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Abstract

In-context learning (ICL) is a cornerstone of large language model (LLM) func-
tionality, yet its theoretical foundations remain elusive due to the complexity of
transformer architectures. In particular, most existing work only theoretically ex-
plains how the attention mechanism facilitates ICL under certain data models. It
remains unclear how the other building blocks of the transformer contribute to ICL.
To address this question, we study how a two-attention-layer transformer is trained
to perform ICL on n-gram Markov chain data, where each token in the Markov
chain statistically depends on the previous n tokens. We analyze a sophisticated
transformer model featuring relative positional embedding, multi-head softmax
attention, and a feed-forward layer with normalization. We prove that the gradient
flow with respect to a cross-entropy ICL loss converges to a limiting model that
performs a generalized version of the “induction head” mechanism with a learned
feature, resulting from the congruous contribution of all the building blocks. In the
limiting model, the first attention layer acts as a copier, copying past tokens within
a given window to each position, and the feed-forward network with normalization
acts as a selector that generates a feature vector by only looking at informationally
relevant parents from the window. Finally, the second attention layer is a classifier
that compares these features with the feature at the output position, and uses the
resulting similarity scores to generate the desired output. Our theory is further
validated by simulation experiments.

1 Introduction

In-context learning (ICL) (Brown et al., 2020) has emerged as a crucial aspect of large language
model (LLM) (Radford et al., 2019; Brown et al., 2020; Achiam et al., 2023; Anthropic, 2023; Team
et al., 2023) functionality, enabling pre-trained LLMs to solve user-specified tasks during inference
without updating model parameters. In ICL, a pre-trained LLM, typically a transformer, receives
prompts containing a few demonstration examples sampled from a task-specific distribution and
produces the desired output for that task. This capability is noteworthy because the tasks addressed
during the ICL might not be part of the original training data set. The success of ICL requires the
LLM to perform certain learning processes during inference.
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Although many previous works aim to demystify ICL from either empirical or theoretical perspec-
tives, the theoretical foundations of ICL remain elusive. This is primarily due to the complexity of
transformer architectures, which integrate token and position embeddings, multiple layers of multi-
head softmax attention, layer normalization, and feedforward neural networks. When it comes to
understanding how the ICL ability emerges in transformers after training, existing works often focus
on simplified models, such as linear attention mechanisms or single-layer transformers (Von Oswald
et al., 2023), and ICL tasks are typically confined to linear regression (Akyürek et al., 2023). This
leaves a gap in understanding how full-fledged transformer architectures facilitate ICL of more
complex tasks, especially when latent causal structures exist among the tokens in a sequence.

In this paper, our aim is to narrow this gap by studying how a two-attention-layer transformer is
trained to perform ICL of an n-gram Markov chain model, where each token in the Markov chain
statistically depends on the n tokens before it, known as the parent set. Specifically, we consider a
transformer model with relative positional embedding (RPE) (He et al., 2020), multi-head softmax
attention, and a feed-forward network (FFN) layer with normalization. We employ such a transformer
model to predict the (L+1)-th token of an n-gram Markov chain, with the first L tokens given as the
prompt, where L+ 1 is the sequence length. Here the L-token sequence is sampled from a random
Markov chain model, where a random transition kernel obeying the n-gram Markov property is used to
generate sequences. The token sequence is fed into the transformer model, which outputs a probability
distribution over the vocabulary set to predict the (L+ 1)-th token. To train the transformer model,
we sample token sequences from these random Markov chain models and minimize the cross-entropy
loss between the predicted token distribution and the true token distribution.

Under this setting, we aim to answer the following three questions: (i) Does the gradient flow with
respect to the cross-entropy loss converge during training? (ii) If yes, how does the limiting model
perform ICL? (iii) How do the building blocks of the transformer model contribute to ICL?

Main Results. We provide an affirmative answer to the Question (i) by proving that the gradient
flow converges during training. In particular, we identify three phases of training dynamics: in the
first stage, FFN learns the potential parent set; in the second stage, each attention head of the first
multi-head softmax attention layer learns to focus on a single parent token selected by FFN; and in
the final stage, the parameter of the second attention layer increases, and the transformer approaches
the limiting model. Moreover, for Questions (ii) and (iii), we show that the limiting model performs
a specialized form of exponential kernel regression, dubbed “generalized induction head”, which
requires the congruous contribution of all the building blocks. Specifically, the first attention layer
acts as a copier, copying past tokens within a given window to each position. The FFN layer acts as
a selector that generates a feature vector by only looking at informationally relevant parents from
the window according to a modified χ2-mutual information. Finally, the second attention layer is an
exponential kernel classifier that compares the features at each position with those created for the
output position L+ 1, and uses the resulting similarity scores to generate the desired output. When
specialized to the case where n = 1, the limiting model selects the true parent token and implements
the induction head mechanism (Elhage et al., 2021). In this case, we recover the theory in Nichani
et al. (2024). Our theory is complemented by numerical experiments, which validate the three-phase
training dynamics and mechanism of generalized induction head.

To our best knowledge, our work is the first to provide a comprehensive understanding of how ICL is
empowered by a collaboration of different building blocks in a transformer model. In particular, we
identify the pivotal roles played by RPE in the copier component, the FFN layer with normalization
in the selector component, and attention in the classifier component. We believe our work will shed
light on the theoretical understanding of ICL for more complicated tasks.

Related Works. Our work adds to the rapidly growing literature on understanding in-context
learning by transformers. We defer an in-depth discussion on related works in Appendix §A due to
the page limit.

Roadmap. The rest of the paper is organized as follows: We introduce the problem setup of ICL of
Markov chains in §2. Then in §3, we present the main theoretical results and related discussions. A
proof sketch is provided in §D. Finally, we present corresponding experiment results in §B, and the
detailed proofs are deferred to the Appendix.

Notation. We denote by e1, . . . , ed the standard basis vectors in Rd and by 1 the all-one vector
in Rd. We denote by σ(·) the softmax function such that the i-th coordinate of σ(x) is σi(x) =
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exp(xi)/
∑L

l=1 exp(xl) for x ∈ RL. By default, the softmax operation will always be applied row-
wise. For any integer n > 0, we denote [n] := {1, . . . , n}. For a vector w ∈ RM , we denote by wi

the i-th entry of w and w−i the (M + 1− i)-th entry of w for positive integer i ∈ [M ]. For a matrix
W , we denote by W (i, j) the entry at the i-th row and j-th column of W . For two vectors u and v,
we write u/v as the vector obtained by taking element-wise division between u and v. We denote by
a ∨ b and a ∧ b the maximum and minimum of a and b, respectively. We denote by xs:t the sequence
{xs, xs+1, . . . , xt}. For a class X , we denote by ∆(X ) the space of probability measures over X .
We use the standard big O notation throughout the paper.

2 Problem Setup: In-Context Learning of Markov Chains

In this section, we present the details of the problem setting. In particular, we first introduce the
statistical problem of ICL of n-gram Markov chains in §2.1 and then lay out the details of the
transformer model in §2.2.

2.1 In-Context Learning and n-Gram Markov Chains

We study how autoregressive transformers are trained to perform in-context learning (ICL). A pre-
trained transformer can be viewed as a conditional distribution ftf(· | prompt) over a finite vocabulary
set X , where prompt is a sequence of tokens in X . We consider an in-context unsupervised learning
problem where the pre-trained transformer ftf is used to predict the (L+ 1)-th token xL+1 with the
first L tokens being the prompt. Here L is a fixed number and the joint distribution of the sequence
x1:(L+1) is sampled from a random n-gram Markov chain. In other words, with x1:(L+1) sampled
from some distribution, we evaluate how well ftf(· |x1:L) predicts the distribution of xL+1.

Figure 1: A two-gram Markov chain with par-
ent set pa = {−1,−2}.

n-Gram Markov Chains. We assume the data
comes from a mixture of n-gram Markov chain
model, denoted by a tuple (X , pa,P, µ0), where X
is the state space and pa = (−r1, . . . ,−rn) is the
parent set with positive integers r1 < r2 < · · · < rn.
That is, for each l > rn, xl only statistically depends
on (xl−rn , . . . , xl−r1), which is denoted by Xpa(l)

and referred to as the parent tokens of xl. We let
d = |X | denote the vocabulary size. Moreover, P is a probability distribution over the set of Markov
transition kernels respecting the parent structure specified by pa, and µ0 is the joint distribution of
the first rn tokens x1:rn . Note that the size of the parent set n can be smaller than or equal to rn.
Thus, the sequence x1:(L+1) is generated as follows: (i) sample initial rn tokens (x1, . . . , xrn) ∼ µ0,
(ii) sample a random transition kernel π ∼ P , where π : Xn → ∆(X ), and (iii) sample token
xl ∼ π(· |Xpa(l)) for l = rn + 1, . . . , L+ 1. See Figure 1 for an illustration of the generating model
of x1:(L+1).

Cross-Entropy Loss. When x1:(L+1) is generated, x1:L is fed into the transformer ftf to predict
xL+1. To assess the performance of ICL, we adopt the population cross-entropy (CE) loss

L(ftf) = −Eπ∼P,x1:(L+1)

[
log
(
ftf(xL+1 |x1:L) + ϵ

)]
, (2.1)

where ϵ > 0 is a small constant introduced for numerical stability and in the sequel we will take
ε = O(L−1/2). Here, the expectation is taken with respect to the joint distribution of x1:(L+1)

(including the randomness of π ∼ P). When setting ϵ = 0, we note that minimizing this cross-
entropy loss is equivalent to minimizing the KL divergence

Eπ∼P,x1:L

[
KL(π(· |Xpa(L+1)) ∥ ftf(· |x1:L))

]
.

As a remark, we also relax a condition in Nichani et al. (2024) where the last token xL has to be
resampled from a uniform distribution. In addition, our analysis can also be extended to sequential
CE loss, which corresponds to predicting every token in the sequence given the past rather than just
the last token xL+1. This is closer to the training paradigm used in practice (Brown et al., 2020). See
§C.4 for a further discussion on the sequential CE loss.
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2.2 A Two-Layer Transformer Model

We consider a class of two-attention-layer transformer model, denoted by TF(M,H, d,D), which
incorporates Relative Positional Embedding (RPE) (He et al., 2020), Multi-Head Attention (MHA)
(Vaswani et al., 2017), and a Feed-Forward network (FFN) with normalization. Here M is an integer
that specifies the window size of RPE, H is the number of heads in the first attention layer, d
is the vocabulary size, and D is an integer that controls the complexity of FFN. The details of
TF(M,H, d,D) are as follows.

Token Embedding, Input and Output. Note that each token takes values in X with d = |X |. We
embed the tokens into one-hot vectors in Rd, and thus we can identify X as the canonical basis in
Rd, i.e., X = {e1, . . . , ed}. A transformer model can be viewed as a mapping from R(L+1)×d to
∆(X ). In particular, given the input sequence x1:L, we denote X = (x1, . . . , xL)

⊤ ∈ RL×d, and we
append a zero vector 0 ∈ Rd to the sequence, and define rX = (x1, . . . , xL,0)

⊤ ∈ R(L+1)×d. The
transformer takes rX as input and outputs a probability distribution over X .

𝑊𝑃
(ℎ)

𝑤−1
ℎ

𝑤−2
ℎ

…

𝑤−𝑀
ℎ

𝑤 (ℎ)

−∞

(a) (b)

Figure 2: Illustration of the relation-
ship between RPE vector w(h) and cor-
responding matrix W (h)

P .

Relative Positional Embedding. In each head of the
first attention layer, we adopt RPE to incorporate positional
information. Specifically, RPE is parameterized by a vector
w = (w−M , . . . , w−1)

⊤ ∈ RM , and it assigns a scalar
value WP (i, j) to a pair of positions (i, j) satisfying

WP (i, j) = wj−i if i− j ∈ {1, . . . ,M},
WP (i, j) = −∞ if j ≥ i or |j − i| > M.

In other words, as illustrated in Figure 2, the i-th token
only attends to tokens with indices in {i− 1, . . . , i−M},
referred to as the length-M window of the i-th token, and
the trainable vector w determines the value of positional
embedding. Here, we use −k to index the last k-th posi-
tion.

The First Attention Layer. The input sequence is processed by the first attention layer with H
parallel heads. In all heads, we discard the token information and only use RPE to compute the
attention score. Specifically, each attention head h maps rX into a sequence in Rd with length L+ 1,
denoted by V (h) = (v

(h)
1 , . . . , v

(h)
L+1)

⊤ ∈ R(L+1)×d. For any l ∈ [L+ 1], v(h)l is computed via

v
(h)
l =

L∑
j=1

σj
(
W

(h)
P (l, ·)

)
· xj =

L∑
j=1

exp
(
W

(h)
P (l, j)

)
· xj∑L

k=1 exp
(
W

(h)
P (l, k)

) . (2.2)

That is, we use the RPE parameter W (h)
P to construct a weighted sum over the input sequence at each

position l ∈ [L+ 1]. Here W (h)
P is the RPE matrix of the h-th head.

Feed-Forward Network with Normalization. Following the first attention layer, we concatenate
the outputs of the H attention heads and define V = (V (1), . . . , V (H)) ∈ R(L+1)×Hd. Here we
abuse the notation and write V = (v1, . . . , vL+1)

⊤, i.e., each vl is the l-th row of V . For any vector
v ∈ RHd, we can split it into (v(1)⊤, . . . , v(H)⊤)⊤ where each block v(h) ∈ Rd. For embedding
dimension de, each vector of V is passed through an FFN ϕ(·) : RHd → Rde , which specifies a
polynomial kernel such that for any v, v′ ∈ RHd, we have

⟨ϕ(v), ϕ(v′)⟩ =
∑

S∈[H]≤D

c2S ·
∏
h∈S

⟨v(h), v′(h)⟩. (2.3)

Here, the low-degree parent set [H]≤D := {S ⊆ [H] : |S| ≤ D} contains all subsets of [H] with
cardinality at most D, and {cS : S ∈ [H]≤D} are the corresponding trainable parameters of ϕ(·).
Therefore, the FFN ϕ(·) specifies a kernel on the output of the multihead attention which induces
a special inner product structure. While (2.3) characterizes ϕ(·) implicitly, we provide an explicit
construction of ϕ(·) in Lemma C.1 as a vector-valued mapping whose entries are monomials of the
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input’s entries. Moreover, the complexity of ϕ(·) is controlled by the maximum degree D, which also
influences the embedding dimension de as we show in the construction.

Furthermore, to control the magnitude of the FFN outputs, we normalize ϕ(·) by letting ul =
ϕ(vl)/

√
CD for all l ∈ [L + 1], where we define CD =

∑
S∈[H]≤D

c2S . Such a normalization
scheme is motivated by the standard layer normalization (Ba et al., 2016) in transformer architectures.
To motivate the use of

√
CD as the normalization, consider a special case where the positional

embeddings, after the softmax function, produce attention weights that are close to one-hot for each
head. Then v(h)l in (2.2) is equal to some token in x1:L. As a result, each vl consists of H tokens and

∥ϕ(vl)∥2 =

√ ∑
S∈[H]≤D

c2S ·
∏
h∈S

⟨v(h)l , v
(h)
l ⟩ =

√
CD.

Thus, ul is roughly equivalent to the output of the layer normalization ϕ(vl)/∥ϕ(vl)∥2 (without
trainable parameters). Although our theoretical analysis and simulations focus on this simplified
version of layer normalization, our additional experiments in §B.2 demonstrate that it aligns well
with the performance of the actual layer normalization.

The Second Attention Layer. The normalized vector sequence U = (u1, . . . , uL+1)
⊤ and the

original sequence rX are then fed into the second attention layer to generate the final output. In
particular, uL+1 is used as the query to compare with the keys {uM+1, . . . , uL}, and the resulting
attention scores are used to aggregate the values x(M+1):L. This attention layer has a single head and
a scalar trainable parameter a. We let U1:L = (u1, . . . , uL)

⊤ ∈ RL×de and denote by Mask(·) the
mask that sets every entry of the first M rows of a matrix to be −∞. The final output is given by

y =

L∑
j=M+1

σj
(
a · u⊤L+1Mask(U

⊤
1:L)

)
· xj =

L∑
j=M+1

exp
(
a · u⊤L+1uj) · xj∑L

k=M+1 exp
(
a · u⊤L+1uk

) . (2.4)

Note that the softmax function in (2.4) yields a probability distribution over [L] and that x1:L is a
sequence of one-hot vectors. Thus y in (2.4) is a probability distribution over X . The mask operator
is included here just to simplify our analysis while in the experiments we are not using the mask.

In summary, given the input rX ∈ R(L+1)×d, in the matrix form, our transformer model
TF(M,H, d,D) consecutively applies the following operations:

First Attention: V (h) = σ(W
(h)
P ) rX ∈ R(L+1)×d, ∀h ∈ [H];

Concatenate: V = [V (1), . . . , V (H)] ∈ R(L+1)×Hd;

FFN & Normalize: U = ϕ(V )/
√
CD ∈ R(L+1)×de ;

Second Attention: y⊤ = σ
(
a · u⊤L+1Mask(U

⊤
1:L)

)
X ∈ R1×d.

(2.5)

The trainable parameters of the above transformer model are denoted by

Θ =
{
a, {w(h)

−1 , . . . , w
(h)
−M}h∈[H], {cS : S ∈ [H]≤D}

}
.

We remark that the transformer model in (2.5) is known as a disentangled transformer (Friedman et al.,
2024), which is a version of the transformer model that is more amenable for theoretical analysis.
One thing to be noted is that there is a residual connection that directly copies rX to the output of
the FFN & Normalize block, which gives us [U, rX], and the second attention layer will treat the
copied rX as the value in the attention mechanism. We omit the residual connection in the above
paradigm for notation simplicity. As shown in Nichani et al. (2024), any standard transformer model
can be expressed as a disentangled transformer by specializing the attention weights to allow feature
concatenation.

Our goal is to investigate whether the transformer model TF(M,H, d,D) can perform ICL over
n-gram Markov chains and further, whether such capability can be learned from data with common
training algorithms like gradient descent.
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3 Theoretical Results

In this section, we present the theoretical results. We first show in §3.1 and §C.1 that there exists a
transformer in TF(M,H, d,D) that implements a generalized “induction head” mechanism (Olsson
et al., 2022) with a learned feature, which serves as a natural algorithm for learning n-gram Markov
chains. Then in §3.2 we prove that the gradient flow in (3.4) finds such a desired model asymptotically.

3.1 Generalized Induction Head Mechanism for Learning n-Gram Markov Chains

Recall that we define the mixture of n-gram Markov chain model (X , pa,P, µ0) in §2.1, where P is
a distribution over the Markov transition kernels. For regularity, we assume existence of a unique
stationary distribution for any π ∈ supp(P), where a rigorous statement is deferred to Assumption 3.5.
We also assume the window size M > rn. For any n-gram Markov chain with transition kernel
π ∼ P , we let µπ ∈ ∆(XM+1) denote the stationary distribution of the Markov chain over a window
of size M +1. Here we use {zℓ}l≥1 to denote a random sequence of tokens generated by the Markov
chain. Then µπ denotes the joint distribution of a block of M + 1 tokens (zl−M , . . . , zl−1, zl) under
the stationary distribution of π, where l > M is an integer.

In the following, we introduce a generalized induction head (GIH) estimator for the task of predicting
xL+1 given x1:L, which is based on the following simple idea: xL+1 should be similar to a previous
token xl if their parents are similar. As the parent set pa is unknown, GIH adopts an information-
theoretic criterion to select a subset of previous tokens as a proxy of the parents. Specifically, GIH
uses a modified version of χ2-mutual information, which is defined as follows.
Definition 3.1 (Modified χ2-Mutual Information). We take a length-(M + 1) windows
(zl−M , . . . , zl−1, zl) for some l > M and suppose the sequence is sampled from stationary dis-
tribution µπ with π ∼ P . Let Z = (zl−M , . . . , zl−1). For any subset S ⊆ [M ], we use Z−S to denote
the subvector of Z containing entries of the form zl−s, ∀s ∈ S. For instance, suppose S = {2, 5},
then Z−S = (zl−5, zl−2). The modified χ2-mutual information for S is defined as

rIχ2(S) = Eπ∼P,(z,Z)∼µπ

[(∑
e∈X

[µπ(z = e |Z−S)]
2

µπ(z = e)
− 1

)
· µπ(Z−S)

]
, (3.1)

where µπ(z = · | Z−S) is the conditional distribution of z induced by µπ given the partial history
Z−S , and µπ(Z−S), µ

π(z) are the marginal distributions of Z−S and z under (z, Z) ∼ µπ .

Intuitively, rIχ2(S) is modified from the vanilla χ2-mutual information (χ2-MI) between two random
variables (Polyanskiy and Wu, 2024) and quantifies how much information the partial history Z−S
contains about z. In particular, we incorporate an additional µπ(Z−S) term that decreases with the
growing size of S. To see the rationality, we first introduce a GIH estimator based on the modified
χ2-mutual information.
Definition 3.2 (Generalized Induction Head). A GIH estimator with window size M ∈ N, feature
size D ∈ N is denoted by GIH(·;M,D), which maps x1:L to a distribution over X . We let S⋆ be the
information-optimal subset (referred to as the “information set” in the sequel2) of [M ] with size no
more than D that maximizes the modified χ2-mutual information rIχ2(·) defined in (3.1). That is, we
define the information set S∗ as

S⋆ = argmaxS∈[M ]≤D
rIχ2(S). (3.2)

Then GIH(x1:L;M,D) outputs

y⋆ :=

{
N−1 ·

∑L
l=M+1 xl · 1(Xl−S⋆ = XL+1−S⋆), if N ≥ 1,

(L−M)−1 ·
∑L

l=M+1 xl, otherwise.
(3.3)

Here, we define Xl−S⋆ as the set {xl−s : s ∈ S⋆} and N =
∑L

l=M+1 1(Xl−S⋆ = XL+1−S⋆).

Note that S⋆ defined in (3.2) depends on the choices of M and D and serves as a proxy of the
unknown parent set pa based on rIχ2(·) defined in (3.1). In a nutshell, the GIH estimator checks

2With a slight abuse of notation, we also call Xl−S⋆ := (xl−s : s ∈ S⋆) the information set of the l-th token
xl.
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whether the partial histories of Xl−S⋆ and XL+1−S⋆ match and aggregate all the tokens xl that have
a matching partial history to predict xL+1. As a remark, using the modified χ2-MI as the information
criterion rules out redundancy in the information set S⋆ in the following sense:

• S⋆ cannot be a superset of the true parents. Note that if S is a superset of the true parent set,
by the Markov property, z and Z−S are conditionally independent given the true parents Zpa. Thus,
maximizing the vanilla χ2-mutual information yields multiple maximizers, i.e., all the supersets of
the true parent set. However, with the modification in (3.1), any superset yields a strictly smaller rIχ2

compared to the exact parent set, making them suboptimal.

• The modified χ2-MI selects informative partial history. Even a true parent may bear relatively
little information about the target compared to other parents sometimes. Meanwhile, exact match of a
larger set of partial history becomes much harder as it tends to appear less frequently in the context
sequence, leading to poor estimation accuracy for the estimator in (3.3). The modified χ2-MI reaches
a balance by selecting the informative partial history while penalizing the size of the information set.

The term involving µπ(z = · |Z−S) can be viewed as the signal part which helps us to find an
informative subset S. The term µπ(Z−S) can be viewed as penalty on the model complexity which
favors smaller subsets. Thus, the modified χ2-MI strikes a balance between these two objectives and
enables us to find a good proxy S⋆ of pa when L is finite. Moreover, when L is sufficiently large, we
identify two scenarios in which maximizing rIχ2(·) yields the true parent set (see §C.7 for details).
Moreover, the GIH estimator is a generalization of the induction head mechanism (Elhage et al.,
2021) to the stochastic setting with multiple parents, where we give the model more flexibility to
learn based on a partial history that does not necessarily correspond to the true parent set. As we will
show in §C.1, the GIH mechanism can be implemented by the transformer model.

3.2 Convergence Guarantee of Gradient Flow

In the following, we present the convergence guarantee for gradient flow. To simplify the discussion,
we consider the case where H = M , meaning there are enough heads to implement the GIH
mechanism by having each head copy a unique parent token from a window of size M . Let us first
introduce the paradigm of training by gradient flow.

Training Paradigm. Consider training a transformer TF(M,H, d,D) in (2.5) with M = H to
perform ICL on the n-gram Markov chain model introduced in §2.1. Specifically, we define L(Θ) as
the population cross-entropy loss in (2.1), where the transformer model ftf is given by (2.5) with a
parameter Θ. Ideally, when training the parameter Θ with gradient flow, the dynamics with respect to
the loss L(Θ) is given by:

∂tΘ(t) = −∇L
(
Θ(t)

)
. (3.4)

We consider a three-stage training paradigm where, in each stage, only a specific subset of the weights
is trained by gradient flow. The three stages are outlined in Table 1. Specifically, in the first stage,
we only train the FFN layer via gradient flow while keeping other weights fixed. We then only train
the RPE weights in the first attention layer in the second stage. Finally, we only train the weight a
in the second attention layer in the last stage, while fixing the rest of the parameters. This training
approach is primarily used for analytical convenience; in practice, the entire model can be trained
simultaneously, and similar convergence results are reported in §B.2. From a theoretical standpoint,
we will also justify the three-stage paradigm in the discussion following Theorem 3.6.

Initialization Conditions. Before presenting our main results about how training by gradient flow
induces the GIH structure, let us introduce the following assumption on the initialization of the
weights. We define the information gap within the D-degree parent set [H]≤D as

∆rIχ2 = rIχ2(S⋆)− max
S∈[H]≤D\{S⋆}

rIχ2(S), (3.5)

where we recall that S⋆ defined in (3.2) maximizes the modified χ2 mutual information.

Assumption 3.3 (Initialization). We assume that the following holds at initialization:
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Stage Weights to Train Description
I {cS}S∈[H]≤D

in the FFN
layer

Ratio cS⋆(t)/cS(t) grows exponentially,
learning the low-degree features with S⋆,

II {w(h)}h∈[H] in the RPE of
the first attention layer,

1 −
∏

h∈S⋆(σ
(h)
−h(t))

2 decays polynomi-
ally
training each head in S⋆ to be a copier,

III a in the weight of the second
attention layer

a(t) experiences a two-stage growth,
learning the softmax aggregator for GIH,

Table 1: Three-stage training paradigm for gradient flow. Here, the “Weights to Train” column
indicates the weights updated in each stage, and the “Description” column summarizes the
corresponding results from Theorem 3.6.

1. For the first attention layer’s RPE weights, w(h)
−h ≥ w

(h)
−j +∆w for all h, j ∈ [H] with j ̸= h,

where ∆w > 0 is a positive scalar satisfying

∆w ≥ log(M − 1)− log
[(

1 + ∆rIχ2/(14rIχ2(S⋆))
] 1

2H − 1
)
. (3.6)

2. The scalar parameter a in the second attention layer satisfies 0 < a ≤ O(L−3/2).

The first assumption on the RPE is used to induce the correspondence between parents and heads
during the training by slightly breaking the symmetry between different attention heads. The second
assumption on the scale of a ensures that the attention probability given by the second attention
layer is close to the uniform distribution over [L]. These initialization conditions enable us to derive
clean descriptions for the dynamics of the first attention layer and the FFN, shedding light on their
respective roles in executing ICL.

We now outline our assumptions on the Markov chain used in the data generation process. Recall
that rn is the largest absolute integer in the parent set pa. For any position l, we define the history
Z = (zl−rn , . . . , zl−1) as the last state and Z ′ = (zl−rn+1, . . . , zl) as the current state. Since the
parent of the new token zl is already included in Z, Z ′ is independent of all prior history given Z,
forming a Markov chain.

We define Pπ as the drn × drn transition matrix for this Markov chain, where states are successive
rn-tokens. Each row of Pπ is indexed by Z ′ and each column by Z. The matrix element Pπ(Z

′, Z)
is thus given by

Pπ(Z
′, Z) = π(z′l | Zpa(l)) · 1(Z ′

l−rn+1:−1 = Zl−rn+1:−1).

This means that to transition from Z to Z ′, all elements of Z ′ except for z′−1 must match the last
rn − 1 tokens of Z. The token z′l is then sampled according to the transition kernel π and depends
only on the parent Zpa(l). The above definition is in fact independent of the position l as the transition
kernel π is the same across all positions. Note that Pπ is also a stochastic matrix but with zero
entries due to the indicator. To proceed, we need the following notion of primitive matrix to state our
assumption on Pπ .
Definition 3.4 (Primitive Matrix). A nonnegative and irreducible square matrix P is called primitive
if there exists a positive integer k such that all entries of P k are positive.

We defer more details about the above definition to §C.3. By the celebrated Perron-Frobenius theorem,
if a stochastic matrix Pπ is also primitive, then (i) there exists a unique stationary distribution for the
Markov chain; (ii) Pπ has a unique leading eigenvalue equal to 1, and the corresponding eigenvector
is the stationary distribution. Next, we state the assumptions on the mixture of Markov chains for
data generation.
Assumption 3.5 (Markov Chain). For any π ∈ supp(P), we assume that:

1. The transition matrix Pπ is primitive. In particular, we assume that there exists λ < 1 such
that the eigenvalue of Pπ with the second largest magnitude satisfies |λ2(Pπ)| ≤ λ. Note
that λ2(Pπ) can be complex-valued.
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2. There exists γ > 0 such that the transition kernel satisfies π(x |Xpa) ≥ γ for any (x,Xpa).

In fact, the second condition π(· |Xpa) > γ already ensures that Pπ must be primitive, as is required
by the first condition. See Corollary F.14 for details. On the high level, the first assumption guarantees
a unique stationary distribution as well as a fast mixing rate of the Markov chain by ensuring a
spectral gap for Pπ. The second assumption implies a lower bound on the probability for any set
S ⊆ [M ] under the stationary distribution, i.e., µπ(Xl−S) ≥ γ|S| for any l > M . See Corollary F.15
for details.

