe FT. This suggests that if a "safety subspace" exists, it is not captured simply by
energetic alignment with the dominant directions of A 4. However, while energy is evenly distributed,
behavioral impact is not. We can observe that projecting A%Seﬁ” onto the top-k directions consistently
improves utility relative to random projections with equal energy, in Figure 2. Similarly, projecting
A%a"“f‘” onto the same directions increases harmfulness. Thus, the top singular directions of A 4 are
not uniquely aligned with safety, but they are generally potent. Updates along these directions are
more effective, whether the goal is to enhance utility or to elicit harmful behavior. We present results
on all models in Table | (Appendix D).

Implications: Alignment Directions Reflect Update Sensitivity, Not Safety. This symmetry
across tasks is important. The fact that top-£ directions amplify both helpful and harmful behavior
equally suggests they do not encode alignment directly. Instead, they appear to represent axes of
general parameter sensitivity, directions where updates tend to induce large changes in model behavior.
In this sense, A 4 captures a general learning geometry: directions that are especially effective for
optimization, not inherently safe. We draw three key takeaways. First, neither helpful nor harmful
updates preferentially align with the top subspaces of A 4 in terms of energy. Second, those same
subspaces are more behaviorally expressive, enhancing both utility and harmfulness depending on
the task. Third, this challenges the notion that A 4 encodes safety-specific information. Its dominant
directions support effective learning broadly, without guiding its ethical character. Thus, using A 4 to
constrain updates may regulate the magnitude of behavior change, but not its direction or valence.

4 Can Harmful Subspaces Be Removed?

Having analyzed helpful and harmful updates in isolation, we now consider a more realistic scenario:
contaminated FT. This involves adding a small fraction of harmful examples to an otherwise benign
dataset, producing updates that blend both signals. Contaminated data is particularly dangerous
because it can degrade alignment without obvious signs. Prior work shows that even limited contam-
ination can erode safety, causing models to revert to unsafe behaviors. While earlier experiments
identified expressive subspaces, we now ask the reverse: can we remove harmful components from
an update? We test whether filtering specific subspaces, particularly those aligned with the dominant
directions of the alignment matrix, can reduce harmfulness while preserving utility.

Experimental Setup. We construct a contaminated dataset by mixing 20% harmful data from
BeaverTails with 80% of the 20K MetaMathQA subset. FT on this mixture yields a single contami-
nated update, Ar. To suppress harmful behavior, we apply the orthogonal projection strategy from
Section 2, removing components along the top-k alignment directions. Specifically, we compute
Ar = P} Ar, where P;- projects onto the complement of the alignment subspace. We evaluate
the resulting models on GSM8K (utility) and AdvBench (harmfulness). Our goal is to test whether
removing alignment-aligned components can reduce harmfulness while preserving task performance.

Results: Utility And Harmfulness Drop Together. Figure 3 shows the effects of orthogonal
projection on retained energy, utility, and harmfulness. As k increases, implying more of the update
is removed, the retained energy declines steadily across all projection types (random, top-k, and
random-k). Utility and harmfulness scores (Figure 3) follow a similar downward trend. However, the
rate of decline differs by projection strategy. Removing top-k alignment components reduces utility
more sharply than random projections. At the same time, harmfulness decreases at a similar rate,
indicating no selective suppression of harmful behavior. In effect, safety improvements come at a
proportional cost to task performance, with no clear advantage in targeting the alignment subspace.
We present results on all models in Table 2 (Appendix E).
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Figure 3: Parallel projection-based update schemes across varying SVD fractions. We report the
energy-kept ratio for models fine-tuned on Full Useful, Full Harmful and Contaminated data; and
utility and harmfulness for models fine-tuned on Contaminated.

Implications: No Selective Removal Is Possible. These results indicate that the alignment subspace
does not uniquely encode safety or harmfulness but rather captures directions broadly important
for learning. Removing these directions degrades both utility and harmfulness at similar rates. If
harmful behavior were confined to distinct subspaces, we would expect a steeper drop in harmfulness
than utility, yet this is not observed. Even if safety-relevant directions exist, they are not recoverable
from the alignment matrix alone, especially under contamination. The update blends helpful and
harmful objectives, making its projection agnostic to intent. As a result, orthogonal projection fails to
selectively suppress harmful behavior. Subspace filtering based on alignment directions imposes a
strict tradeoff: gains in safety come with proportional utility loss. This challenges the effectiveness of
subspace-based defenses under contaminated FT.

