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Abstract
Verification is a cornerstone of AI governance, en-
abling auditability, attribution, and accountability
in AI-generated content. As generative models
proliferate, watermarking has emerged as a lead-
ing verification strategy. However, state-of-the-
art paraphrasing methods pose a serious threat:
they can erase watermarks without altering the
meaning of the generated output. We model wa-
termarking under paraphrasing as an adversarial
game and prove a no-go theorem: under ideal-
ized conditions, no watermark can be both robust
to paraphrasing and imperceptible. To navigate
this tension, we propose the ε–δ framework that
quantifies the trade-off between robustness (ε) and
semantic distortion of the underlying text (δ). Our
findings highlight a key asymmetry: removing
a watermark is often easier than embedding one
that survives.

1. Introduction
As large language models (LLMs) increasingly power gen-
erative systems, questions of authorship, auditability, and
accountability become more urgent. In safety-critical and
socially impactful applications, technical mechanisms for
tracing provenance are essential for governance. Water-
marking, which embeds algorithmically-detectable statisti-
cal signals in generated text, has emerged as a significant
strategy to support attribution, flag misuse, and enable post
hoc audit (Kirchenbauer et al., 2023).

However, watermarking is fragile. The primary adversary
is not cryptanalysis but paraphrasing, the automated tools
that rewrite text while preserving its meaning. A single pass
through a modern paraphraser can erase a watermark’s sta-
tistical signature without altering the semantics (Ren et al.,
2023; Hou et al., 2024). This problem is amplified by itera-
tive paraphrasing, where multiple rewriting stages slowly
degrade the watermark until detection becomes impossi-
ble (Zhang et al., 2023; Cohen et al., 2024). We therefore
ask: is robust, imperceptible watermarking fundamen-
tally possible when adversaries can paraphrase?

Despite the awareness of the trade-off between robustness

and imperceptibility, this tension has not been made precise.
To fill this gap, we articulate this trade-off explicitly through
paraphrasing. By treating paraphrasing as an adversarial pro-
cess that preserves semantics, we expose the incompatibility
between watermarking robustness and invisibility.

To do so, we propose a framework for watermarking under
meaning-preserving paraphrasers. By modeling semantic
equivalence and paraphrasing as operations over sentence
sets, we derive an impossibility result: when the paraphraser
can access the full set of semantically equivalent rewritings,
watermark detection breaks down completely. No water-
marking scheme can separate watermarked from unmarked
texts without semantic distortion.

To move beyond this deadlock, we introduce the ε,δ water-
marking framework that captures the trade-off between
robustness (ε) and semantic distortion (δ). Here, ε mea-
sures how well a watermark resists paraphrasing, while δ
quantifies the resulting semantic deviation. This trade-off
is not just theoretical; we empirically map it across several
state-of-the-art watermarking schemes, revealing distinct
robustness-fidelity profiles.

2. Problem Setup: The Paraphrasing Game
We represent text as a sequence of sentences drawn from
a language. To account for both syntactic and semantic
watermarking, we move beyond individual tokens and in-
stead model watermarking at the level of coherent units of
meaning. We focus on sentences as the minimal context-
bearing units, though our analysis naturally extends to larger
structures such as paragraphs.

Let L be the set of all possible sentences, and let T = Ln

denote the space of texts of fixed length n. For any text
S = (s1, s2, . . . , sn) ∈ T , we define semantic equivalence
as a binary relation ≡⊆ T × T , where X ≡ Y if and
only if X and Y convey the same meaning. This equiva-
lence may be judged by human annotators or approximated
algorithmically via semantic similarity models.

For a given position i in a text S, we define Mi(S), the set
of sentences comprising semantically valid substitutions:

Mi(S) = {s ∈ L | (s1, . . . , si−1, s, si+1, . . . , sn) ≡ S}

If two texts X and Y are semantically equivalent, it follows

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Fragile by Design: Formalizing Watermarking Tradeoffs via Paraphrasing

that Mi(X) = Mi(Y ) for all i.

Definition 2.1. A paraphraser P assigns to each text S ∈ T
and position i ∈ {1, . . . , n} a set Pi(S) ⊆ Mi(S) of per-
missible replacements. The full set of paraphrases produced
by P is the Cartesian product:

P(S) =

n∏
i=1

Pi(S)

We say P is perfect if Pi(S) = Mi(S) for all S and i,
meaning that it explores the full semantic equivalence class
of S. Otherwise, P is imperfect.