Now we are ready to present our main theoretical result on training transformers by gradient flow.
Theorem 3.6 (Convergence of Gradient Flow). Suppose Assumption 3.3 and Assumption 3.5 hold.
Consider H ≥ M . We set ε = L−1/2 for the cross-entropy loss and assume L is sufficiently large.
Then the following holds for the three-stage training of gradient flow:

Stage I: Parent Selection by FFN. Let CD(t) =
∑

S∈[H]≤D
cS(t)

2 and pS⋆(t) = c2S⋆(t)/CD(t).

Then in the first stage with duration t1 ≍ CD(0) logL/(a(0)∆rIχ2), the ratio cS⋆/cS grows
exponentially fast for any S ≠ S⋆, and S⋆ dominates exponentially fast in the sense that,

1− pS⋆(t) ≤ (1− pS⋆(0)) · exp
(
−(2CD)−1 · a(0) · pS⋆(0) ·∆rIχ2 · t

)
, ∀t ∈ [0, t1).

Stage II: Concentration of The First Attention. Define σ(h)(t) = σ(w(h)(t)) ∈ RM , and let
σmin(t) := minh∈S⋆ σ

(h)
−h(t). Then in the second stage with duration t2 − t1 ≍ L/(a(0)∆rIχ2),

the first layer’s attention heads have attention probabilities concentrated on the optimal infor-
mation set S⋆ in the sense that for any t ∈ [t1, t1 + t2),

1−
∏
h∈S⋆

(σ
(h)
−h(t))

2 ≤ 2|S⋆| · (M − 1)

a(0) ·∆rIχ2 · σmin(0) · (t− t1)/2 + exp(∆w) + (M − 1)
∧ 1.

Stage III: Growth of The Second Attention. For some constants c1, c2 depending on (P,S⋆) with
0 < c1 < c2, there exists a small constant δ > 0 such that the growth of a(t) exhibits the
following two sub-stages: (i) When a(t) ≤ log(c1/δ), it holds that ∂a(t) ≍ ea(t); (ii) After a(t)
has grown such that a(t) ≥ log(c2/δ), then ∂ta(t) ≍ 1/a(t) until it reaches the value logL/8.

See §D for a proof sketch and §E for the detailed proof. We require that L is sufficiently large, and
the specific conditions for L are deferred to §E.1.

Interpretation of Training Dynamics. We empirically verify Theorem 3.6 by conducting a sim-
ulation experiment. In particular, we train a transformer with H = M = 3 and D = 2 based on
Markov chain data with d = 2, L = 100 and pa = {−1,−2}. We sample the transition kernel from a
Dirichlet prior such that S⋆ = {1, 2} also matches the parent set. For more details on this simulation,
see §B. The results are shown in Figure 3 and align perfectly with Theorem 3.6. From Theorem 3.6,
we can interpret the three stages of training dynamics as follows.

• In the first stage, the training of FFN parameters learns a selector that selects an informative
set S⋆ by realizing the corresponding feature embedding through the polynomial kernel.
That is, when t is sufficiently large, we have pS⋆(t) ≈ 1 and pS(t) ≈ 0 for all S ≠ S⋆. In
this case, for any input vectors v, v′ ∈ RHd, the inner product in (2.3) reduces to

⟨ϕ(v), ϕ(v′)⟩ ≈ c2S⋆ ·
∏
h∈S⋆

⟨v(h), v′(h)⟩.

That is, FFN only selects the blocks in S⋆ as the feature. We observe this phenomenon in
the experiment, where we set S⋆ = {1, 2}. As shown in Figure 3-(a), it is clear that cS⋆

immediately dominates the rest of cS ’s within only a few gradient epochs.
• In the second stage, we update the parameters of the RPE. This stage turns the first attention

layer into a copier by establishing the correspondence between the attention heads and
the parents in the selected S⋆. That is, each attention head copies a particular parent in
S⋆. Specifically, when t is sufficiently large, for any h ∈ S⋆, σ(h)(t) = σ(w(h)(t)) ≈ 1.
Recalling the construction of RPE, this implies that v(h)l in (2.2) becomes xl−h for all
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Stage III: Train 𝑎Stage II: Train 𝑤 (ℎ)Stage I: Train 𝑐𝒮 

(a) (b) (c)

D=2, train separately

Beginning EndingEpoch Epoch

Figure 3: An illustration of the transformer parameters during the three-stage training. We train
a transformer in TF(M = 3, H = 3, d = 3, D = 2) with L = 100, pa = {−1,−2}. See §B
and Figure 4 for more details of the simulation.

h ∈ S⋆. As shown in Figure 3-(b), in the experiment, the first two heads initialized towards
the first two parents will deterministically copy parents −1 and −2 eventually. The third
head stays close to its initial value. This head has a negligible effect on the output because
3 /∈ S⋆ and pS⋆ ≈ 1.

• After the first two stages are completed, we know that the features constructed approximately
satisfy (C.1) up to a proportionality factor. Then, in the final training stage, the scalar weight
a in the second attention layer keeps increasing. Thus, this stage learns an exponential
kernel classifier as specified in (C.2). When a(t) is sufficiently large, the learned transformer
is close to a classifier that uses covariate-label pairs of the form (Xl−S⋆ , xl) to predict
xL+1. In particular, when a(t) goes to infinity, the transformer exactly becomes the GIH
mechanism given in Definition 3.2. Moreover, we theoretically prove that the increasing
trajectory of a(t) has two stages, where da(t)/dt is initially large and gradually decays, this
is also clearly observed in the experiment. See Figure 3-s(c) for details.

In summary, we theoretically show that the limiting model obtained by three-stage training ap-
proximately implements the GIH mechanism. We will prove that the difference between these two
estimators is at most O(L−1/8). We defer the formal statement and proof to §E.5. Moreover, as an
answer to the Question (iii) raised in §1, the different components of the transformer architecture are
all critical for achieving this: FFN with normalization realizes the selector, the multi-head design
of attention supports the copier, and finally, the softmax operation facilitates the exponential kernel
classifier. These components work organically as a whole system, yielding the trained transformer’s
capability of ICL of n-gram Markov chains.

Another takeaway from Theorem 3.6 is a strict separation in the growth rate of these three stages. In
particular, the convergence rates of the corresponding components of the transformer model in these
three stages range from exponentially fast (Stage I), polynomially fast (Stage II), to logarithmically
slow (Stage III). With such two exponential separations of convergence rates, we expect that these
three stages naturally arise when we simultaneously train the whole model via gradient descent/flow.
We empirically verify this argument and the details are deferred to §B.2.

In §C.7, we provide more intuitive interpretation of the modified χ2-mutual information, which
demonstrates a balance of model complexity and information richness.

4 Conclusion and Future Work

In this paper, we have studied the training dynamics of a two-attention-layer transformer model for
learning n-gram Markov chains in an in-context way. Our work opens new directions for developing
a rigorous understanding of the transformer models, which includes understanding the induction head
mechanism with standard FFN layer and investigating the training dynamics beyond a single loop of
this induction head mechanism. We defer readers to §C.8 for more discussions.
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Organization of The Appendix

The appendices are organized as follows:

• In §A, we present an in-depth discussion on the related works.
• In §B, we discuss the experimental details.
• In §C, we discuss the implementation of GIH mechanism, provide explicit expressions for

the FFN realizing a low-degree polynomial kernel, and review basics related to concepts
mentioned in the main text.

• In §D, we provide a high-level overview of the proof of our main results.
• In §E, we present the proof for Theorem 3.6.
• In §F, we collect auxiliary results used in the proof of Theorem 3.6.

A Related Works

In Context Learning (ICL). Commercial Large Language Models (LLMs) such as ChatGPT
(Brown et al., 2020), GPT-4 (Achiam et al., 2023), and Gemini (Team et al., 2023) typically operate
in an autoregressive manner. These models exhibit remarkable ICL capabilities, without requiring
further training. Previous research explores various aspects of the in-context learning (ICL) ability of
these models. This includes their performance in zero-shot and few-shot learning scenarios (Honovich
et al., 2022; Wei et al., 2021), the use of the chain of thought method to enhance reasoning (Wei et al.,
2022; Zhou et al., 2022), and learning with multi-modalities (Alayrac et al., 2022). Moreover, recent
research highlights the properties and advantages of using transformers beyond the traditional ICL
setting, thereby broadening our understanding of their capabilities and applications (Edelman et al.,
2022; Li et al., 2023; Jelassi et al., 2022; Sanford et al., 2023; Giannou et al., 2023; Liu et al., 2022;
Tarzanagh et al., 2023a,b; Tian et al., 2023b,a; Song and Zhong, 2023; Deora et al., 2023; Chen and
Li, 2024; Rajaraman et al., 2024b).

There is a large and growing body of literature on understanding how transformer architecture enables
ICL. One strand of research proposes to understand ICL by casting it as a version of Bayesian
inference expressed by the transformer architecture. See, e.g., Xie et al. (2021); Muller et al. (2021);
Zhang et al. (2022, 2023b); Ahuja et al. (2023); Jeon et al. (2024); He et al. (2024) and the references
therein. Another line of work investigates how transformers internally emulate specific algorithms
to solve ICL tasks, where Akyürek et al. (2023); Von Oswald et al. (2023); Fu et al. (2023); Ahn
et al. (2023); Mahankali et al. (2023); Giannou et al. (2024); Wu et al. (2023) focus on learning with
linear regression tasks and Bai et al. (2023); Cheng et al. (2023); Collins et al. (2024); Guo et al.
(2023) investigate transformers’ capabilities in learning with nonlinear functions. However, all of
these works above focus on regression tasks where token (or token pairs) in the prompt sequences
are i.i.d. or uncorrelated, which may not capture the more sophisticated data structures in real-world
applications.

In addition, to study ICL with correlated data, there is also substantial interest in understanding
how ICL operates over data drawn from Markov chains, providing insight into how transformer
architectures contribute to ICL in these settings (Edelman et al., 2024; Makkuva et al., 2024b; Chen
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and Zou, 2024). Furthermore, Lin et al. (2023); Sinii et al. (2023) show how transformers can solve
reinforcement learning problems in an in-context fashion.

While many of the aforementioned works focus on the expressivity of the transformer model on dif-
ferent ICL tasks and the statistical properties of the learned models, understanding training dynamics
from an optimization perspective is also crucial for comprehending ICL by transformers. The training
dynamics for one-layer attention models have been investigated under different data models for both
regression and classification tasks (Zhang et al., 2023a; Huang et al., 2023; Tarzanagh et al., 2023a,b;
Kim and Suzuki, 2024; Chen et al., 2024; Vasudeva et al., 2024; Li et al., 2024; Thrampoulidis,
2024; Sheen et al., 2024). These studies offer a thorough characterization of the training process,
yet they have limitations — they are not directly applicable to data drawn from Markov processes
and are confined to single-layer attention. Our work belongs to this line of research and we adopt a
two-attention-layer transformer architecture, which is more complicated than the transformer studied
in these works.

Induction Head. Elhage et al. (2021) introduce the concept of “induction heads” as the mechanism
underlying the ICL capabilities of transformers. Since then, there has been a surge of interest in
understanding the induction head mechanism and its role in ICL. At a high level, the induction head
mechanism works by matching the history of the current token with those seen previously in the
sequence and then predicting the next token based on the matched historical sub-sequences. Olsson
et al. (2022) provide empirical evidence highlighting that induction heads are crucial in facilitating the
ICL capabilities of transformers. Bietti et al. (2024); Edelman et al. (2024) conduct a further empirical
investigation into the development of induction heads specifically tailored for the ICL of bi-gram
data models. Rajaraman et al. (2024a) provide explicit constructions of single-head transformers
with constant depths that can learn n-gram data. Also, a wider range of functionalities exhibited
by induction heads that interact with various other mechanisms have been observed by Wang et al.
(2022).

From a theoretical perspective, Nichani et al. (2024) study the ICL of first-order Markov chains using
a two-layer transformer and demonstrate the formation of the induction head mechanism. Makkuva
et al. (2024a) also prove that training a single layer attention with a feed-forward layer on first-order
Markov data (with {0, 1} vocabulary) can converge to either to global or local minima depending
on the initialization. However, the first-order assumption seems to be quite restrictive, especially
when modeling the natural language, where the tokens can depend on multiple previous tokens. Most
related to our work is Nichani et al. (2024), where they analyzed how training by gradient descent
enables a two-layer transformer to learn the latent causal graph underlying the ICL data. However, the
analysis in Nichani et al. (2024) applies to Markov chains where each token has at most one parent,
and it remains unclear how to extend the analysis to more general n-gram Markov chains.

In this work, we show that a generalized version of the induction head mechanism can emerge
when training a two-layer transformer on n-gram Markov chains. Moreover, our transformer models
are more sophisticated, incorporating features like relative positional embedding, multi-head atten-
tion, an FNN layer, and normalization. Notably, we provide an in-depth dynamics analysis of the
corresponding FFN layer and two-layer multi-head attention.

B Experiments

In this section, we first detail the setup for the experiment in Figure 3, and then provide additional
results for training a model that also incorporates the word embedding matrices WQ, WK , WV and
the output embedding matrix WO in the first attention layer. Let us first detail the data setup that is
used for all the experiments in this work.

Data generation. The dataset for the ICL task is generated as n-gram Markov chains as described
in §2.1. We take pa = {−1,−2} as the parent set. Thus, the number of parents is n = 2 and the
token embedding dimension is d = 3. Note that for each sequence, the transition matrix π(x |xpa)
is of shape d× dn. We assign a prior distribution P for the transition matrix, which is defined such
that each column of the transition matrix of kernel π is independently drawn from a symmetric
Dirichlet distribution with parameter α = 0.01, i.e., π(·|xpa) ∼ Dir(α · 1d). Note that each chain has
different transition kernel π but follows the same prior distribution P . We randomly sample 10,000
Markov chains with L = 100 from the prior distribution P; 9,000 are used for training and 1,000 for
validation.
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D=2, train separately

Beginning EndingEpoch Epoch

Figure 4: An illustration of the transformer parameters during the three-stage training. This is
the same figure as Figure 3. We train a transformer in TF(M = 3, H = 3, d = 3, D = 2) with
L = 100, pa = {−1,−2}. In (a) we show the evolution of {pS}S∈[H]≤D

in the first stage of
training where pS = c2S/

∑
S′∈[H]≤D

c2S′ . We use a binary coding in {0, 1}3 to indicate each
subset S. Recall that “110” represents = {1, 2}, which is exactly S⋆. This figure shows that
pS⋆ gradually increases to one while the any other pS decays to zero. In (b) we plot the RPE
weights of the first attention layer before and after the second stage of training. Here the h-th
column corresponds to the RPE weight vector of head h. This figure shows that w(1)

−1 and w(2)
−2

increase to a large number after training, while w(3)
−3 stays close to its initial value. Thus, we

have σ(w(1)) ≈ σ(w(2)) ≈ 1. That is, the first two heads are trained to attend to parents −1 and
−2, respectively. In (c) we plot the evolution of a in the last stage of training. This figure clearly
exhibits a two-step growth pattern and a keeps increasing throughout this stage. In summary, the
results of the simulation experiments coincide with the theoretical results.

B.1 Training with Stage Splitting

we present the simulation results with model TF(M,H, d,D) in (2.5) and training in the three-stage
manner. We configure the model with window size M = 3, number of heads H = 3, vocabulary size
d = 3 and maximal FFN degree D = 2.

Model initialization. The RPE weight matrix W (h)
P is initialized such that the (−i)-th diagonal of

W
(h)
P has value w(h)

−i for i = 1, 2, . . . ,M , while all other entries are initialized to −∞. See Figure 2

for an interpretation. We initialize w(h)
−h = 3 and set the remaining entries within the size-M window

to 0.01 to ensure symmetrization-breaking and some initial correspondence between heads and
parents. For the FFN layer that learns the polynomial features, all cS for S ∈ [H]≤D are initialized
to 0.01. The initial value of a in the second attention layer is set to 0.01.

Training settings. The models are trained using gradient descent with respect to the cross-entropy
loss and a constant learning rate that is set to one for all stages. We train the model in Stage I (update
parameters {cS} only) for 2000 epochs, in Stage II (update parameters {w(h)} only) for 50,000
epochs, and in Stage III (update parameter a only) for 5000 epochs, respectively. All experiments are
conducted using a single Nvidia A100 GPU. The results are shown in Figure 4, which matches our
theoretical results.
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Figure 5: An illustration of the evolution of gradient descent dynamics when training a trans-
former model specified in §B.2 with word embedding matrices {WQ,WK ,WV }. Here the
dynamics are not split into three stages and each gradient descent step updates all parameters.
We set M = H = 3, d = 3, and D = 2, the number of input token is L = 100, and Markov
chain has parent set pa = {−1,−2}. In (a) we show the training loss of the model, which
shows that the loss decreases and converges to some value. In (b) we show the evolution of
pS where we use binary coding {0, 1}3 to indicate each subset S. Here, pS⋆ has code “110”,
which corresponds to the true parent set. This figure shows that initially a wrong pS dominates
at the early stage of training, which corresponds to S = {2, 3} (code “011”). Then eventually
pS⋆ increases and becomes dominant. However, pS⋆ does not increase to one and is about 0.6,
and there are two pS’s that are about 0.2. In (c) we show the RPE weights of the first attention
layer before and after training. The entries corresponding to the true parents, w(1)

−1 and w(2)
−2 ,

significantly increase after training, while w(3)
−3 slightly increases from initialization. This figure

shows that each attention head focuses on copying a single previous token. In (d) we show the
evolution of the weight a in the second attention layer. We observe a similar “elbow” curve as in
Figure 3-(c).

B.2 Training without Stage Splitting

Previously in §B.1, we show the simulation results on the simplified model (2.5). Now we present the
results of additional experiments based on the full model defined as follows.

First Attention: rV (h) = σ
(

rXW
(h)
Q W

(h)
K

⊤
rX⊤ +W

(h)
P

)
rXW

(h)
V

⊤
∈ R(L+1)×d;

Concatenate & Normalize: V = LN
(
[rV (1), . . . , rV (H), rX]

)
∈ R(L+1)×(H+1)d;

FFN & Normalize: rU = ϕ(V )/
√
CD ∈ R(L+1)×de ;

Concatenate rX ′ = [rU, V ] ∈ R(L+1)×((H+1)d+de);

Second Attention: Y = σ
(
a · (rx′L+1)

⊤( rX ′
1:L)

⊤)X ∈ R(L+1)×d.

In head h of the first attention layer, W (h)
P is the relative positional embedding matrix, and we include

W
(h)
Q ∈ Rd×d, W (h)

K ∈ Rd×d and W (h)
V ∈ Rd×d as the weight matrices for the query, key, and value
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projections, respectively. That is, in the full model, we the attention heads has more weight matrices
than the simplified model. Another difference is that we also explicitly include the residual link that
copies rX to the output of the first attention layer. For the FFN layer, ϕ : R(H+1)d → Rde is the
same feed-forward network specified in (2.3). Here, we use a standard ℓ2-layer-normalization LN(·),
defined as

LN([x, y]) =

[
x

∥x∥2
,
y

∥y∥2

]
.

The second attention layer takesX as the value, which comes from the residual link (i.e., concatenation
of rU and V while rX in V remains the same after ℓ2-normalization). In comparison to the simplified
model in (2.5), here we incorporate the query, key and value projections for the first layer as in a
standard transformer architecture.

Our training setup is similar to that in §B.1. We use the same dataset and a similar training settings.
All these weight matrices W (h)

Q , W (h)
K and W (h)

V are initialized as identity matrices scaled by 0.001.

We initialized the RPE vector w(h) as w(h)
−h = 1 for h = 1, 2, 3, and leave the remaining entries within

the length-M window to 0.01. We trained the model with all parameters together for 10,000 epochs
with the same loss function and learning rate. As illustrated in Figure 5, the full model converged to a
state comparable to our simplified model. We further plot theW (1)

Q ,W
(1)
K ,W

(1)
V for the first head after

training in Figure 6. The results demonstrate that the model converges to a point where the query and
key projections are close to zero, which leaves the RPE weights to dominate the attention mechanism.
This fact justifies our simplification in (2.5) where we remove the query and key projection weights
and set W (h)

V to be identity matrix.

Figure 6: A visualization of the word embedding matrices W (1)
Q , W (1)

K , W (1)
V of a pre-trained

transformer with M = H = 3, d = 3, and D = 2. These are the parameters in of the first
attention head in the first attention layer. Since d = 3, all word embedding matrices are of
shape 3× 3. As shown in (a) and (b), W (1)

Q and W (1)
K do not change much compared to their

initialization value 0.001. Thus, they are both close to the zero matrix and play a negligible
role in the first attention layer. Besides, in (c) we plot W (1)

V , which establishes a clear diagonal
structure, with the diagonal entries growing to 0.07 compared to the initialization value 0.001.
Thus, W (1)

V is proportional to the identity matrix.

B.3 Prior and Length Generalization

We further test the model learned by the three-stage training on sequences coming from different
priors and of different lengths. Note that our pre-trained transformer learns to perform GIH. As
introduced in §3.1, the GIH estimator can be applied to a sequence with an arbitrary length and does
not concern the prior distribution of the underlying Markov chain. Thus, it is natural to see if the
pre-trained transformer can also generalize to different lengths and prior distributions.

Recall that we train the transformer model with sequence length L = 100 and the concentration
parameter of the Dirichlet prior is α = 0.01. Here, we test the pre-trained transformer on new
sequences of different lengths and sampled from different prior distributions. That is, with a different
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concentration parameter α, we sample a random Markov chain, and generate a sequence of length
L, and evaluate of cross-entropy loss for predicting xL+1. Here we choose α ∈ {0.05, 0.1, 0.2} and
range L from 10 to 1000. When generating the data, the Markov chains share the same parent set
pa = {−1,−2} with the pre-training data. The results are shown in Figure 7. The results show a
decreasing trend in testing loss as the sequence length increases. For α = 0.2, we observe first a
small increase in the test loss when L just exceeds 100, but then the loss decreases as L increases
further. This experiment shows that the pre-trained transformer indeed generalizes in length and is
robust to the change of prior distribution.

Figure 7: Generalization capability of our model to different sequence lengths and prior
distributions. We plot the cross-entropy loss of the pre-trained transformer model on se-
quences with different lengths sampled from Markov chains with different prior distribu-
tions. The prior is Dirichlet distribution with α ∈ {0.05, 0.1, 0.2} and we vary the length
L in {10, 20, 50, 100, 200, 400, 700, 1000}. The pre-training data contains sequences of length
L = 100 and α = 0.01. For different α, we see that the error has a decreasing trend as L
increases. This shows that the pre-trained transformer can generalize in length and is robust to
the distributional shift due to a change of prior.

C Additional Background and Discussions

C.1 How Does Transformer Implement the GIH Mechanism?

In the following, we briefly illustrate how a two-attention-layer transformer model as introduced in
(2.5) implements the GIH mechanism. As we will show in §3.2, gradient flow with respect to the
cross-entropy loss converges to this transformer in the limit.

Figure 8: Illustration of the GIH mechanism in a two-attention-layer transformer model. Here,
pa = {−1,−2}, M = 3 and S⋆ = {1, 2}. The first attention layer copies the parents (including
the information set S⋆) to the current position. Then the FFN layer together with layer normaliza-
tion generates the features ul using the parent tokens within the information set S⋆. The second
attention layer treats each xl as the value, and aggregates xl as the prediction by matching the
keys and query that come from the learned features using the attention mechanism. The L+1-th
token is padded with zeros in the input.

Step I: The First Attention Layer Copies the Information Set S⋆ to the Current Position.
Suppose the number of heads is equal to the window size for simplicity, i.e., H =M . Then, attention
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head h ∈ S⋆ can attend to the h-th parent token by setting the RPE weights in the softmax function
to be w(h) = ρ · e−h for a sufficiently large ρ, where e−h ∈ RM is the canonical basis vector with
the (M +1− h)-th entry being one and all other entries being zero. As a result, each v(h)l for h ∈ S⋆

satisfies v(h)l ≈ xl−h.

Step II: FFN Generates the Polynomial Features of the Information Set S⋆. As we have intro-
duced in (2.3), each learnable cS in the FFN layer determines the contribution of the corresponding
subset S to the output feature. To let the optimal information set S⋆ dominate the output, we set
cS⋆ = 1 whereas cS = 0 for all S ≠ S⋆. The exact form of the output of the FFN layer, ϕ(vl), is
deferred to §C.2. Here the only property we require is that

sl :=⟨ϕ(vl), ϕ(vL+1)⟩ =
∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ ≈ 1(Xl−S⋆ = XL+1−S⋆), (C.1)

Here Xl−S⋆ := (xl−s : s ∈ S⋆) and in the last equation we use the orthogonality and normalization
of the vocabulary embeddings.

Step III: The Second Attention Layer Aggregates Tokens with Matching History on S⋆. We
can interpret sl in (C.1) as an indicator for whether the information set of a token xl matches the
information set of the token xL+1. Then for the second attention layer, by setting a to be sufficiently
large, the output will become

y =

L∑
l=M+1

exp
(
a · sl) · xl∑L

k=M+1 exp
(
a · sk

) ≈

{
N−1 ·

∑L
l=M+1 xl · 1(Xl−S⋆ = XL+1−S⋆), if N ≥ 1,

(L−M)−1 ·
∑L

l=M+1 xl, otherwise,
(C.2)

where N =
∑L

l=M+1 1(Xl−S⋆ = XL+1−S⋆). That is, if at least one token xl has a matching
information set as xL+1, i.e., their histories restricted to S⋆ are the same, the second attention layer
outputs the average of such tokens. Otherwise, it outputs the average of previous tokens from xM+1 to
xL. In Lemma E.6 in the appendix, we will show that the model learned by gradient flow implements
the GIH mechanism up to a diminishing approximation error.

The weights of the transformer constructed above are illustrated in Figure 9. We consider the trans-
former model with M = H = 3, d = 3, and D = 2. In this case, in the first attention layer, for
each h ∈ [3], W (h)

P has three finite parameters w(h)
−1 , w

(h)
−2 , and w(h)

−3 . By our construction, we have
w

(h)
−h = ρ for all h ∈ [3] and the rest of the entries of {w(h)}h∈[3] are all equal to zero. In Figure 9-(a)

we plot the top ten by ten block of W (1)
P , where w(1)

−1 = ρ is shown in yellow and w(1)
−2 = w

(1)
−3

are shown in purple. The gray color stands for −∞ entries. In Figure 9-(b) we plot {w(h)}h∈[3]. In
Figure 9-(c) we plot the parameters of the FFN. Since H = 3 and D = 2, [H]≤D contains seven
elements: ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, and {2, 3}. We use binary strings of length 3 to index these
seven subsets, where the i-th bit indicates whether element i is included in the subset. For instance,
“110” represents {1, 2}. We set S⋆ = {1, 2}, cS⋆ = 1, and cS = 0 for any other S.

C.2 Feed-Forward Network for Polynomial Kernel

Lemma C.1. Recall the FFN satisfying (2.3), which maps a vector z ∈ RdH to a vector in Rde . We
write z as (z(1), . . . , z(H)) where z(h) ∈ Rd for all h ∈ [H]. Let z(h)i be the i-th entry of z(h). Then
we can explicitly construct ϕ(·) by letting

ϕ
(
(z(1), . . . , z(H))

)
=

(
cS ·

∏
h∈S

z
(h)
ih

: {ih}h∈S ⊆ [d],S ∈ [H]≤D

)
, (C.3)

which is equivalent to

ϕ
(
(z(1), . . . , z(H))

)
=
(
cS · vec

(
⊗h∈S(z

(h))
))

S∈[H]≤D

,

where vec(·) is the vectorization operator that transforms a tensor into a vector by stacking all the
entries in the tensor. That is, for any S, we consider the |S| vectors in Rd, {z(h)}h∈S . In (C.3) we
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Figure 9: Limiting model of TF(M = 3, H = 3, d = 3, D = 2) that implements the GIH
mechanism with L = 100, pa = {−1,−2}. (a): The top left 10 by 10 block of W (1)

P that
attends to the −1 parent. (b): The RPE weight heatmap for all 3 heads, where the h-th column
corresponds to the RPE weight vector of head h. (c): In the GIH mechanism, only one c⋆S for
the optimal information set S⋆ dominates. For the label of the x-axis, we use a binary coding
{0, 1}3 to indicate each subset S. Here, S⋆ = {1, 2} is the parent set, which is represented by
“110”.

compute all possible products of the entries of these vectors and multiply them by cS . In particular,
for each S ∈ [H]≤D, we enumerate ih ∈ [d] for all h ∈ S. Therefore, the output dimension of ϕ is
given by

de =
∑

S∈[H]≤D

d|S|. (C.4)

Proof. First, we note that the indices of ϕ(·) have a grouped structure — we first enumerate all
subsets in [H]≤D and then enumerate all monomials with superscripts in S. Since there are d|S|

monomials, the output dimension is given by (C.4).

It remains to verify (2.3) with ϕ(·) defined in (C.3). To this end, we note that for any u, v ∈ RdH and
any S ∈ [H]≤D, we have∑

(ih)h∈S∈[d]|S|

( ∏
h∈S

u
(h)
ih

· v(h)ih

)
=
∏
h∈S

( ∑
ih∈[d]

u
(h)
ih

· v(h)ih

)
=
∏
h∈S

⟨u(h), v(h)⟩,

which directly implies (2.3). Therefore, we conclude the proof of this lemma.

C.3 Perron-Frobenius Theorem

Next, we review the basics for the celebrated Perron-Frobenius theorem on non-negative matrices
(Meyer, 2023, Chapter 7). We consider the following class of irreducible matrices.