S Further Experiments

We present detailed results and discussion on whether safety weight subspaces are distinct in Appendix
A, and on the existence of safety subspaces in representation space in Appendix B.

6 Conclusion

Motivated by the challenge of preserving alignment under continued fine-tuning, particularly in
adversarial or contaminated settings, we conducted a systematic study across four experiments and
five open-source LLMs, examining both parameter updates and internal representations. Our findings
challenge the common assumption that alignment corresponds to safety-specific subspaces. Subspaces
with high behavioral impact are not unique to alignment; they enhance both utility and harmfulness,
and their removal degrades both. This indicates that these directions reflect general-purpose learning
rather than safety alone. Moreover, harmful and helpful prompts activate overlapping regions
of representation space, offering no evidence for distinct “safety activation” geometry. Together,
these results suggest that safety alignment is not cleanly separable in geometric terms. While this
complicates subspace-based defenses, it also highlights the potential of high-impact directions,
if appropriately constrained, for guiding both safe fine-tuning and activation-level control. More
broadly, our work calls for rethinking geometric assumptions in interpretability and alignment, and
for developing methods that engage with the entangled nature of learned representations.
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A Are Safety Weight Subspaces Distinct?
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Figure 4: Mode Subspace Overlap (MSO) at the 70- and 85- percentile layers for pairwise comparisons
of the dominant subspaces from Harmful fine-tuned (H), Instruction-tuned (I), and Base (B) models.

A natural question is whether a dedicated region of parameter space, what we might call a safety
subspace, captures safety-specific behavior. Such a subspace should meet two criteria: (i) safety-
relevant updates, whether from alignment or harmful FT, should lie significantly within it; and (ii)
task-specific updates unrelated to safety should have minimal overlap, with projections onto the
subspace leaving model safety unchanged. Crucially, these properties must generalize across tasks
and datasets to rule out dataset-specific artifacts. Our earlier results argue against the top subspaces
of the alignment matrix meeting these criteria. These directions are highly sensitive to any update,
helpful or harmful, but do not isolate safety. Still, it remains open whether some other set of directions,
possibly outside the alignment subspace, could fulfill this role. To explore this, we directly compare
the dominant subspaces of different update types.

Experimental Setup. We compare the principal subspaces of 3 updates: the alignment update A 4
(from base to aligned model), the harmful FT update A%’mml (trained on BeaverTails), and the useful
update A%Wf“l (trained on a 20K subset of MetaMathQA). Notably, the negated alignment update,
—A 4, reverses alignment by pushing the model back toward its unaligned base state, effectively
acting as a harmful update and serving as a useful reference. For a given energy threshold n € (0, 1],
we compute MSO(-, -;n) (Section 2 for three pairs: (i) (A%“ful, Al%armful), to assess whether helpful

and harmful FT affect similar subspaces; (ii) (A%Sem, —A A), to test alignment between helpful

updates and reversed alignment; and (iii) (Al%a‘mm, —-A A) , to compare two harmful directions. We
sweep over 1, with small values isolating high-energy directions and larger values approaching
full-rank overlap. We include the random-subspace baseline max(ky , kw )/d; values above this
baseline indicate significant geometric alignment, while values near it suggest chance-level overlap.

Results: Representations Overlap Across Tasks. Figure 4 shows the pairwise overlap between
the dominant subspaces (top-k directions) of each update. All pairs exhibit greater overlap than
random baselines, indicating shared structure. However, the strongest overlap is between the useful
and harmful updates, not between alignment and harmful updates, as one might expect if safety were
a shared component. This is a key finding. If a safety subspace existed, it would likely appear in the
shared directions between alignment and harmful updates, which affect safety in opposite ways. This
lack of substantial overlap suggests that no consistent, linear safety-specific subspace exists.

Implications: Shared Subspaces Drive Behavior, Not Safety. Together with earlier results, these
findings suggest that safety-relevant updates do not lie in a well-defined or isolatable subspace.
Instead, both alignment and harmfulness operate over complex, task-dependent, and likely non-linear
directions. The high overlap between harmful and helpful update subspaces supports our earlier
hypothesis: these directions form a general learning subspace, expressive across tasks but agnostic to
safety. We find no evidence for a distinct safety subspace. Updates that influence safety, positively or
negatively, do not share dominant directions. Any shared structure reflects general learning capacity
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rather than safety-specific behavior. As such, geometric separation of alignment remains elusive, and
linear subspace methods cannot cleanly isolate safety in parameter space.

