Under review as a conference paper at ICLR 2025

ADDRESSING EXTRAPOLATION ERROR IN MULTI-
AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Cooperative Multi-Agent Reinforcement Learning (MARL) has become a critical
tool for addressing complex real-world problems. However, scalability remains a
significant challenge due to the exponentially growing joint action space. In our
analysis, we highlight a critical but often overlooked issue: extrapolation error,
which arises when unseen state-action pairs are inaccurately assigned unrealistic
values, severely affecting performance. We demonstrate that the success of value
factorization methods can be largely attributed to their ability to mitigate this er-
ror. Building on this insight, we introduce multi-step bootstrapping and ensemble
techniques to further reduce extrapolation errors, showing that straightforward
modifications can lead to substantial performance improvements. Our findings un-
derscore the importance of recognizing extrapolation error in MARL and highlight
the potential of exploring simpler methods to advance the field.

1 INTRODUCTION

Cooperative Multi-Agent Reinforcement Learning (MARL) has proven to be a powerful approach
for addressing a wide range of complex real-world challenges, including autonomous driving (Zhou
et al., |2020), traffic management (Singh et al.| |2020), and robot swarm coordination (Hiittenrauch
et al.l 2017; [Zhang et al.| [2021a). The complexity inherent in these scenarios poses significant
challenges, especially in terms of scalability, as the joint action space expands exponentially with the
number of agents. Furthermore, the necessity for decentralized decision-making, grounded in local
action-observation histories due to communication constraints, adds to the intricacies of MARL tasks.

While various solutions have been proposed to address these challenges, we identify a critical and
often overlooked issue: extrapolation error (Fujimoto et al., 2019b)). This error arises when unseen
or rarely encountered state-action pairs are inaccurately assigned unrealistic values. In the context
MARL, where the joint action space is vast, extrapolation error becomes a key limiting factor,
especially during training when many actions remain unseen but are required for accurate Temporal
Difference (TD) target estimation. For example, in environments like the StarCraft Multi-Agent
Challenge (SMAC) (Samvelyan et al., [2019)), joint action dimensions can exceed 105, leading to
significant errors in estimating the value of these unseen actions.

Although recent MARL approaches, particularly value factorization methods (Son et al., 2019; Sune4
hag et al., 2017 |Rashid et al., |2020b; Wang et al., 2020a), have demonstrated strong performance,
much of the focus has been on enhancing the expressive capacity of these models. Early approaches
like VDN (Sunehag et al., |2017) and QMIX (Rashid et al.| 2020b)) were critiqued for their limita-
tions in handling non-monotonic tasks (Mahajan et al., [2019), prompting efforts to improve their
representational power. However, despite these advancements, recent studies (Yu et al.| 2022 [Ellis
et al.,|2023; Hu et al., 2023) suggest that the performance is not entirely aligned with their expressive
capabilities. Notably, QMIX remains the most competitive algorithms across various domains.

In this paper, we propose a shift in focus, emphasizing extrapolation error as a key factor behind the
success of value factorization methods. By decomposing the joint Q-function into individual utilities,
value factorization significantly reduces extrapolation errors, particularly in environments with large
joint action spaces. Additionally, we demonstrate that monotonicity in value factorization plays a
crucial role by enabling self-correcting mechanisms in online RL, which help control the propagation
of errors. Our analysis reveals that the success of value factorization methods like QMIX is closely
tied to their ability to manage extrapolation error.

Under review as a conference paper at ICLR 2025

Building on this insight, we introduce two components: annealed multi-step bootstrapping and
ensembled TD targets. These components mitigate bias by incorporating temporally extended trajec-
tories and reduce variance by averaging target values. When applied to existing value factorization
methods, these modifications yield substantial performance improvements across tasks, including
those in SMAC, Google Research Football (GRF) (Kurach et al.,[2020), and SMACvV2 (Ellis et al.,
2023). Rather than presenting an entirely new algorithm, our goal is to highlight the critical role of
extrapolation errors in MARL and showcase how straightforward modifications can yield substantial
performance improvements.

2 BACKGROUND

2.1 DEc-POMDP AND CTDE

We consider Decentralized Partially Observable Markov Decision Process (Dec-POMDP) (Oliehoek
& Amatol 2016) in modeling cooperative multi-agent tasks. The Dec-POMDP is characterized by
the tuple (N, S, A, r, P, O, Z,7), where \ is the set of agents, S is the set of states, A is the set of
actions, r is the reward function, P is the transition probability function, Z is the individual partial
observation generated by the observation function O, and is the discount factor. At each timestep,
each agent ¢ € A receives a partial observation o; € Z according to O(s; 1) at state s € S. Then,
each agent selects an action a; € A according to its action-observation history 7; € (Z x A)*,
collectively forming a joint action denoted as a. The state s undergoes a transition to the next state s’
in accordance with P(s’|s, a), and agents receive a shared reward r. The joint action-value function
is expressed as Q™ (s, a¢) = By, .o ar1i | Doieo V' Te+i]» Where 7 denotes the joint policy.

This work adheres to the Centralized Training with Decentralized Execution (CTDE) (Oliehoek et al.}
2008}, [Kraemer & Banerjee, [2016) paradigm. In the training phase, CTDE enables policy training to
capitalize on globally available information and facilitates the exchange of information among agents.
Conversely, during the execution phase, each agent is restricted to accessing solely its individual
action-observation history, thereby embodying decentralized execution principles.

2.2 VALUE-BASED RL

Value-based RL methods typically involve the iterative adjustment of Q-functions based on the
Bellman equation: Q11 = T"Qr = 7 + YP"Qk, where 7™ denotes the Bellman operator and
PTQ = > P(s'ls,a) >, m(a'|s)Q(s,a’). Restricting the policy to be greedy w.r.t the current
Q-function, i.e., 7 € G(Q), where G(Q) is the set of all greedy policies w.r.t (), transforms the
operator into the Bellman optimality operator 7, resulting in the Q-learning update Qx+1 = 7T Qk.

In scenarios with a large state space, the value is often estimated using a differentiable function
approximator (s, a; #) parameterized by 6. Within the framework of deep Q-learning, updates
depend on a batch of transitions (s, a,r, s’) derived from the replay buffer D. The training of the
value function aims to minimize the mean square error:

L(Q) = E(S,a,r,s’)ND [(Q(Sa a; 9) - y)Q]) (1)

where y = r + ymax, Q(s’,a’; 0") represents the TD target. The function Q(+; 8") corresponds to
the frozen target network paramertrized by #’. The periodically updated 6’ ensures a consistent target
across multiple iterations.

2.3 VALUE FACTORIZATION

Value factorization methods involve learning a factorized value function that encompasses per-agent
utilities, denoted as [Q;(7;, a;)]?,, and is rooted in the principles of Q-learning. A prominently
discussed concept in this context is Individual-Global-Max (IGM) (Son et al.l|2019), designed to
ensure that the locally greedily selected action aligns with the jointly optimal action. Adhering to
this constraint, various value factorization methods have been proposed, with some notable examples
being VDN (Sunehag et al., [2017)), QMIX (Rashid et al., 2020b)), QTRAN (Son et al.,|2019), and
QPLEX (Wang et al.| 2020a)). In the representation of the joint Q-function, VDN employs an additive
assumption: Q(s,a) = Y., Q;(7;,a;). On the other hand, QMIX utilizes a monotonic mixing

Under review as a conference paper at ICLR 2025

function 9
Q(s,a) = f(s,Q1(m1,a1), ..., Qn(Tn, ay)) with 865

where the function f is approximated using a hypernetwork that takes the global state s as input and
produces non-negative weights, ensuring monotonicity.