Definition C.2 (Irreducible Matrix). A non-negative square matrix P ∈ Rd×d
+ is called irreducible

if the induced directed graph G is strongly connected, i.e., for any pair of nodes in the graph, there
always exists a directed path that connects these two nodes. Here, the induced graph G is defined
based on d nodes with adjacent matrix A given by Aij = 1(Pij ̸= 0).

In particular, if P is a stochastic matrix that corresponds to a d-state Markov chain, then starting
from any state, we can reach any other state with positive probability in a finite number of steps. The
irreducibility property also has an equivalent definition in the matrix form. That is, for any permutation
matrix T , TPT−1 cannot be written as an upper triangular block matrix with the following form[

M1 M2

0 M3

]
.

In other words, an irreducible matrix does not have a nontrivial absorbing subspace that aligns with
the standard basis.
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In this work, we require more than the irreducibility property from the transition matrix Pπ defined
in §3.2. In fact, we need the existence of a unique stationary distribution (which is not guaranteed by
the irreducibility) so that the chain has a sufficiently fast mixing rate. This enables us to learn with a
finite sequence length L. To achieve this, one typically needs the second largest magnitude of the
eigenvalues of Pπ , denoted by λ, to be bounded away from 1, which is the leading eigenvalue of the
transition matrix. The difference 1− λ is also referred to as the spectral gap. It is well-known that if
all the entries of Pπ are positive, then Pπ is irreducible and there is only one leading eigenvalue on
the spectral circle with the corresponding eigenvector given by the chain’s stationary distribution µπ ,
and all the other eigenvalues have magnitude strictly less than 1. However, for our case, the transition
matrix Pπ has zero entries by definition. Fortunately, the nice property on the existence of spectral
gap can be generalized to a class called primitive matrix.
Definition C.3 (Primitive Matrix). A nonnegative and irreducible square matrix P is called primitive
if there exists an integer k such that all the entries of P k are positive.

By definition of the primitive matrix, one can immediately see that for any k′ > k, P k′

π is a positive
matrix. The following is the celebrated Perron-Frobenius theorem that characterizes the spectral
structure of the primitive matrices.
Theorem C.4 (Perron-Frobenius Theorem for Primitive Matrices). Let P be a primitive matrix. Then
the following statements hold:

1. The leading eigenvalue of P is real and positive, and it is the unique eigenvalue with the
largest magnitude. In particular, if P is a stochastic matrix, then the leading eigenvalue is 1.

2. The leading eigenvector of P is positive and unique up to a scaling factor. In particular, if
P is a stochastic matrix, then the leading eigenvector is the stationary distribution of the
Markov chain with transition kernel P .

The Perron-Frobenius theorem guarantees the existence of a unique stationary distribution µπ when
the transition matrix Pπ is primitive. In particular, when we further assume that the transition matrix
Pπ has a spectral gap, the chain is sufficiently mixed, meaning that we can thus approximate sum
over the entire sequence with an average with respect to the stationary distribution. In particular, the
approximation error will decays with the sequence length L.

C.4 Sequential CE Loss

In this work, we only consider the prediction error on the last token in the sequence as in (2.1):

L(ftf) = −Eπ∼P,x1:(L+1)

[
log
(
ftf(xL+1 |x1:L) + ϵ

)]
.

In practice however, people often train the transformer model by minimizing the cross-entropy (CE)
loss over the entire sequence. We demonstrate that our analysis can be extended to training on the
entire sequence. In this vein, we define the sequential CE loss as

Lseq(ftf) =

L∑
l=1

−Eπ∼P,X

[
log
(
ftf(xl+1 |x1:l) + ϵ

)]
. (C.5)

One can equivalently view this sequential CE loss as an aggregation of the CE loss for sequence
length ranging from 1 to L. We argue from the following two perspectives that our analysis can be
extended to the sequential cross-entropy (CE) loss:

1. Due to the use of relative positional embedding (RPE), the transformer’s predictions are
invariant to the absolute positions of tokens within a sequence. Intuitively, this implies that
even if we choose a different sequence length L′, the model can still handle the task in the
same manner.

2. By Assumption 3.5, the chain is sufficiently mixed for large L. In the analysis, we actually
use Xl−M :l = (xl, xl−1, . . . , xl−M ) ∼ µπ, where µπ is the stationary distribution over a
length-(M +1) window, to approximate the aggregation overXl−M :l for l =M +1, . . . , L
in the sequence. For example, this approximation is reflected in the transition from (D.3)
to (D.4) in the proof sketch in §D. Since changing the sequence length does not affect the
underlying stationary distribution, the only issue is the approximation error. In particular,
for sufficiently large L, the CE loss at large l constitutes the majority of the sequential CE
loss in (C.5), making the CE loss at small l negligible.
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C.5 Standard χ2-Divergence and Mutual Information

The χ2-divergence (or χ2-distance) between two probability distributions P and Q in the same
probability space is defined as:

Dχ2(P∥Q) =
∑

x∈supp(Q)

(P (x)−Q(x))2

Q(x)
,

where the summation is taken over all elements x in the sample space where Q(x) > 0. The χ2-
mutual information between two random variablesX and Y with joint distribution PXY and marginal
distributions PX and PY is defined as:

Iχ2(X;Y ) = Dχ2(PXY ∥PX ⊗ PY ) =
∑
y

Dχ2(PX |Y (· | y)∥PX(·))PY (y).

where PX ⊗ PY is the product of the marginals, meaning (PX ⊗ PY )(x, y) = PX(x)PY (y). For a
Markov chain X → Y → Z, the χ2-mutual information satisfies the data processing inequality

Iχ2(X;Z) ≤ Iχ2(Y ;Z),

which follows from the observation that χ2-divergence is also an f -divergence.

C.6 More Details on the Generalized Induction Head Mechanism

Recall that we define the Generalized Induction Head (GIH) estimator in (3.3). Specifically,
GIH(x1:L;M,D) is constructed in two steps. First, we find the information-optimal subset S⋆ of
[M ] by solving (3.2). Second, we build a d-class kernel classifier to predict xL+1, where the “data”
used by such a classifier are {ψS⋆(l), xl}l∈[M+1,L]. Here {ψS⋆(l), l ∈ [M + 1, L+ 1]} are features
constructed at each position based on the partial history given S⋆. In particular, similar to (C.3), for
any subset S of [M ], any input token sequence x1:L, and any position l ∈ [M + 1, L+ 1], we define
ψS(l) = ψS(l;x1:L) as

ψS(l) = vec
(
⊗
s∈S

xl−s

)
=

(∏
s∈S

(xl−s)is : {is}s∈S ⊆ [d]
)
∈ Rd|S|

.

In other word, ψS(l) is given by expanding the rank-1 tensor spanned by {xl−s}s∈S into a vector.
Here xl−s ∈ X is a vector in Rd and we let (xl−s)is denote its is-th entry. The rationale behind ψS(l)
is similar to ϕ introduced in (C.3). We form a long vector containing all the products of the entries of
vectors {xl−s}s∈S . Here we omit the dependency of ψS on the input sequence x1:L to simplify the
notation. Furthermore, ψS induces a polynomial kernel such that for any l,m ∈ [M + 1, L+ 1], we
have

⟨ψS(l), ψS(m)⟩ =
∏
s∈S

⟨xl−s, xm−s⟩ = 1{xl−s = xm−s,∀s ∈ S}.

That is, feature ψS selects the token position pairs (l,m) such that the partial histories induced by S
at position l and m are exactly the same.

Based on {ψS⋆(l), xl}l∈[M+1,L], GIH forms a kernel classifier using the indicator kernel. Specifically,
for any j ∈ [d], by (3.3), GIH(x1:L;M,D) outputs each ej ∈ X with probability

P
(
GIH(x1:L;M,D) = ej

)
=

∑L
l=M+1 1{xl−s = xL+1−s,∀s ∈ S⋆} · 1{xl = ej}∑L

m=M+1 1{xm−s = xL+1−s,∀s ∈ S⋆}
.

C.7 Further Discussions on the GIH Mechanism

We conclude this section with further discussions on the modified χ2-mutual information and low-
degree polynomial kernel for the FFN within the GIH mechanism.

On the Modified χ2-Mutual Information. Now that we have shown how gradient flow approaches
the desired GIH model, it is natural to ask the following questions: What is the optimal subset S⋆

that the model selects? How well does the model perform? For the purpose of illustration, let us
consider a symmetric case where the stationary distribution µπ over a length-rn window is uniform
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over X rn . One can verify that in this case, the stationary distribution over a window of any other
length is uniform as well, and the modified mutual information can be simplified into

log rIχ2(S) = log Iχ2(S)− |S| log d, (C.6)

where Iχ2(S) is the standard χ2 mutual information between µπ(z |Z−S) and µπ(z), and the second
term |S| log d serves as a penalty on the model complexity. Thus, the GIH mechanism is reaching
a balance between the model complexity and the information richness. Below we characterize two
scenarios where the model will select the exact parent set, i.e., S⋆ = pa.

1. If n = 1, i.e., each token only has one parent, then S⋆ = pa. This is because S⋆ simultaneously
maximizes both terms in (C.6), thus reproducing the results in Nichani et al. (2024).

2. If n is known a priori and restricting the polynomial kernel to S ∈ [H]=n = {S ∈ [H] : |S| =
n} for the FFN layer, then S⋆ = pa. Here, the penalty term does not influence the selection and
the exact parent set maximizes the mutual information by the data-processing inequality.

In the general case, however, the model could be much more flexible, and it is possible that the model
selects only a subset of the true parent set or even some non-parent tokens that are also informative.
The rationale is that with a more complex model, e.g., selecting a large S , the model are able to make
more accurate predictions for large L but may endure a large estimation error for small L, as the
exact matching Xl−S = XL+1−S may appear rarely in the sequence.

On the Low-Degree Polynomial Kernel. The goal of using a low-degree polynomial kernel in
(2.3) is to strike a balance between model complexity (which is also related to computational cost)
and the model’s accuracy. In this regard, we have the following corollary.
Corollary C.5. We always have |S⋆| ≤ n regardless of the choice of D, where S⋆ =

argmax[H]≤D
log rIχ2(S) for rIχ2(S) in (C.6)

The reasoning behind this corollary is as follows. Consider any set S with |S| > n, we have
Iχ2(S) ≤ Iχ2(pa) as the true parent set is the most informative. Moreover, since |pa| = n < |S|, S
suffers from a larger penalty. As a result, we have log rIχ2(S) < log rIχ2(pa) when S has more than
n elements. In other words, it is without loss of generality to set D ≤ n.

C.8 Conclusion and Future Directions

In this paper, we have studied the training dynamics of a two-attention-layer transformer model
for learning n-gram Markov chains in an in-context way. Our theoretical analysis underscores a
congruous interplay between the multihead attention mechanism, the feed-forward network, and layer
normalization that yields a generalized version of the induction head mechanism during the training.
In particular, we prove that the generalized induction head mechanism adopts a modified χ2-mutual
information criterion for parent selection that strikes a balance between information richness and
model complexity. To our best knowledge, our work gives the first theoretical evidence for learning
an induction head mechanism with n-gram Markov data, which potentially sheds light on the inner
workings of large-scale transformer models.

Our work opens new directions for developing a rigorous understanding of the transformer models.
A natural direction would be that if one can find such a mechanism with standard FFN layer using
multi-layer perceptron and standard layer normalization in the more practical transformer model.
The intuition is that our FFN layer in (2.3), which is further instantiated in (C.3), lies in the space
of low-degree polynomials and can be well represented by a MLP with sufficient dimensions and
proper activation functions. Initial attempts to learn nonlinear features have also been made by Kim
and Suzuki (2024). Another direction is to investigate the training dynamics beyond a single loop of
this induction head mechanism, e.g., iteration head with recursively refined predictions (Cabannes
et al., 2024), and how the induction head mechanism occurs in multi-layer transformer models.

D Proof Sketch

In this section, we discuss the main ingredients of analysis of gradient flow. First, we show in §D.1
how to simplify the model based on our choice of the initialization and the structure of the disentangled
transformer. We then proceed to present the main proof ideas for the three stages of the gradient flow
dynamics, where the training yields the following behaviors:
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• Stage I: A unique S⋆ ∈ [H]≤D stands out such that the associated parameter cS⋆ dominates
those of the other sets. As a result, p∗S(t) = c2S∗(t)/CD(t) approaches to one.

• Stage II: For each h ∈ S⋆, σ(w(h)) approaches a one-hot vector eM+1−h ∈ RM , wherew(h)

contains the parameters of RPE of the h-th head. During this stage, each head concentrates
on copying a particular parent.

• Stage III: Finally, a grows and reaches O(logL). As a result, the trained model approxi-
mately implements the GIH mechanism GIH(x1:L;M,D).

D.1 Simplification of the Transformer Model at Initialization

We first simplify the expression of the transformer model at initialization under Assumption 3.3, by
showing that the attention scores of the second attention layer admit a simpler form.

For the second attention layer, we write the output as y⊤ = σ(as)X where s := u⊤L+1Mask(U
⊤
1:L) ∈

R1×L is the row vector of the similarity scores. Recall from (2.5) that the FFN layer with normalization
outputs U = ϕ(V )/

√
CD ∈ R(L+1)×de , and we denote the l-th row of U by ul = ϕ(vl)/

√
CD. For

l =M + 1, . . . , L, the l-th entry of s is given by

sl = ⟨ul, uL+1⟩ = ⟨ϕ(vl), ϕ(vL+1)⟩/CD,

and the other entries are all −∞. By the property of the FFN layer in (2.3) and the definition
CD =

∑
S∈[H]≤D

c2S , we can rewrite the above attention score as

sl =

∑
S∈[H]≤D

c2S ·
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩∑

S∈[H]≤D
c2S

, for l =M + 1, . . . , L. (D.1)

Note that under Assumption 3.3, by the definition of ∆w in (3.6), we have a sufficiently large gap
w

(h)
−h − w

(h)
−j for all j ̸= h at initialization. Thus, exp(w(h)

−h) ≫ exp(w
(h)
−j ) for all j ̸= h, which

implies the following approximation:

v
(h)
l =

M∑
k=1

exp(w
(h)
−k )∑M

j=1 exp(w
(h)
−j )

· xl−k ≈ xl−h, for l =M + 1, . . . , L.

This further implies that for l =M + 1, . . . , L, we have∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ ≈

∏
h∈S

⟨xl−h, xL+1−h⟩ = 1{xl−i = xL+1−i for i ∈ S}, (D.2)

which is a binary value indicating whether the query and the key token’s history match on the subset
S. Combining (D.1) and (D.2), we obtain the following simplified expression for sl:

sl ≈
∑

S∈[H]≤D
c2S · 1{xl−i = xL+1−i for i ∈ S}∑

S∈[H]≤D
c2S

=
∑

S∈[H]≤D

pS · 1{xl−i = xL+1−i for i ∈ S}

where we denote pS = c2S/
∑

S∈[H]≤D
c2S for S ∈ [H]≤D.

In summary, when ∆w is sufficiently large, v(h)l approximately copies the token xl−h. As a result,
the attention score sl satisfies

sl ≈
∑

S∈[H]≤D

pS · 1{xl−i = xL+1−i for i ∈ S}.

D.2 Analysis for Training the FFN and the First Attention Layer

The first two training stages involve the dynamics of the weights of the FFN, {cS}S∈[H]≤D
, and

the weights of the first attention layer, {w(h)}Hh=1. The analyses of these two stages have similar
structures and contain the following essential steps:

1. Derive the explicit expression of the dynamics of the weights, via direct calculations.
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2. Unveil the key quantities (related to the modified χ2-MI) that dominantly drive the dynamics,
by replacing the empirical average over the context sequence with the expectation over the
stationary distribution, along with other approximations.

3. Then based on the above characterization of the dynamics, we can show the convergence of
the weights to the desired values.

D.2.1 Training the FFN: Identification of the Information Set S⋆

In the first stage, we track the dynamics of c2S(t) for each S ∈ [H]≤D. For convenience, we drop the
dependence on t in the sequel.

Recall the output of the model is y = (σ(a · s)X)⊤ and the cross-entropy loss function is L(Θ) =
Eπ∼P,x1:L

[ℓ(Θ)], where ℓ(Θ) can be written as ℓ(Θ) = −⟨xL+1, log(y + ε1)⟩ .We ignore the small
constant ε in the following proof sketch for simplicity. We also abbreviate the vector of attention
probabilities in the second attention layer as σ ∈ RL.

Calculation of the Dynamics of c2S . By a direct calculation for the loss ℓ and sl in (D.1),

∂ℓ

∂sl
= −a · σl(a · s) ·

(
xL+1

y

)⊤

(xl − y) ,
∂sl
∂cS

=
2cS

∏
h∈S⟨v

(h)
l , v

(h)
L+1⟩

CD
− 2cSsl

CD
.

Here the vector xL+1/y is obtained by element-wise division and σl(a · s) is the l-th entry of σ(a · s).
Then applying the chain rule, we obtain the following dynamics for c2S along the gradient flow:

∂t log c
2
S = − 2

cS

L∑
l=M+1

E
[
∂ℓ

∂sl

∂sl
∂cS

]
=

4a

CD

L∑
l=M+1

E
[
σl(a · s) ·

∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ ·

(
xL+1

y

)⊤

(xl − y)

]

− 4a

CD

L∑
l=M+1

E
[
σl(a · s) · sl ·

(
xL+1

y

)⊤

(xl − y)

]
︸ ︷︷ ︸

f(t)

.

Note that here the second term f(t) is independent of S , and it will be canceled out when we consider
the difference of the derivatives, ∂t log c2S − ∂t log c

2
S′ , for two sets S,S ′ ∈ [H]≤D. This is why we

focus on the time derivative of log c2S .

Relate the Dynamics to the Modified χ2-MI by Approximations. Now using the approximation
in (D.2) for

∏
h∈S⟨v

(h)
l , v

(h)
L+1⟩, expanding (xL+1/y)

⊤(xl − y) coordinate-wise, and noting that
σl(a · s) ≈ 1/(L−M) as we have small a in the second attention layer, we arrive at

∂t log c
2
S ≈ 4a

(L−M)CD

L∑
l=M+1

E

[
1(Xl−S = XL+1−S) ·

( d∑
k=1

1(xL+1 = xl = ek)

y(k)
− 1

)]
− f(t).

(D.3)

where y(k) denotes the k-th entry of y and Xl−S := (xl−i : i ∈ S) denotes the history of xl on the
set S, similar for XL+1−S . Note that y(k) ≈ (L −M)−1

∑L
l=M+1 1(xl = ek) ≈ µπ(ek), which

follows from the mixing assumption of the Markov chain that allows us to replace the average over
l =M+1, . . . , L by the expectation over the stationary distribution. Also for the same reason, we can
replace (xl, Xl−S), (xL+1, XL+1−S) with two independent copies from the stationary distribution
µπ , i.e.,

∂t log c
2
S ≈ 4a

CD
E(x,X),(z,Z)∼µπ×µπ

[
1(Z−S = X−S) ·

( d∑
k=1

1(x = z = ek)

µπ(ek)
− 1

)]
− f(t).

(D.4)

See the approximation from g2,S to g3,S in §E.2. Indeed, the first term in (D.4) becomes the modified
χ2-MI, rIχ2(S), which is defined in Definition 3.1. This gives rise to the following approximation:

∂t log c
2
S ≈ 4a

CD

rIχ2(S)− f(t). (D.5)
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Since the value of f(t) is independent of the specific choice of set S , it is clear that the set S achieving
the fastest growth rate is the information-optimal set S∗ = argmaxS∈[H]≤D

rIχ2(S) that maximizes
the modified χ2-MI within [H]≤D.

Convergence of pS⋆ . Note that pS = c2S/
∑

S′∈[H]≤D
c2S′ quantifies the contribution of the set S to

the feature produced by the FFN layer. Thus, it is the relative growth rate of c2S that matters. Towards
this end, it follows from (D.5) that, for all S ∈ [H]≤D\{S⋆},

∂t log
c2S⋆

c2S
≈ 4a

CD
·
(

rIχ2(S⋆)− rIχ2(S)
)
≥ 4a

CD
·∆rIχ2 . (D.6)

Here we recall from (3.5) that ∆rIχ2 quantifies the minimal gap between the modified χ2-MI of S⋆

and any other set in [H]≤D. The lower bound given by (D.6) ensures that for all S ̸= S⋆, the ratio
c2S⋆/c2S grows exponentially fast, which further implies that pS⋆ approaches one exponentially fast.
This concludes the first stage of the training dynamics.

D.2.2 Training the First Attention Layer: Convergence of σ(w(h)) to One-Hot Vector

As we proceed to the second stage after pS⋆ ≈ 1, it suffices to show how σ(w(h)) converges
to a one-hot vector eM+1−h for h ∈ S⋆ in order to show that the model converges to the GIH
mechanism. Recall that we denote X = (x1, . . . , xL) ∈ RL×d. For notational convenience, we
denote σ(h) := σ(w(h)) and let X(l−M):(l−1) ∈ RM×d denote the submatrix of X with rows
l−M, . . . , l− 1 for any l. Following our convention, we let σ(h)

−i denote the (M + 1− i)-th entry of

σ(h) and similarly for w(h)
−i .

Calculation of the Dynamics of w(h). The main idea for analyzing {w(h)}Hh=1 is the same as
that in the previous stage: It suffices to analyze the difference between the growth rates of different
coordinates of w(h) for h ∈ S⋆. In particular, we care about how quickly w(h)

−h grows compared to

other coordinates if w(h)
−h is initialized to be larger than the remaining coordinates:

∂tw
(h)
−h − ∂tw

(h)
−i =

L∑
l=M+1

E
[
∂ℓ

∂sl

(
∂sl

∂w
(h)
−h

− ∂sl

∂w
(h)
−i

)]
(D.7)

= a

L∑
l=M+1

E
[
σl(as)

(
d∑

k=1

1(xL+1 = xl = ek)

y(k)
− 1

)(
∂sl

∂w
(h)
−h

− ∂sl

∂w
(h)
−i

)]
.

Now, we invoke the result obtained in the previous stage that pS⋆ ≈ 1, which gives us sl ≈∏
h∈S⋆⟨v(h)l , v

(h)
L+1⟩. Consequently, for any h ∈ S⋆, we have

∂sl

∂w
(h)
−i

≈ ∂

∂w
(h)
−i

∏
h′∈S⋆

⟨v(h
′)

l , v
(h′)
L+1⟩ =

( ∏
h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩

)
· b⊤l (eM+1−i − (σ(h))⊤)σ

(h)
−i

(D.8)

where the equality follows from the fact thatw(h)
−i only affects (v(h)l , v

(h)
L+1) and differentiating through

the softmax function. Here we define bl := X(l−M):(l−1)v
(h)
L+1 +X(L+1−M):Lv

(h)
l to simplify the

notation. Combining (D.7) and (D.8), we obtain

∂tw
(h)
−h − ∂tw

(h)
−i ≈ ag⊤h

(
σ
(h)
−i (eM+1−h − eM+1−i) + (σ

(h)
−h − σ

(h)
−i )

∑
j ̸=h

σ
(h)
−j (eM+1−h − eM+1−j)

)
,

(D.9)

where we introduce the following notation

gh :=

L∑
l=M+1

E
[
σl(a · s) ·

(
d∑

k=1

1(xL+1 = xl = ek)

y(k)
− 1

)
·

∏
h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩bl

]
.
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A detailed deviation of (D.9) can be found in (E.16). Notice that σ(h)
−h−σ

(h)
−i is positive at initialization.

Now suppose σ(h)
−h − σ

(h)
−i > 0 holds at current time t. Then, lower bounding ∂tw

(h)
−h − ∂tw

(h)
−i boils

down to lower bounding g⊤h (eM+1−h − eM+1−i) for i ̸= h. Furthermore, if we can show that
∂tw

(h)
−h − ∂tw

(h)
−i is lower bounded by some positive value, the gap σ(h)

−h − σ
(h)
−i will further increase.

Since
∑M

i=1 σ
(h)
−i ≡ 1, this will create a reinforcing loop that makes σ(h)

−h monotonically increase.

Relate the Dynamics to the Modified χ2-MI by Approximations. We demonstrate next that
g⊤h (eM+1−h − eM+1−i) for i ̸= h admits a lower bound depending on the information gap ∆rIχ2 .
Specifically, using the same strategy for (D.3), we have by definition that

g⊤h eM+1−i (D.10)

≈ 1

L−M

L∑
l=M+1

E

[(
d∑

k=1

1(xL+1 = xl = ek)

y(k)
− 1

)
· 1(xl−j = xL+1−j , j ∈ S⋆ \ {h}) · b⊤l eM+1−i

]

where for bl we have by the same approximation v(h)l ≈ xl−h and v(h)L+1 ≈ xL+1−h as in (D.2) that

b⊤l eM+1−i = v
(h)
L+1

⊤
xl−i + v

(h)
l

⊤
xL+1−i ≈ 1(xL+1−h = xl−i) + 1(xl−h = xl−i). (D.11)

Now we consider the case i = h and i ̸= h separately:

(i) (i = h) For g⊤h eM+1−h, we simply set i = h in (D.11), and the indicator 1(xL+1−h = xl−h)
will exactly compensate for the exclusion of h in the indicator function of (D.10). Drawing
an analogy to how we go from (D.3) to (D.5), we obtain

g⊤h eM+1−h ≈ 2rIχ2(S⋆).

(ii) (i ̸= h) For g⊤h eM+1−i with i ̸= h in (D.11), we apply the same reasoning as in the previous
case. Additionally, by using the Cauchy-Schwarz inequality, the following inequality holds
up to a small error (see Lemma F.7 for a detailed derivation):

g⊤h eM+1−i ≤ rIχ2(S⋆) + rIχ2(S⋆\{h} ∪ {i}) ≤ 2rIχ2(S⋆)−∆rIχ2 .

Plugging this back into the dynamics in (D.9), we conclude that for all i ̸= h,

∂tw
(h)
−h − ∂tw

(h)
−i ≥ a · σ(h)

−i ·∆rIχ2 .

Convergence of σ(w(h)). Combining the arguments in the previous two steps, we can now say
that σ(h)

−h will monotonically increase. It remains to show that σ(h)
−h converges to one. Note that

log(σ
(h)
−h/σ

(h)
−i ) = w

(h)
−h − w

(h)
−i by the definition of the softmax function. Therefore,

∂t log
(
σ
(h)
−h

/
σ
(h)
−i

)
= ∂tw

(h)
−h − ∂tw

(h)
−i ≥ a · σ(h)

−i ·∆rIχ2 = a ·∆rIχ2 · σ(h)
−h(0) ·

(
σ
(h)
−i

/
σ
(h)
−h

)
where σ(h)

−h(0) is the initial value of σ(h)
−h at time t = 0. One can now rearrange the term and pick

the ratio σ(h)
−i /σ

(h)
−h as the variable to track in the dynamics. A refined analysis in the convergence

analysis in §E.3 shows that σ(h) converges to a one-hot vector with σ(h)
−h going to one. In particular,

the convergence rate is determined by the information gap ∆rIχ2 according to the above formula.

D.3 Analysis for the Training of the Second Attention Layer

In the last stage, we turn to the training of a given that all σ(h)’s for h ∈ S⋆ are approximately
one-hot vectors. The following approximation of the dynamics of a(t) is performed in the region
a ≤ O(logL), where the signal term in the dynamics dominates the approximation error.
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Calculation of the Dynamics of a. After Stages I and II, the output is approximated as y(k) ≈
y⋆(k) :=

∑L
l=1 σ

⋆
l 1(xl = ek) for each k ∈ [d]. Here the weighting coefficients σ⋆

1 , . . . , σ
⋆
L satisfy

σ⋆
l ∝ exp (a · 1(Xl−S⋆ = XL+1−S⋆)) .

Note that for each l ∈ [L], σ⋆
l indicates the importance assigned to the l-th token based on the

corresponding history of xl over the information set S⋆. In the population counterpart, when the
chain has sufficiently mixed, for given XL+1−S⋆ , we can roughly view each (xl, Xl−S⋆) as being
sampled from a reweighed version of the stationary distribution:

rµπ(xl, Xl−S⋆ |XL+1−S⋆) ∝ µπ(xl, Xl−S⋆) · exp (a · 1(Xl−S⋆ = XL+1−S⋆)) .

Following the same argument as those in the previous stages, replacing the sum over l with the
expectation over the stationary distribution, we arrive at

∂ta ≈ Eπ∼P,(x,X−S⋆ ,z,Z−S⋆ )∼qπ

[
1(X−S⋆ = Z−S⋆) ·

( d∑
k=1

1(x = z = ek)

rµπ(z = ek |X−S⋆)
− 1

)]
. (D.12)

See detailed derivations of the above approximation in §E.4. Comparing the above expression with
(D.4) in Stage I, one can see that here (x,X−S⋆) and (z, Z−S⋆) are no longer independent because
now the model has learned to perform a information-theoretic feature selection, i.e., focusing on
tokens sharing the same set of features based on the information set S⋆, which is defined according
to the modified χ2-mutual information. In fact, the underlying joint distribution qπ is given by
qπ = µπ(x,X−S⋆) · rµπ(z, Z−S⋆ |X−S⋆).

Divergence of a. As the dynamics of a has no closed-form expression due to the nonlinearity in
the reweighed distribution rµπ, we resort to providing characterization for cases where a is either
sufficiently small or large. In both cases, the lower and upper bounds of (D.12) can be derived,
respectively. Using these bounds, we can argue rigorously that for small a, it undergoes super-
exponential growth until it reaches a critical “elbow” value. After that, when a becomes even larger,
it grows logarithmically until it reaches Ω(logL).

E Analysis of the Training Dyanamics

Masking the Simplified Model. Recall that we apply a mask to the firstM position in the simplified
model. Therefore, we only allow index l to run from M + 1 to L in the following analysis. In the
following, we first specify the conditions on L that are required for the analysis of the training
dynamics and then present the proof of Theorem 3.6.