The Paraphrasing Game. Watermarking plays out as a
game between two players: the watermarking scheme and
the paraphraser. The scheme embeds a signal into a text Y
that is semantically equivalent to an original text X . Acting
as the adversary, the paraphraser attempts to rewrite Y and
potentially X without changing the meaning. The scheme
aims to design a detector D that distinguishes paraphrases of
Y from those of X , even after multiple rounds of rewriting.

Let X = (x1, . . . , xn) be an original text and Y =
(y1, . . . , yn) its watermarked counterpart, where X ≡ Y
and each xi, yi ∈ L.

Definition 2.2. A watermarking scheme under a paraphraser
P consists of (1) a watermarked text Y ∈ T such that
X ≡ Y , and (2) a detector D : T → {0, 1} satisfying

(1) For all W ∈ P(Y ), D(W ) = 1 (true positive);

(2) For all Z ∈ P(X), D(Z) = 0 (true negative). The
scheme is robust against P if such a D exists.

Why Robustness Is Fragile. A robust detector must reli-
ably fire on any paraphrase of the watermarked text Y , and
never fire on any paraphrase of the original text X . But this
condition is unstable under composition: if a paraphrased
version W ∈ P(Y ) is further paraphrased into W ′ ∈ P(X)
by a different paraphraser P ′, the watermark vanishes.

This leads to a fundamental insight: to ensure robustness
under any sequence of meaning-preserving rewrites, the
detector must separate entire paraphrase sets P(Y ) and
P(X). This sets the stage for our upcoming impossibility
result.

3. Robustness Under Perfect Paraphrasers
We now consider the most adversarial case: a perfect para-
phraser that exhaustively explores the entire semantic equiv-
alence class of a given text. This means Pi(S) = Mi(S)
for all positions i and all texts S. In this setting, any sen-
tence replacement that preserves meaning is accessible to
the paraphraser. As we show below, this level of semantic
flexibility eliminates any hope of robust watermarking.

Theorem 3.1. Let P be a perfect paraphraser. Then for
any pair of semantically equivalent texts X ≡ Y , we have
P(X) = P(Y ). Consequently, no robust watermarking
scheme can exist against P .

Proof. By definition of semantic equivalence, X ≡ Y im-
plies that Mi(X) = Mi(Y ) for all i. Since P is perfect:

Pi(X) = Mi(X) = Mi(Y ) = Pi(Y ) ∀i

Taking Cartesian products:

P(X) =

n∏
i=1

Pi(X) =

n∏
i=1

Pi(Y ) = P(Y )

So P(X) = P(Y ). But this contradicts the goal of any
watermarking detector D: to assign D(W ) = 1 for all
W ∈ P(Y ) and D(Z) = 0 for all Z ∈ P(X). Since
these two sets are equal, no function D can satisfy both
constraints without contradiction.

This result highlights a fundamental limitation. When the
paraphraser has unrestricted access to the full semantic
equivalence class

[X] = {T ∈ T | T ≡ X},

any watermark embedded in Y ≡ X becomes impossible to
detect, since both texts generate the exact same paraphrase
space. Thus, any watermark robust to perfect paraphrasing
must necessarily alter meaning. But doing so violates the
imperceptibility principle that motivates watermarking in
the first place. This impossibility theorem sets a hard limit:
Semantic-preserving robustness and invisibility cannot co-
exist in the presence of ideal paraphrasers.

4. Robustness Under Imperfect Paraphrasers
The impossibility of robust watermarking under perfect para-
phrasers stems from their ability to fully traverse the seman-
tic equivalence class of a text. But in practice, paraphrasers
operate under architectural constraints, training data biases,
and decoding limits. Let us therefore consider an imper-
fect paraphraser P such that Pi(S) ⊊ Mi(S) for some i
and some S. Unlike the perfect case, it is now possible for
the paraphrase sets P(X) and P(Y ) to be disjoint. When
this occurs, a watermark detector can perfectly distinguish
paraphrases of Y from those of X .
Theorem 4.1. Let P be an imperfect paraphraser. Then
P(X) ∩ P(Y ) = ∅ if and only if there exists an index
i ∈ {1, . . . , n} such that Pi(X) ∩ Pi(Y ) = ∅. When this
holds, a robust watermarking scheme against P exists.