=0, @

3 EXTRAPOLATION ERROR

In practical deep Q-learning with function approximation, the learning of Q-functions may encounter
various errors. Following the definition from|Anschel et al.| (2017)), the error A between the current
value and the optimal value can be decomposed into three terms:

A= Q(S, a; 9) - Q*(Sv CL) = Q(S, a; 9) — Ys,a + Ys,a — st,a + gs,a - Q* (37 CL), 3)
—_—— L e ———
TAE TEE OD

where y;, = Ep [r + v maxg Q(s’,a’;@)] is the estimated TD target and g,, = Ep [r +
ymaxy Q(s',a'; HA)} represents the true target with 6 = arg ming E[(Q(s, a; 0) — ys.q)?].

The first term, Target Approximation Error (TAE), captures the discrepancy between the learned
Q(s, a;0) and its target y ,. This error can be attributed to factors such as the inexact minimization
of 6 through gradient descent and limited representation ability of networks. The second term, Target
Estimation Error (TEE), measures the difference between the estimated target y, , and true target
Us,a» Which can be influenced by issues such as overestimation and extrapolation errors. The final
term, Optimality Difference (OD), quantifies the gap between the value function of the current
policy and that of the optimal policy. Unlike TAE and TEE, which depend on the current Q-function

approximation with 8, OD pertains solely to the converged value under the optimal parameter 6.

In the context of MARL, especially with value factorization methods, a key distinction from single-
agent RL lies in the limited representational capacity introduced by factorization. If the factorization
fails to fully capture the current target, TAE arises. As this error accumulates over iterations, it
hinders convergence, resulting in a larger OD. To address this, prior research has often focused on
improving representation capacity to reduce TAE. Nevertheless, empirical findings from recent works
(Yu et al.| 2022} [Ellis et al.| 2023} [Hu et al., 2023)) suggest that improving representational capacity
alone does not always translate into performance gains in complex domains.

We attribute this phenomenon to extrapolation error, reflected in the TEE term in (3)), which has
received little attention in the context of online MARL. Although both TAE and TEE capture Q-
function estimation errors, TEE specifically reflects the accuracy of predictions for Q(s’, a’), while
TAE pertains to Q(s, a). This distinction is crucial because a’ may not have been observed in the
past trajectories, leading to significant extrapolation errors when predicting its value.

In the subsequent sections, we delve deeper into the role of extrapolation error in MARL through
theoretical analysis and experimental evidence. By examining error propagation in Q-learning, we
demonstrate why ensuring monotonicity is essential for value factorization. Additionally, we revisit
several representative MARL algorithms from the lens of extrapolation error, revealing its strong
correlation with their performance outcomes.

3.1 EXTRAPOLATION ERROR IN MARL

Extrapolation error arises in RL when the value function inadequately estimates the value of actions
that are unseen or rare (Fujimoto et al.|l [2019b). In single-agent setting, if the a state-action pair
(s,a) is absent from the dataset, the value Q(s, a;6) becomes an uncertain prediction made by
the neural network. Consider the update rule Q(s,a;0;41) < r + maxy Q(s',a’;60;), where
Q(s',a’;0:) = Q™(s',a’) + ex(s',a’; 6;) is decomposed into the true value plus an error term e;.
During training, while transition (s, a, r, s’) is sampled from the dataset, the next action a’ generated
by the Q-function/policy may be unseen or rare, potentially leading to a significant e, for (s',a’),
propagating a poor estimate to subsequent values.

Extrapolation error is typically associated with offline RL (Fujimoto et al.| [2019a} [Levine et al.,
2020), where the agent operates with a fixed dataset and cannot interact further with the environment,
making it likely that the policy samples actions not present in the dataset. In online RL, by contrast,

Under review as a conference paper at ICLR 2025

the policy interacts with the environment and collects data for the actions it generates, allowing
for self-correction and reducing extrapolation error. However, recent work (Fujimoto et al., [2023)
indicate that as the action space expands significantly, the network becomes increasingly susceptible
to erroneous extrapolations, even in online RL. This issue is especially severe in MARL since the
action space grows exponentially with agent numbers.

Fortunately, value factorization methods offer an effective solution to this problem. For a factorized
Q-function of the form Q(s,a) = f(s,Q1(71,a1), ..., @n(Tn,an)), accurate estimation does not
require exploration of the entire joint action space. The error ¢(s, a) dependent on joint actions can
be decomposed into individual components:

Q(S,Cl) + 6(8, (1) = f(57 Ql(TI» al) + 61(7—17 Cll), ceey Qn(Tna an) + en(Tru an))a
where the relationship between the errors is approximately given by

0
e(s,a) =~ Z Téei(ri,ai). 4)
i=1 ¢

Using a first-order Taylor expansion, we assume the errors are relatively small compared to the
Q-functions. This result implies that maintaining small values for each e;(7;, a;) can reduce the
overall error in the joint value function. Notably, reducing e;(7;, a;) is generally more feasible than
directly minimizing e(s, a), as e;(7;, a;) depends on the number of a; executed while e(s, a) depends
on the exact replications of a. Consequently, the extrapolation error for a factorized value function
can be significantly reduced. Even if certain joint actions are rarely observed, their constituent
individual actions may frequently appear in the dataset.

- 283z . Sm_vs _6m
08 — S>3 — amx I
-
— Sm_vs 6m =] — Central-q g
[Salp%]
=06 = =
S 2 =
£ R N
S 04 g =
=9 .= .5
) =2 =2
t 4 A
A 0.2 [s3] 83 L//\—/\/\/_/
51 51
))
0.0 S \——g E \M—
=0 =0
0 2M 0 2M 0 2M
Step Step Step

() (b) (©

Figure 1: (a) Proportion of unseen state-action pairs on two maps of SMAC. (b)(c) TEE of QMIX
and centralized Q-function on two maps of SMAC.

To illustrate this, consider a task with 5 agents, each having 10 possible actions. If the agents select
actions uniformly, gathering enough experiences to cover all possible joint actions for a specific state
would require over 10% samples in expectation. However, for a factorized value function, only around
30 samples would suffice to ensure reliable estimates that are not merely random guesses. A similar
situation arises in SMAC maps such as 2s3z and 5m_vs_6m. In Fig. EKa) we show the proportion
of unseen (s’, a’) in each batch during updates, indicating that 20% to 60% of a’ are unseen under
s’ yet contribute to TD target computation, leading to significant reliance on extrapolated values.
Furthermore, by comparing the TEE of QMIX and a centralized Q-function on these maps (Fig.
b)(c)), we observe that despite QMIX’s limited representational ability, the TEE of the centralized
Q-function is substantially larger. These results underscore the importance of managing extrapolation
error and highlight the key advantages of value factorization in mitigating this issue. Further details
of these examples can be found in Appendix

3.2 PROPAGATION OF EXTRAPOLATION ERRORS

As previously discussed, one critical way to mitigate extrapolation error is through increased execution
of unseen actions in the environment, which distinguishes online RL from offline RL. In online
RL, extrapolation error is often less severe because once a value is overestimated, the likelihood of
selecting the corresponding action increases, making it easier to collect additional samples. These
samples help reduce the error by providing more accurate updates. However, in value factorization
methods, overestimation of the joint Q-function does not directly lead to an increased probability of
choosing the corresponding actions for individual agents. To address this, we introduce an important
constraint called Error Propagation Consistency (EPC):

Under review as a conference paper at ICLR 2025

Definition 1 (EPC). In value factorization methods, for a joint value function Q(s, a), if its corre-
sponding individual utilities [Q;(7;, ;)| satisfy that, overestimation of Q(s, a) will result in the
overestimation of all Q;(7;, a;), we say that the factorization structure adheres to EPC.