E.1 Conditions on the Sequence Length

We first introduce the following condition on L:

L ≥ Ω

(
1

∆rI2χ2(1− λ)γrn+2

)
, L ≥ (1− λ)−1γ−D,

√
L ≥M ∨ d, (E.1)

where Ω only hides a universal constant that does not depend on the model parameters. The conditions
in (E.1) will facilitate our analysis for Stage I and Stage II. For the last stage, we require

L ≥ 2M + rn
log γ−1

λ−1
,

L

(logL)4
≥ Ω

(
1

κ4γ8+2|S⋆| ·

( √
M + d

(1− λ)1/2γ|S⋆|+2+rn/4

)4)
, (E.2)

where

κ :=E
[
Dχ2(µπ(·) ∥µπ(· |X−S⋆))

]
∧ E

[
Dχ2(µπ(· |X−S⋆) ∥µπ(·))

]
∧ 1,

and Ω only hides universal constants that do not depend on the model parameters. Here, µπ(x,X−S⋆)
denotes the stationary distribution of the Markov chain over token x and its parents X−S⋆ , with S⋆

being the information set defined in (3.2).
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E.2 Analysis for Stage I

In this section, we analyze the dynamics of the parameters {c2S}S∈[H]≤D
in the first stage of training.

We will show that there is a unique S∗ ∈ [H]≤D such that c2S⋆ dominates all the other c2S ’s at the end
of the first stage. In addition, we will characterize how fast this happens and provide a corresponding
convergence rate.

Proof Strategy. At a high level, the strategy is to analyze ∂t log c2S⋆ − ∂t log c
2
S for all S ≠ S⋆ via

the following steps:

1. Dynamics Calculation. First, we calculate the dynamics of log c2S for each fixed S. By
selecting sufficiently small values for a and ε, and leveraging the mixing properties of
the Markov chain with large L, the dynamics of log c2S is approximately governed by the
modified mutual information rIχ2(S).

2. Lower Bound for The Growth Rate. Consequently, we are able to lower bound the differ-
ence between the growth rates, ∂t log c2S⋆ − ∂t log c

2
S , in terms of ∆rIχ2 , the gap between

the modified mutual information of S⋆ and the second-best set.
3. Convergence. Finally, we derive the convergence using the above lower bound.

Before presenting the proof, we first remind the readers of a few definitions and notations. Recall that
our simplified model is given by

y = (σ(as)X)⊤ =

L∑
l=M+1

σl(as) · xl, where sl =

∑
S∈[H]≤D

c2S ·
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩∑

S∈[H]≤D
c2S

Also recall that CD(t) =
∑

S∈[H]≤D
c2S(t) and pS(t) = c2S(t)/CD(t) for each S ∈ [H]≤D. The loss

function can be rewritten as

L = E[ℓ], where ℓ = −⟨xL+1, log(y + ε1)⟩.

Here the expectation E is taken over both the sequence (x1, . . . , xL+1) and the Markov kernel
π ∼ P . We abbreviate σ ≡ σ(as) for convenience and denote by σl the l-th element of σ. By direct
calculation, we have

∂ℓ

∂y
= − xL+1

y + ε1
,

∂y

∂σ
= X⊤,

∂σ

∂sl
= a · σl(as) · (e⊤l − σ),

Then applying the chain rule, we have

∂ℓ

∂sl
=
∂ℓ

∂y

∂y

∂σ

∂σ

∂sl
= −a

(
xL+1

y + ε1

)⊤

(xl − y) · σl(as). (E.3)

In addition,

∂sl
∂cS

=
2cS

∏
h∈S⟨v

(h)
l , v

(h)
L+1⟩∑

S′∈[H]≤D
c2S′

− 2cSsl∑
S′∈[H]≤D

c2S′
=

2cS
CD

( ∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ − sl

)
.

Now, we are ready to present the proof of Theorem 3.6 for the first stage of training. We remind
readers that here only {cS}S[H]≤D

are trained, and we omit the dependence on t for convenience.

Proof of Theorem 3.6: Stage I. As discussed in the proof strategy above, we first derive the dynamics
of log c2S for each fixed S ∈ [H]≤D. Then we compare the growth rate of c2S⋆ with any other c2S .

Calculation of The Dynamics of log c2S . We fix a S ∈ [H]≤D and apply the chain rule ∂ℓ/∂cS =∑L
l=M+1 ∂ℓ/∂sl · ∂sl/∂cS and the gradient flow formula that ∂tc2S = −2cS · ∂L/∂cS . We have

∂tc
2
S =

4ac2S
CD

L∑
l=M+1

E
[
σl(as) ·

(
xL+1

y + ε1

)⊤

(xl − y) ·
( ∏

h∈S

⟨v(h)l , v
(h)
L+1⟩ − sl

)]
. (E.4)
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In the following, we consider a fixed π for error analysis and take expectation over π again when
plugging in everything back into the dynamics. To simplify the expression of ∂tc2S , we define quantities
g0,S and f as

g0,S :=

L∑
l=M+1

EX|π

[
σl(as)

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

) ∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
,

f :=

L∑
l=M+1

EX|π

[
σl(as)

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·sl
]
.

Note that here f does not depend on S. Based on the above definitions, we can rewrite (E.4) as

∂t log c
2
S =

1

c2S
· ∂tc2S =

4a

CD
· Eπ∼P [g0,S − f ]. (E.5)

Using this, it can be shown that CD(t) does not change during the training, as described in the
following lemma.

Lemma E.1. The quantity CD(t) =
∑

S∈[H]≤D
c2S(t) is preserved along the gradient flow over

{cS}S∈[H]≤D
, i.e., ∂tCD(t) ≡ 0.

This lemma will be useful in the following analysis, and we defer its proof to §E.2.1. Next, we proceed
to further simplify the dynamics in (E.5) by approximating g0,S .

Simplification of ∂t log c2S . To approximiate g0,S , we introduce the following quantities:

g1,S :=
1

L−M

L∑
l=M+1

EX|π

[( d∑
k=1

1(xL+1 = xl = ek)

sy(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

) ∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
,

g2,S :=
1

L−M

L∑
l=M+1

EX|π

[( d∑
k=1

1(xL+1 = xl = ek)

µπ(ek)
− 1

) ∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
,

g3,S := E(x,X),(z,Z)∼µπ⊗µπ

[( d∑
k=1

1(x = z = ek)

µπ(ek)
− 1

) ∏
h∈S

⟨v(h)(Z), v(h)(X)⟩
]
,

where Z = (z−M , . . . , z−1) is independent of X = (x−M , . . . , x−1) and we define

v(h)(X) :=

M∑
i=1

σ
(h)
−ih

x−ih , v(h)(Z) :=

M∑
i=1

σ
(h)
−ih

z−ih , and sy :=
1

L−M

L∑
l=M+1

xl.

Here sy(k) is the k-th entry of sy. We remark that each of g1,S , g2,S , g3,S is a function of π and t, but
we omit the dependence for brevity.

From g0,S to g1,S , we replace attention probability σl(as) by the uniform average with factor
1/L, which yields sy. From g1,S to g2,S , we replace the empirical distribution sy with the stationary
distribution µπ and drop the small constant ε. Finally, from g2,S to g3,S , we replace the average over
the sequence by the expectation over the stationary distribution µπ of the underlying Markov chain.
We will show that the approximation error in each step is small, given that a and ε are sufficiently
small and the Markov chain mixes well for a large L.

• For the approximation of g0,S by g1,S , note that when a is small, the attention probability
σl(as) ≈ 1/(L−M) for all l ∈ [L]. More specifically, it follows from Lemma F.3 that

|g0,S − g1,S | ≤
8ad

ε2
.

• For the approximation of g1,S by g2,S , we leverage the approximation sy(k) ≈ µπ(ek) due
to the mixing of the Markov chain for large L. The result in Lemma F.4 implies that

|g1,S − g2,S | ≤ 4 ·
(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 2

√
M

L1/2γ
+ γ−1ε
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where µ0(·) is the initial distribution over the first rn tokens. Here we abuse the notation
of µπ in Dχ2(µ0 ∥µπ) to denote the stationary distribution over the last rn tokens. Since
µπ
min ≥ γ by Assumption 3.5, we have

Dχ2(µ0∥µπ) =
∑
X

(µ(X)− µπ(X))2/µπ(X) ≤
∑
X

1/µπ(X) ≤ (2/γ)rn . (E.6)

Therefore, we can further simplify the above bound as

|g1,S − g2,S | = O

(
1√

L(1− λ)γrn+2
+
ε

γ

)
.

• Finally, the approximation of g2,S by g3,S follows from the mixing property of the Markov
chain. In particular, it follows from Lemma F.5 that

|g2,S − g3,S | ≤
8M

Lγ
+

16
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)γ|S|/2+1
≤ O

(
1

L(1− λ)γ|S|/2+rn/2+1

)
.

Combining the above results, and by the assumption that a = a(0) = O(1/L3/2) and ε = 1/
√
L, we

obtain the following approximation error:

|g0,S − g3,S | = O

(
ad

ε2

)
+O

(
1√

L(1− λ)γrn+2
+
ε

γ

)
+O

(
1

L(1− λ)γ|S|+2+rn/2

)
≤ O

(
1√

L(1− λ)γrn+2
+

1

L(1− λ)γD/2+rn/2+1

)
≤ O

(
1√

L(1− λ)γrn+2

)
,

where we note that |S| ≤ D for any S ∈ [H]≤D and the last inequality holds by also noting our
condition on L in (E.1) that L ≥ Ω((1− λ)−1γ−D). As a result, the dynamics of c2S in (E.5) can be
approximated as follows:

∂t log c
2
S =

4a

CD
· Eπ∼P [g3,S − f ] + E , where |E| ≤ O

(
a

CD

√
L(1− λ)γrn+2

)
, (E.7)

where O(·) hides universal constants that do not depend on the model parameters. Here and in the
sequel, we let E denote an error term that is of the order O(a/

√
C2

DL(1− λ)γrn+2) where the
specific constant hidden in O(·) may change from line to line, but does not depend on the model
parameters. In fact, we can show CD remains constant by Lemma E.1 and a is not updated during
this stage. Thus, the error term |E| is of scale O(aL−1/2).

Lower Bound for The Difference ∂t log c2S⋆ − ∂t log c
2
S . The reason for approximating g0,S by

g3,S in the previous step is that the latter is more interpretable, in the sense that we can relate it to the
modified χ2 mutual information rIχ2(S). Recall that for each S ∈ [H]≤D, the modified χ2-mutual
information is

rIχ2(S) = Eπ∼P,(z,Z)∼µπ

[(∑
e∈X

µπ(z = e |Z−S)
2

µπ(z = e)
− 1

)
· µπ(Z−S)

]
.

Note that f in (E.7) is independent of S , and will be canceled when computing ∂t log c2S⋆ − ∂t log c
2
S :

∂t log c
2
S⋆ − ∂t log c

2
S =

4a

CD
· Eπ∼P [g3,S⋆ − g3,S ]± 2|E|.

Thus, it suffices to consider Eπ∼P [g3,S⋆ −g3,S ]. It follows from Lemma F.6 that for each S ∈ [H]≤D,
Eπ∼P [g3,S ] satisfies∣∣∣∣Eπ∼P [g3,S ]−

∏
h∈S

(σ
(h)
−h)

2 · rIχ2(S)
∣∣∣∣ ≤ (1− ∏

h∈S

(σ
(h)
−h)

2

)
· rIχ2(S⋆).

This yields a lower bound for Eπ∼P [g3,S⋆ ] and an upper bound for Eπ∼P [g3,S ] for each S ≠ S⋆, i.e.,

Eπ∼P [g3,S⋆ ] ≥
∏
h∈S⋆

(σ
(h)
−h)

2 · rIχ2(S⋆)−
(
1−

∏
h∈S⋆

(σ
(h)
−h)

2

)
· rIχ2(S⋆),

Eπ∼P [g3,S ] ≤
∏
h∈S

(σ
(h)
−h)

2 · rIχ2(S) +
(
1−

∏
h∈S

(σ
(h)
−h)

2

)
· rIχ2(S⋆), for all S ≠ S⋆.
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Consequently,

∂t log c
2
S⋆ − ∂t log c

2
S =

4a

CD
· Eπ∼P [g3,S∗ − g3,S ]± 2|E|

≥ 4a

CD

( ∏
h∈S⋆

(σ
(h)
−h)

2 · rIχ2(S⋆)−
∏
h∈S

(σ
(h)
−h)

2 · rIχ2(S)
)

− 4a

CD

(
2−

∏
h∈S⋆

(σ
(h)
−h)

2 −
∏
h∈S

(σ
(h)
−h)

2

)
rIχ2(S⋆)− 2|E|

≥ 4a

CD

((
2
∏
h∈S⋆

(σ
(h)
−h)

2 − 2

)
rIχ2(S⋆) +

∏
h∈S

(σ
(h)
−h)

2 ·∆rIχ2

)
− 2|E|,

where the second inequality follows from the definition ∆rIχ2 = minS∈[H]≤D\{S⋆} rIχ2(S⋆)−rIχ2(S).
Moreover, since each (σ

(h)
−h)

2 ∈ (0, 1), we have
∏

h∈S(σ
(h)
−h)

2 ≥
∏H

h=1(σ
(h)
−h)

2 for any S ∈ [H]≤D.
Appling this to the above inequality, we obtain

∂t log c
2
S⋆ − ∂t log c

2
S ≥ 4a

CD

(
2

H∏
h=1

(σ
(h)
−h)

2 · rIχ2(S⋆) +

H∏
h=1

(σ
(h)
−h)

2 ·∆rIχ2 − 2rIχ2(S⋆)

)
− 2|E|,

(E.8)

Exponential Growth of c2S⋆ . We proceed to show that the first term in (E.8) dominates the error
term E and thus leads to the exponential growth of c2S⋆ .

Note that by Assumption 3.3, w(h)
−h ≥ w

(h)
−j +∆w for all j ̸= h and h ∈ [H], where the quantity ∆w

satisfies

∆w ≥ log (M − 1)− log

((
1 +

∆rIχ2

14rIχ2(S⋆)

) 1
2H

− 1

)
. (E.9)

Recall that we are not updating the RPE parameters during this stage, so σ(h) is fixed for all h ∈ [H].
So the gap condition (E.9) holds throughout Stage I. This conditions ensures that w(h)

−h ≫ w
(h)
−j , so∏

h∈[H](σ
(h)
−h)

2 is sufficiently large. More precisely, given that head h is more focused on the (−h)-th
position by having a gap ∆w in the initialization, we can further show by definition of the softmax
function that

σ
(h)
−h ≥ 1

1 + (M − 1) exp(−∆w)
,∀h ∈ [H] ⇒

H∏
h=1

(σ
(h)
−h)

2 ≥ 1(
1 + (M − 1) exp(−∆w)

)2H .
(E.10)

Plugging (E.9) into (E.10), we have by additionally noting that rIχ2(S⋆) ≥ ∆rIχ2 > 0 that

H∏
h=1

(σ
(h)
−h)

2 ≥
(
1 +

∆rIχ2

14rIχ2(S⋆)

)−1

>
2rIχ2(S⋆) + 2/3 ·∆rIχ2

2rIχ2(S⋆) + ∆rIχ2

,

which implies that

2

H∏
h=1

(σ
(h)
−h)

2 · rIχ2(S⋆) +

H∏
h=1

(σ
(h)
−h)

2 ·∆rIχ2 − 2rIχ2(S⋆) ≥ 2

3
∆rIχ2 . (E.11)

Moreover, when L is sufficiently large such that L ≥ Ω((∆rI2χ2(1− λ)γrn+2)−1), E in (E.8) satisfy

|E| ≤ 13a∆rIχ2/6CD, where Ω hides a universal constant that does not depend on the model
parameters. Therefore, combining (E.8) and (E.11), we conclude that

∂t log c
2
S⋆ − ∂t log c

2
S ≥

8a∆rIχ2

3CD
− 2|E| ≥

a∆rIχ2

2CD
. (E.12)

This implies that c2S⋆ grows exponentially fast and becomes dominant.
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Convergence of pS⋆ . In this part, we treat all the model parameters as a function of time t. For
simplicity, we omit the dependence on t when it is clear from the context. It remains to derive the
convergence of pS⋆ = c2S⋆/CD. Expanding CD =

∑
S∈[H]≤D

c2S , we can directly calculate the
derivative of pS⋆ as follows:

∂t log(1− pS⋆) = ∂t log

(
1− c2S⋆∑

S∈[H]≤D
c2S

)
=

CD

CD − c2S⋆

· ∂t
(
1− c2S⋆∑

S∈[H]≤D
c2S

)

=
CD

CD − c2S⋆

·
−(
∑

S∈[H]≤D
c2S) · ∂tc2S⋆ + c2S⋆ ·

∑
S∈[H]≤D

∂tc
2
S

(
∑

S∈[H]≤D
c2S)

2

=
1

CD(CD − c2S⋆)

∑
S∈[H]≤D

(−c2S · ∂tc2S⋆ + c2S⋆ · ∂tc2S)

=
1

CD(CD − c2S⋆)

∑
S∈[H]≤D\{S⋆}

c2S⋆ · c2S · (−∂t log c2S⋆ + ∂t log c
2
S)

where in the last equality we use the fact that ∂t log c2S = (∂tc
2
S)/c

2
S . Applying (E.12) to each

S ≠ S⋆, we further have

∂t log(1− pS⋆) ≤ 1

CD(CD − c2S⋆)

∑
S∈[H]≤D\{S⋆}

c2S⋆ · c2S ·
(
−
a∆rIχ2

2CD

)

=
1

CD(CD − c2S⋆)
· c2S⋆ · (CD − c2S⋆) ·

(
−
a∆rIχ2

2CD

)
= −

c2S⋆ · a∆rIχ2

2C2
D

< 0.

This implies that pS⋆ = c2S⋆/CD monotonically increases, and thus c2S⋆(t) ≥ c2S⋆(0) for any t ≥ 0
because CD is constant by Lemma E.1 and c2S⋆(0) is the initial value for c2S⋆ at time t = 0. Therefore,
we can further replace c2S⋆ by its initial value in the above inequality, which yields

∂t log(1− pS⋆) ≤ −
c2S⋆(0)a∆rIχ2

2C2
D

= −
pS⋆(0)a∆rIχ2

2CD

We remark that the above upper bound is independent of t. Finally, applying the Grönwall’s inequality
to log(1− pS⋆), we obtain

1− pS⋆(t) ≤ (1− pS⋆(0)) · exp
(
−
pS⋆(0)a∆rIχ2

2CD
· t
)
.

With training time t1 ≥ (2CD(0) logL)/(a · pS⋆(0)∆rIχ2), we can guarantee that

1− pS⋆(t1) ≤ L−1.

This concludes the proof for the first stage of the training.

E.2.1 Additional Proofs for the Stage I

We conclude this subsection with the proof of Lemma E.1.

Proof of Lemma E.1. By (E.5), we have

∂tc
2
S = Eπ∼P [4a · pS(g0,S − f)].

Moreover, by the definition of g0,S and f , it holds that
∑

S∈[H]≤D
pSg0,S = f . Then,

∂tCD =
∑

S∈[H]≤D

∂tc
2
S = 4a · Eπ∼P

[ ∑
S∈[H]≤D

pSg0,S − f

]
≡ 0.

Thus, the quantity CD is preserved under the dynamics.
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E.3 Analysis for Stage II

In this section, we provide the analysis of the dynamics of σ(h) ≡ σ(w(h)) for head h ∈ S⋆. For head
h /∈ S⋆, the results from Stage I imply that pS → 0 for any S ≠ S⋆. Consequently, any head h /∈ S⋆

will be ignored when producing the output features of FFN. Conversely, for h ∈ S⋆, we establish the
dominance of w(h)

−h over w(h)
−i for all i ̸= h, yielding σ(h)

−h → 1 as t→ ∞. In this limiting case, head
h exactly copies the (−h)-th parent. We also provide the corresponding convergence rate.

Proof Strategy. Similar to the proof for Stage I, our analysis for Stage II characterizes the dynamics
of the difference between the positional embedding weights, ∂tw

(h)
−h − ∂tw

(h)
−i for all i ̸= h, via the

following steps:

1. Dynamics Calculation. We initiate the analysis by deriving the dynamics of w(h)
−i for any

fixed i and h.
2. Dynamics Approximation Then we approximate the dynamics by identifying the dominant

term controlled by the modified χ2 mutual information rIχ2(S⋆).

3. Lower Bound for The Growth Rate By comparing the corresponding modified χ2 mutual
information, we establish a lower bound on ∂tw

(h)
−h − ∂tw

(h)
−i for all i ̸= h.

4. Convergence. Finally, we derive the convergence rate of σ(h)
−h using the above lower bound.

Again, before proceeding with the detailed proof, we review the notations related to the dynamics
of the positional embedding weights {w(h)}Hh=1. For the h-th head of the first attention layer, the
positional embedding vector w(h) induces the attention probability over a window of size M , i.e.,

σ(w(h)) =: σ(h) = (σ
(h)
−M , . . . , σ

(h)
−1 ) ∈ R1×M .

Further recall the attention scores for the second attention layer, as, where s = u⊤L+1U
⊤
M+1:L. Then

for each l ∈ [L], the l-th coordinate of s is given by

sl =
∑

S∈[H]≤D

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩, where each v(h)l =

M∑
i=1

σ
(h)
−i xl−i = σ(h)X(l−M):(l−1).

Here pS is defined as in the analysis of Stage 1, and X(l−M):(l−1) ∈ RM×d is the submatrix of X
with rows l −M, . . . , l − 1.

By direct calculation, we have

∂σ(h)

∂w(h)
= diag(σ(h))− (σ(h))⊤σ(h) ∈ RM×M ,

∂v
(h)
l

∂σ(h)
= X⊤

(l−M):(l−1) ∈ Rd×M ,

Then by chain rule,

∂v
(h)
l

∂w(h)
=
∂v

(h)
l

∂σ(h)

∂σ(h)

∂w(h)
= X⊤

l−M :l−1

(
diag(σ(h))− (σ(h))⊤σ(h)

)
∈ Rd×M .

Moreover, we can view each sl as a function of {v(h)1 , . . . , v
(h)
L+1}h∈[H]. Differentiating sl with respect

to v(h)l and v(h)L+1, we have

∂sl

∂v
(h)
l

=
∑

S∈[H]≤D s.t h∈S

pS
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩v

(h)
L+1 ∈ Rd,

∂sl

∂v
(h)
L+1

=
∑

S∈[H]≤D s.t h∈S

pS
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩v

(h)
l ∈ Rd×1.

In the summation, we only add those S’s in [H]≤D containing h. Also, recall from (E.3) that

∂ℓ

∂sl
= −a

(
xL+1

y + ε1

)⊤

(xl − y) · σl (as) . (E.13)

Now we are ready to proceed with the analysis for Stage II.
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Proof of Theorem 3.6: Stage II. We start by calculating the explicit expression of the dynamics of
∂tw

(h)
−i , and then derive approximation of the dynamics, which allows us to further show the conver-

gence of σ(h).

Calculation of The Dynamics of ∂tw(h). First fix an h ∈ [H]. To simplify the notation, for each
l ∈ [L] we define

bl := X(l−M):(l−1) · v
(h)
L+1 +X(L+1−M):L · v(h)l ∈ RM . (E.14)

Note that w(h) is the parameters of the h-th head and only enters each v(h)l , l = 1, . . . , L+ 1. Recall
that sl =

∑
S∈[H]≤D

pS
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩, and the RPE weight w(h) for attention head h only

influences its outputs v(h)l and v(h)L+1 in the sum. It thus follows from the chain rule that for each
i ∈ [M ], we have

∂sl

∂w
(h)
−i

=

(
∂sl

∂v
(h)
L+1

)⊤
∂v

(h)
L+1

∂w
(h)
−i

+

(
∂sl

∂v
(h)
l

)⊤
∂v

(h)
l

∂w
(h)
−i

=
∑

S∈[H]≤D s.t h∈S

pS
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · v

(h)⊤
L+1X

⊤
(l−M):(l−1)

(
diag(σ(h))− (σ(h))⊤σ(h)

)
eM+1−i

+
∑

S∈[H]≤D s.t h∈S

pS
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · v

(h)⊤
l X⊤

(L+1−M):L

(
diag(σ(h))− (σ(h))⊤σ(h)

)
eM+1−i

=
∑

S∈[H]≤D s.t h∈S

pS
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · b

⊤
l

(
eM+1−i − (σ(h))⊤

)
· σ(h)

−i ,

where we remind readers that ei ∈ RM×1 is the i-th standard basis vector.

Furthermore, along the gradient flow ∂tw
(h)
−i = −∂L/∂w(h)

−i , it follows from (E.13) that

∂tw
(h)
−i = −Eπ,X

[ L∑
l=M+1

∂ℓ

∂sl

∂sl

∂w
(h)
−i

]
= a

L∑
l=M+1

Eπ,X

[
σl (as)

(
xL+1

y + ε1

)⊤

(xl − y)
∂sl

∂w
(h)
−i

]

= a

L∑
l=M+1

Eπ,X

[
σl (as)

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
∂sl

∂w
(h)
−i

]
= a · Eπ∼P

[
g⊤h,0

(
eM+1−i − (σ(h))⊤

)
σ
(h)
−i

]
,

where we plug in the expression of ∂sl/∂w
(h)
−i above in the last equality. Here the vector gh,0 is

defined as

gh,0 :=

L∑
l=M+1

∑
S∈[H]≤D

s.t h∈S

EX|π

[
pSσl ·

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩bl

]
,

where σl is the softmax probability for the l-th token in the second attention layer. Comparing ∂tw
(h)
−i

and ∂tw
(h)
−h , we have

∂tw
(h)
−h − ∂tw

(h)
−i = a · Eπ∼P

[
g⊤h,0

(
eM+1−h − (σ(h))⊤

)
σ
(h)
−h − g⊤h,0

(
eM+1−i − (σ(h))⊤

)
σ
(h)
−i

]
.

(E.15)

Using the fact that
∑M

j=1 σ
(h)
−j = 1, we can rewrite(

eM+1−h − (σ(h))⊤
)
σ
(h)
−h −

(
eM+1−i − (σ(h))⊤

)
σ
(h)
−i

= σ
(h)
−i (eM+1−h − eM+1−i) + (σ

(h)
−h − σ

(h)
−i )(eM+1−h − (σ(h))⊤).

= σ
(h)
−i (eM+1−h − eM+1−i) + (σ

(h)
−h − σ

(h)
−i )

M∑
j=1

σ
(h)
−j (eM+1−h − eM+1−j), (E.16)
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where in the first identity, we add and then subtract term σ
(h)
−i eM+1−h. Combining (E.15) and (E.16)

yields for each i ∈ [M ] that

∂tw
(h)
−h − ∂tw

(h)
−i (E.17)

= a · Eπ∼P

[
g⊤h,0

(
σ
(h)
−i (eM+1−h − eM+1−i) +

(
σ
(h)
−h − σ

(h)
−i

) M∑
j=1

σ
(h)
−j (eM+1−h − eM+1−j)

)]
.

Simplification of ∂tw
(h)
−i . We proceed by deriving approximations to the vector gh,0, which will

help us identify the dominant term in the dynamics ∂tw
(h)
−h − ∂tw

(h)
−i . Specifically, we define

gh,1 :=

L∑
l=M+1

EX|π

[
σl(as)

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

) ∏
h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩bl

]
,

gh,2 :=
1

L−M

L∑
l=M+1

EX|π

[ d∑
k=1

(
1(xL+1 = xl = ek)

sy(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

) ∏
h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩bl

]
,

gh,3 :=
1

L−M

L∑
l=M+1

EX|π

[( d∑
k=1

1(xL+1 = xl = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩bl

]
,

gh,4 := E(x,X),(z,Z)∼µπ⊗µπ

[( d∑
k=1

1(x = z = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩b(X,Z)
]
,

where Z = [z−M , . . . , z−1]
⊤ ∈ RM×d is an independent copy of X = [x−M , . . . , x−1]

⊤ ∈ RM×d,
and

v(h)(X) :=

M∑
i=1

σ
(h)
−i x−i, v(h)(Z) :=

M∑
i=1

σ
(h)
−i z−i,

b(X,Z) := Z(v(h)(X)) +X(v(h)(Z)), sy :=
1

L−M

L∑
l=M+1

xl.

The strategy of gradually approximating gh,0 by gh,1, gh,2, gh,3 and gh,4 is similar to the analysis in
Stage I. To see the intuition, from gh,0 to gh,1, we use the fact that pS⋆ ≈ 1 and pS ≈ 0 for any other
S , which is a result of Stage 1. From gh,1 to gh,2, we replace y by the empirical mean sy, thanks to the
fact that σl(a) ≈ 1/L when a is small. Then, from gh,2 to gh,3, we replace the empirical distribution
sy with the stationary distribution of the Markov chain. These two steps also appear in the analysis of
Stage 1. Finally, to go from gh,3 to gh,4, we leverage the rapid mixing of the Markov chain.

Note that the common structures in (E.15) are g⊤h,0(eM+1−h − eM+1−i) for i ̸= h. Hence, we only
need to understand the approximation error in each step for g⊤h,0(eM+1−h − eM+1−i). Recall that
we are focusing on h ∈ S⋆ in this stage.

• From gh,0 to gh,1, we remove the terms in the summation that are weighted down by pS for
any S ≠ S⋆ due to the rapid dominance of pS⋆ from Stage I. Recall that pS∗ converges to
one at an exponential rate while all other pS ’s converge to zero. For simplicity, let us define

ρ(S) :=
L∑

l=M+1

EX|π

[
σl(as)

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·

∏
h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩bl

]
(eM+1−h − eM+1−i).