Proof. Observe that:

P(X) =

n∏
i=1

Pi(X), P(Y ) =

n∏
i=1

Pi(Y )
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and thus their intersection becomes:

P(X) ∩ P(Y ) =

n∏
i=1

(Pi(X) ∩ Pi(Y ))

This Cartesian product is non-empty if and only if Pi(X) ∩
Pi(Y ) ̸= ∅ for all i. Therefore, P(X) ∩ P(Y ) = ∅ if
and only if Pi(X) ∩ Pi(Y ) = ∅ for some i. If such an i
exists, then any text Z ∈ P(X) must have zi ∈ Pi(X), and
thus zi /∈ Pi(Y ). So Z /∈ P(Y ). The same logic holds
symmetrically. Hence, P(X) and P(Y ) are disjoint.

We can then define a detector D : T → {0, 1} by:

D(T ) =


1 if ti ∈ Pi(Y )

0 if ti ∈ Pi(X)

0 otherwise

Because Pi(X) ∩ Pi(Y ) = ∅, this detector makes no errors
on any paraphrases of X or Y . Thus, the watermark is
robust against P .

This theorem shows that robustness is theoretically possible
when the paraphraser’s choices for X and Y differ enough at
even a single position. But this robustness is inherently frag-
ile. It depends entirely on the specific subsets Pi(X) and
Pi(Y ) chosen by the paraphraser. If an adversary switches
to a different paraphraser P ′ where the corresponding re-
placement sets overlap (i.e., P ′

i (X) ∩ P ′
i (Y ) ̸= ∅), then

P ′(X) and P ′(Y ) may again intersect, and the watermark
becomes undetectable.

Robustness Is Not Composable. To understand the frag-
ililty of robustness under imperfect paraphrasers, suppose
the set of meaning-preserving replacements at position i is
fixed for both texts:

Mi(X) = Mi(Y ) = {s1, s2, s3}

Now consider a paraphraser P that selects disjoint subsets:
Pi(X) = {s1} and Pi(Y ) = {s2}. According to Theo-
rem 4.1, this yields disjoint paraphrase sets P(X)∩P(Y ) =
∅, and robustness is achievable. But suppose an adversary
switches to a more permissive paraphraser P ′ with:

P ′
i (X) = {s1, s3}, P ′

i (Y ) = {s2, s3}

Now, the overlap s3 ∈ P ′
i (X) ∩ P ′

i (Y ) reintroduces ambi-
guity. Any paraphrased text containing s3 at position i could
belong to both P ′(X) and P ′(Y ), breaking the detector’s
ability to reliably distinguish between them.

This illustrates a critical point: robustness under imperfect
paraphrasing is not stable under paraphraser composition
or variation. The watermark may survive one rewriting
strategy but collapse under another. This motivates our next
step: a framework that quantifies this trade-off rather than
treating it as binary success or failure.

5. ε–δ Watermarks
The impossibility of robust watermarking under perfect para-
phrasers, and the fragility of robustness under imperfect
ones, point to a deeper tension: watermarking must trade
off semantic preservation and robust detection. To make
this trade-off explicit, we introduce the notion of an ε–δ
watermark. This framework defines two continuous axes:

• ε quantifies robustness, how well a watermark survives
paraphrasing;

• δ quantifies semantic distortion, how much the water-
marked text deviates in meaning from the original.

No scheme can minimize both simultaneously. High robust-
ness tends to require detectable perturbations; high fidelity
makes the watermark easier to erase. The ε–δ framework al-
lows us to measure and compare how watermarking schemes
navigate this fundamental trade-off.

Let X be an original text and Y its watermarked counterpart,
with X ≡ Y . We apply a paraphraser P to each text and
collect N paraphrases:

X = {xi}Ni=1 = P (X), Y = {yj}Nj=1 = P (Y )

Let γ ∈ [0, 1] be a similarity threshold. For each pair
(xi, yj) ∈ X × Y , we compute the cosine distance between
their embeddings:

dcos(xi, yj) = 1− E(xi) · E(yj)

∥E(xi)∥ ∥E(yj)∥

If this distance is below γ, the pair is deemed semantically
overlapping. We define the thresholded intersection set:

X ∩γ Y = {(xi, yj) | dcos(xi, yj) < γ}

The union size is given by:

|X ∪ Y| = |X |+ |Y| − |X ∩γ Y|

We define the robustness score as the Jaccard distance be-
tween the paraphrase sets:

ε = 1− |X ∩γ Y|
|X ∪ Y|

A higher ε indicates lower semantic overlap between para-
phrases of the original and watermarked text, implying
greater resilience to paraphrasing attacks.