Value factorization methods require the EPC constraint because the behavioral policy is driven
by individual utilities rather than the joint Q-function. Therefore, the factorization structure must
propagate errors consistently from the target to the individual utilities, enabling the self-correction
mechanism inherent to online RL. In essence, factorization structures that satisfy EPC must be
monotonic, as formalized in the following proposition:

Proposition 1. Monotonicity , expressed as % > 0, stands as a sufficient and necessary
condition for EPC.

To illustrate, consider gradient descent on the objective function min E[(y — f(Q1, ..., Q»))?], where
y represents the TD target and Q = f(Q1, ..., Q) represents the factorized joint value function. The
update rule of individual utility on state-action pair (s, a) is given by:

of

Qi
where « is learning rate. For a monotonic f with % > 0, if the target y exceeds the current value
function, i.e. y > f(Q1, ..., @n), then the individual utility @); will be update to a higher value for
(74, a;). Conversely, for a non-monotonic function, a larger target y may lead to some smaller Q);.

Qi(Ti,a:) + Qi(7i,a;) +2afy — f(5,Q1(T1,a1), s Qn(Tn, an))]

s,as

Now, consider a common scenario where the target Q-value contains an error due to extrapolation,
and the max operator causes the target y to be overestimated. For monotonic factorization, each
individual utility Q;(7;, a;) will be overestimated. Since actions are selected individually based on
each agent’s utility, this overestimation increases the likelihood of choosing each a; of Q;(7;, a;),
thereby making the joint action @ = [ay, ..., a,] under state s more likely. In this scenario, the
self-correction mechanism comes into play: as the poorly estimated value of (s, a) is revisited
more frequently, the corresponding error is updated and reduced. However, if some Q;(7;, a;) is

underestimated due to % < 0, the likelihood of selecting the joint action a may decrease, as

underestimation of Q;(7;, a;) lowers the probability of selecting a;. In such cases, the self-correction
mechanism may fail, leading to error accumulation and degraded performance.

In summary, by analyzing the propagation of extrapolation error, we find that monotonicity is
essential for preserving the self-correction mechanism in online RL. Similar observations can also
be found in [Peng et al.| (2021) and Hu et al.| (2023), where non-monotonic factorization, despite
its theoretical correctness and superior expressive abilities, tends to underperform compared to
monotonic counterparts, especially in complex tasks.

3.3 EXTRAPOLATION ERRORS OF EXISTING APPROACHES

Extrapolation error is seldom addressed in existing online MARL approaches, yet it plays a critical
role in shaping performance. Although conducting a unified analysis of existing works through the
lens of extrapolation error is challenging—due to differences in learning schemes, structures, and
various factors contributing to performance—some general insights can be drawn. Specifically, we
observe that approaches that involve learning over the joint action space typically underperform in
evaluations. To illustrate this, we provide a brief analysis of existing approaches, and a detailed
analysis of QPLEX, which learns joint actions but still achieves relatively good performance.

First, as extensions from single-agent RL, methods like MADDPG (Lowe et al.l 2017) and COMA
(Foerster et al.,|2018)) have become popular but tend to underperform in complex tasks. In comparison,
methods like MAA2C (Papoudakis et al.| [2020) and MAPPO (Yu et al., [2022), which are also derived
from single-agent RL, demonstrate a clear performance gap. Moreover, FACMAC (Peng et al.|
2021)), which applies QMIX’s factorization to MADDPG, also exhibits superior performance. A key
observation is that both MADDPG and COMA learn joint Q-functions, leading to significant TEE
as demonstrated in Fig. [} By contrast, MAA2C and MAPPO rely on joint value functions, and
FACMAC employs factorized Q-functions, which avoid extrapolation over the joint action space. We
provide further experimental evidence regarding MADDPG and FACMAC in Section 5]

Under review as a conference paper at ICLR 2025

Second, within value factorization methods, we observe similar issues when joint Q-functions are
involved. For instance, QTRAN requires an additional learning step for a centralized Q-function.
This extra step undermines the inherent advantage of value factorization, leading to substantial TEE
and poor performance in complex tasks, as observed by many prior works (Yang et al., [2020; [Wang
et al.,|2020a; [Rashid et al.| [2020a). In contrast, the most widely used value factorization algorithm,
QMIX, benefits from both factorized action space and monotonicity, despite its limited expressive
capacity. As shown in previous studies (Yu et al., 2022} [Ellis et al.l 2023; Hu et al., [2023)), QMIX
consistently achieves competitive results across various domains.

Another noteworthy example is QPLEX, which, de-
spite achieving full expressive capability, relies on
estimating weights \;(s, a) across the joint action
space. From the perspective of extrapolation error,
this reliance on \; (s, a) introduces a risk: QPLEX’s

factorization ensures g—g < 0, meaning that under-
estimation of joint Q-function will lead to an overes-
timation of \;. As discussed in the previous section,
underestimating the joint Q-function reduces the like-
lihood of executing the corresponding joint action a,
as QPLEX enforces monotonicity by setting % =1. Step

As aresult, certain a associated with \;(s, a) will be
further extrapolated, accumulating overestimation as
training progresses. This issue is evident in Fig. 2
where the solid line (left y-axis) shows the win rate,
and the dashed line (right y-axis) represents the value of A; per batch. The performance of QPLEX
degrades midway through training, which we trace to the accumulation of error in),. While the
mean and standard deviation of \; remain small, the maximum value of \; grows significantly as
training progresses, eventually leading to performance degradation. This implies that QPLEX suffers
error accumulation on certain \; due to extrapolation within the joint action space. To address this
issue, we modify QPLEX by bounding \; using a sigmoid function, resulting in a variant we call
QPLEX*. As shown in Fig. [2| this adjustment constrains \;, preventing the instability caused by error
accumulation. While this modification limits the expressive power of QPLEX, it does not degrade
performance, suggesting that full expressiveness may not be critical in this context. Detailed results
are provided in Appendix

In summary, these findings highlight that extrapolation error is a critical, yet underexplored, issue
in MARL. While many existing methods focus on improving performance by addressing TAE, our
analysis suggests that mitigating extrapolation error may be more crucial, particularly when efforts to
minimize TAE involve learning over the joint action space. Given the significant role of extrapolation
error in the performance of MARL methods, a straightforward idea is to prioritize its reduction
and evaluate whether this leads to further improvements. In the following sections, we present
techniques specifically aimed at reducing extrapolation error and demonstrate their substantial impact
on performance.

zerg 5 vs 5

—— Amean [
—— Astd
—— Amax |

o

@
felyel
]
cre
mm
X <

-
¥

Weight Value

o
o

©

o
N

Mean Test Win Rate

o
o

Figure 2: Mean test win rate and the value of
A; of QPLEX on SMACV2.

4 ADDRESSING EXTRAPOLATION ERRORS

In this section, we introduce two techniques aimed at reducing the bias and variance of TEE,
thereby mitigating extrapolation error. Despite their simplicity, these techniques serves as extensions
to existing methods and demonstrate the importance of minimizing extrapolation error. These
approaches can, in principle, be integrated with any value factorization, but here we use QMIX as an
illustrative example.

4.1 ADDRESSING BIAS THROUGH ANNEALED MULTI-STEP BOOTSTRAPPING

Multi-step methods, which incorporate temporally extended trajectories into value updates, have been
shown to improve learning efficiency (Sutton & Bartol 2018). In deep RL, when the value network is
undertrained, multi-step targets from unbiased samples can mitigate the impact of the value function
on the target, thus reducing bias. A representative multi-step method for Q-learning is Peng’s Q(\)

Under review as a conference paper at ICLR 2025

(PQL) (Peng & Williams, 1994), whose operator /"™ applicable to any policies p and 7, is defined
as follows:

NETQ =(1=2)) (AT IT7Q, 5)
n=1

where A € [0, 1]. PQL is commonly used in the implementation of many existing MARL algorithms
(Peng et al.| |2021; Zhang et al.l2021b; |Hu et al.} 2023), but its properties are seldom discussed and
warrant further investigation.