40



By the triangular inequality, we have∣∣(gh,0 − gh,1)
⊤ (eM+1−h − eM+1−i)

∣∣ = ∣∣∣∣ ∑
S∈[H]≤D\{S⋆}

s.t h∈S

pS · ρ(S)− ρ(S⋆)

∣∣∣∣
≤ (1− pS⋆) ·

∣∣ρ(S⋆)
∣∣+ ∑

S∈[H]≤D\{S⋆}

pS · |ρ(S)| ≤ 16(1− pS⋆),

where in the last line we use the claim that |ρ(S)| ≤ 8 for all S . To see this point, note that
by definition of bl in (E.14), we have

|b⊤l (eM+1−h − eM+1−i) | =
∣∣⟨v(h)L+1, xl−h − xl−i⟩ − ⟨v(h)l , xL+1−h − xL+1−i⟩

∣∣ ≤ 4,∣∣∣∣ ∏
h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩

∣∣∣∣ ≤ 1,

since v(h)l and xl have norm at most 1. Then, by Lemma F.2 where we plug in the upper bound
4 for the function f(·) in the lemma, we conclude that ρ(S) ≤ 8, ∀S ∈ [H]≤D \ {S⋆}.
Define ∆1 := 1− pS⋆(t1), and ∆1 ≤ 1/L by the results from Stage I. Thus, we obtain∣∣(gh,0 − gh,1)

⊤(eM+1−h − eM+1−i)
∣∣ ≤ 16∆1 ≤ 16/L.

• For the approximation of gh,1 by gh,2, we use the fact that σl(as) ≈ 1/L when a is
sufficiently small. Specifically, we also take the absolute bound for f(·) as 4 in Lemma F.3
and obtain ∣∣(gh,1 − gh,2)

⊤ (eM+1−h − eM+1−i)
∣∣ ≤ 32ad

ε2
.

• For the approximation of gh,2 by gh,3, we use the fact that sy(k) ≈ µπ(ek) for large L. More
precisely, it follows from Lemma F.4 with the upper bound 4 for f(·) in the lemma that

∣∣(gh,2 − gh,3)
⊤ (eM+1−h − eM+1−i)

∣∣ ≤ 16 ·
(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 2

√
M

L1/2γ
+ 4γ−1ε.

• Finally, to go from gh,3 to gh,4, we leverage the rapid mixing of the Markov chain. Intuitively,
when l and L + 1 are far apart, xl and its parents in S⋆ are independent of xL+1 and its
parents in S⋆. This observation yields the approximation of g⊤h,3 (eM+1−h − eM+1−i) by
g⊤h,4 (eM+1−h − eM+1−i). To simplify the notation, define two scalars

rgh,l :=

( d∑
k=1

1(xL+1 = xl = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩,

rgh,4 :=

( d∑
k=1

1(x = z = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩.

Using the notation above, we have∣∣(gh,3 − gh,4)
⊤(eM+1−h − eM+1−i

)∣∣
=

∣∣∣∣( L∑
l=M+1

EX|π
[
rgh,lb

⊤
l

]
L−M

− E(x,X),(z,Z)∼µπ⊗µπ

[
rgh,4b(X,Z)

⊤])(eM+1−h − eM+1−i

)∣∣∣∣.
Recall that

b⊤l (eM+1−h − eM+1−i) = ⟨v(h)L+1, xl−h − xl−i⟩ − ⟨v(h)l , xL+1−h − xL+1−i⟩,

b(X,Z)⊤ (eM+1−h − eM+1−i) = ⟨v(h)(X), z−h − z−i⟩ − ⟨v(h)(Z), x−h − x−i⟩.
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We apply the triangular inequality to obtain that∣∣(gh,3 − gh,4)
⊤ (eM+1−h − eM+1−i)

∣∣
≤

∣∣∣∣∣ 1

L−M

L∑
l=M+1

EX|π
[
rgh,l⟨v(h)L+1, xl−h⟩

]
− E(x,X),(z,Z)∼µπ⊗µπ

[
rgh,4⟨v(h)(Z), x−h⟩

]∣∣∣∣∣
+

∣∣∣∣∣ 1

L−M

L∑
l=M+1

EX|π
[
rgh,l⟨v(h)L+1, xl−i⟩

]
− E(x,X),(z,Z)∼µπ⊗µπ

[
rgh,4⟨v(h)(Z), x−i⟩

]∣∣∣∣∣
+

∣∣∣∣∣ 1

L−M

L∑
l=M+1

EX|π
[
rgh,l⟨v(h)l , xL+1−h⟩

]
− E(x,X),(z,Z)∼µπ⊗µπ

[
rgh,4⟨v(h)(X), z−h⟩

]∣∣∣∣∣
+

∣∣∣∣∣ 1

L−M

L∑
l=M+1

EX|π
[
rgh,l⟨v(h)l , xL+1−i⟩

]
− E(x,X),(z,Z)∼µπ⊗µπ

[
rgh,4⟨v(h)(X), z−h⟩

]∣∣∣∣∣ .
Each term on the right-hand side can be bounded by Lemma F.5, where in the lemma we take
(σ(h))h′∈S⋆ ∈ RM×|S⋆| and ((σ(h′))h′∈S⋆\{h}, eh) ∈ RM×|S⋆| as the two lists of vectors
on the M -dimensional probability simplex for rσ and σ respectively. Consequently, we have

∣∣(gh,3 − gh,4)
⊤ (eM+1−h − eM+1−i)

∣∣ ≤ 8M

Lγ
+

16

L(1− λ)γ|S|/2+rn/2+1
.

Combining the above results and setting ε = 1/
√
L, a = a(0) ≤ O(1/L3/2) and together with the

conditions in (E.1), we have

∣∣(gh,0 − gh,4)
⊤ (eM+1−h − eM+1−i)

∣∣ = |E| = O

(
1√

L(1− λ)γrn+2

)
,

where O(·) hides universal constants independent of the parameters of the model. We remark that
while the left hand side is a function of t, the upper bound is independent of t. Then, we can rewrite
(E.17) as

∂tw
(h)
−h − ∂tw

(h)
−i

= a · Eπ∼P

[
σ
(h)
−i · g⊤h,4 (eM+1−h − eM+1−i) + (σ

(h)
−h − σ

(h)
−i ) ·

M∑
j=1

σ
(h)
−j · g⊤h,4(eM+1−h − eM+1−j)

]

± a

(
σ
(h)
−i + (σ

(h)
−h − σ

(h)
−i )

M∑
j=1,j ̸=h

σ
(h)
−j

)
· |E|. (E.18)

Lower Bound for The Difference ∂tw
(h)
−h − ∂tw

(h)
−i . To show ∂tw

(h)
−h − ∂tw

(h)
−i > 0, we first derive

the lower bound of Eπ∼P [g
⊤
h,4 (eM+1−h − eM+1−i)] for any i ̸= h. Since (x,X) and (z, Z) are

independent and identically distributed, by the definition of b(X,Z),

Eπ∼P
[
g⊤h,4 (eM+1−h − eM+1−i)

]
= 2Eπ,(x,X),(z,Z)∼µπ⊗µπ

[ d∑
k=1

(
1(x = z = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), z−h⟩
]

− 2Eπ,(x,X),(z,Z)∼µπ⊗µπ

[ d∑
k=1

(
1(x = z = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), z−i⟩
]

= 2τh,1 − 2τh,2,
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where we introduce the following quantities for convenience:

τh,1 := Eπ,(x,X),(z,Z)∼µπ⊗µπ

[ d∑
k=1

(
1(x = z = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), z−h⟩
]
,

τh,2 := Eπ,(x,X),(z,Z)∼µπ⊗µπ

[ d∑
k=1

(
1(x = z = ek)

µπ(ek)
− 1

) ∏
h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), z−i⟩
]
.

The quantities τh,1 and τh,2 can be further approximated. Specifically, by applying Lemma F.6 to
τh,1, , where in the lemma we take (σ(h))h′∈S⋆ ∈ RM×|S⋆| and ((σ(h′))h′∈S⋆\{h}, eh) ∈ RM×|S⋆|

as the two lists of vectors on the M -dimensional probability simplex for σ and rσ respectively, and we
obtain∣∣∣∣τh,1 − ∏

h′∈S⋆\{h}

(σ
(h′)
−h′ )

2 · σ(h)
−h · rIχ2(S⋆)

∣∣∣∣ ≤ (1− ∏
h′∈S⋆\{h}

(σ
(h′)
−h′ )

2 · σ(h)
−h

)
rIχ2(S⋆). (E.19)

Drawing on the analagous reasoning as in the proof of Lemma F.6, we can approximate τh,2 as
follows:∣∣∣∣τh,2 − ∏

h′∈S⋆\{h}

(σ
(h′)
−h′ )

2 · σ(h)
−h · ψ

∣∣∣∣ ≤ (1− ∏
h′∈S⋆\{h}

(σ
(h′)
−h′ )

2 · σ(h)
−h

)
rIχ2(S⋆), (E.20)

where

ψ := Eπ,(x,X),(z,Z)∼µπ⊗µπ

[ ∏
h′∈S⋆\{h}

1(x−h′ = z−h′) · 1(x−h = z−i) ·
( d∑

k=1

1(x = z = ek)

µπ(ek)
− 1

)]
.

To establish the lower bound for τh,1 − τh,2, let us begin by establishing an upper bound for ψ, which
is approximately equal to τh,2. We invoke Lemma F.7 with S = S⋆ and S ′ = S⋆\{h} ∪ {i} in the
lemma to obtain

ψ ≤ 1

2
rIχ2(S⋆) +

1

2
rIχ2(S⋆\{h} ∪ {i}) ≤ rIχ2(S⋆)− 1

2
·∆rIχ2 , ∀i ̸= h

Leveraging this for (E.19) and (E.20),

2τh,1 − 2τh,2 ≥
∏

h′∈S⋆\{h}

(σ
(h′)
−h′ )

2 · σ(h)
−h ·∆rIχ2 − 4

(
1−

∏
h′∈S⋆\{h}

(σ
(h′)
−h′ )

2 · σ(h)
−h

)
rIχ2(S⋆)

≥
∏
h∈S⋆

(σ
(h)
−h)

2 ·∆rIχ2 − 4

(
1−

∏
h∈S⋆

(σ
(h)
−h)

2

)
rIχ2(S⋆), (E.21)

where in the second line we multiply an additional σ(h)
−h to the product as σ(h)

−h ∈ [0, 1].

Next, we provide a lemma showing that ∂tσ
(h)
−h is growing for all time t ≥ t1, where t1 is the starting

time of the second stage.

Lemma E.2 (Reinforced Growth of σ(h)
−h). For all h ∈ S⋆, we have for all i ̸= h at any t ≥ t1:

∂tσ
(h)
−h > 0, and ∂t log σ

(h)
−h − ∂t log σ

(h)
−i = ∂tw

(h)
−h − ∂tw

(h)
−i > 0. (E.22)

Proof. See §E.3.1 for the proof.

In the proof of Lemma E.2, we will use the following useful proposition.

Proposition E.3. Suppose
∏

h∈S⋆(σ
(h)
−h)

2 ≥ 1/(1 + (M − 1) exp(−∆w))2|S
⋆| with ∆w satisfying

(3.6), and σ(h)
−h > σ

(h)
−i for any i ̸= h, h ∈ S⋆ at a given time t. Suppose Assumption 3.5 holds and L

satisfies (E.1). It holds that

∂t log σ
(h)
−h − ∂t log σ

(h)
−i = ∂tw

(h)
−h − ∂tw

(h)
−i ≥

a∆rIχ2

2

(
σ
(h)
−i + (σ

(h)
−h − σ

(h)
−i )

M∑
j=1,j ̸=h

σ
(h)
−j

)
> 0,

∂tσ
(h)
−h > 0, ∀i ̸= h, ∀h ∈ S⋆.

(E.23)
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Proof. See §E.3.1 for the proof.

Lemma E.2 implies that during Stage II, for all i ̸= h and h ∈ S⋆, we have w(h)
−h > w

(h)
−i and

σ
(h)
−h > σ

(h)
−i for all t ≥ t1. In addition, as σ(h)

−h is growing, all the conditions in Proposition E.3 are
satisfied for any t ≥ t1, and hence all the conclusions in (E.23).

Convergence of σ(h). Finally, we characterize the convergence rate of σ(h). For the convergence
analysis, we adhere to the convention used in the previous stage, treating all model parameters as
functions of the training time t, where t = t1 marks the start of the second stage. With a slight abuse
of notation, we denote by σ(h)

−i (t) the value of σ−i(w
(h)(t)) at time t, where w(h)(t) is the input to

the softmax function, and σ−i(·) refers to the (M + 1− i)-th element of the softmax probability. For
simplicity, we sometimes omit the time index t when the context makes it clear.

Note that ∂tσ
(h)
−h > 0 for all h ∈ S⋆. Hence by the definition of the softmax operation, we have

σ
(h)
−i = σ

(h)
−h · exp(−(w

(h)
−h − w

(h)
−i )) ≥ σ

(h)
−h(t1) · exp(−(w

(h)
−h − w

(h)
−i )

= σ
(h)
−h(0) · exp(−(w

(h)
−h − w

(h)
−i )), (E.24)

where the first inequality follows from the monotone growth of σ(h)
h , and the second line follows from

the fact that the first attention layer is untouched during the first stage. Note that here in (E.24), σ(h)

and w(h) are functions of t. Now, putting together (E.23) and (E.24), and also noting that σ(h)
−h > σ

(h)
−i

for all i ̸= h and h ∈ S⋆, it follows that

∂tw
(h)
−h − ∂tw

(h)
−i ≥

a∆rIχ2

2
σ
(h)
−i ≥

a∆rIχ2

2
· σ(h)

−h(0) · exp(−(w
(h)
−h − w

(h)
−i )).

Rearranging the terms, and using the fact that w(h)
−h(t1)−w

(h)
−i (t1) ≥ ∆w by Assumption 3.3, we get

exp
(
w

(h)
−h(t)− w

(h)
−i (t)

)
≥
a∆rIχ2 · σ(h)

−h(0)

2
· (t− t1) + exp(∆w).

This yields a lower bound for σ(h)
−h(t) as follows:

σ
(h)
−h(t) =

1

1 +
∑

i̸=h exp(w
(h)
−i (t)− w

(h)
−h(t))

≥ 1

1 + (M − 1) · (a∆rIχ2 · σmin(0) · (t− t1)/2 + exp(∆w))−1
,

where we define σmin(0) := minh∈S⋆ σ
(h)
−h(0). Consequently, we have

1−
∏
h∈S⋆

(σ
(h)
−h(t))

2 ≤ 1−
(

1

1 + (M − 1) · (a∆rIχ2 · σmin(0) · (t− t1)/2 + exp(∆w))−1

)2|S⋆|

= 1−
(
1− (M − 1)

(a∆rIχ2 · σmin(0) · (t− t1)/2 + exp(∆w)) + (M − 1)

)2|S⋆|

.

Now, we consider large t such that

(M − 1)

(a∆rIχ2 · σmin(0) · (t− t1)/2 + exp(∆w)) + (M − 1)
<

1

2|S⋆|
.

Then, we can apply the inequality (1− x)n ≥ 1− nx for x ∈ [0, 1/n] and n ≥ 1 to obtain

1−
∏
h∈S⋆

(σ
(h)
−h(t))

2 ≤ 2|S⋆| · (M − 1)

a∆rIχ2 · σmin(0) · (t− t1)/2 + exp(∆w) + (M − 1)
.

Therefore, with training time t2 = 4L|S⋆| · (M − 1)/a∆rIχ2 · σmin(0) + t1, we can ensure that

1−
∏
h∈S⋆

(σ
(h)
−h(t2))

2 ≤ L−1.

This completes the proof for Stage II.
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E.3.1 Additional Proofs for Stage II

We conclude this subsection with the proof of Lemma E.2 and Proposition E.3.

Proof of Proposition E.3. The condition
∏

h∈S⋆(σ
(h)
−h)

2 ≥ 1/(1 + (M − 1) exp(−∆w))2|S
⋆| with

∆w in (3.6) implies that

∏
h∈S⋆

(σ
(h)
−h)

2 ≥
(
1 +

∆rIχ2

14rIχ2(S⋆)

)−1

≥
4rIχ2(S⋆) + 2

3∆
rIχ2

4rIχ2(S⋆) + ∆rIχ2

. (E.25)

Combining (E.21) and (E.25) yields

Eπ∼P
[
g⊤h,4 (eM+1−h − eM+1−i)

]
= 2τh,1 − 2τh,2 ≥ 2

3
∆rIχ2 (E.26)

for any i ̸= h. Applying (E.26) to (E.18), since each σ(h)
−i > 0 and σ(h)

−h > σ
(h)
−i at time t for all

i ̸= h, h ∈ S⋆, it holds that

∂tw
(h)
−h − ∂tw

(h)
−i ≥ a

(
σ
(h)
−i + (σ

(h)
−h − σ

(h)
−i ) ·

M∑
j=1,j ̸=h

σ
(h)
−j

)
·
(
2

3
∆rIχ2 − |E|

)
.

Then since we assume a sufficiently large L ≥ Ω((∆rI2χ2(1 − λ)γrn+2)−1), it holds that |E| ≤
∆rIχ2/6, we further have

∂tw
(h)
−h − ∂tw

(h)
−i ≥

a∆rIχ2

2

(
σ
(h)
−i + (σ

(h)
−h − σ

(h)
−i )

M∑
j=1,j ̸=h

σ
(h)
−j

)
> 0, ∀i ̸= h, ∀h ∈ S⋆.

As ∂t log σ
(h)
−h − ∂t log σ

(h)
−i = ∂tw

(h)
−h − ∂tw

(h)
−i > 0 by property of the softmax function, and∑M

i=1 ∂tσ
(h)
−i = 0, we have ∂tσ

(h)
−h > 0 for all h ∈ S⋆. This completes the proof of Proposition E.3.

Proof of Lemma E.2. We give a proof to Lemma E.2 by contradiction. Note that at the beginning of
the second stage t = t1, we have all the conditions for Proposition E.3 satisfied by the initialization
conditions in Assumption 3.3. Then, by (E.23) in Proposition E.3, we have ∂t log σ

(h)
−h−∂t log σ

(h)
−i >

0 and ∂tσ
(h)
−h > 0 for all i ̸= h and h ∈ S⋆ at t = t1.

Next, assume that τ > t1 is the smallest time such that at least ∂tσ
(h)
−h ≤ 0 or ∂t log σ

(h)
−h −

∂t log σ
(h)
−i ≤ 0 for some i ̸= h and h ∈ S⋆. By definition of τ , we have (E.22) holds for any

moment t ∈ [t1, τ). As σ(h)
−h and the gap σ(h)

−h − σ
(h)
−i are monotonically increasing, we have by the

initialization condition and the boundedness of the gradient that at time τ :∏
h∈S⋆

(σ
(h)
−h)

2 ≥ 1/(1 + (M − 1) exp(−∆w))2|S
⋆|, and σ

(h)
−h > σ

(h)
−i , ∀i ̸= h, ∀h ∈ S⋆.

Hence, by Proposition E.3, we have ∂t log σ
(h)
−h − ∂t log σ

(h)
−i > 0 and ∂tσ

(h)
−h > 0 for all i ̸= h and

h ∈ S⋆ at time τ , which contradicts the definition of τ . This completes the proof of Lemma E.2.

E.4 Analysis for Stage III

In this section, we derive the dynamics of the second attention layer’s weights a in Stage III. We
characterize the dynamics of a when a < O(logL), where the signal term of the dynamics dominates
the approximation error. We provide the growth rate of the weights for two regimes: when a is either
sufficiently small or large.
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Proof Strategy. We analyze the dynamics of a via the following steps:

1. Dynamics Calculation. First, we derive the explicit expression for the dynamics of a.
2. Dynamics Approximation. We approximate the dynamics by exploiting the mixing proper-

ties of the Markov chain and the convergence of the weights from Stage I and II.
3. Lower and Upper Bound for The Growth Rate. Finally, we establish the upper and lower

bounds for the growth rate of a when a is either sufficiently small or large.

For a set S ⊆ [M ], we denote Xl−S := (xl−s : s ∈ S). If l = 0, we will ignore l in the subscript
and simply use X−S . In this section, we abbreviate pS(t1) after the first stage’s training as pS , and
σ
(h)
−i (t2) after the second stage’s training as σ(h)

−i .

Proof of Theorem 3.6: Stage III. We start with the explicit expression of the dynamics of a.

Calculation of The Dynamics of a. First by the chain rule,

∂ℓ

∂a
=

L∑
l=M+1

∂ℓ

∂(asl)

∂(asl)

∂a
= −

L∑
l=M+1

(
xL+1

y + ε1

)⊤

(xl − y) · σl(as) · sl.

where in the last equality we remind readers of the same procedure as we have used in the
derivation of (E.3) in Stage I. Then, taking expectation with respect to X and π and expanding
sl = a

∑
S∈[H]≤D

pS
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩, we have

∂ta = −∂L
∂a

= E
[ L∑
l=M+1

(
xL+1

y + ε1

)⊤

(xl − y) · σl (as) · sl
]

= E
[ ∑
S∈[H]≤D

pS

L∑
l=M+1

σl

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

) ∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
=: f0

We remind readers the shorthand σ ≡ σ(as). We denote the above quantity by f0.

Approximation of ∂ta. Similar to the analysis for the previous two stages, we develop a sequence
of approximation steps that transforms ∂ta into a tractable quantity. We aim to decouple xL+1 and
xl, approximate sl by a population version, and transform the expectation to one under the stationary
distribution of the Markov chain. Specifically, the approximation involves the following steps:

• Our first step is to remove the summation over [H]≤D\{S⋆} where S⋆ is the optimal set that
maximizes the modified mutual information defined in (3.1). This is because cS⋆ dominates
by the analysis of Stage I. Specifically, we define

f1 :=E

[
L∑

l=M+1

σl

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

) ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]
.

To bound |f0 − f1|, note that for any S ∈ [H]≤D, since each v(h)l has norm at most 1, we
can invoke Lemma F.2 with C = 1 and obtain∣∣∣∣∣

L∑
l=M+1

σl

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

) ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣∣ ≤ 2.

It follows that

|f0 − f1| = E
[ ∑
S∈[H]≤D\{S⋆}

pS

L∑
l=M+1

σl

d∑
k=1

1(xL+1 = ek)

(
1(xl = ek)

y(k) + ε
− y(k)

y(k) + ε

) ∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]

+ (1− pS⋆)

∣∣∣∣∣E
[ L∑
l=M+1

σl

d∑
k=1

1(xL+1 = ek)

(
1(xl = ek)

y(k) + ε
− y(k)

y(k) + ε

) ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣∣
≤ 4(1− pS⋆(t1)) = 2∆1, where ∆1 :=(1− pS⋆(t1)).
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In summary, the difference between f0 and f1 is controlled by the convergence results from
Stage I.

• Our second step is to characterize the approximation error incurred by the difference between
the ideal attention scores and the actual attention scores in the second attention layer. Let us
define s⋆l =

∏
h∈S⋆ 1(xl−h = xL+1−h) as the ideal attention score for the second attention

layer. We invoke Lemma F.1 to have for all l ∈ [L],

|sl − s⋆l | ≤ ∆1 +∆2, where ∆2 := 1−
∏
h∈S⋆

(σ
(h)
−h(t2))

2.

Corresponding to {s⋆l }Ll=M+1, we define

σ⋆
l :=

exp
(
a
∏

h∈S⋆ 1(xl−h = xL+1−h)
)∑L

l′=M+1 exp
(
a
∏

h∈S⋆ 1(xl′−h = xL+1−h)
) , y⋆(k) :=

L∑
l=M+1

σ⋆
l 1(xl = ek), ∀k ∈ [d].

In the vector form, we have y⋆ =
∑L

l=M+1 σ
⋆
l xl. Leveraging the above approximations, we

define an approximation of f1 as

f2 := E
[ L∑
l=M+1

σ⋆
l

d∑
k=1

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

) ∏
h∈S⋆

1(xl−h = xL+1−h)

]
.

Applying Lemma F.9, it holds that

|f1 − f2| ≤ 12 · (1 + a(t) · ε−1) · (∆1 +∆2)

In summary, this error terms captures the difference between the ideal weights and the actual
weights obtained by gradient flow at the end of Stage II.

• Note that y⋆(k) is also random due to the randomness in σ⋆
l , and as L is sufficiently

large, we want to replace y⋆(k) with its population counterpart. Let z ∈ X and Z =
(z−M , . . . , z−1) ∈ XM be two random variables and we define similarly for x ∈ X and
X = (x−M , . . . , x−1) ∈ XM . To this end, we define a reweighed distribution

rµπ(z, Z |X−S⋆) =
µπ(z, Z) exp

(
a
∏

h∈S⋆ 1(z−h = x−h)
)∑

z′,Z′ µπ(z′, Z ′) exp
(
a
∏

h∈S⋆ 1(z′−h = x−h)
) , (E.27)

where µπ is the stationary distribution of the Markov chain over a window of sizeM+1. This
can be viewed as a reweighting of the stationary distribution over (z, Z) by an exponential
term that depends on the sequence X−S⋆ . We use rµπ(z = ek |XL+1−S⋆) to replace y⋆(k)
and define f3 as

f3 :=E
[ L∑
l=M+1

σ⋆
l

d∑
k=1

(
1(xL+1 = xl = ek)

rµπ(z = ek |XL+1−S⋆)
− 1(xL+1 = ek)

) ∏
h∈S⋆

1(xl−h = xL+1−h)

]
.

One can immediately draw a connection to Lemma F.4 as both targets characterize the gap
between the empirical and population distributions. The only difference is that this time we
have the distribution reweighed by some exponential term. For completeness, we provide
the approximation result in Lemma F.10, which bounds the difference between f2 and f3 as

|f2 − f3| ≤
8(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 8

√
M

L1/2 · γ|S⋆|+1
+

2dε

γ
≲

√
M + d

L1/2(1− λ)1/2γ|S⋆|+1+rn/4
.

where µ0(·) is the initial distribution for the first rn tokens in the Markov chain. Here and
in the sequel, we simply use Dχ2(µ0 ∥µπ) to denote Dχ2(µ0(X1:rn = ·) ∥µπ(X1:rn = ·))
when it is clear from the context. In the last inequality, we use the fact that Dχ2(µ0 ∥µπ) ≤
γ−rn by (E.6) and the condition ε = L−1/2.

• Note that in the expression of f3, each σ⋆
l still implicitly depends on the actual value of

the sequence X . Since L is large and the Markov chain is well-mixed, we can approximate
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∑L
l=M+1 σ

⋆
l 1((xl, Xl−S⋆) = (·, ·)) by rµπ(·, · |XL+1−S⋆). This gives rise to the following

approximation of f3:

f4 :=Eπ,X,Z∼rµπ(· |XL+1−S⋆ )

[
d∑

k=1

(
1(xL+1 = z = ek)

rµπ(z = ek |XL+1−S⋆)
− 1(xL+1 = ek)

)
· 1(Zl−S⋆ = xL+1−S⋆)

]

= Eπ,X,Z∼rµπ(· |XL+1−S⋆ )

[
d∑

k=1

µπ(x = ek |X−S⋆)rµπ(z = ek, Z−S⋆ = X−S⋆ |X−S⋆)

rµπ(z = ek |X−S⋆)

− rµπ(Z−S⋆ = X−S⋆ |X−S⋆)

]
Applying Lemma F.11 yields

|f3 − f4| ≤ sup
π∈supp(P)

8γ−1(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 16γ−1
√
M

L1/2 · γ|S⋆|+1
≲

√
M + d

L1/2(1− λ)1/2γ|S⋆|+2+rn/4
,

where we use the fact that Dχ2(µ0 ∥µπ) ≤ γ−rn by (E.6).

• Let (z, Z) ∼ rµπ(· |XL+1−S⋆). Since L is large, the distribution of (xL+1, XL+1−S⋆) is
close to the stationary distribution µπ. Thus, we introduce the following approximation of
f4:

f5 := Eπ,(x,X−S⋆ )∼µπ,(z,Z)∼rµπ(·|X−S⋆ )

[
d∑

k=1

(
1(x = z = ek)

rµπ(ek |X−S⋆)
− 1(x = ek)

) ∏
h∈S⋆

1(z−h = x−h)

]

= Eπ,(x,X−S⋆ )∼µπ

[
d∑

k=1

µπ(x = ek |X−S⋆)rµπ(z = ek, Z−S⋆ = X−S⋆ |X−S⋆)

rµπ(z = ek |X−S⋆)

− rµπ(Z−S⋆ = X−S⋆ |X−S⋆)

]
.

(E.28)

Note that∣∣∣∣∣
d∑

k=1

µπ(x = ek |X−S⋆)rµπ(z = ek, Z−S⋆ = X−S⋆ |X−S⋆)

rµπ(z = ek |X−S⋆)

∣∣∣∣∣
=

∣∣∣∣∣
d∑

k=1

µπ(x = ek |X−S⋆) · rµπ(Z−S⋆ = X−S⋆ |X−S⋆ , z = ek)

∣∣∣∣∣ ≤
∣∣∣∣∣

d∑
k=1

µπ(x = ek |X−S⋆)

∣∣∣∣∣ = 1,

and so is |rµπ(Z−S⋆ = X−S⋆ |X−S⋆)| ≤ 1. The difference between f4 and f5 is thus
bounded by 2∥pπ(xL+1, XL+1−S⋆ = ·, ·) − µπ(xL+1, XL+1−S⋆ == ·)∥TV and by the
results in (F.29) of Lemma F.16:

|f4 − f5| ≤ 2 · sup
π∈supp(P)

λL−M
√
Dχ2(µ0 ∥µπ) + 1 ≲

λL−M

γrn/2
≤ L−1,

where we use Dχ2(µ0 ∥µπ) ≤ γ−rn and the condition on L in (E.2).