To quantify the semantic distortion, δ, we restrict attention
to the subset of paraphrase pairs (xi, yj) ∈ X × Y that fall
within the semantic threshold γ. That is, we compute the
average pairwise cosine distance only over the intersection
set:

X ∩γ Y = {(xi, yj) | dcos(xi, yj) < γ}
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We then define:

δ =
1

|X ∩γ Y|
∑

(xi,yj)∈X∩γY

dcos(xi, yj)

This formulation captures the average semantic drift only
among paraphrase pairs deemed close in meaning. A smaller
δ implies that even within the overlapping region, the wa-
termarked paraphrases remain semantically faithful to the
originals.

The ε–δ framework makes the trade-off between robustness
and semantic preservation explicit:

• High ε, High δ: The watermark is robust, but meaning
has likely been altered.

• Low ε, Low δ: The watermark is imperceptible but
fragile; it vanishes under paraphrasing.

In practice, watermarking schemes must balance these op-
posing forces. The goal is not to maximize both ε and δ, but
to find a Pareto-optimal operating point.

6. Experiments
We evaluate the ε–δ trade-off across six representative
publicly-available watermarking schemes: KGW (Kirchen-
bauer et al., 2023), which increases the probability of gen-
eration of selected tokens, UNIGRAM (Zhao et al., 2023),
which is a robust extension of KGW, SWEET (Lee et al.,
2023), designed for watermarking code, EWD (Lu et al.,
2024), which watermarks high-entropy tokens to avoid gar-
bling low-entropy sequences, UPV (Liu et al., 2023), which
uses a public key for watermark detection as opposed to a
private key for both generation and detection, and EXP (Ku-
ditipudi et al., 2023) that works with sequences rather than
individual tokens. These methods span a spectrum of design
philosophies, from token-level perturbations to syntactic
and semantic rewrites.

Setup. For each scheme, we select 50 input sentences sam-
pled from C4 (Raffel et al., 2020), a large common-crawl
based dataset, and generate corresponding watermarked out-
puts using the method’s default configuration. To simulate
a paraphrasing attack, we apply a state-of-the-art publicly
available paraphraser, Parrot (Damodaran, 2021), to both the
original and watermarked texts, generating 30 paraphrases
for each sentence. This results in two sets of paraphrases,
denoted by X (original) and Y (watermarked). We define
ε as a robustness metric, computed as the Jaccard distance
between X and Y , where set intersection is determined by
pairwise cosine distances between sentence embeddings
falling below a threshold γ. The semantic distortion δ is
defined as the average pairwise cosine distance between the
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Figure 1. ε–δ trade-off curves for watermarking schemes.

elements of X and Y in the intersection set, quantifying
the extent of semantic drift introduced by watermarking.
Sentence embeddings are obtained using a pretrained BERT
encoder E(·) (Devlin et al., 2019). By varying the similar-
ity threshold γ, we obtain different values of ε to trace the
robustness-distortion trade-off.

Results. Figure 1 shows the ε–δ curves for the six water-
marking schemes under increasing paraphrasing strength
(left to right). As robustness (ε) increases, so does seman-
tic distortion (δ), as expected. EXP dominates, with the
lowest distortion across all robustness levels, which is sur-
prising given its aggressive editing strategy. SWEET and
KGW follow closely, with a balance between fidelity and
robustness. In contrast, UNIGRAM performs worst: it has
the highest semantic distortion (δ > 0.40) even at low ro-
bustness. UPV and EWD lie in the mid-range: they show
stable but elevated distortion as robustness increases. No-
tably, none of the methods achieves both low δ and high
ε simultaneously, reinforcing our claim that watermarking
lies on a fundamental trade-off curve. Our ε–δ framework
makes these trade-offs explicit, offering a diagnostic tool
for aligning watermarking designs with application-specific
goals, be it resilience against adversaries or imperceptibility
for benign attribution.

7. Conclusion
We formalized watermarking under paraphrasing as an ad-
versarial game and proved that under perfect paraphrasers,
robust and invisible watermarking cannot coexist. We then
introduced the ε–δ watermarking framework to quantify
the trade-off between robustness and semantic preservation.
Empirical benchmarks on six watermarking schemes con-
firmed this trade-off, revealing that each method implicitly
selects a point along the robustness–fidelity curve. We hope
that our framework will be useful for evaluating new meth-
ods and setting appropriate expectations.
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