Referring to the error defined in Section[3.1] we consider the following update with error propagation:

T € G(Qk) and Qpy1 = NJ"™(Qr + €x), (6)

where p is maintained as a fixed behavior policy (to be discussed later). The following proposition
illustrates the error-reducing nature of PQL.

Proposition 2. The target estimation error for each update step k satisfies:

Q1 — NV ™ Qrlloc < Be, @)

. The accumulated error related to € is O ?1(1_;;‘2) €).

where € = ||eg||0o and § = 71(%;;\)

Proof. The proof follows from [Kozuno et al.| (2021)), and we provide full details in Appendix[Cl [

The proposition indicates that extrapolation error and its propagation are linked to A. A larger A
reduces error, aligning with the intuitive understanding that A controls the balance between collected
returns and learned value functions for target estimation.

However, adopting a larger X is not always beneficial. With a fixed behavior policy p, the PQL
operator converges to the fixed point of AT# + (1 — A)7 (Harutyunyan et al. 2016), implying
convergence to a biased policy A+ (1 — A)7r. Although PQL can eventually converge to the optimal
policy as p approaches 7 (Kozuno et al.l[2021)), this may not always happen in practice. The behavior
policy typically originates from the old policy stored in the replay buffer, which may not align closely
with the current policy before convergence. Moreover, behavior policies are often limited to e-greedy
exploration in practical algorithms. Thus, a large A may lead to a highly biased policy and suboptimal
performance. Experimental results (Fig. [7in Appendix) across various A confirm that while a larger A
is more efficient during the initial stages of training, its performance may decline, eventually lagging
behind smaller A values in later stages.

To address this issue, we propose a A annealing strategy, which leverages the error-reducing properties
of PQL with a large initial A while gradually annealing it during training to prevent policy bias. To
ensure stability, we update Ay in sync with the fixed target network as follows:

Ao = A+ (1= A)/(1+ak), ®)

where o« = 10/T, with T being the total environmental steps for training. This scheme is chosen
heuristically, but the algorithm is not very sensitive to how X is annealed, as long as it converges to
A*. While A* would ideally be zero to achieve the optimal policy, practical training conditions may
necessitate stopping earlier. For instance, as seen in the 355z_vs_3s6z task (Fig. [[c)), if the total
training steps are insufficient for convergence, maintaining a relatively large * proves beneficial.

4.2 ADDRESSING VARIANCE THROUGH ENSEMBLED TARGET

Poor value estimation not only introduces bias but also contributes to increased variance. Additionally,
similar to GAE (Schulman et al., [2015), PQL reduces bias by introducing variance from Monte Carlo
samples. To address this, ensemble learning has become a prevalent strategy in deep learning for
reducing variance and improving robustness (Ganaie et al.l 2022). By combining predictions from
multiple independently trained models, ensemble leverages their diverse perspectives to achieve a
more robust and generalized learning process.

Consider M independently estimated Q-functions: Q(s,a;607) = Q*(s,a) + €/(s, a), with e’
representing the error term, assumed to be i.i.d across j for each fixed state-action pair. By averaging

Under review as a conference paper at ICLR 2025

these Q-functions, the variance can be reduced proportionally to 1/M:
1 & A ‘
Var[M ZlQ(s, a;07)] = MVar[eJ(s, a)l.
=

This reduction exploits the i.i.d. nature of the errors e’. Unlike previous works that assume certain
additional properties for the error terms (Anschel et al., [2017; Chen et al., 2021)), we make no
such assumptions, recognizing that the limited expressiveness of value factorization methods may
introduce model bias into e/, stemming from TAE as discussed in Section Further details on this
are provided in Appendix [E.3]

In this approach, we propose directly averaging joint Q-functions. When integrated with QMIX, the
ensembled joint Q-function is expressed as:

M M
Q(Saa;0_7 w) = ZQ(Saaa HJJZJ) = ZH(S7Q1<T170/179{)7 7Qn(7'n»an79%)7¢)7 (9)
j=1 j=1

where H represents the monotonic hypernetwork parameterized by . This ensembled Q-function is
then utilized in the PQL target to reduce the estimation variance for rarely seen state-action pairs, as
shown in the following loss function:

M
L(0,9) = > Ep[(Q(s,a;07,9) — ys.0)*], (10)
j=1

where y; o is the PQL target. The theoretical requirements behind these results implicitly assume that
the factorization satisfies the EPC condition (i.e., it is monotonic). This is essential because both PQL
and ensemble methods control the error of the joint Q-function, and only a monotonic factorization,
as seen in Eq. (@), can properly propagate this control to the individual utilities.

We summary the complete algorithm Appendix [D] with several important practical considerations.
First, the hypernetwork does not take actions as input; thus, using an ensemble of hypernetworks is
not expected to help reduce estimation error, as verified in Appendix [E.3] Therefore, we use a shared
mixing network. Second, in (9), instead of averaging the individual utilities before inputting them into
the mixing network, we opt for averaging the joint Q-functions. This deliberate choice is motivated by
the belief that the mixing network, when presented with individual utilities exhibiting higher variance,
can mimic the effect of target policy smoothing observed in TD3 (Fujimoto et al., 2018). This
technique is important in tasks with sparse reward such as GRF, as illustrated in Appendix [E.3] Third,
double g-learning is employed to the training. It is an important technique to reduce overestimation
in Q-learning. While ensemble methods may already help with overestimation (Appendix [E.3), we
retain it for consistency with previous works.

5 EXPERIMENTS

In this section, we evaluate the performance of proposed approach across three domains: SMAC, GRF
and SMACV2. Our aim is to demonstrate that, due to the identification of extrapolation error, simple
modifications to existing methods can lead to significant performance improvements. Additionally,
we conduct ablation studies to elucidate the impact of individual components. Our primary focus is
on comparing QMIX, which we refer to as Annealed Ensemble QMIX (AEQMIX). Further results,
including those for AEVDN and AEQPLEX*, as well as details regarding hyper-parameters and
settings, can be found in Appendix [E]

5.1 MAIN RESULTS

StarCraft Multi-Agent Challenge (SMAC): The results include evaluations across 15 maps, AE-
QMIX generally outperforms QMIX, particularly on challenging maps. Due to the simplicity of
some maps, the performance improvement is not significant and, in some cases, as shown in Fig. [§]in
Appendix, AEQMIX convergence slower. This is because A annealing will incessantly shift of the
fixed point that may slow convergence for simple tasks.

Under review as a conference paper at ICLR 2025

Table 1: Comparison of the mean test win rate between AEQMIX and QMIX on 15 maps of SMAC,
5 maps of GRF and 15 maps of SMACV2.