Collecting all the above approximation steps, we obtain (where we use ≲ to hide absolute constants)

|f0 − f5| ≲ ∆1 + (1 + a · ε−1) · (∆1 +∆2) + L−1 +

√
M + d

L1/2(1− λ)1/2γ|S⋆|+2+rn/4

≲ a · L−1/2 +

√
M + d

L1/2(1− λ)1/2γ|S⋆|+2+rn/4
.
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where the last line holds by moting that with sufficiently large t1 and t2 we have ∆1 +∆2 ≤ L−1,
and ε = L−1/2. Here, express the error in terms of the trainable parameter a and define

ξ(a) ≍
√
M + d

L1/2(1− λ)1/2γ|S⋆|+2+rn/4
+ a · L−1/2.

In particular, we have for a = O(logL) that

ξ(a) = O

( √
M + d

L1/2(1− λ)1/2γ|S⋆|+2+rn/4
+

logL

L1/2

)
. (E.29)

In a nutshell, we conclude that when the weight a satisfies a < O(logL), the dynamics of a can be
approximated by

∂ta = f5 ± ξ(a). (E.30)

The following proposition helps us reformulate f5 in a form that facilitates the analysis of the
dynamics of a.

Proposition E.4. The term f5 can be reformulated as

f5 = Eπ,X−S⋆∼µπ

[
J(X−S⋆ ; a, π) · ea ·

(
rπ(X−S⋆)

)3 · µπ(X−S⋆)
]
,

where rπ(X−S⋆ ; a) = (1 + µπ(X−S⋆) · (ea − 1))−1 is the inverse of the normalization factor of rµπ

in (E.27) and

J(X−S⋆ ; a, π) =
∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(x = ek))
2

(1− rπ(X−S⋆ ; a)) · µπ(x = ek |X−S⋆) + rπ(X−S⋆ ; a) · µπ(x = ek)
.

Proof. See §E.4.1 for the proof.

Inspired by this form, we define an alternative function rJ(·; r, π) as

rJ(X−S⋆ ; r, π) :=
∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(x = ek))
2

(1− r) · µπ(x = ek |X−S⋆) + r · µπ(x = ek)
, r ∈ [0, 1] (E.31)

where we replace rπ(X−S⋆ ; a) by a parameter r ∈ [0, 1]. As exactly calculating the inverse nor-
malization factor rπ(X−S⋆ ; a) is intractable, we instead seek to find an upper and lower bound
for rπ(X−S⋆ ; a) and plug them into rJ(·; r, π) to bound f5 Suppose that rπ(X−S⋆ ; a) enjoys the
following parameter-dependent upper and lower bounds:

r−(a) ≤ rπ(X−S⋆ ; a) ≤ r+(a), ∀X−S⋆ ∈ X |S⋆|, ∀π ∈ supp(P).

Thus, an upper and lower bound to J(X−S⋆ ; a, π) can be given by

inf
r∈[r−(a),r+(a)]

rJ(X−S⋆ ; r, π) ≤ J(X−S⋆ ; a, π) ≤ sup
r∈[r−(a),r+(a)]

rJ(X−S⋆ ; r, π).

In order to effectively tackle these bounds, we then study the properties of rJ(·; r, π) next.

Proposition E.5. Define

D+(X−S⋆ , π) = max
{
Dχ2(µπ(·) ∥µπ(· |X−S⋆)), Dχ2(µπ(· |X−S⋆) ∥µπ(·))

}
.

The function rJ(X−S⋆ ; r, π) with r ∈ [0, 1] defined in (E.31) satisfies the following properties:

1. rJ(X−S⋆ ; r, π) is convex in r.

2. rJ(X−S⋆ ; r, π) ≤ D+(X−S⋆ , π).

3. rJ(X−S⋆ ; r, π) is Lipschitz continuous in r with Lipschitz constant γ−1D+(X−S⋆ , π).

Proof. See §E.4.1 for the proof.
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Upper and Lower Bounding J(X−S⋆ ; a, π). Previously, we show via a reformulation of f5 that it
suffices to bound J(X−S⋆ ; a, π). In the sequel, we let

D+(X−S⋆ , π) = max
{
Dχ2(µπ(·) ∥µπ(· |X−S⋆)), Dχ2(µπ(· |X−S⋆) ∥µπ(·))

}
,

ρ = max

{
max

X−S⋆ ,π

D+(X−S⋆ , π)

Dχ2(µπ(·) ∥µπ(· |X−S⋆))
, max
X−S⋆ ,π

D+(X−S⋆ , π)

Dχ2(µπ(· |X−S⋆) ∥µπ(·))

}
.

It can be noticed that

ρ ≤ max

{
max

X−S⋆ ,π

Dχ2(µπ(·) ∥µπ(· |X−S⋆))

Dχ2(µπ(· |X−S⋆) ∥µπ(·))
, max
X−S⋆ ,π

Dχ2(µπ(· |X−S⋆) ∥µπ(·))
Dχ2(µπ(·) ∥µπ(· |X−S⋆))

}
≤ max

{
max

X−S⋆ ,π

µπ(·)
µπ(· |X−S⋆)

, max
X−S⋆ ,π

µπ(· |X−S⋆)

µπ(·)

}
≤ γ−1,

where the second inequality follows from noting that the χ2-divergence defined as Dχ2(µ ∥ ν) =∑
x (µ(x)− ν(x))2/ν(x), and Dχ2(µ ∥ ν)/Dχ2(ν ∥µ) ≤ supx µ(x)/ν(x).

Apparently, rπ(X−S⋆ ; a) is a function of a and enjoys the following parameter-dependent upper and
lower bounds:

r+(a) = (1 + min
X−S⋆ ,π

µπ(X−S⋆)(ea − 1))−1,

r−(a) = (1 + max
X−S⋆ ,π

µπ(X−S⋆)(ea − 1))−1.

If a is small, we see that both r+(a) and r−(a) are close to 1, and we directly have
r−(a) ≤ rπ(X−S⋆ ; a) ≤ 1, where 1− max

X−S⋆ ,π
µπ(X−S⋆)(ea − 1) ≤ r−(a) < 1.

This suggests an upper bound of J(X−S⋆ ; a, π) as

J(X−S⋆ ; a, π) ≤ sup
r∈[r−(a),1]

rJ(X−S⋆ ; r, π) ≤ rJ(X−S⋆ ; 1, π) + γ−1 ·D+(X−S⋆ , π) · (1− r−(a))

≤ Dχ2(µπ(· |X−S⋆) ∥µπ(·)) + γ−1 ·D+(X−S⋆ , π) · max
X−S⋆,π

µπ(X−S⋆) · (ea − 1)

≤ Dχ2(µπ(· |X−S⋆) ∥µπ(·)) ·
(
1 + γ−2 · max

X−S⋆,π

µπ(X−S⋆) · (ea − 1)

)
,

where the second line follows from the Lipschitz continuity property, and the last line holds because
the ratio D+(X−S⋆ , π)/Dχ2(µπ(· |X−S⋆) ∥µπ(·)) is upper bounded by ρ, and further by γ−1. A
similar lower bound can be obtained by changing the sign of γ−2 ·maxX−S⋆,π

µπ(X−S⋆) · (ea − 1).
Hence, we h

J(X−S⋆ ; a, π) = Dχ2(µπ(· |X−S⋆) ∥µπ(·)) ·
(
1± γ−2 · max

X−S⋆,π

µπ(X−S⋆) · (ea − 1)

)
.

(E.32)

On the other hand, when a becomes large, we have both r+(a) and r−(a) close to 0, and we have

0 ≤ rπ(X−S⋆ ; a) ≤ r+(a), where 0 < r+(a) ≤
1

minX−S⋆ ,π µπ(X−S⋆)(ea − 1)
.

In a similar fashion, we have the following upper bound:

J(X−S⋆ ; a, π) ≤ sup
r∈[0,r+(a)]

rJ(X−S⋆ ; r, π) ≤ rJ(X−S⋆ ; 0, π) + γ−1 ·D+(X−S⋆ , π) · r+(a)

= Dχ2(µπ(·) ∥µπ(· |X−S⋆)) + γ−1 · D+(X−S⋆ , π)

minX−S⋆ ,π µπ(X−S⋆)(ea − 1)

≤ Dχ2(µπ(·) ∥µπ(· |X−S⋆)) ·
(
1 +

γ−2

minX−S⋆ ,π µπ(X−S⋆)(ea − 1)

)
.

We can similarly obtain a lower bound by changing the sign of the second term inside the bracket.
Hence, we have

J(X−S⋆ ; a, π) = Dχ2(µπ(·) ∥µπ(· |X−S⋆)) ·
(
1± γ−2

minX−S⋆ ,π µπ(X−S⋆)(ea − 1)

)
. (E.33)
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Divergence of a. Recall that we have shown the dynamics of a in (E.30), where ξ(a) is negligible
when L goes to infinity. Thus, when L is sufficiently large, we see by the nonnegativity of f5 that
a(t) continues to increase as t increases until it reaches a point where f5 no longer dominates the
approximation error. To characterize the regime where f5 ≥ ξ(a), we first note that for a ≤ logL it
holds by (E.29) that

ξ(a) = O(L−1/2 logL) ≈ L−1/2,

where ≈ hides logarithmic factors. For f5, we recall from Proposition E.4 that

f5 = Eπ,X−S⋆∼µπ

[
J(X−S⋆) · ea(

1 + µπ(X−S⋆) · (ea − 1)
)3 · µπ(X−S⋆)

]
,

where for small a we have f5 = Ω(1) and for large a we have f5 = Ω(e−2a). Thus, e−2a ≥ L−1/2

gives the condition for f5 to dominate the approximation error, which gives a = O(logL). In the
sequel, we consider the dynamics for a ≤ (logL)/8 and give a more rigorous analysis.

We use the notation x = o(1) to denote that a term is much smaller than 1, for example,
(log logL)−1 = o(1). For any x0 and δ, we write x = x0 ± δ to indicate that x is bounded within
[x0 − δ, x0 + δ]. In the following, we assume there exists δ satisfying δ ≤ γ2/4 ∧ 1/8 and

δ · Eπ∼P

[ ∑
X−S⋆

Dχ2

(
µπ(· |X−S⋆) ∥µπ(·)

)
·
(
µπ(X−S⋆)

)2] ≥ ξ(logL),

δ · Eπ∼P

[ ∑
X−S⋆

Dχ2

(
µπ(·) ∥µπ(· |X−S⋆)

)
· L−1/4

µπ(X−S⋆)

]
≥ ξ(logL).

Note that

ξ(logL) ≤ O

( √
M + d

L1/2(1− λ)1/2γ|S⋆|+2+rn/4
+

logL

L1/2

)
.

By additionally noting that µπ(X−S⋆) ≥ γ|S
⋆| thanks to the lower bound of the transition probability,

we are able to find such a δ if we have

L

(logL)4
≥ Ω

(
1

κ4γ8+2|S⋆| ·
( √

M + d

(1− λ)1/2γ|S⋆|+2+rn/4

)4)
,

where κ is defined as

κ :=E
[
Dχ2(µπ(·) ∥µπ(· |X−S⋆))

]
∧ E

[
Dχ2(µπ(· |X−S⋆) ∥µπ(·))

]
∧ 1,

and Ω(·) only hides universal constants. Note that this is already guaranteed by the condition on L in
(E.2). In particular, we can just take δ = γ2/4 ∧ 1/8 in the following analysis.

Small a. Consider the case where a is small in the sense that µπ(X−S⋆) · (ea − 1) ≤ δ for any
X−S⋆ and π ∈ supp(P). In fact, one can directly deduce from our previous results that 1 − δ ≤
r−(a) ≤ rπ(X−S⋆ ; a) < 1 and

1− 3δ ≤ (rπ(X−S⋆ ; a))3 ≤ 1.

For J(X−S⋆ ; a, π), we combine the condition that µπ(X−S⋆) · (ea − 1) ≤ δ with (E.32) to obtain
that

J(X−S⋆ ; a, π) =
(
1± γ−2δ

)
·Dχ2

(
µπ(· |X−S⋆) ∥µπ(·)

)
, where γ−2δ ≤ 1/4.

Combining the above two results with Proposition E.4, we have

f5 = Eπ,X−S⋆∼µπ

[
J(X−S⋆ ; a, π) · ea ·

(
rπ(X−S⋆)

)3 · µπ(X−S⋆)
]

=
(
1± (γ−2 + 3)δ

)
· Eπ∼P

[ ∑
X−S⋆

Dχ2

(
µπ(· |X−S⋆) ∥µπ(·)

)
· µπ(X−S⋆)2

]
· ea.
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Also, the noise term ξ + ψ(a) is upper bounded by

ξ + ψ(logL) ≤ δ · Eπ∼P

[ ∑
X−S⋆

Dχ2

(
µπ(· |X−S⋆) ∥µπ(·)

)
· µπ(X−S⋆)2

]

≤ δ · Eπ∼P

[ ∑
X−S⋆

Dχ2

(
µπ(· |X−S⋆) ∥µπ(·)

)
· µπ(X−S⋆)2

]
· ea

by the construction of δ. Combining all the above results, we have the dynamics of a as

∂ta =
(
1± (γ−2 + 4)δ

)
· Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·)) · µπ(X−S⋆)2
]
· ea.

A simple reformulation gives

−∂te−a =
(
1± (γ−2 + 4)δ

)
· Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·)) · µπ(X−S⋆)2
]
,

which implies that for small a, the growth follows

a(t) ≤ − log

(
e−a(0) − (1 + (γ−2 + 4)δ) · Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·)) · µπ(X−S⋆)2
]
· t
)
,

a(t) ≥ − log

(
e−a(0) − (1− (γ−2 + 4)δ) · Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·))µπ(X−S⋆)2
]
· t
)
.

Therefore, in the beginning, a(t) grows super exponentially fast.

Large a. As a grows large such that µπ(X−S⋆)(ea − 1) ≥ δ−1 for all X−S⋆ and π ∈ supp(P),
we conclude that 0 < rπ(X−S⋆ ; a) ≤ r+(a) ≤ δ and

rπ(X−S⋆ ; a)3

(µπ(X−S⋆)ea)
−3 =

(µπ(X−S⋆)ea)
3

(1 + µπ(X−S⋆)(ea − 1))3
=

(
1− 1− µπ(X−S⋆)

1 + µπ(X−S⋆)(ea − 1)

)3

,

which imples that

1− 3δ ≤ rπ(X−S⋆ ; a)3

(µπ(X−S⋆)ea)
−3 ≤ 1.

For J(X−S⋆ ; a, π), we combine the condition that µπ(X−S⋆) · (ea − 1) ≥ δ−1 with (E.33) to obtain
that

J(X−S⋆ ; a, π) = (1± γ−2δ) ·Dχ2(µπ(·) ∥µπ(· |X−S⋆)), where γ−2δ ≤ 1/4.

Combining the above two results with Proposition E.4, we have

f5 = Eπ,X−S⋆∼µπ

[
J(X−S⋆ ; a, π) · ea ·

(
rπ(X−S⋆)

)3 · µπ(X−S⋆)
]

=
(
1± (γ−2 + 3)δ

)
· Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆)) · e−2a

µπ(X−S⋆)

]
.

For the noise term ξ + ψ(a), we have

δ · Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆)) · e−2a

µπ(X−S⋆)

]
≥ ξ + ψ(a),

which can be verified by the condition on δ as well as the fact that we are only considering a ≤
(logL)/8. We thus have for the gradient that

∂ta = (1± (γ−2 + 4)δ) · Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆)) · e−2a

µπ(X−S⋆)

]
.
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By rearranging the terms, we further have

∂te
2a = (1± (γ−2 + 4)δ) · Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆))·
2µπ(X−S⋆)

]
.

Suppose this large a regime starts at t0 with value a(t0). Thus, for large a, the growth rate is
characterized by

a(t) =
1

2
log

(
(1± (γ−2 + 4)δ) · Eπ∼P

[ ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆))

2µπ(X−S⋆)

]
· (t− t0) + e2a(t0)

)
,

which is logarithmically fast. This step ends until a reaches the value (logL)/8. This concludes the
proof.

E.4.1 Additional Proofs for Stage III

We conclude the proof of Stage III by providing the proof of Proposition E.4 and Proposition E.5.

Proof of Proposition E.4. In this paragraph, we aim to gain more insight in f5. By the definition of
f5 in (E.28), we can rewrite f5 as

f5 = Eπ,X−S⋆∼µπ

[( d∑
k=1

µπ(x = ek |X−S⋆)2

rµπ(z = ek |X−S⋆)
− 1

)
· rµπ(Z−S⋆ = X−S⋆ |X−S⋆)

]

= Eπ,X−S⋆∼µπ

[ d∑
k=1

(
µπ(x = ek |X−S⋆)

rµπ(z = ek |X−S⋆)
− 1

)2

· rµπ(z = ek |X−S⋆) · rµπ(Z−S⋆ = X−S⋆ |X−S⋆)

]
,

where in the last step, we use the simple fact∑
x

p(X = x |Y )2

q(X = x |Y )
− 1 =

∑
x

(
p(X = x |Y )

q(X = x |Y )
− 1

)2

· q(X = x |Y ).

In the definition of f5, the key quantity we aim to understand is the reweighted distribution
rµπ(z, Z |X−S⋆). For the readers’ convenience, we copy the definition of the reweighted distribution
here:

rµπ(z, Z |X−S⋆) =
µπ(z, Z) exp

(
a
∏

h∈S⋆ 1(z−h = x−h)
)∑

z′,Z′ µπ(z′, Z ′) exp
(
a
∏

h∈S⋆ 1(z′−h = x−h)
) , (E.34)

A key observation is that the reweighting only depends on the value of Z−S⋆ . Let sS⋆ = [M ]\S⋆ and
denote by Z− sS⋆ = (z−h)h∈ sS⋆ . Following the above observation, we can additionally condition on
Z−S⋆ and conclude that

rµπ(z, Z− sS⋆ |Z−S⋆ , X−S⋆) =
rµπ(z, Z− sS⋆ , Z−S⋆ |X−S⋆)∑

z′,Z′
− sS⋆

rµπ(z′, Z ′
− sS⋆ , Z−S⋆ |X−S⋆)

=
µπ(z, Z− sS⋆ , Z−S⋆) exp

(
a
∏

h∈S⋆ 1(z−h = x−h)
)∑

z′,Z′
− sS⋆

µπ(z′, Z ′
− sS⋆ , Z−S⋆) exp

(
a
∏

h∈S⋆ 1(z−h = x−h)
)

=
µπ(z, Z− sS⋆ , Z−S⋆)

µπ(Z−S⋆)
= µπ(z, Z− sS⋆ |Z−S⋆),

as when fixing Z−S⋆ , the exponential reweighting terms cancel out in the numerator and denominator
in the definition (E.34). Using the above identity, we are able to expand rµπ(z |X−S⋆) as

rµπ(z |X−S⋆) =
∑
Z−S⋆

µπ(z |Z−S⋆) · rµπ(Z−S⋆ |X−S⋆)

=
∑
Z−S⋆

µπ(z |Z−S⋆) · µ
π(Z−S⋆) + µπ(X−S⋆)(ea − 1) · 1(Z−S⋆ = X−S⋆)

1 + µπ(X−S⋆)(ea − 1)

=
µπ(z) + µπ(x = z |X−S⋆) · µπ(X−S⋆) · (ea − 1)

1 + µπ(X−S⋆) · (ea − 1)
.
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where the second equality follows from the fact that the reweighing term in rµπ lifts the likelihood of
Z−S⋆ = X−S⋆ by a factor of ea relative to the base distribution µπ(Z−S⋆), and the denominator is
just the normalization constant. In the sequel, we let rπ(X−S⋆ ; a) = (1 + µπ(X−S⋆) · (ea − 1))−1

be the inverse of the normalization constant. We then have

rµπ(z |X−S⋆) = rπ(X−S⋆ ; a) · µπ(z) + (1− rπ(X−S⋆ ; a)) · µπ(x = z |X−S⋆). (E.35)

On the other hand, by definition of rµπ in (E.34), we directly have

rµπ(Z−S⋆ = X−S⋆ |X−S⋆) =
µπ(X−S⋆)ea∑

Z′
−S⋆

µπ(Z ′
−S⋆) exp

(
a
∏

h∈S⋆ 1(z′−h = x−h)
)

= earπ(X−S⋆ ; a) · µπ(X−S⋆). (E.36)

Combining both (E.35) and (E.36) we have for f5 that

f5 = Eπ,X−S⋆∼µπ

[∑
k∈[d]

(
µπ(x = ek |X−S⋆)

rπ(X−S⋆ ; a) · µπ(x = ek) + (1− rπ(X−S⋆ ; a)) · µπ(x = ek |X−S⋆)
− 1

)2

· rµπ(z = ek |X−S⋆) · rµπ(Z−S⋆ = X−S⋆ |X−S⋆)

]
= Eπ,X−S⋆∼µπ

[∑
k∈[d]

(
µπ(x = ek |X−S⋆)− µπ(x = ek)

rπ(X−S⋆ ; a) · µπ(x = ek) + (1− rπ(X−S⋆ ; a)) · µπ(x = ek |X−S⋆)

)2

· rµπ(z = ek |X−S⋆) · earπ(X−S⋆ ; a)3 · µπ(X−S⋆)

]
= Eπ,X−S⋆∼µπ

[∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(x = ek))
2

rµπ(z = ek |X−S⋆)︸ ︷︷ ︸
J(X−S⋆ ; a, π)

·earπ(X−S⋆ ; a)3 · µπ(X−S⋆)

]
.

Here, we note that J(·; a, π) is a function depending on both a and π, and can be expanded as

J(X−S⋆ ; a, π) =
∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(x = ek))
2

(1− rπ(X−S⋆ ; a))µπ(x = ek |X−S⋆) + rπ(X−S⋆ ; a)µπ(x = ek)
.

Hence, we complete the proof of Proposition E.4.

Proof of Proposition E.5. Also, note that rJ(X−S⋆ ; r, π) is convex in r, as by taking the derivative of
rJ(X−S⋆ ; r, π) with respect to r, we have

∂ rJ(X−S⋆ ; r, π)

∂r
=
∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
3

((1− r)µπ(x = ek |X−S⋆) + rµπ(ek))
2 ,

∂2 rJ(X−S⋆ ; r, π)

∂r2
= 2 ·

∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
4

((1− r)µπ(x = ek |X−S⋆) + rµπ(ek))
3 ≥ 0.

Hence, a naive upper bound for rJ(X−S⋆ ; r, π) is

rJ(X−S⋆ ; r, π) ≤ max{ rJ(X−S⋆ ; 0, π), rJ(X−S⋆ ; 1, π)}
≤ max

{
Dχ2(µπ(·) ∥µπ(· |X−S⋆)), Dχ2(µπ(· |X−S⋆) ∥µπ(·))

}
,
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where we remind the readers that Dχ2(µ ∥ ν) =
∑

x (µ(x)− ν(x))2/ν(x). Next, we show that
rJ(X−S⋆ ; r, π) is Lipschitz continuous in r:∣∣∣∣∂ rJ(X−S⋆ ; r, π)

∂r

∣∣∣∣ = ∣∣∣∣ ∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
3

((1− r)µπ(x = ek |X−S⋆) + rµπ(ek))
2

∣∣∣∣
≤
∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
2

(1− r)µπ(x = ek |X−S⋆) + rµπ(ek)
·
∣∣∣∣ µπ(x = ek |X−S⋆)− µπ(ek)

(1− r)µπ(x = ek |X−S⋆) + rµπ(ek)

∣∣∣∣
≤ rJ(X−S⋆ ; r, π) ·max

{
µπ(x = ek |X−S⋆)

µπ(ek)
,

µπ(ek)

µπ(x = ek |X−S⋆)

}
≤ γ−1 ·max

{
Dχ2(µπ(·) ∥µπ(· |X−S⋆)), Dχ2(µπ(· |X−S⋆) ∥µπ(·))

}
,

where we use both the upper bound for rJ(X−S⋆ ; r, π) and the lower bound for the transition kernel
that both µπ(· |X−S⋆) and µπ(·) are bounded between γ and 1.

E.5 Lemma on GIH Approximation Error

Now given the convergence result for the training dynamics, the natural question to ask is how well
the learned model implements the GIH mechanism. In the following part of this section, we state the
lemma on the approximation error and also present a formal proof of the lemma.
Lemma E.6. Suppose Assumption 3.5 holds and consider training a transformer model
TF(M,H, d,D) with H =M . Let

∆1 := 1− pS⋆(t1), ∆2 := 1−
∏
h∈S⋆

(σ
(h)
−h(t2))

2,

where t1 and t2 are the ending time for the first two stages of the training, respectively. Suppose the
error ∆1,∆2 = O(L−1) after the first two stages’ training, and a = Θ(logL) after the last stage’s
training. Let y be the output of the model in (2.5) after the training and y⋆ be the output of the GIH
mechanism GIH(x1:L;M,D) defined in Definition 3.2. Then for any π ∈ supp(P) and with high
probability 1−O(L−1) , it holds that

∥y⋆ − y∥1 = O(L−a/ logL).

Proof of Lemma E.6. Let s⋆l =
∏

h∈S⋆ 1(xl−h = xL+1−h) and sl = ⟨uL+1, ul⟩. Invoking
Lemma F.1, the model misspecification error is bounded by

max
M<l≤L

|s⋆l − sl| ≤ (∆1 +∆2) :=∆. (E.37)

We note that the second layer’s attention weight a can be as large as (logL)/8. We are comparing the
output of the model with the GIH mechanism GIH(x1:L;M,D). Let N =

∑
l>M

∏
h∈S⋆ 1(xl−h =

xL+1−h). The output of this GIH mechanism is given by

y⋆ :=

{
N−1 ·

∑L
l=M+1 xl ·

∏
h∈S⋆ 1(xl−h = xL+1−h), if N ≥ 1,

(L−M)−1 ·
∑L

l=M+1 xl, otherwise.

We define

σ⋆
l =

{
N−1 ·

∏
h∈S⋆ 1(xl−h = xL+1−h), if N ≥ 1,

(L−M)−1, otherwise,

with σ⋆ = (σ⋆
l )l>M . Since ∥xl∥1 = 1, the ℓ-1 norm of the difference between y⋆ and the model’s

actual output is given by
∥y⋆ − y∥1 ≤ ∥σ⋆ − σ∥1 .

Let us define the set Γ = {L ≥ l > M :
∏

h∈S⋆ 1(xl−h = xL+1−h) = 1} and sΓ = {L ≥ l > M :∏
h∈S⋆ 1(xl−h = xL+1−h) = 0}. Using (E.37), for l ∈ Γ, we have 1 ≥ sl ≥ s⋆l −∆ = 1−∆ and

for l ∈ sΓ, we have 0 ≤ sl ≤ s⋆l +∆ = ∆. Consider the normalization factor in the softmax function.

Z :=

L∑
l=M+1

exp(a · sl).
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By the split of the set Γ and sΓ and noting that |Γ| = N , the normalization factor is lower and upper
bounded by

Z ≥ N exp(a · (1−∆)) + (L−M −N) ·=:Z−,

Z ≤ N exp(a) + (L−M −N) · exp(a ·∆)=:Z+.

Let us consider the event N ≥ 1 in the following. We then have for l ∈ Γ that

|σ⋆
l − σl| =

∣∣∣∣exp(a · sl)Z
− 1

N

∣∣∣∣ ≤ ∣∣∣∣exp(a)Z−
− 1

N

∣∣∣∣∨ ∣∣∣∣exp(a · (1−∆))

Z+
− 1

N

∣∣∣∣
≤
∣∣∣∣ 1

N exp(−a∆) + (L−M −N) · exp(−a)
− 1

N

∣∣∣∣∨ ∣∣∣∣ exp(−2a∆)

N exp(−a∆) + (L−M −N) exp(−a)
− 1

N

∣∣∣∣
≤ N · (1− exp(−a∆)) + (L−M −N) · exp(−a)

(N exp(−a∆) + (L−M −N) · exp(−a)) ·N
≤ 1− exp(−a∆)

N exp(−a∆)
+

L · exp(−a)
N2 exp(−a∆)

.

Note that a∆ = o(1) due to the assumption that ∆ = O(L−1) and a = o(L). The right hand side is
upper bounded by O(a∆/N) +O(L exp(−a)/N2). For l ∈ sΓ, we have

|σ⋆
l − σl| = σl ≤

exp(a∆)

Z−
≤ exp(a · (2∆− 1))

N
= O

(
exp(−a)

N

)
.

In summary,

∥y⋆ − y∥1 ≤ ∥σ⋆ − σ∥1 ≤
∑
l∈Γ

|σ⋆
l − σl|+

∑
l∈sΓ

σl

≤ N ·O
(
a∆N + L exp(−a)

N2

)
+ L ·O

(
exp(−a)

N

)
≤ O

(
a∆+

L exp(−a)
N

)
.

(E.38)

The above inequality holds wheneverN ≥ 1. Now we aim to upper bound the probability that N = 0.
Note that N =

∑L
l=M+1 1(Xl−S⋆ = XL+1−S⋆). We consider the following second moment:

E
[(

(L−M)−1
L∑

l=M+1

1(Xl−S⋆ = E)− µπ(E)

)2]
≤ Dχ2

(
(L−M)−1

L∑
l=M+1

1(Xl−S⋆ = ·)
∥∥∥µπ(·)

)
≲

M

L(1− λ) · γ|S⋆|/2 , ∀E ∈ X |S⋆|,

where the first inequality holds by noting that Dχ2(µ ∥ ν) =
∑

x(µ(x)− ν(x))2/ν(x) and the last
inequality holds by Lemma F.18. Therefore, by the Chebyshev’s inequality, we have

P
( ∣∣∣∣∣L−1

L∑
l=1

1(Xl−S⋆ = E)− µπ(E)

∣∣∣∣∣ ≥ t

)
≤ 1

L(1− λ) · γ|S⋆| · t2
.