B Do Safety Subspaces Exist In Representation Space?
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Figure 5: Average Mode Subspace Overlap (MSO) across layers in the 65-90% depth range for
pairwise comparisons of activations from Useful (U) and multiple Harmful (H1, H2) prompt sets.

So far, our analysis has focused on the weight space, probing whether certain update directions
correspond to safety-related behavior. Across experiments, we found no evidence for distinct
subspaces encoding safety at the parameter level. However, safety may instead manifest through
how inputs interact with the model, specifically, through the regions of representation space they
activate. This motivates a final question: do safety-relevant inputs elicit distinct activation patterns,
even if their corresponding weight updates overlap? While weight updates may distribute energy
broadly, inputs could selectively activate specific directions. This perspective also offers a possible
explanation for earlier results: even low-energy projections onto alignment directions produced strong
behavioral effects, likely because inputs activated those directions disproportionately.

Experimental Setup. We compare internal activations induced by different prompt categories.
Specifically, we pass useful (benign) prompts from the MATH dataset [17] and harmful prompts
from BeaverTails (test set) and ToxiGen [14] through three models: the aligned model, the useful
fine-tuned model, and the contaminated fine-tuned model. For each prompt, we record the hidden
state of the last generated token at each transformer layer ¢ € 0, ..., L. At each layer, these hidden
states are stacked into activation matrices of shape R™*4 where d is the model’s hidden size and n is
the number of prompts (5000 for each dataset). We compute MSO (see Section 2) between activation
matrices corresponding to the prompts from different datasets, sweeping over energy thresholds 7.
Lower values of 7 capture high-energy activation modes, while higher values approximate full-rank
comparisons. We plot MSO curves alongside the random-subspace baseline max (kusefur, KHarmfu) /
and report averages over layers in the 65-90 % depth percentile.

Results: Representation Subspaces Overlap Across Tasks. Figure 5 reports MSO values across
all pairs of prompt categories. Useful and harmful prompts consistently exhibit overlap above the
random baseline, indicating activation of shared high-energy subspaces in representation space.
Notably, the overlap between the two harmful prompt sets is not consistently higher than their overlap
with helpful prompts; in some cases, the useful-harmful overlap is greater than the harmful-harmful
one. The degree of overlap also varies across model configurations. Some models show strong
alignment even in the top subspaces, while others exhibit more gradual increases in overlap, becoming
significant only at higher energy thresholds. This variability suggests that representational similarity
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is influenced more by model-specific factors than by the safety content of the prompts alone. Results
on more models are provided in Figure 6 (Appendix F).

Implications: Shared Subspaces Drive Behavior, Not Safety. These observations suggest that
while all prompt types activate shared subspaces more than expected by chance, there is no evidence
of a distinct safety-violating subspace. If such a subspace existed, activations from harmful prompts
would consistently exhibit greater mutual overlap than with useful prompts, which is not the case.
Instead, the results indicate that prompts with differing safety implications are processed through
broadly overlapping representations. This supports our earlier hypothesis: the directions most
responsible for driving behavior reflect general-purpose representational subspaces rather than safety-
specific ones. These directions are activated across tasks and prompt types, implying that LLMs do
not internally separate “safe” and “unsafe” activation modes, but instead rely on shared, high-impact
subspaces. We find no evidence of a distinct safety subspace in representation space. Useful and
harmful prompts show substantial overlap, even across prompt sets with very different behavioral
consequences. Combined with our findings in weight space, these results suggest that both aligned and
harmful behaviors emerge from shared representational mechanisms rather than separable subspaces.

C Related Work

Safety Alignment and Task-Specific Fine-Tuning in LLMs. Large Language Models (LLMs) do
not inherently follow instructions and often exhibit socially undesirable behaviors. To address this,
various post-training methods, instruction-tuning and reinforcement learning from human feedback,
are applied to align base LLMSs with human values and improve their instruction-following capabilities
[37, 44, 46, 55]. However, studies have shown that fine-tuning these aligned models on harmful
data can undo this alignment, restoring their original, socially unacceptable behaviors [59]. This
unalignment phenomenon has been demonstrated in both open-source models [29, 60] and proprietary
models [4, 42, 64] via publicly available fine-tuning APIs, thereby exposing a new attack surface
[9, 23, 27]. Moreover, even fine-tuning on benign downstream tasks can degrade alignment [15, 16].