Map AEQMIXQMIX| Map AEQMIX QMIX] Map AEQMIX QMIX
13852 100.0 100.0| 6h_vs 8z 79.3 33.7 | zerg20_vs_23 36.6 139

2s3z 100.0 100.0 | corridor 94.6 93.0 | protoss5_vs_5 76.5 69.5
2s_vs_1lsc 100.0 100.0 MMM2 98.9 96.5 |protoss10_vs_10 83.3 70.2
8m 100.0 100.0| GRF_3vl 789 46.2 |protoss20_vs_20 89.7 714

MMM 100.0 100.0 | GRF_corner 22.7 19.5 |protoss10_vs_11 55.0 37.1
2c_vs_64zg 99.7 98.9 |GRF_ca_easy 73.2 64.5 |protoss20_vs_23 42.2 16.3
3s5z 99.1 99.1 \GRF_ca_hard 49.8 44.5 | terran5_vs_5S 76.9 64.4
3s_vs_5z 92.8 83.9 GRF_rps 67.5 52.6 |terranl0_vs_10 79.8 66.6
8m_vs_9m 91.8 90.5 | zerg5_vs_5 62.1 40.4 | terran20_vs_20 69.8 54.9
10m_vs_11m 96.1 94.8 |zerglO_vs_10 64.8 45.0 | terran10_vs_11 66.1 40.7
3s85z_vs_3s6z 96.9 60.2 |zerg20_vs_20 55.3 33.1 | terran20_vs_23 314 12.5
Sm_vs_6m 88.6 83.2 |zerglO_vs_11 49.9 26.5 Average 76.4 63.5

Google Research Football (GRF) (Kurach et al., [2020) poses challenges for value factorization
methods due to sparse rewards. Recent work (Papoudakis et al.,|[2020) highlights the poor performance
of value factorization methods in sparse reward scenarios, and QMIX performs poorly in GREF, as
tested in (L1 et al., 2021} |Yu et al., 2022). In this paper, we use a large)\ in PQL to facilitate the
training of value functions. As shown in the table, AEQMIX outperforms QMIX across 5 tasks. It’s
worth noting that, due to the utilization of a large)\, the ensembled target may have a limited impact
on performance since the majority of the target is derived from the return. Consequently, we opt for
an ensemble size of M = 2 in GRF. Additional results on GRF are available in Appendix

SMACYv2 (Ellis et al.,[2023) is introduced to address some drawbacks of SMAC, such as the lack
of stochasticity and partial observability. In contrast to SMAC and GRF, SMACv2 incorporates
randomly generated units and initial positions, introducing more stochasticity and potentially creating
scenarios that are exceedingly challenging to win. The algorithms are tested on 15 maps of SMACv2,
where QMIX encounters difficulties in achieving a high win rate across these scenarios, particularly
in these 20_vs_23 tasks. Notably, AEQMIX exhibits significant improvements across all maps.

27m_vs_30m

2s3z 2c_vs 64zg MMM2
e <

o o o o ~r
5 o @ o

Mean Test Win Rate

°
°

2 2 2 2
Step Step Step Step

Figure 3: Mean test win rate of AEFACMAC, FACMAC, AEMADDPG and MADDPG on SMAC.

5.2 RESULTS FOR POLICY-BASED METHODS

While this paper primarily focuses on value-based methods, it’s important to acknowledge that
off-policy policy-based methods, such as MADDPG and FACMAC, are also related to extrapolation
errors due to their reliance on Q-functions. To illustrate the effectiveness of our approach and the
significance of extrapolation error, we present a comparison between MADDPG, FACMAC, and our
modified versions, AEMADDPG and AEFACMAC.

The results, as shown in Fig. E], demonstrate that AEFACMAC outperforms FACMAC, AEMADDPG
outperforms MADDPG, and FACMAC outperforms MADDPG. These findings align with our obser-
vations regarding extrapolation error; specifically, FACMAC, with its factorized Q-function, exhibits
smaller extrapolation error compared to MADDPG, while the AE+ methods show reduced extrapola-
tion error relative to their original counterparts. Additional experiments comparing AEFACMAC and
FACMAC can be found in Appendix

Under review as a conference paper at ICLR 2025

5.3 ABLATION STUDIES AND DISCUSSIONS

In this subsection, we conduct further experiments to ana- 5 o= ferran 5 _vs > —
lyze the impact of the annealed PQL and ensembled target LE 018 e
on TEE and performance. The method with a fixed A and § ** .

— 1=0.8

ensemble is denoted as EQMIX, while the version without
ensemble is referred to as AQMIX. The ensemble size is
represented by M.

Fig. @] shows the impact of different A and M on the TEE.
First, as expected, a larger A corresponds to lower TEE.
Our)\ annealing approach maintains TEE at a low level
throughout training. This helps facilitate more efficient §
learning during the early stages, while mitigating bias .S
later in training. Second, increasing the ensemble size M §
reduces variance, consistent with the well-known property ¢ V

S

5

Q

pA

°

g

H

terran_5 vs 5

B
i
~

&

J— v
— M=2

of ensemble methods to lower variance by a factor of 1/M.

Fig. [5[a)(b) illustrate the effects of different sizes and an-
nealing on performance. Firstly, larger ensemble sizes M
consistently lead to improved performance, demonstrat- 0 M

ing the benefits of variance reduction through ensembling. Step

Secondly, comparing AQMIX with QMIX under the same

M shows that annealing generally enhances performance. Figure 4: Target estimation error with
Finally, the combined approach of annealing and ensem- different A and variance with different
bling demonstrates a mutually beneficial effect, leading ensemble size M.

to significant performance improvements. However, it is

noteworthy that both AQMIX and AEQMIX(M=2) perform worse than QMIX. We attribute this to
premature X annealing. As shown in Fig. [[c), smaller A performs poorly on 3s5z_vs_3s6z task due to
insufficient convergence. Thus, annealing A too early can negatively impact performance. In contrast,
when a larger ensemble is used, convergence is achieved earlier on this map, making the annealing of
A more appropriate. This in turn benefits training, suggesting that the timing of A\ annealing should
be adjusted based on convergence speed, which is influenced by the ensemble size.

zerg 5 vs 5 3s5z_vs 3s6z 3s5z_vs_3s6z
O 1.0] — amix -
0.6 £ s J’W — A=00
R 0.8{ Acqunin-s — A=02
=) —— AEQMIX(M=8) 2=0.4
o4 B 06— EQMIX(M=8) A=0.6
3 — 2=08
b o4
—q .
o T | E
EQMIX(M=2) S o2
— EQMIX(M=4) S §
—— EQMIX(M=8)
0.0 — semxwie | 2> 0.0/ i
0 oM 0 oM 0 Tom
Step Step Step

(a) (b) (©)

Figure 5: The performance on map (a) zerg_5_vs_5 (b) 3s5z_vs_3s6z with different anneal and
ensemble combinations. (c) Mean test win rate of QMIX with different A\ on map 3s5z_vs_3s6z.

6 CONCLUSION

This paper has brought attention to the often-overlooked issue of extrapolation error in MARL. We
identified the critical role that value factorization methods play in mitigating this challenge and
proposed additional techniques, such as multi-step bootstrapping and ensemble methods, to further
reduce extrapolation error. Our experiments not only demonstrate the superior performance of our
proposed approach but also validate the significant impact of extrapolation error on MARL perfor-
mance. This success highlights the importance of addressing extrapolation error as a fundamental
factor in improving MARL methods. We believe that our findings open up new avenues for advancing
value factorization methods and offer a fresh perspective for future research in MARL.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104-114. PMLR,
2020.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified g-ensemble. Advances in neural information processing
systems, 34:7436-7447, 2021.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International conference on machine learning, pp. 176—185.
PMLR, 2017.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double g-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob N. Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative
multi-agent reinforcement learning, 2023.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration, 2019b.

Scott Fujimoto, Wei-Di Chang, Edward J Smith, Shixiang Shane Gu, Doina Precup, and David Meger.
For sale: State-action representation learning for deep reinforcement learning. arXiv preprint
arXiv:2306.02451, 2023.

Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer, and PN Suganthan. Ensemble deep learning:
A review. Engineering Applications of Artificial Intelligence, 115:105151, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q () with off-policy
corrections. In International Conference on Algorithmic Learning Theory, pp. 305-320. Springer,
2016.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning,
2023.