We can take t = minE∈X |S⋆| µπ(E)/2 and by also taking a union bound over E ∈ X |S⋆| (which
gives a d|S

⋆| factor), we conclude that with high probability rO(1 − L−1) it holds that N ≥ tL =
L ·minE∈X |S⋆| µπ(E)/2. Thus, it follows from (E.38) that with high probability

∥y⋆ − y∥1 ≤ O

(
a∆+

exp(−a)
minE∈X |S⋆| µπ(E)/2

)
= O

(
L−1 logL+ L−a/ logL

)
.

Hence, we complete the proof of Lemma E.6.
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F Auxiliary Lemmas and Their Proofs

In this appendix, we present the auxiliary lemmas used to derive the approximation of the gradient
flow dynamics in the proof of Theorem 3.6, which is presented in the previous appendix. The proofs
of these lemmas are presented right below their statements.

F.1 Useful Inequalities

The following lemma provides a bound on the model misspecification error, which is the difference
between the model’s output and the ideal output.
Lemma F.1 (Model Misspecification Error). Let uL+1 be the output feature after the FFN &
Normalization layer. Then, the model misspecification error defined as

max
l∈[L]

∣∣∣∣⟨uL+1, ul⟩ −
∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣
is bounded by ∆1 +∆2, where ∆1 and ∆2 are the errors after the training of the first and second
stages, respectively, and are defined respectively as

∆1 := 1− pS⋆ , ∆2 := 1−
∏
h∈S⋆

(σ
(h)
−h)

2.

Proof of Lemma F.1. By definition of the output feature ul after the FFN & Normalization layer:

⟨uL+1, ul⟩ =
∑

S∈[H]≤D

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩.

As each v(h)l is a convex combination of XM(l) where M(l) = {l −M, . . . , l − 1}, ∥v(h)l ∥2 ≤ 1.
Thus,∣∣∣∣⟨uL+1, ul⟩ −

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣ = ∣∣∣∣ ∑
S∈[H]≤D

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣
≤
∣∣∣∣− (1− pS⋆)

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩+

∑
S∈[H]≤D\{S⋆}

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣
≤ max

{
1− pS⋆ ,

∑
S∈[H]≤D\{S⋆}

pS

}
= 1− pS⋆ =:∆1,

where ∆1 is the error after the training of the first stage. Since v(h)l =
∑

j∈M σ
(h)
−j xl−j , we have∏

h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ =

∏
h∈S⋆

( ∑
i,j∈[M ]2

σ
(h)
−i σ

(h)
−j ⟨xl−i, xL+1−j⟩

)
=

∑
{(ih,jh)}h∈S⋆∈[M ]2|S⋆|

∏
h∈S⋆

σ
(h)
−ih

σ
(h)
−jh

1(xl−ih = xL+1−jh).

Here in the second equality, we exchange the order of summation and product. The last term of the
second equality can be understood as follows. We first pick |S⋆| index pairs {(ih, jh)}h∈S⋆ arbitrarily,
with each ih, jh ∈ [H]. Then we evaluate the product

∏
h∈S⋆ σ

(h)
−ih

σ
(h)
−jh

1(xl−ih = xL+1−jh) given
these indices. Then we sum over all possible values that {(ih, jh)}h∈S⋆ can take.

The above equation implies that∣∣∣∣∣ ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

(σ
(h)
−h)

2 1(xl−h = xL+1−h)

∣∣∣∣∣
=

∣∣∣∣ ∑
{(ih,jh)}h∈S⋆ ̸={(h,h)}h∈S⋆

∏
h∈S⋆

σ
(h)
−ih

σ
(h)
−jh

1(xl−ih = xL+1−jh)

∣∣∣∣
≤

∑
{(ih,jh)}h∈S⋆ ̸={(h,h)}h∈S⋆

∏
h∈S⋆

σ
(h)
−ih

σ
(h)
−jh

≤ 1−
∏
h∈S⋆

(σ
(h)
−h)

2 =:∆2, (F.1)
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where the last inequality follows from the fact that∑
(ih,jh)h∈S⋆

∏
h∈S⋆

σ
(h)
−ih

σ
(h)
−jh

=
∏
h∈S⋆

( ∑
i,j∈[M ]2

σ
(h)
−i σ

(h)
−j

)
=
∏
h∈S⋆

( ∑
i∈[M ]

σ
(h)
−i

)2

= 1.

Here the summation sign in the right-hand side of the second equality indicates that in the last line of
(F.1) we sum over all possible values that {(ih, jh)}h∈S∗ can take, except for the only case where
(ih, jh) = (h, h) for all h ∈ [H].

In summary, by triangle inequality, we have shown that∣∣∣∣⟨uL+1, ul⟩ −
∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣ ≤ ∆1 +∆2.

The proof is completed.

Next, in Lemma F.2, we establish a uniform bound for the quantity involved in the gradient.

Lemma F.2. Let y(k) =
∑L

l=M+1 σl 1(xl = ek) for each k ∈ [d] where
∑L

l=M+1 σl = 1 and
σl ≥ 0 for all l ∈ [L]. Let ε and C be two positive numbers. For any C-bounded function f :
XL+1 → [−C,C], we have∣∣∣∣∣

L∑
l=M+1

σl ·
d∑

k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
· f(X)

∣∣∣∣∣ ≤ 2C.

Proof of Lemma F.2. By the triangular inequality, we have∣∣∣∣∣
L∑

l=M+1

σl ·
d∑

k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
· f(X)

∣∣∣∣∣
≤ C ·

∣∣∣∣∣
d∑

k=1

L∑
l=M+1

σl · 1(xl = ek) ·
1(xL+1 = ek)

y(k) + ε

∣∣∣∣∣+ C ·

∣∣∣∣∣
d∑

k=1

L∑
l=M+1

σl ·
y(k) · 1(xL+1 = ek)

y(k) + ε

∣∣∣∣∣
= 2C ·

∣∣∣∣∣
d∑

k=1

y(k) · 1(xL+1 = ek)

y(k) + ε

∣∣∣∣∣ ≤ 2C,

where in the equality, we use the definition y(k) =
∑L

l=M+1 σl 1(xl = ek) and
∑L

l=M+1 σl = 1 .
Now we conclude the proof of this lemma.

F.2 Approximation Errors for Dynamics Analysis

Next, Lemma F.3 addresses the approximation error induced by σl ≈ 1/L in the transformer model.
The approximation error will be for g0,S to g1,S for Stage I and gh,1 to gh,2 for Stage II.

Lemma F.3. For the transformer model defined in (2.5) and any bounded function f : XL+1 → R
such that supx∈XL |f(x)| ≤ C for a constant C > 0, define two quantities A and B as

A :=

L∑
l=M+1

EX|π

[
σl(as) ·

∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
· f(X)

]
,

B :=
1

L−M

L∑
l=M+1

EX|π

[(∑
k∈[d]

1(xL+1 = xl = ek)

sy(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

)
· f(X)

]
,

where s = u⊤L+1U
⊤
1:L and sy = (L −M)−1

∑L
l=M+1 xl. Then, for all a ∈ [0, 1] and ε ∈ (0, 1], it

holds that

|A−B| ≤ 8Cad

ε2
.
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Proof of Lemma F.3. By triangular inequality, we have

|A−B| ≤
L∑

l=M+1

E
[∑
k∈[d]

{∣∣∣∣σl(a · s)− 1

L−M

∣∣∣∣ · ∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε

∣∣∣∣
+

1

L−M

∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε
− 1(xL+1 = xl = ek)

sy(k) + ε

∣∣∣∣
+

∣∣∣∣σl(a · s)− 1

L−M

∣∣∣∣ · ∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε

∣∣∣∣,
+

1

L−M

∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

∣∣∣∣} · f(X)

]
.

Note that 0 ≤ sl ≤ 1 for all l = M + 1, . . . , L thanks to the layer normalization. Then, for the
softmax operation, we have

1

1 + (L−M − 1) exp(a)
≤ σl

(
a · s

)
≤ exp(a)

L−M − 1 + exp(a)
,

which implies that∣∣∣∣σl(a · s)− 1

L−M

∣∣∣∣ ≤ max

{
1

L−M
− 1

1 + (L−M − 1) exp(a)
,

exp(a)

L−M − 1 + exp(a)
− 1

L−M

}
≤ exp(a)− 1

L−M − 1
. (F.2)

Since indicator functions are bounded above by 1, we have∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε

∣∣∣∣ ≤ 1

ε
,

∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε

∣∣∣∣ ≤ 1

ε
, (F.3)

For the second term, we have∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε
− 1(xL+1 = xl = ek)

sy(k) + ε

∣∣∣∣ ≤ |sy(k)− y(k)|
ε2

≤
∑L

l=M+1 |σl
(
a · s⊤

)
− (L−M)−1|

ε2

≤ exp(a)− 1

ε2
, (F.4)

where the last inequality follows from (F.2). Similarly, the following bound can be derived:∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

∣∣∣∣ ≤ exp(a)− 1

ε
. (F.5)

Combining (F.2), (F.3), (F.4) and (F.5), it holds that

|A−B| ≤
L∑

l=M+1

E
[
4
∑
k∈[d]

exp(a)− 1

ε2(L−M)
· f(X)

]
≤ 4Cd(exp(a)− 1)

ε2
≤ 8Cad

ε2
,

where the last inequality follows from exp(x)− 1 ≤ 2x for 0 ≤ x ≤ 1. This concludes the proof of
the lemma.

Lemma F.4 provides the approximation error introduced by µπ(ek) ≈ sy(k) in the transformer model.

Lemma F.4. For the transformer model defined in (2.5) and any bounded function f : XL → R
such that supx∈XL |f(x)| ≤ C for a constant C > 0, define two quantities A and B as

A :=
1

L−M

L∑
l=M+1

EX|π

[(∑
k∈[d]

1(xL+1 = xl = ek)

sy(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

)
· f(X)

]
,

B :=
1

L−M

L∑
l=M+1

EX|π

[(∑
k∈[d]

1(xL+1 = xl = ek)

µπ(ek)
− 1

)
· f(X)

]
,
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where sy = (L−M)−1
∑L

l=M+1 xl. Under Assumption 3.5, it holds that

|A−B| ≤ 4C ·
(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 2

√
M

L1/2γ
+ Cγ−1ε.

where µ0(·) is the initial distribution over the first rn tokens X1:rn . Here we let Dχ2(µ0 ∥µπ) to
denoteDχ2(µ0(X1:rn = ·) ∥µπ(X1:rn = ·)), i.e., the χ2-divergence between µn and the distribution
over the first rn tokens under the stationary distribution µπ .

Proof of Lemma F.4. Let us use syX(·) to remind the readers that sy(·) is also a function of X . We
simplify the expectation EX|π by E in this proof. By rearranging the terms, we have

|A−B| =
∣∣∣∣ 1

L−M

L∑
l=M+1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

syX(k) + ε
−
∑
k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

−
∑
k∈[d]

syX(k) · 1(xL+1 = ek)

syX(k) + ε
+ 1

)
· f(X)

]∣∣∣∣
=

∣∣∣∣ 1

L−M

L∑
l=M+1

E
[(∑

k∈[d]

( µπ(ek)− syX(k)

(syX(k) + ε) · µπ(ek)
− ε

(syX(k) + ε) · µπ(ek)

)
· 1(xL+1 = xl = ek)

−
∑
k∈[d]

ε1(xL+1 = ek)

syX(k) + ε

)
· f(X)

]∣∣∣∣.
Here, we have three terms to control. For the first error term, we define

err1 :=

∣∣∣∣ 1

L−M

L∑
l=M+1

E
[∑
k∈[d]

µπ(ek)− syX(k)

(syX(k) + ε) · µπ(ek)
· 1(xL+1 = xl = ek) · f(X)

]∣∣∣∣
≤ C

L−M

L∑
l=M+1

E
[∑
k∈[d]

|µπ(ek)− syX(k)|
(syX(k) + ε) · µπ(ek)

· 1(xL+1 = xl = ek)

]

≤ C · E
[∑
k∈[d]

|µπ(ek)− syX(k)|
µπ(ek)

· 1(xL+1 = ek)

]
.

The first inequality above holds by noting that supX |f(X)| ≤ C and the last inequality holds by
noting that syX(ek) = (L −M)−1

∑L
l=M+1 1(xl = ek). Using Cauchy-Schwarz inequality, we

arrive at

err1 ≤ C ·
(
E
[ ∑
k∈[d]

(µπ(ek)− syX(k)√
µπ(ek)

)2]
· E
[ ∑
k∈[d]

1(xL+1 = ek)

µπ(ek)

])1/2

≤ Cγ−1/2 ·
√
E
[
Dχ2 (syX(·) ∥µπ(xL+1 = ·))

]
.

For the second term, we similarly have

err2 =

∣∣∣∣ 1

L−M

L∑
l=M+1

∑
k∈[d]

E
[

ε

(syX(k) + ε)µπ(ek)
· 1(xL+1 = xl = ek) · f(X)

] ∣∣∣∣
≤ C

∣∣∣∣ ∑
k∈[d]

E
[
ε · 1(xL+1 = ek)

µπ(ek)

]∣∣∣∣ ≤ Cγ−1ε.

Lastly, we have the error term

err3 :=
1

L−M

L∑
l=M+1

E
[ ∑
k∈[d]

ε1(xL+1 = ek)

syX(k) + ε
· f(X)

]
≤ C · E

[ ∑
k∈[d]

ε1(xL+1 = ek)

syX(k) + ε

]

≤ C ·
∣∣∣∣E[ ∑

k∈[d]

ε1(xL+1 = ek)

µπ(ek) + ε

]∣∣∣∣+ C ·
∣∣∣∣ ∑
k∈[d]

E
[
ε(syX(k)− µπ(ek)) · 1(xL+1 = ek)

(µπ(ek) + ε)(syX(k) + ε)

]∣∣∣∣.
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Here, the first term is upper bounded byCγ−1ε, and for the second term we have by Cauchy-Schwartz
that

C ·
∣∣∣∣∑
k∈[d]

E
[
ε(syX(k)− µπ(ek)) · 1(xL+1 = ek)

(µπ(ek) + ε)(syX(k) + ε)

]∣∣∣∣
≤ C ·

√√√√E
[ ∑
k∈[d]

(syX(k)− µπ(ek))2

µπ(ek)

]
· E
[ ∑
k∈[d]

ε2 1(xL+1 = ek)

(syX(k) + ε)2µπ(ek)

]

≤ Cγ−1/2 ·
√
EXDχ2(syX(·) ∥µπ(xL+1 = ·)),

which shares a similar upper bound as err1. Now we invoke Lemma F.18 to conclude that

|A−B| ≤ err1 + err2 + err3 ≤ 2Cγ−1/2 ·
√
EXDχ2(syX(·) ∥µπ(xL+1 = ·)) + Cγ−1ε

≤ 2Cγ−1/2

(
4(1− λ)−1

√
Dχ2(µ0 ∥µπ) + 1 + 16M

L ·minxL+1
µπ(xL+1)

)1/2

+ Cγ−1 · ε

≤ 2Cγ−1 ·
2(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 4

√
M

L1/2
+ Cγ−1ε.

Hence, we complete our proof of Lemma F.4.

Lemma F.5 covers the approximation error due to the mixing property of the Markov chain.

Lemma F.5. Let S ∈ [H]≤D be a fixed set. For any h ∈ S , let rσ(h) and σ(h) be two fixed probability
distributions over [M ]. That is, for any i, j ∈ [M ], we have rσ

(h)
−i , σ

(h)
−j ∈ [0, 1], and

∑M
i=1 rσ

(h)
−i =∑M

j=1 σ
(h)
−j = 1. Given these distributions over [M ], we define

rv
(h)
L+1 :=

∑
i∈[M ]

rσ
(h)
−i · xL+1−i, and v

(h)
l :=

∑
j∈[M ]

σ
(h)
−j · xl−j ,

where we let xl ∈ X denote the l-th token in the Markov chain for all l ∈ [L+1]. Moreover, with slight
abuse of notation, we let (z, Z) = (z, z−1, . . . , z−M ) ∈ XM+1 and (x,X) = (x, x−1, . . . , x−M ) ∈
XM+1 be two independent random variables sampled from the stationary distribution µπ . We define
random variables rv(h)(Z) and v(h)(X) as

rv(h)(Z) :=
∑
i∈[M ]

rσ
(h)
−i · z−i, and v(h)(X) :=

∑
j∈[M ]

σ
(h)
−j · x−j .

Using rv
(h)
L+1, v(h)l , rv(h)(Z), and v(h)(X), we define two quantities A and B as

A :=
1

L−M

L∑
l=M+1

EX|π

[(∑
k∈[d]

1(xL+1 = xl = ek)

µπ(ek)
− 1

)
·
∏
h∈S

⟨v(h)l , rv
(h)
L+1⟩

]
,

B := E(x,X),(z,Z)∼µπ×µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)
·
∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩
]
,

where EX |π means that the expectation is taken with respect to the randomness of the Markov chain
with transition π. Then, under Assumption 3.5, we have

|A−B| ≤ 8M

Lγ
+

16
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)γ|S|/2+1
,

where µ0(·) is the initial distribution over the first rn tokens X1:rn and Dχ2(µ0 ∥µπ) is a short-hand
notation of Dχ2(µ0(X1:rn = ·) ∥µπ(X1:rn = ·)).
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Proof of Lemma F.5. By triangular inequality, we have

|A−B| ≤
∣∣∣∣ 1

L−M

L∑
l=M+1

EX|π

[(∑
k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , rv
(h)
L+1⟩

]

− E(x,X),(z,Z)∼µπ×µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)

)
·
(∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩
)]∣∣∣∣

+

∣∣∣∣ 1

L−M

L∑
l=M+1

EX|π

[∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
− E(x,X),(z,Z)∼µπ×µπ

[(∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩
)]∣∣∣∣.

We will establish the upper bounds for each of the absolute value terms. We first focus on the first
absolute value term.

Bounding the First Absolute Value Term. Let pπ(X) denote the joint distribution of the whole
sequence X under kernel π. By the definitions of rv

(h)
L+1 and v(h)l , we have

⟨v(h)l , v
(h)
L+1⟩ =

∑
ih,jh∈[M ]

σ
(h)
−ih

· σ(h)
−jh

· ⟨xL+1−ih , xl−jh⟩

=
∑

ih,jh∈[M ]

∑
k∈[d]

σ
(h)
−ih

· σ(h)
−jh

· 1(xL+1−ih = xl−jh = ek),

where we use (ih, jh) as the indices to highlight that they are associated with head h. And we use
kh ∈ [d] to index all the possible common values for xl−ih and xL+1−jh . Then plugging this equality
into

∏
h∈S⟨v

(h)
l , v

(h)
L+1⟩ and exchanging the order of product and summation, we have(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ (F.6)

=
∑

{(ih,jh)}h∈S

∑
{kh}h∈S ,k∈[d]

1(xL+1 = xl = ek)

µπ(z = ek)
·
( ∏

h∈S

σ
(h)
−ih

· σ(h)
−jh

· 1(xL+1−ih = xl−jh = ekh
)

)
,

where the summation means that we sum over all possible values that {ih, jh, kh}h∈S and k can
take. Specifically, each ih and jh take values in [M ], and each kh and k takes values in [d]. Moreover,
using the property of indicator functions, we can further simplify (F.6) by gathering all indicators:(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ (F.7)

=
∑

{(ih,jh)}h∈S

( ∏
h∈S

σ
(h)
−ih

· σ(h)
−jh

)
·
( ∑

{kh}h∈S ,k∈[d]

1(xL+1 = xl = ek, xL+1−ih = xl−jh = ekh
,∀h ∈ S)

µπ(z = ek)

)
.

Now we take expectations with respect to the randomness of X on both ends of (F.7) and get

1

L−M

L∑
l=M+1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]

=
∑

{(ih,jh)}h∈S

(∏
h∈S

rσ
(h)
−ih

σ
(h)
−jh

)
·

∑
{kh}h∈S ,k∈[d]

∑L
l=M+1 p

π(xL+1 = xl = ek, xL+1−ih = xl−jh = ekh
,∀h ∈ S)

(L−M) · µπ(z = ek)
.

To further simplify the above equality, we define a new probability distribution over XL+1−M :L+1

and another subsequence of length M + 1. Note that XL+1−M :L+1 contains is a subsequence with
M + 1 tokens. We let (z, Z) = (z, z−1, . . . , z−1, z−M ) denote a random token sequence of size
M + 1 in reverse order. We define a joint distribution ppπ over XL+1−M :L+1 and (z, Z) as follows.
Let E = (E0, E−1, . . . , E−M ) and E′ = (E′

0, E
′
−1, . . . , E

′
−M ) be two elements in XM+1. That is,
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each component of E and E′ are in X . The probability mass function of ppπ is defined as

ppπ
(
(xL+1, xL, . . . , xL+1−M ) = E, (z, Z) = E′) (F.8)

=
1

L−M

L∑
l=M+1

pπ
(
(xL+1, xL, . . . , xL+1−M ) = E, (xl, xl−1, . . . , xl=M ) = E′).

That is, ppπ can be viewed as the joint distribution of XL+1−M :L+1 with an averaged distribution of
the history. When L is sufficiently large, by the mixing property of the Markov chain, we expect
that, under ppπ , (z, Z) is approximately independent of XL+1−M :L+1, and the marginal distributions
of (z, Z) and XL+1−M :L+1 are both close to the stationary distribution µπ. We will translate this
intuition into a rigorous argument in Lemma F.17, which bounds the total-variation distance between
ppπ and the product distribution µπ × µπ .

With ppπ defined in (F.8), we can rewrite the expectation above as

1

L−M

L∑
l=M+1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
(F.9)

=
∑

{(ih,jh)}h∈S

(∏
h∈S

rσ
(h)
−ih

σ
(h)
−jh

)
·

∑
{kh}h∈S ,k∈[d]

ppπ(xL+1 = z = ek, xL+1−ih = z−jh = ekh
,∀h ∈ S)

µπ(z = ek)
.

Similarly, by the definitions of rv(h)(Z) and v(h)(Z), we can write ⟨rv(h)(Z), v(h)(X)⟩ as

⟨rv(h)(Z), v(h)(X)⟩ =
∑

ih,jh∈[M ]

∑
kh∈[d]

σ
(h)
−ih

· σ(h)
−jh

· 1(z−ih = xjh = ek).

Then, multiplying these terms with h ∈ S, we can write(∑
k∈[d]

1(x = z = ek)

µπ(ek)

)
·
∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩

=
∑

{(ih,jh)}h∈S

( ∏
h∈S

σ
(h)
−ih

· σ(h)
−jh

)
·
( ∑

{kh}h∈S ,k∈[d]

1(z = x = ek, z−ih = x−jh = ekh
,∀h ∈ S)

µπ(z = ek)

)
.

(F.10)

Recall that here (z, Z) = (z, z−1, . . . , z−M ) and (x,X) = (x, x−1, . . . , x−M ) are independently
sampled from the stationary distribution µπ . Taking the expectation under µπ , we have

E(x,X),(z,Z)∼µπ×µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)

)
·
(∏

h∈S

⟨rv(h)(Z), v(h)(X)⟩
)]

(F.11)

=
∑

{(ih,jh)}h∈S

(∏
h∈S

rσ
(h)
−ih

σ
(h)
−jh

)
·

∑
{kh}h∈S ,k∈[d]

µπ(x = ek, x−ih = ekh
,∀h ∈ S) · µπ(z = ek, z−jh = ekh

,∀h ∈ S)
µπ(z = ek)

.

To bound the first absolute value term in the upper bound on |A−B|, we aim to compare (F.9) and
(F.11). To this end, let us fix collections of index pairs (ih, jh)h∈S . Let S1 = {ih : h ∈ S} and
S2 = {jh : h ∈ S} be the unique values in (ih)h∈S and (jh)h∈S . Since there might exists two
elements h and h′ in S such that ih = ih′ or jh = jh′ , |S1| and |S2| might be strictly less than |S|. As a
result, ppπ(xL+1 = z = ek, xL+1−ih = z−jh = ekh

,∀h ∈ S) only involves random variables xL+1,
XL+1−S1 = {xL+1−i}i∈S1 , z, Z−S2 = {z−j}j∈S2 , which are a subset of the random variables
defined in (F.8). Similarly,

µπ(x = ek, x−ih = ekh
,∀h ∈ S) · µπ(z = ek, z−jh = ekh

,∀h ∈ S)

only involves a subset of random variables x, X−S1
= {x−i}i∈S1

, z, and Z−S2
. Let us define

sE = (E0, (E−i)i∈S1
) ∈ X |S1|+1 and sE′ = (E′

0, (E
′
−j)j∈S2

) ∈ X |S2|+1. By enumerating sE
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in X |S1|+1 and sE′ in X |S2|+1, we equivalently enumerate all possible values the above random
variables can take. Therefore, by comparing (F.9) with (F.11), we have∑
{kh}h∈S ,k∈[d]

∣∣
ppπ(xL+1 = z = ek, xL+1−ih = z−jh = ekh

,∀h ∈ S)

− µπ(x = ek, x−ih = ekh
,∀h ∈ S) · µπ(z = ek, z−jh = ekh

,∀h ∈ S)
∣∣

=
∑
sE, sE′

∣∣
ppπ
(
(xL+1, XL+1−S1

) = sE, (z, Z−S2
) = sE′)− µπ

(
(xL+1, XL+1−S1

) = sE
)
· µπ

(
(z, Z−S2

) = E′)∣∣
· 1(E0 = E′

0, E−ih = E′
−jh

,∀h ∈ S)
≤ 2∥ppπ(Y = ·, Y ′ = ·)− µπ(Y = ·)× µπ(Y ′ = ·)∥TV, (F.12)

where in the last line, we use Y and Y ′ as placeholders for the random variables (xL+1, XL+1−S1)
and (z, Z−S2

) respectively. In the first equality, we sum over sE ∈ X |S1|+1 and sE′ ∈ X |S2|+1, and
the last inequality follows from the definition of total variation distance and dropping the indicator.
By Lemma F.17, this total variation distance is bounded by

2∥ppπ(Y = ·, Y ′ = ·)− µπ(Y = ·)× µπ(Y ′ = ·)∥TV

≤ 4M

L
+

8
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) ·
√
minxL+1,XL+1−S1

µπ(xL+1, XL+1−S1)

≤ 4M

L
+

8
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) · γ(|S|+1)/2
, (F.13)

where the last inequality holds by Corollary F.15 and the fact that |S1| ≤ |S|. Specifically, Corol-
lary F.15 implies that the density function of the joint distribution of xL+1 and XL+1−S1

is lower
bounded by γ|S1|+1 ≥ γ|S|+1. Thus, combining (F.12) and (F.13), we have∣∣∣∣ ∑

{kh}h∈S ,k∈[d]

ppπ(xL+1 = z = ek, xL+1−ih = z−jh = ekh
,∀h ∈ S)

µπ(z = ek)

−
∑

{kh}h∈S ,k∈[d]

µπ(x = ek, x−ih = ekh
,∀h ∈ S) · µπ(z = ek, z−jh = ekh

,∀h ∈ S)
µπ(z = ek)

∣∣∣∣
≤ 1

γ
·

(
4M

L
+

8
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) · γ(|S|+1)/2

)
. (F.14)

Therefore, to bound the first absolute value term, we combine (F.9), (F.11), and (F.14) and use triangle
inequality to get∣∣∣∣ 1

L−M

L∑
l=M+1

EX|π

[(∑
k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , rv
(h)
L+1⟩

]

− E(x,X),(z,Z)∼µπ×µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)

)
·
(∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩
)]∣∣∣∣

≤ 1

γ
·

(
4M

L
+

8
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) · γ(|S|+1)/2

)
·

∑
{(ih,jh)}h∈S

( ∏
h∈S

rσ
(h)
−ih

σ
(h)
−jh

)
. (F.15)

Furthermore, recall that rσ(h) and σ(h) are probability distributions over [M ] for all h ∈ S . By going
over all possible values that {(ih, jh)}h∈S can take, we have∑

{(ih,jh)}h∈S

( ∏
h∈S

rσ
(h)
−ih

σ
(h)
−jh

)
=
∏
h∈S

( ∑
k∈[M ]

rσ
(h)
−k

)
·
( ∑

k∈[M ]

σ
(h)
−k

)
= 1. (F.16)

Plugging this equality into (F.15), we show that the upper bound in (F.15) can be reduced to the
right-hand side of (F.14).
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Bounding the Second Absolute Value Term. For the second absolute value term, an analogous
argument can be applied. In fact, the proof is simpler because we only need to handle ⟨v(h)l , v

(h)
L+1

and ⟨rv(h)(Z), v(h)(Z)⟩ and do not have indicators 1(xL+1 = xl) and 1(x = z).

Similar to the derivation in (F.9) and (F.11),∣∣∣∣ 1

L−M

L∑
l=M+1

E
[∏
h∈S

⟨v(h)l , rv
(h)
L+1⟩

]
− E(x,X),(z,Z)∼µπ×µπ

[(∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩
)]∣∣∣∣

=

∣∣∣∣ ∑
{(ih,jh)}h∈S

( ∏
h∈S

rσ
(h)
−ih

σ
(h)
−jh

)
·
∑

{kh}h∈S

(
ppπ(xL+1−ih = z−jh = ekh

,∀h ∈ S) (F.17)

− µπ(x−ih = ekh
,∀h ∈ S) · µπ(z−jh = ekh

,∀h ∈ S)
)∣∣∣∣.