Defense Methods. To safeguard aligned LLMs against unalignment during fine-tuning, defenses
have been proposed at three stages of the pipeline: the alignment stage, the fine-tuning stage, and the
post-processing stage. The effectiveness of these defense methods is evaluated using downstream
model utility and harmfulness [20].

Alignment Stage Defenses. Alignment stage defenses update the initial instruction-tuning process
to ensure that downstream fine-tuning cannot easily overwrite the model’s safety behavior. One
approach augments the alignment loss, making harmful representations harder to recover during
fine-tuning updates [45]. Another line of work relies on safety-oriented data curation to preserve
alignment under downstream fine-tuning[33]. Adversarial and meta-learning techniques have also
been combined to develop tamper-resistant methods that prevent harmfulness while maintaining task
performance [48]. A separate strategy introduces a regularization term to the alignment loss, which
has been shown to preserve safety after fine-tuning [22]. Perturbing safety-critical layers during
instruction-tuning has also been shown to protect alignment [32]. Additional work traces unalignment
to excessive dependence on maximum-likelihood training, motivating an integrity preserving variant
of this method [6]. A study on “shallow alignment” also shows that instruction-tuning influences
only the first few output tokens, whereas deeper alignment improves robustness [41].

Fine-Tuning Stage Defenses. Fine-tuning stage defenses modify the fine-tuning process to ensure
that the model’s alignment is preserved after update. One class of defenses focuses on data curation,
augmenting the fine-tuning dataset to maintain alignment after update [5, 13]. Another approach
uses safety examples prefixed with a secret prompt, which act as backdoor triggers to reactivate
safe behavior after fine-tuning [52]. A data ranking based strategy has also been proposed, where
low-quality data is down-ranked and high-quality data is up-ranked to better preserve safety [47]. It
has also been shown that prompt templates play an important role; removing the safety prompt during
fine-tuning and reintroducing it at inference time can maintain alignment [35].

Optimization based defenses are another type of fine-tuning stage defenses. One line of work splits
fine-tuning into an alignment phase and a utility phase, safeguarding both safety and task performance
[21]. Another approach combines safety and helpfulness objectives into a single loss [65].
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Parameter level methods can also be used to preserve safety. One strategy identifies safety neurons
and updates only those parameters [66]. Another approach involves localizing safety layers and
freezing their gradients, which has been shown to prevent unalignment [31]. Another line of work
explores constraining parameter changes to directions orthogonal to existing safety features, showing
that this method preserves alignment [30]. It has also been shown that harmful data can be filtered by
matching fine-tuning embeddings against the top-k singular vectors of an activation matrix generated
using a harmful dataset [7].

Post-Processing Stage Defenses. Post-processing stage defenses adjust the fine-tuned model to
restore alignment and preserve usefulness. One approach adds a safety vector, defined as the difference
between aligned and unaligned weights, to the fine-tuned parameters to regain safe behavior [3].
Another line of work projects the fine-tuning update onto the alignment vector when their similarity
drops below a threshold, or selectively merges layers from the fine-tuned and aligned models under
the same criterion to achieve a similar effect [10, 18]. A third strategy removes parameters identified
as harmful after fine-tuning to restore alignment [19]. It has been shown that safety directions in
attention-head activations can also be located and used for targeted intervention [67] to realign the
fine-tuned model. Another method detects update parameters whose signs contradict the original
alignment and removes them [57]. Additional work restores safety-critical neurons [61], fuses aligned
and fine-tuned models [62], or adds an optimized post-hoc perturbation to recover alignment [53].

Safety Mechanisms in Fine-Tuned and Aligned LLMs. Recent studies have examined how LLMs
express safety over neurons, layers, and activations. One study finds that safety related information
is language agnostic, identifies parameters whose modification affects alignment, and shows that
freezing these parameters during fine-tuning does not ensure safety [40]. Another line of work locates
sparse regions in parameter space whose removal weakens alignment, and likewise observes that
freezing these regions alone is insufficient to maintain model alignment [54]. A separate analysis
maps a safety basin in weight space, noting that random perturbations inside the basin leave safety
intact, whereas fine-tuning moves weights outside it [39]. Finally, work on the activation residual
stream isolates a refusal direction, removing this direction prevents refusal to harmful prompts, while
adding it triggers refusal to benign ones [2].

D Do Alignment Subspaces Encode Safety?

We provide additional results in Table 1 to support the analysis presented in Section 3.