Maximilian Hiittenrauch, Adrian Sogié, and Gerhard Neumann. Guided deep reinforcement learning
for swarm systems. arXiv preprint arXiv:1709.06011, 2017.

Tadashi Kozuno, Yunhao Tang, Mark Rowland, Rémi Munos, Steven Kapturowski, Will Dabney,
Michal Valko, and David Abel. Revisiting peng’s q (A) for modern reinforcement learning. In
International Conference on Machine Learning, pp. 5794-5804. PMLR, 2021.

11

Under review as a conference paper at ICLR 2025

Landon Kraemer and Bikramyjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82-94, 2016.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michat Zajac, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 4501-4510, 2020.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pp. 6131-6141. PMLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34:3991-4002, 2021.

Ryan Lowe, YiI Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in neural information processing systems, 32, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928-1937. PMLR, 2016.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate g-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289-353, 2008.

Georgios Papoudakis, Filippos Christianos, Lukas Schifer, and Stefano V Albrecht. Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Bohmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208-12221, 2021.

Jing Peng and Ronald J Williams. Incremental multi-step g-learning. In Machine Learning Proceed-
ings 1994, pp. 226-232. Elsevier, 1994.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199-10210, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234-7284, 2020b.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Lukas Schifer, Oliver Slumbers, Stephen McAleer, Yali Du, Stefano V Albrecht, and David Mguni.
Ensemble value functions for efficient exploration in multi-agent reinforcement learning. arXiv
preprint arXiv:2302.03439, 2023.

12

Under review as a conference paper at ICLR 2025

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Arambam James Singh, Akshat Kumar, and Hoong Chuin Lau. Hierarchical multiagent reinforcement
learning for maritime traffic management. 2020.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
conference on machine learning, pp. 5887-5896. PMLR, 2019.

Kyunghwan Son, Sungsoo Ahn, Roben Delos Reyes, Jinwoo Shin, and Yung Yi. Qtran++: im-
proved value transformation for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:2006.12010, 2020.

Jianyu Su, Stephen Adams, and Peter Beling. Value-decomposition multi-agent actor-critics. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 11352-11360, 2021.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent g-learning. arXiv preprint arXiv:2008.01062, 2020a.

Jianhao Wang, Zhizhou Ren, Beining Han, Jianing Ye, and Chongjie Zhang. Towards understanding
cooperative multi-agent g-learning with value factorization. Advances in Neural Information
Processing Systems, 34:29142-29155, 2021.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Off-policy multi-agent
decomposed policy gradients. arXiv preprint arXiv:2007.12322, 2020b.

Zhiwei Xu, Dapeng Li, Yunpeng Bai, and Guoliang Fan. Mmd-mix: Value function factorisation
with maximum mean discrepancy for cooperative multi-agent reinforcement learning. In 2021
International Joint Conference on Neural Networks (IJCNN), pp. 1-7. IEEE, 2021.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang.
Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611-24624, 2022.

Tianhao Zhang, Yueheng Li, Shuai Li, Qiwei Ye, Chen Wang, and Guangming Xie. Decentralized
circle formation control for fish-like robots in the real-world via reinforcement learning. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pp. 8814-8820. IEEE, 2021a.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 12491-12500. PMLR, 2021b.

Ming Zhou, Jun Luo, Julian Villela, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang,
Montgomery Alban, Iman Fadakar, Zheng Chen, Aurora Chongxi Huang, Ying Wen, Kimia
Hassanzadeh, Daniel Graves, Dong Chen, Zhengbang Zhu, Nhat M. Nguyen, Mohamed Elsayed,
Kun Shao, Sanjeevan Ahilan, Baokuan Zhang, Jiannan Wu, Zhengang Fu, Kasra Rezaee, Peyman
Yadmellat, Mohsen Rohani, Nicolas Perez Nieves, Yihan Ni, Seyedershad Banijamali, Alexan-
der Imani Cowen-Rivers, Zheng Tian, Daniel Palenicek, Haitham Bou-Ammar, Hongbo Zhang,
Waulong Liu, Jianye Hao, and Jun Wang. Smarts: Scalable multi-agent reinforcement learning
training school for autonomous driving. In Conference on Robot Learning, 2020.

13

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Value factorization. In addition to the previously discussed methods, various approaches address the
challenge of value factorization. For value-based methods, Qatten (Yang et al.,[2020) employs an
attention mechanism to augment the expressive capacity of linear factorization. WQMIX (Rashid
et al.| 2020a) improves QMIX’s expressive ability through the incorporation of a weighted operator
and a true value network. QTRAN++ (Son et al., [2020) refines the constraints of QTRAN to improve
efficiency. For policy-based methods, VMIX (Su et al.| |2021) applies QMIX’s factorization to the
value function of A2C (Mnih et al.,|2016). DOP (Wang et al.||2020b) utilizes linear factorization on
the Q-function of COMA (Foerster et al.,|2018)), while FOP (Zhang et al.,[2021b) extend QPLEX’s
factorization to soft actor-critic (Haarnoja et al., [2018) framework. FACMAC (Peng et al., [2021)
combines QMIX’s factorization with MADDPG (Lowe et al., 2017). These approaches primarily
concentrate on enhancing factorization itself, specifically addressing the TAE problem introduced
in this paper, without delving into the underlying reasons for the success of value factorization.
While theoretical papers such as (Wang et al., [2021])) take steps to unveil the efficiency and credit
assignment of value factorization, they lack substantial support for subsequent improvements. Recent
examinations of these methods (Yu et al., 2022} Ellis et al., [2023}; |Hu et al., 2023), along with more
comprehensive experiments, highlight QMIX as the most popular and robust value-based MARL
algorithm. Therefore, distinct from previous approaches, our work approaches value factorization
from a novel perspective, introducing further enhancements to existing methods.

Ensemble RL and MARL. Our analysis is similar to Averaged-DQN (Anschel et al., |2017), which
ensembles the Q-functions from the past M steps. Despite proving effective in variance reduction,
Averaged-DQN relies on assumptions that may not always hold in practice. Other ensemble methods
(Lee et al.| | 2021)) incorporating the standard deviation of Q-functions were not discussed here due
to limited observed improvements and their divergence from the main focus of this paper. REDQ
(Chen et al.|[2021)) employs in-target minimization across a random subset of Q-functions from the
ensemble. However, this approach proves unsuitable for value factorization, possibly due to the
presence of model bias (See Appendix . In MARL, EMAX (Schifer et al., 2023) applied a
similar ensemble method on VDN and QMIX with UCB and majority vote to improve exploration.
MMD-MIX (Xu et al., 2021) introduce REM (Agarwal et al., 2020)) into a distributional view of
QMIX to be more robust in randomness. These methods do not explicitly consider the extrapolation
error.

Offline RL. The in-target average ensemble employed in our paper bears resemblance to the approach
used in offline RL (Agarwal et al.,2020; Fujimoto et al., 2019a; Levine et al.,[2020). Additionally, the
out-of-distribution (OOD) action studied in offline RL aligns with the extrapolation error addressed
in this paper. As a result, similar methods may yield comparable effects. However, different from (An
et al.| 20215 Bai et al.,|2022), our paper does not require a more conservative/pessimistic estimation
of the target, as the monotonic constraint enables self-correction in online RL. Moreover, we found
that any degree of pessimism negatively impacts performance, as detailed in the Appendix [E.3]

B DETAILS IN SECTION 3

B.1 EXTRAPOLATION ERROR IN MARL

In Section 3.1} we explore an illustrative example involving 5 agents, each with 10 possible actions.
The scenario entails a uniform action selection for each agent at every state. The central question
is: How many samples are required in each state to ensure the selection of all joint actions at least
once? This scenario aligns with the classic coupon collector’s problem in probability theory, where
the expected number of samples needed grows asymptotically as O(nlog(n)). The precise result is
givenbyn % In the context of joint value functions, where n = 105, the requirement exceeds

106 samples, whereas for factorized value functions with n = 10, only around 30 samples suffice.

Moving forward, we consider two similar examples: the maps 2s3z and 5m_vs_6m on the SMAC
domain, both involving 5 agents with around 10 actions each. To calculate the proportion of unseen
state-action pairs, for each transition (s, a, '), we mark (s, a) as seen and then check whether (s’, a’)
has been marked before, where a’ = arg max Q(s’, a’) is used for Q-learning update. The proportion
is calculated from the (s’, a’) pairs that have not been seen in each batch of samples. This proportion

14

Under review as a conference paper at ICLR 2025

zerg 5 vs S protoss 5 vs 5 terran_5_vs S
0.8 — QPLEX 0.8 { — QPLEX
= QPLEX* = QPLEX*

0.8 = QPLEX
— QPLEX*

Mean Test Win Rate
IS

Mean Test Win Rate
<

Mean Test Win Rate
2

0 10M 0 10M 0 10M
Step Step Step

Figure 6: Comparison of the mean test win rate of QPLEX and QPLEX* on 3 maps of SMACV2.
Plots show the mean and standard deviation across 3 seeds .

indicates how many Q(s’, a’) values need to be extrapolated during each update. Note that the state
space of SMAC is continuous and thus uncountable. We simplify it by directly employing s = int(s).
As aresult, the actual proportion of unseen state-action pairs may be even higher than our calculated
values.

To assess the TEE of QMIX in comparison to a centralized Q-function, we train the algorithm using
samples generated from QMIX. Additionally, a centralized Q-function is trained, taking joint state
and action as input and producing the corresponding Q-value as output. Given the computational
challenges associated with obtaining a true Q-function on SMAC, we adopt an analytical approach
akin to previous studies (Fujimoto et al.,[2018; (Chen et al., 2021)). For each visited state-action pair,
we compute the TEE by measuring the difference between the discounted Monte Carlo return and
the estimated TD target. Since Monte Carlo return can change significantly throughout training,
we normalize it by dividing the expected discounted return for state-action pairs sampled from the
current policy.

B.2 DETAILS OF QPLEX

Here, we present additional details of QPLEX as discussed in Section [3.3] Recall the factorization of
QPLEX:

Qls,a) =Y (Nils, @) = 1)(Qils, a;) — max Qj(s,05)) + Y Qils, i),
where * indicates that the gradient is stopped. This factorization has two key properties: 1) aachz- =
ensuring that the learning of individual utilities is unaffected by some certain poorly estimated \;. 2)

max, Q(s,a) =), max,, Q;(s,a;), which rules out the influence of \; for optimal Q-functions.
However, because this factorization involves the joint action space, some joint actions a in \;(s, a)
may rarely be seen during training, leading to substantial errors. Moreover, since g—g < 0, under-
estimation of the joint Q-function can lead to an overestimation of ;. As discussed in Section 3.2}
underestimated values of ()(s, a) make the corresponding joint action a less likely under state s,
exacerbating the rarity of (s, @) pairs. This leads to continuous overestimation of poorly estimated
Ai(s, @), which can eventually cause instability in the learning process.

Our modification is A} (s, a) = Sigmoid(); (s, a)), which prevents the instability from error accumu-
lation. Additional results are presented in Fig. [6] showing that QPLEX* remains stable and performs
similarly to the original QPLEX.

C PROOF OF PROPOSITION [2]

Lemma C.1 ((Harutyunyan et al., 2016)). The PQL operator can be rewritten in the following forms:
NETQ = (T —4AP*) " Hr+~4(1 = N)P"Q). (11)
Using this lemma, we have:
NLT(@Qr +ex) = (T —AP*) e+ 4(1 = \)P™(Qr + ex)]
= N{TQp + (1 = A\ (T — yAPH) 1Py,

15

Under review as a conference paper at ICLR 2025

zerg 5 vs 5 protoss 5 vs 5 terran_5_vs 5 Sm_vs 6m

£osl— P sl
50—
%:06 s A = ke R -
E 0.4 >
E 0.2
E 0.
0 1o0M 0 10M 0 oM 0 1iom
Step Step Step Step
Figure 7: Mean test win rate of QMIX with different A on SMACv2 and SMAC.
As a result,

1Qk+1 = N Qilloe = 7(1 = M — yAP*) " P x| o
c21=X
T 1—9A
This shows the propagation of TEE relative to A on each step.

lexlloo = Be.

For the algorithm:

e € G(Qr) and Qpy1 = N{"™ Q. + e,
(Kozuno et al.,|2021) introduced the following lemma:
Lemma C.2 ((Kozuno et al.,[2021)). For any K the following holds:
g K-l
Vet — VPR || < O(B%) 4+ —— E=k=1gi oo 12
| | <08)+1_7kZ:OB el (12)
where pic = A+ (1 — XN)mg, pr = A+ (1 — AN)my and mp € G(QP1).

Therefore, in this paper, we have
g K-l
[Ver Ve < OB)+ ——= > pHF 1. Be (13)
1=-7=
The second term represents the error dependence which can be futher written as:

2 = . 28 1-pK (1 =)
— €= —— e=0(—5¢).
1—7,;05 l—vy 1-p ((1—7)2)

This completes the proof.

D PSEUDO CODE

The pseudo code of AEQMIX is summarized in Algorithm [T

E EXPERIMENTAL DETAILS

E.1 IMPLEMENTATION

Our implementation of VDN, QMIX and QPLEX is based on the pymarl2 (Hu et al.,[2023)) code base.
All hyper-parameters used in our algorithm is consistent with QMIX except for the additional * and
ensemble size M, as presented in Table@ Besides, the implementation of MADDPG and FACMAC
is directly taken from Peng et al.|(2021), without any parameter adjustment.

E.2 FIGURES OF MAIN RESULTS

Fig. %@ and [T10] show the learning curves corresponding to the results presented in Table [T} In
Fig. we include the results of VDN, AEVDN, QPLEX* and AEQPLEX*, where (AE)QPLEX*
corresponds to the variant proposed in Section[3.3] We can observe a substantial improvement in the
AE-versions compared to the original algorithms.

16

Under review as a conference paper at ICLR 2025

Algorithm 1 AEQMIX

1: Initialize M action-value networks for all agents {[Q;(7;, a;; 67)]}L, }i-, with parameter 6 and
a mixing hypernetwork I with parameter 1)

2: Initialize target networks: ¢/ =, 0’ = 0

3: Initialize replay buffer D = {}

4: while k < episode_max do

5: set trajectory buffer 7' = [|

6 for ¢t = 1 to max_epsode_length do

7 Explore using £ — greedy with Q;(7;,-) = Z;Vil Qi(ri,67)
8 Store transition (s¢, T¢, @¢, Tt, St+1, Te+1) into T

9: end for
10: Store trajectory into D and sample a mini-batch b
11: for each trajectory 7" in b do

12: for each transition (s, T, a,r,s',7') in T do

13: Form joint action a’ by a!, = argmax Q;(7;, -
14: Compute target joint value Q'(s’, a’) using @f)
15: end for -

16: Compute PQL target y, , with A using Q’(s’, a’)
17: Compute joint value Q(s, a; 67, 1))

18: end for

19: Compute loss through (I0)
20: Adam updates 6, ¢ with the computed loss
21: if k' mod d = 0 then

22: Update target networks: ¢’ =1, 0" = 0
23: Update A through

24: end if

25: k=k+1

26: end while

Table 2: Hyperparameters used for SMAC, SMACv2 and GRF.