E Can Harmful Subspaces Be Removed?

Table 2 presents supplementary results that further substantiate the findings discussed in Section 4.

F Do Safety Subspaces Exist in Representation Space?

To complement the discussion in Section ??, we include extended results in Figure 6.

G Experimental Details

We implemented all experiments using PyTorch [38] and the HuggingFace Transformers library [56].
We ran all experiments on a single NVIDIA A6000 GPU (48 GB). To save memory, all base models
are initalized in torch.bfloat16 precision. All models are trained using the AdamW optimizer
[34]. Detailed hyperparameter configurations for full fine-tuning of each model are presented in
Table 3.

H Dataset Details

We use the MetaMathQA dataset [63] for fine-tuning, which reformulates existing math problems
from alternative perspectives without introducing new content. To evaluate performance, we rely
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Table 1: Parallel projection-based update schemes across varying SVD fractions. We report the utility
for models fine-tuned on Full Useful data, and harmfulness for models fine-tuned on Full Harmful.

Utility (1) Harmful Score ({)
Model Method SVD Fractions SVD Fractions
\ 0.01 \ 0.25 \ 0.50 \ 0.75 \ 0.99 \ 0.01 \ 0.25 \ 0.50 \ 0.75 \ 0.99
Base 0.21 3.27
Aligned 0.47 1.55
Fine-Tuned 0.61 2.09
Qwen-25 158 .k 0.50 | 0.53] 0.55 | 0.57 | 0.58 || 1.62 | 1.80 | 1.92 | 1.90 | 1.97
Random-K | 0.49 | 0.50 | 0.53 | 0.56 | 0.58 || 1.55 | 1.66 | 1.78 | 1.92 | 2.00
Random 0.49 | 0.50 | 0.53 | 0.53 | 0.56 || 1.56 | 1.65 | 1.74 | 1.83 | 1.95
Base 0.03 4.13
Aligned 0.13 2.80
Llama-3.2 1B Fine-Tuned 0.36 4.07
Top-K 0.14 | 0.21]0.25|0.30 | 0.34 || 2.89 | 3.29 | 3.51 | 3.66 | 3.84
Random-K | 0.13 | 0.16 | 0.23 | 0.29 | 0.34 || 2.83 | 3.11 | 3.37 | 3.55 | 3.84
Random 0.13|0.1710.22 | 0.29 | 0.34 || 2.81 | 3.05 | 3.34 | 3.56 | 3.83
Base 0.44 2.53
Aligned 0.61 1.47
Qwen-2.5 3B Fine-Tuned 0.72 2.16
Top-K 0.63]0.64]0.65]0.68 |0.69 | 1.48|1.71]1.81|1.91|1.92
Random-K | 0.62 | 0.63 | 0.64 | 0.65 | 0.69 || 1.44 | 1.55 | 1.62 | 1.74 | 1.91
Random 0.62]0.63|0.64|0.65|0.68 || 1.44 | 1.50| 1.66 | 1.75 | 1.83
Base 0.69 1.90
Aligned 0.74 1.30
Qwen-2.5 7B Fine-Tuned 0.81 2.12
Top-K 0.7210.74]0.76 | 0.77 | 0.77 || 1.34 | 1.56 | 1.66 | 1.76 | 1.84
Random-K | 0.73 | 0.75|0.74 | 0.75 | 0.77 || 1.34 | 1.44 | 1.53 | 1.64 | 1.84
Random 0.74]0.75]0.75 [ 0.76 | 0.76 || 1.33 | 1.40 | 1.48 | 1.56 | 1.75
Base 0.05 4.27
Aligned 0.20 1.74
Llama-2 7B Fine-Tuned 0.30 3.41
Top-K 0.210.24]0.26 | 0.28 | 0.29 || 1.81 | 2.34 | 2.61 | 2.90 | 3.15
Random-K | 0.20 | 0.23 | 0.25 | 0.28 [ 0.29 || 1.74 | 1.91 | 2.09 | 2.63 | 3.13
Random 0.20]10.23]0.25]0.28 | 0.28 || 1.77|1.91 | 2.15 | 2.57 | 3.03

on the GSMS8K benchmark [8], a dataset of elementary-level math questions that require multi-step
reasoning. Models are assessed based solely on the correctness of the final numerical answer. For
our activation-based analysis, we sample prompts from the MATH dataset [17], which contains
challenging, competition-style arithmetic problems.