hyperparameters SMAC SMACv2 GRF
Action Selector epsilon greedy epsilon greedy epsilon greedy
€ start 1.0 1.0 1.0
€ finish 0.05 0.05 0.05
e Anneal Time 100000 100000 100000
Runner parallel parallel parallel
Batch Size Run 8 4 32
Buffer Size 5000 5000 2000
Batch Size 128 128 128
Optimizer Adam Adam Adam
Target Update Interval 200 200 200
Mixing Embed Dimension 32 32 32
Hypernet Embed Dimension 64 64 64
Learning Rate 0.001 0.001 0.0005
A 0.6 0.4 0.8
A* {0.0,0.4} {0.0,0.2} 0.8
Ensemble Size 8 8 2
Gamma 0.99 0.99 0.999
RNN Hidden Dim 64 64 256

17

Under review as a conference paper at ICLR 2025

1c3s5z 253z 2s vs_lsc

h
W
%

h

M M 2M 2M
Step Step Step Step Step
2¢ vs 6dzg 3552 35 vs 5z 8m_vs 9m 10m_vs 1lm
91
s
oo
Zo
é o
go.
b
=5
sM 0 sM 0 sM 0 5M
Step Step Step Step Step

3s5z_vs 356z Sm_vs 6m 6h_vs 82 corridor MMM2

A

)
)
h

M M M
Step Step Step Step Step

M

Figure 8: Comparison of the mean test win rate of QMIX and AEQMIX on SMAC. Plots show the
mean and std across 3 seeds .

academy 3 vs 1 with keeper academy_corner academ cas: academy hard academy run_pass_and shoot with keeper
o8] — o
o T
S oo
w1
Ii_ﬁ 04
g
5 o2
=
o0
20M 20M 20M 20M
Step Step Step Step Step

Figure 9: Comparison of the mean test score of QMIX and AEQMIX on GREF. Plots show the mean
and std across 5 seeds .

zerg 10 vs 10

zerg 5 vs S zerg 20 vs 20 zerg 10 vs 11 zerg 20 vs 23
e N,
W ////M'*w
10M 10M 10M
Step . 10M Step Step Step
protoss 10 vs 10 protoss 20 vs 20 protoss 10 vs 11 protoss 20 vs 23
PO P
RS
10M 10M 10M
Step Step Step Step Step
terran 5 vs S terran_10_vs 10 terran_20_vs 20 terran_10_vs 11 terran 20 vs 23
P
i AL o s P —

E
)

oM oM oM M

Step Step Step Step Step

Figure 10: Comparison of the mean test win rate of QMIX, AEQMIX, VDN, AEVDN, QPLEX* and
AEQPLEX* on SMACYvV2. Plots show the mean and std across 3 seeds.

E.3 ADDITIONAL RESULTS ON ENSEMBLED TARGET

First, we test the effect of using multiple mixing networks to compute the ensembled target:
M
Q(s,a;60,9) = > H;(s,Q1(5,a1;01), -, Qu(s, an; 0); 7). (14)
j=1

As shown in Fig. [T1] using M > 1 mixing networks does not benefit the performance. This is
because the extrapolation error mainly arises from the action space and the mixing network only
takes the state as input.

18

Under review as a conference paper at ICLR 2025

zerg 5 vs 5

o

o
zzzz=
0N
A

0.24

Mean Test Win Rate

o
)

10M

o

Step

Figure 11: Comparison of the performance with different ensemble size on the mixing network of
QMIX.

Then, we test using REDQ’s (Chen et al., [2021]) target:
Yy r+v]nEllArAlQ(s,a, ;1)) (15)

where M is a set of M distinct indices from the ensemble {1, 2, ..., 10}. The result is shown in Fig.
[I2] where the degree of pessimism decreases as the x-axis increases. We can observe that either
pessimistic or optimistic will reduce the performance. This is probably because the model bias in
QMIX will also be underestimate or overestimate through the additional min or max operator.

REDQ-Based Target

0.8

e
<

ol
o

0584 0574
1 0554 -
o

I 0.516 0.492

0.387

H

Mean Test Win Rate
°
&

o

W
o
N
N
=Y

0.2

Figure 12: Comparison of the performance with different REDQ-based target. Plots show the mean
and standard deviation averaged from zerg_5_vs_5, protoss_5_vs_5 and terran_5_vs_5 on SMACv2
at 3M time steps. M = 0 represents average over all indices. M = 0D represents average while
using double g-learning to sample actions. M = —2 represents use max instead of min in @])

E.4 ADDITIONAL RESULTS OF FACMAC

Fig. |13|shows the additional results regarding AEFACMAC and FACMAC on SMAC.

E.5 ADDITIONAL RESULTS ON GRF

Fig. |14|shows the importance of using a large A on performance of GRF.

In Section the choice is made to mix the individual utilities before averaging them. We liken this
approach similar to the target policy smoothing in TD3. As shown in Fig. [I5] variants of our method
are compared, including the original "mix first" approach used in AEQMIX, an "average first" one
and an "average first with dropout" one. In the latter, dropout is incorporated into the mixing network.

19

Under review as a conference paper at ICLR 2025

355z 8m_vs 9m 10m_vs_11m
—— AEFACMAC —— AEFACMAC 1.0 —— AEFACMAC
[l sty — Facuac — acuac
51
7z 0.8 0.8 0.8
=]
s
= 06 0.6 0.6
-
S oa 04 0.4
Qo .
g
ﬁ 02 0.2 0.2
0.0 0.0 0.0
0 2 2 2
Step Step Step

Figure 13: Comparison of the mean test win rate of AEFACMAC and FACMAC on SMAC.

academy counterattack hard

0.8 — =00
—
2 — iod
S 06 =, 1
wn
-~
i
H
=]
<
S
0 20M
Step

Figure 14: Comparison of the mean test score of QMIX with different A on GRF.

The comparison reveals that both the mix first and average first + dropout approaches outperform the
average first approach alone. This observation leads to the conclusion that introducing noise into the
input has a similar effect to dropout in terms of regularizing the mixing network.

my 3 vs 1 with keeper

+ dropout

lemy_counterattack hard academy run pass_and_shoot_with keeper

— aropout i+ dropout

Mean Test Score

0 20M 0 20M
Step Step Step Step

Figure 15: Comparison of the mean test score of several variants of AEQMIX on GRFE.

zerg 5 vs 5 protoss 5 vs 5

1.0 — QMIX-64
— quix1zs

— amix2ss

terran 5 vs 5

o
™
2
2
3
Iy
o

— QMix-64
— oMix-128

— QMIx256 — QMIx-256

o

EY
o
®

o
o

o
IS

o
N

Mean Test Win Rate

Mean Test Win Rate
Mean Test Win Rate

o
o

o

10M 0 10M
Step Step Step

o

10M

Figure 16: Comparison of the mean test win rate of QMIX with different hidden size.

20

	Introduction
	Background
	Dec-POMDP and CTDE
	Value-Based RL
	Value Factorization

	Extrapolation Error
	Extrapolation Error in MARL
	Propagation of Extrapolation Errors
	Extrapolation Errors of Existing Approaches

	Addressing Extrapolation Errors
	Addressing Bias through Annealed Multi-Step Bootstrapping
	Addressing Variance through Ensembled Target

	Experiments
	Main Results
	Results for Policy-based methods
	Ablation Studies and Discussions

	Conclusion
	Related Works
	Details in Section 3
	Extrapolation Error in MARL
	Details of QPLEX

	Proof of Proposition 2
	Pseudo code
	Experimental Details
	Implementation
	Figures of Main Results
	Additional Results on Ensembled Target
	Additional Results of FACMAC
	Additional Results on GRF