BeaverTails [26] is a valuable dataset for studying safety by independently annotating ques-
tion—answer pairs for both helpfulness and harmlessness. We use the training set to fine-tune
models in both harmful and contaminated settings, and draw prompts from the test split for our
activation-based experiments.

AdvBench [68] consists of 500 prompts designed to elicit a wide range of harmful behaviors,
including profanity, threats, misinformation, discrimination, cybercrime, and other forms of dangerous
or illegal content framed as instructions. We use this benchmark to quantify model harmfulness:
higher success in responding to these prompts indicates greater unsafe behavior.

ToxiGen [14] is a large-scale dataset composed of both toxic and non-toxic statements. We use a
subset of its prompts to analyze model activations in response to harmful content.
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Table 2: Parallel projection-based update schemes across varying SVD fractions. We report the utility
and harmfulness for models fine-tuned on Contaminated data.

Utility (1) Harmful Score ({)
Model Method emphSVD Fractions emphSVD Fractions
1 0.01 [ 0.25 [ 0.50 | 0.75 | 099 || 0.01 | 0.25 | 0.50 | 0.75 | 0.99
Base 0.21 3.27
Aligned 0.47 1.55
FT 0.60 2.16
Qwen-25 158 0 k 0.50 | 0.53 | 0.52 | 0.55 | 0.56 || 1.59 | 1.65 | 1.79 | 1.91 | 1.92
Random-K | 0.49 | 0.52 | 0.53 | 0.55 | 0.55 || 1.56 | 1.62 | 1.63 | 1.87 | 1.92
Random | 0.49 | 0.50 | 0.52 | 0.52 | 0.54 || 1.58 | 1.64 | 1.68 | 1.74 | 1.92
Base 0.026 413
Aligned 0.13 2.80
Lamasa g FT 0.37 3.60
ama-3. Top-K | 0.14|0.20 | 0.25 0.29 | 0.33 || 2.84 | 2.90 | 3.05 | 3.36 | 3.45
Random-K | 0.13 | 0.16 | 0.22 | 0.29 | 0.33 || 2.81 | 2.90 | 3.03 | 3.19 | 3.45
Random | 0.13 | 0.16 | 0.22 | 0.28 | 0.33 || 2.84 | 2.90 | 3.19 | 3.19 | 3.45
Base 0.44 2.53
Aligned 0.61 1.47
FT 0.73 1.99
Qwen-253B 10K 0.620.63 ] 0.65|0.68]0.69 || 1.49 | 1.58 | 1.69 | 1.76 | 1.83
Random-K | 0.62 | 0.64 | 0.64 | 0.66 | 0.69 || 1.45 | 1.55 | 1.62 | 1.65 | 1.91
Random | 0.62 | 0.63 | 0.64 | 0.65 | 0.68 || 1.45 | 1.50 | 1.57 | 1.75 | 1.83
Base 0.69 1.90
Aligned 0.74 1.30
FT 0.81 1.96
Qwen-257B ook 074 0.75 [ 0.75 | 0.75 | 0.78 || 1.30 | 1.55 | 1.60 | 1.68 | 1.67
Random-K | 0.74 | 0.75 | 0.76 | 0.75 | 0.78 || 1.35 | 1.41 | 1.46 | 1.59 | 1.67
Random | 0.74 | 0.75 | 0.75 | 0.75 | 0.78 || 1.34 | 1.40 | 1.48 | 1.56 | 1.63
Base 0.053 4.27
Aligned 0.20 1.74
Laman7s  FT 0.30 3.08
ama- Top-K | 0.210.23]0.25]0.27]0.28 || 1.77 | 1.91 | 2.15 | 2.38 | 2.74
Random-K | 0.20 | 0.23 | 0.26 | 0.28 | 0.28 || 1.74 | 1.91 | 2.09 | 2.38 | 2.79
Random | 0.20 | 0.23 | 0.25 | 0.27 | 0.28 || 1.77 | 1.91 | 2.15 | 2.38 | 2.74

Table 3: Hyperparameter settings for fine-tuning the various models.

Optimizer AdamW
Batch size 1
Max. Seq. Len 512
Grad Acc. Steps 32
Epochs 1
Learning Rate 1x107°
LR Scheduler Cosine
Warmup Ratio 0.02
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Figure 6: Average Mode Subspace Overlap (MSO) across layers in the 65-90% depth range for
pairwise comparisons of activations from Useful (U) and multiple Harmful (H1, H2) prompt sets.
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