Similar to (F.12), for any fixed collection of index pairs (ih, jh)h∈S , we let S1 = {ih : h ∈ S} and
S2 = {jh : h ∈ S} denote the unique values in (ih)h∈S and (jh)h∈S . By Lemma F.17, we have∣∣∣∣ ∑
{kh}h∈S

(
ppπ(xL+1−ih = z−jh = ekh

,∀h ∈ S)− µπ(x−ih = ekh
,∀h ∈ S) · µπ(z−jh = ekh

,∀h ∈ S)
)∣∣∣∣

≤ 2
∥∥

ppπ(rY = ·, rY ′ = ·)− µπ(rY = ·)× µπ(rY ′ = ·)
∥∥
TV

≤ 4M

L
+

8
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) · γ|S|/2 .

(F.18)

Here we use rY and rY ′ as placeholders for random variables XL+1−S1 and Z−S2 . We note that
Lemma F.17 can be applied to any subsets of XL+1−M :L+1 and (z, Z). Therefore, combining (F.16),
(F.17), and (F.18), we conclude that∣∣∣∣ 1

L−M

L∑
l=M+1

E
[∏
h∈S

⟨v(h)l , rv
(h)
L+1⟩

]
− E(x,X),(z,Z)∼µπ×µπ

[(∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩
)]∣∣∣∣

≤ 4M

L
+

8
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)γ|S|/2 .

Note that the second upper bound is dominated by the previous one. This completes the proof of
Lemma F.5.

Lemma F.6 provides an approximation result using the definition of the modified χ2-mutual informa-
tion.
Lemma F.6. Consider a fixed set S ∈ [H]≤D. For any h ∈ S, let rσ(h) and σ(h) be two prob-
ability distributions over [M ]. That is, for any i, j ∈ [M ], we have rσ

(h)
−i , σ

(h)
−j ∈ [0, 1], and∑M

i=1 rσ
(h)
−i =

∑M
j=1 σ

(h)
−j = 1. Moreover, we let (z, Z) = (z, z−M , . . . , z−1) ∈ XM+1 and

(x,X) = (x, x−M , . . . , x−1) ∈ XM+1 be two independent random variables sampled from the
stationary distribution µπ . We define random variables rv(h)(Z) and v(h)(X) as

rv(h)(Z) :=
∑
i∈[M ]

rσ
(h)
−i · z−i, and v(h)(X) :=

∑
j∈[M ]

σ
(h)
−j · x−j .

Let (i⋆h, j
⋆
h)h∈S be any fixed collection of index pairs, where i⋆h ∈ [M ] and j⋆h ∈ [M ] for all h ∈ S.

We define quantities A and B as

A := Eπ,(x,X),(z,Z)∼µπ×µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)
·
∏
h∈S

⟨rv(h)(Z), v(h)(X)⟩,
]
,

B := Eπ,(x,X),(z,Z)∼µπ×µπ

[∏
h∈S

1(x−i⋆h
= z−j⋆h

) ·
( d∑

k=1

1(x = z = ek)

µπ(ek)
− 1

)]
.

Under Assumption 3.5, it holds that∣∣∣Eπ [A]−
∏
h∈S

σ
(h)
−i⋆h

rσ
(h)
−j⋆h

·B
∣∣∣ ≤ (1− ∏

h∈S

σ
(h)
−i⋆h

rσ
(h)
−j⋆h

)
· Iχ2(S⋆).
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Proof of Lemma F.6. To simplify the notation, we define a signal set Γ(S) and an error set sΓ(S) as

Γ(S) := {(i⋆h, j⋆h)h∈S} , sΓ(S) :=
{
(ih, jh)h∈S ∈ ([M ]× [M ])|S|

}
\Γ(S).

Similar to (F.10), we can write Eπ[A] as

Eπ[A] = Eπ,(x,X),(z,Z)∼µπ×µπ

[ ∑
{(ih,jh)}h∈S

∏
h∈S

σ
(h)
−ih

rσ
(h)
−jh

· 1(x−ih = z−jh) ·
(∑

k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]
,

where we exchange the order of product and summation. Using the notation sΓ(S), we can split the
summation into two parts:

Eπ[A] = Eπ,(x,X),(z,Z)∼µπ×µπ

[∏
h∈S

σ
(h)
−i⋆h

rσ
(h)
−j⋆h

· 1(x−i⋆h
= z−j⋆h

) ·
(∑

k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]

+ Eπ,(x,X),(z,Z)∼µπ×µπ

[ ∑
{(ih,jh)}h∈S∈sΓ(S)

∏
h∈S

σ
(h)
−ih

rσ
(h)
−jh

· 1(x−ih = z−jh)

(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]
=
∏
h∈S

σ
(h)
−i⋆h

rσ
(h)
−j⋆h

·B

+ Eπ,(x,X),(z,Z)∼µπ×µπ

[ ∑
(ih,jh)h∈S∈sΓ(S)

∏
h∈S

σ
(h)
−ih

rσ
(h)
−jh

· 1(x−ih = z−jh)

(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]
.

Here last equality holds by the definition of the B and the fact that rσ(h) and σ(h) are fixed vectors.

Therefore, to prove this lemma, it suffices to upper bound the second term above. To this end, we
apply Lemma F.7 stated below for any fixed set of indices (ih, jh)h∈S ∈ sΓ(S). Specifically, let
S1 = {ih : h ∈ S} and S2 = {jh : h ∈ S} denote the unique values of (ih)h∈S and (jh)h∈S .
Lemma F.7 implies that

Eπ,(x,X),(z,Z)∼µπ×µπ

[ ∏
h∈S

1(x−ih = z−jh) ·
(∑

k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)]
≤ Iχ2(S⋆). (F.19)

Combining (F.19) with the fact that∑
(ih,jh)h∈S∈sΓ(S)

∏
h∈S

σ
(h)
−ih

rσ
(h)
−jh

= 1−
∏
h∈S

σ
(h)
−i⋆h

rσ
(h)
−j⋆h

,

the desired term is bounded above by (1−
∏

h∈S σ
(h)
−i⋆h

rσ
(h)
−j⋆h

)·Iχ2(S⋆), which concludes the proof.

Lemma F.7. Let S ∈ [H]≤D be a fixed subset and let {(ih, jh)}h∈S be a fixed collection of index
pairs, where ih, jh ∈ [M ] for all h ∈ S. Let S1 = {ih : h ∈ S} and S2 = {jh : h ∈ S} denote
the unique values of (ih)h∈S and (jh)h∈S . We let (z, Z) = (z, z−M , . . . , z−1) ∈ XM+1 and
(x,X) = (x, x−M , . . . , x−1) ∈ XM+1 be two independent random variables sampled from the
stationary distribution µπ , where π is the transition kernel of the Markov chain and is sampled from
prior P . If Assumption 3.5 holds, it follows that

Eπ∼P,(x,X),(z,Z)∼µπ×µπ

[ ∏
h∈S

1(x−ih = z−jh) ·
(∑

k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)]
≤ 1

2

(
rIχ2(S1) + rIχ2(S2)

)
≤ rIχ2(S⋆),

where rIχ2(S) is the modified χ2-mutual information defined in Definition 3.1 and S⋆ =

argmaxS∈[H]≤D
rIχ2(S).

Proof of Lemma F.7. We first note that it is allowed |S1| ≠ |S2| as there could be duplicate values in
both (ih)h∈S and (jh)h∈S , while S1 and S2 are the unique values. In the sequel, we let X−S1

denote
{x−ih}h∈S and let Z−S2

denote {z−jh}h∈S , where repeated elements are removed. Moreover, we let
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{X−S1 = Z−S2} be the event that x−ih = z−jh for all h ∈ S . Notice that
∏

h∈S 1(x−ih = z−jh) =
1(X−S1

= Z−S2
). Then, we have

Eπ,(x,X),(z,Z)∼µπ×µπ

[∏
h∈S

1(x−ih = z−jh) ·
(∑

k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)]
(F.20)

= Eπ,(x,X),(z,Z)∼µπ×µπ

[
1(X−S1

= Z−S2
) ·
(∑

k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)]

= Eπ,(x,X),(z,Z)∼µπ×µπ

[(∑
k∈[d]

µπ(x = ek|X−S1) · µπ(z = ek|Z−S2)

µπ(z = ek)
− 1

)
· 1(X−S1 = Z−S2)

]

= Eπ,(X,Z)∼µπ×µπ

[∑
k∈[d]

(
µπ(x = ek|X−S1)

µπ(x = ek)
− 1

)
·
(
µπ(z = ek|Z−S2)

µπ(z = ek)
− 1

)
· µπ(z = ek) · 1(X−S1 = Z−S2)

]
.

Here in the second equality, we take a conditional expectation givenX−S1
andZ−S2

. The last equality
can be verified by direct computation. To simplify the expectation above, we aim to transform the
indicator of 1(X−S1 = Z−S2) into probabilities involving X−S1 and Z−S2 . To this end, we need
to explicitly enumerate all possible values that X−S1

and Z−S2
can take. This is challenging, as

there may be duplicated values in both ih and jh, and thus X−S1
and Z−S2

can have different sizes.
However, since S1 is a “reduction” of {ih}h∈S , we can revert to the original space and consider
E = (Eh)h∈S ∈ X |S| that respects the reduction from {ih}h∈S to S1. Here each Eh is the value xih
takes. In other words, with (ih)h∈S that might have duplicated values, we consider the values taken
by (xih)h∈S , with duplicates allowed. And E has the same duplication structure as (xih)h∈S . In the
following, we describe these values by introducing the notion of compatibility.

Definition F.8 (Compatible Value Set). We say that E ∈ X |S| is compatible with (ih)h∈S if, for any
h ̸= h′ such that ih = ih′ , we have Eh = Eh′ . In other words, the unique values in E can be indexed
by {ih}h∈S = S1 if E is compatible with (ih)h∈S .

By this definition, E is compatible with (ih)h∈S if it respect duplication pattern of (xih)h∈S . If
ih = ih′ , then we know that xih and xih′ is the same token. Since xih and xih′ take values Eh and
Eh′ , we must have Eh = Eh′ . As a concrete example, suppose S = {1, 2, 3}, and the values of
(ih)h∈S are given by (i1, i2, i3) = (1, 2, 1). Therefore, we have S1 = {1, 2}, which contains the
unique values of (i1, i2, i3). Now, let E = (E1, E2, E3). For E to be compatible with (ih)h∈S , we
must have E1 = E3 since i1 = i3. There is no restriction on E2. So, a compatible value set for this
example could be E = (a, b, a), where a and b are elements of X .

In the sequel, we define E as the set of vectors in X |S| that are compatible with both {ih}h∈S and
{jh}h∈S , i.e.,

E =
{
E ∈ X |S| | E is compatible with both (ih)h∈S and (jh)h∈S

}
.

The compatibility condition allows us to assign x−ih , z−jh the value Eh for all h ∈ S when E ∈ E .
Under this assignment, the constraint X−S1

= Z−S2
is automatically satisfied. We use the notation

{X−S1
= E} to denote the event that x−ih = Eh for all h ∈ S, and similarly for Z−S2

= E. In
particular, we are able to rewrite the indicator 1(X−S1

= Z−S2
) as

∑
E∈E 1(X−S1

= E,Z−S2
=
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E). Then we can rewrite (F.20) by separating X−S1 and Z−S2 as

Eπ,(x,X),(z,Z)∼µπ×µπ

[∏
h∈S

1(x−ih = z−jh) ·
(∑

k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)]

= Eπ

[∑
E∈E

∑
k∈[d]

(
µπ(x = ek|X−S1 = E)

µπ(x = ek)
− 1

)
·
(
µπ(z = ek|Z−S2 = E)

µπ(z = ek)
− 1

)

· µπ(X−S1
= E) · µπ(Z−S2

= E) · µπ(z = ek)

]
≤ 1

2
Eπ

[∑
E∈E

∑
k∈[d]

(
µπ(x = ek|X−S1)

µπ(x = ek)
− 1

)2

· µπ(z = ek) ·
(
µπ(X−S1

= E)
)2]

+
1

2
Eπ

[∑
E∈E

∑
k∈[d]

(
µπ(z = ek|Z−S)

µπ(z = ek)
− 1

)2

· µπ(z = ek) ·
(
µπ(Z−S2 = E)

)2]
. (F.21)

where in the last inequality, we apply ab ≤ a2 + b2/2.

Next, for each E ∈ E , consider E′ = (E′
i)i∈S1 such that

E′
ih

= Eh, ∀h ∈ S. (F.22)

Note that for each E ∈ E , E′ must exist and is unique. The existence follows from the compatibility
definition, which allows us to index all the unique values in E by restricting the indices to the set
S1. The uniqueness is due to the fact that (F.22) completely determines all the values in E′ because
enumerating over ih for h ∈ S is just the same as enumerating over i for i ∈ S1. In fact, E′ contains
all the unique values of E. In the above example, we have S1 = {1, 2} and thus E′ = (a, b) when
E = (a, b, a).

Since E′ is uniquely defined based on E, we are able to define an operator J1 that maps E ∈ E
to E′ ∈ X |S1| according to the mapping given in (F.22). Let J1(E) be the image of E under J1. It
is important to note that for each E′ ∈ J1(E), there is also a unique pre-image E ∈ E such that
J1(E) = E′ according to the rule (F.22). Therefore, J1 is an one-to-one mapping from E to J1(E).
In the following, for any E′ ∈ J1(E), we denote by {X−S1

= E′} the event where x−i = E′
i for

all i ∈ S1. Equivalently, we have x−ih = E′
ih

= Eh for all h ∈ S. Thus, the event {X−S1
= E′} is

exactly the same as {X−S1 = E} introduced above. Therefore, the first term on the right hand side
of (F.21) can be reformulated as

1

2
· Eπ

[∑
E∈E

∑
k∈[d]

(
µπ(x = ek|X−S1

)

µπ(x = ek)
− 1

)2

· µπ(z = ek) · µπ(X−S1
= E)2

]

=
1

2
· Eπ

[ ∑
E′∈J1(E)

∑
k∈[d]

(
µπ(x = ek|X−S1)

µπ(x = ek)
− 1

)2

· µπ(z = ek) ·
(
µπ(X−S1

= E′)
)2]

≤ 1

2
· Eπ

[ ∑
E′∈X |S1|

∑
k∈[d]

(
µπ(x = ek|X−S1)

µπ(x = ek)
− 1

)2

· µπ(z = ek) ·
(
µπ(X−S1 = E′)

)2]
=

1

2
rIχ2(S1),

where the equality follows from the bijection between E and J1(E), and the last inequality holds
by noting that J1(E) ⊆ X |S1|. The last equality follows from the definition of the modified mutual
information. The argument for the second term on the right hand side of (F.21) is similar, and we
hence conclude that

Eπ,(x,X),(z,Z)∼µπ×µπ

[∏
h∈S

1(x−ih = z−jh) ·
(∑

k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)]
≤ 1

2
rIχ2(S1) +

1

2
rIχ2(S2).

Lastly, note that rIχ2(S) ≤ rIχ2(S⋆) for any S ∈ [H]≤D by the optimality of S⋆. Hence, we complete
the proof of Lemma F.7.

Lemma F.9 quantifies the approximation error from σl ≈ σ⋆
l and y(k) ≈ y⋆(k) for Stage III.
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Lemma F.9. For the transformer model defined in (2.5), define two quantities f1 and f2 as

f1 :=E

[
L∑

l=M+1

σl

d∑
k=1

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·
∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]
,

f2 :=E

[
L∑

l=M+1

σ⋆
l

d∑
k=1

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

]
,

where the expectation is taken over all the randomness in the data, and

σ⋆
l :=

exp
(
a ·
∏

h∈S⋆ 1(xl−h = xL+1−h)
)∑L

l′=1 exp
(
a ·
∏

h∈S⋆ 1(xl′−h = xL+1−h)
) , y⋆(k) :=

L∑
l=M+1

σ⋆
l 1(xl = ek),

with S⋆ is the optimal information set. Under Assumption 3.5, it holds that

|f1 − f2| ≤ 12 · (1 + aε−1) · (∆1 +∆2),

where ∆1 := 1− pS⋆ and ∆2 := 1−
∏

h∈S⋆(σ
(h)
−h)

2.

Proof. We separate the approximation error into three parts |f1 − f2| ≤ err1 + err2 + err3, which
are explained in detail as follows.

The First Error Term. Here, the first error err1 captures the error of replacing
∏

h∈S⋆ 1(xl−h =

xL+1−h) with
∏

h∈S⋆⟨v(h)l , v
(h)
L+1⟩ in f2:

err1 :=

∣∣∣∣E[ L∑
l=M+1

σl ·
∑
k∈[d]

(1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)
.

·
( ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

1(xl−h = xL+1−h)
)]∣∣∣∣,

Using Lemma F.2, we have∣∣∣∣ L∑
l=M+1

σl ·
∑
k∈[d]

(1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)∣∣∣∣ ≤ 2.

Then using Lemma F.1, we conclude that

err1 ≤ 2 sup
l∈[L]

∣∣∣∣ ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣ ≤ 2(∆1 +∆2).

The Second Error Term. The second error term characterizes the difference in σl and σ⋆
l :

err2 :=

∣∣∣∣E[ L∑
l=M+1

(σ⋆
l − σl)·

∑
k∈[d]

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)
·
∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣.
To characterize such an error, we invoke equation (53) in Lemma 5.1 of Chen et al. (2022). This
lemma states that for σ and σ⋆ being the output of the softmax function with scaling parameters a for
s and s⋆ respectively, i.e.,

σ =
exp(as)∑L

l=M+1 exp(asl)
, and σ⋆ =

exp(as⋆)∑L
l=M+1 exp(as

⋆
l )
,

it holds that ∥σ − σ⋆∥1 ≤ 4a · ∥s− s⋆∥∞. Consequently, we have ∥σ − σ⋆∥1 ≤ 4a · (∆1 +∆2) by
Lemma F.1. We notice that∣∣∣∣ ∑
k∈[d]

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)
·
∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣ ≤ max{ε−1, 1} = ε−1.

Thus, err2 ≤ 4aε−1 · (∆1 +∆2).
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The Third Error Term. The last error term characterizes the difference between y⋆ and y:

err3 :=

∣∣∣∣E[ L∑
l=M+1

σl ·
∑
k∈[d]

( 1

y⋆(k) + ε
− 1

y(k) + ε

)
· 1(xL+1 = xl = ek)·

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣
+

∣∣∣∣E[ L∑
l=M+1

σl ·
∑
k∈[d]

( y⋆(k)

y⋆(k) + ε
− y(k)

y(k) + ε

)
· 1(xL+1 = ek)·

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣.
By noting that y⋆ =

∑L
l=M+1 σ

⋆
l xl and y =

∑L
l=M+1 σlxl, we have

∥y⋆ − y∥1 =

∥∥∥∥ L∑
l=M+1

(σ⋆
l − σl)xl

∥∥∥∥
1

≤
L∑

l=M+1

|σ⋆
l − σl|1 · ∥xl∥1 ≤ ∥σ − σ⋆∥1 ≤ 4a · (∆1 +∆2).

The first term of err3 can be bounded by∣∣∣∣E[ L∑
l=M+1

σl ·
∑
k∈[d]

( 1

y⋆(k) + ε
− 1

y(k) + ε

)
· 1(xL+1 = xl = ek)·

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣
≤
∑
k∈[d]

|y(k)− y⋆(k)|
(y⋆(k) + ε)(y(k) + ε)

· y(k)1(xL+1 = ek) ≤ ∥y − y⋆∥1 · ε−1 ≤ 4aε−1(∆1 +∆2).

Moreover, for the second term of err3, we have∣∣∣∣E[ L∑
l=M+1

σl ·
∑
k∈[d]

(
y⋆(k)

y⋆(k) + ε
− y(k)

y(k) + ε

)
· 1(xL+1 = ek)·

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣
≤
∑
k∈[d]

|y(k)− y⋆(k)|
(y⋆(k) + ε)(y(k) + ε)

· ε · 1(xL+1 = ek) ≤ 4aε−1(∆1 +∆2).

It then holds that

|f1 − f2| ≤ err1 + err2 + err3 ≤ 2(∆1 +∆2) + 4aε−1(∆1 +∆2) + 8aε−1(∆1 +∆2)

= 12 · (1 + aε−1) · (∆1 +∆2).

Therefore, we complete the proof of Lemma F.9.

Lemma F.10. Let us define for brevity,

rµπ
X(z, Z) = rµπ(z, Z |XL+1−S⋆) =

µπ(z, Z) exp
(
a ·
∏

h∈S⋆ 1(z−h = xL+1−h)
)∑

z′,Z′ µπ(z′, Z ′) exp
(
a ·
∏

h∈S⋆ 1(z′−h = xL+1−h)
) ,

where Z = (z−M , . . . , z−1) and µπ is the stationary distribution of the Markov chain over a window
of size M + 1. We denote by rµπ

X(ek) = rµπ
X(z = ek) where rµπ

X(z) is the marginal distribution for z
and serves as the population counterpart for y⋆ =

∑L
l=M+1 σ

⋆
l xl. We define quantity A and B as

A :=E
[ L∑
l=M+1

σ⋆
l

d∑
k=1

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

) ∏
h∈S⋆

1(xl−h = xL+1−h)

]
.

B :=E
[ L∑
l=M+1

σ⋆
l

d∑
k=1

(
1(xL+1 = xl = ek)

rµπ
X(ek)

− 1(xL+1 = ek)

) ∏
h∈S⋆

1(xl−h = xL+1−h)

]
.

Under Assumption 3.5, we have

|A−B| ≤
8(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 8

√
M

L1/2 · γ|S⋆|+1
+

2dε

γ
.
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Proof of Lemma F.10. The proof follows the same arguments as Lemma F.4. We remind the readers
that y⋆(k) is also a function of the whole chain X . We note that

|A−B| =
∣∣∣∣E[ L∑

l=M+1

σ⋆
l ·
(∑

k∈[d]

1(xL+1 = xl = ek)

y⋆(k) + ε
−
∑
k∈[d]

1(xL+1 = xl = ek)

rµπ
X(ek)

−
∑
k∈[d]

y⋆(k)1(xL+1 = ek)

y⋆(k) + ε
+ 1

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

]∣∣∣∣
=

∣∣∣∣E[ L∑
l=M+1

σ⋆
l ·
(∑

k∈[d]

(
rµπ
X(ek)− y⋆(k)

(y⋆(k) + ε) · rµπ
X(ek)

− ε

(y⋆(k) + ε) · rµπ
X(ek)

)
· 1(xL+1 = xl = ek)

−
∑
k∈[d]

ε1(xL+1 = ek)

y⋆(k) + ε

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

]∣∣∣∣.
To handle this error, we define three error terms as

err1 :=

∣∣∣∣E[ ∑
k∈[d]

rµπ
X(ek)− y⋆(k)

(y⋆(k) + ε) · rµπ
X(ek)

·
L∑

l=M+1

σ⋆
l · 1(xL+1 = xl = ek) ·

∏
h∈S⋆

1(xl−h = xL+1−h)

]∣∣∣∣,
err2 :=

∣∣∣∣E[ ∑
k∈[d]

ε

(y⋆(k) + ε) · rµπ
X(ek)

·
L∑

l=M+1

σ⋆
l · 1(xL+1 = xl = ek) ·

∏
h∈S⋆

1(xl−h = xL+1−h)

]∣∣∣∣,
err3 :=

∣∣∣∣E[ ∑
k∈[d]

ε

y⋆(k) + ε
· 1(xL+1 = ek) ·

L∑
l=M+1

σ⋆
l ·
∏
h∈S⋆

1(xl−h = xL+1−h)

]∣∣∣∣.
For the first error term, we have that

err1 ≤ E
[ ∑
k∈[d]

|rµπ
X(ek)− y⋆(k)|
(y⋆(k) + ε)

·
L∑

l=M+1

σ⋆
l 1(xl = ek)

rµπ
X(ek)

]

= E
[ ∑
k∈[d]

|rµπ
X(ek)− y⋆(k)|
(y⋆(k) + ε)

· y⋆(k)

rµπ
X(ek)

]
≤ γ−1 · E

[ ∑
k∈[d]

|rµπ
X(ek)− y⋆(k)|

]
,

where we recall that by assumption, γ provides a lower bound for π(· |Xpa), hence also a lower bound
for rµπ

X(ek). Next, we invoke Proposition F.19 which provides an upper bound for the difference
between the empirical and population distributions in terms of the ℓ1-norm:

E
[∥∥∥∥rµπ

X(z = ·)− y⋆(·)
∥∥∥∥
1

]
≤

4
(
(1− λ)−1

√
Dχ2(µ0 ∥µπ) + 1 + 4M

)1/2
L1/2 ·minπ,xL+1,XL+1−S⋆ µπ(xL+1, XL+1−S⋆)

≤
4(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 8

√
M

L1/2 · γ|S⋆|+1
. (F.23)

Hence, we control the first error term.

For the second error term, we follow the same procedure and obtain an upper bound as

err2 ≤ E
[ ∑
k∈[d]

ε

rµπ
X(ek)

·
L∑

l=M+1

σ⋆
l 1(xl = ek)

(y⋆(k) + ε)

]
≤ E

[ ∑
k∈[d]

ε

rµπ
X(ek)

]
≤ γ−1dε.
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For the last error term, it holds that

err3 ≤ E
[ ∑
k∈[d]

ε

y⋆(k) + ε
· 1(xL+1 = ek)

]

≤
∣∣∣∣E[ ∑

k∈[d]

ε1(xL+1 = ek)

rµπ
X(ek) + ε

]∣∣∣∣+ ∣∣∣∣ ∑
k∈[d]

E
[
ε(y⋆(k)− rµπ

X(ek)) · 1(xL+1 = ek)

(rµπ
X(ek) + ε)(y⋆(k) + ε)

]∣∣∣∣
≤ ε

γ
+ E

[ ∑
k∈[d]

|y⋆(k)− rµπ
X(ek)|

γ

]
≤ ε

γ
+

4(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 8
√
M

L1/2 · γ|S⋆|+1
.

where the last inequality follows directly from (F.23).

In summary, the difference between f2 and f3 is bounded by

|f2 − f3| ≤ err1 + err2 + err3 ≤
8(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 8

√
M

L1/2 · γ|S⋆|+1
+

2dε

γ
,

which completes our proof of Lemma F.10.

The following lemmas are for analyzing the error |f3 − f4| for Stage III.
Lemma F.11. We define

A :=E
[ L∑
l=M+1

σ⋆
l ·

d∑
k=1

(
1(xL+1 = xl = ek)

rµπ
X(ek)

− 1(xL+1 = ek)

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

]
,

B :=EX,(z,Z)∼rµπ
X

[ d∑
k=1

(
1(xL+1 = z = ek)

rµπ
X(ek)

− 1(xL+1 = ek)

)
·
∏
h∈S⋆

1(zl−h = xL+1−h)

]
,

where

σ⋆
l :=

exp
(
a ·
∏

h∈S⋆ 1(xl−h = xL+1−h)
)∑L

l′=1 exp
(
a ·
∏

h∈S⋆ 1(xl′−h = xL+1−h)
) ,

rµπ
X(z, Z) := rµπ(z, Z |XL+1−S⋆) =

µπ(z, Z) exp
(
a ·
∏

h∈S⋆ 1(z−h = xL+1−h)
)∑

z′,Z′ µπ(z′, Z ′) exp
(
a ·
∏

h∈S⋆ 1(z′−h = xL+1−h)
) .

Under Assumption 3.5, we have

|A−B| ≤
8γ−1(1− λ)−1/2(Dχ2(µ0 ∥µπ) + 1)1/4 + 16γ−1

√
M

L1/2 · γ|S⋆|+1
.

Proof of Lemma F.11. For Z = (z−M , . . . , z−1) and Z ′ = (z′−M , . . . , z
′
−1), we let Z−S⋆ =

(z−h)h∈S⋆ , we define

pµπ
X(z, Z) =

1

L−M

L∑
l=M+1

1(xl = z,Xl−M :l−1 = Z),

R(Z,XL+1−S⋆) = exp

(
a ·

∏
h∈S⋆

1(z−h = xL+1−h)

)
.

Using these notations, we can rewrite the normalizing factor in rµπ
X and σ⋆

l respectively as

Φ =
∑
z,Z

µπ(z, Z) ·R(Z,XL+1−S⋆), pΦ =
∑
z,Z

pµπ
X(z, Z) ·R(Z,XL+1−S⋆).

We also define

ϕ(z, Z−S⋆) = µπ(z, Z−S⋆) ·R(Z−S⋆ , X−S⋆), pϕ(z, Z−S⋆) = pµπ
X(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆).
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If we further define pνπX(z, Z−S⋆) =
∑L

l=M+1 1(xl = z,Xl−S⋆ = Z−S⋆), then we have

pνπX(z, Z−S⋆) =
pµπ
X(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆)

pΦ
=

pϕ(z, Z−S⋆)

pΦ
,

rµπ
X(z, Z−S⋆) =

µπ(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆)

Φ
=
ϕ(z, Z−S⋆)

Φ
.

Using the above definitions and relationship, A and B can be rewritten as

A = E
[ d∑
k=1

pϕ(ek, XL+1−S⋆)

pΦ · rµπ
X(ek)

−
pϕ(XL+1−S⋆)

pΦ

]
, B = E

[ d∑
k=1

ϕ(ek, XL+1−S⋆)

Φ · rµπ
X(ek)

− ϕ(XL+1−S⋆)

Φ

]
.

Therefore, the difference between A and B is given by

|A−B| ≤ 2

γ
· E
[ ∑
z,Z−S⋆

∣∣∣∣ϕ(z, Z−S⋆)

Φ
−

pϕ(z, Z−S⋆)

pΦ

∣∣∣∣] ≤ 2

γ
· E
[ ∑
z,Z−S⋆

∣∣∣∣rµπ
X(z, Z−S⋆)− pνπX(z, Z−S⋆)

∣∣∣∣]

≤
8γ−1 ·

(
(1− λ)−1

√
Dχ2(µ0 ∥µπ) + 1 + 4M

)1/2
L1/2 ·minxL+1,XL+1−S⋆ µπ(xL+1, XL+1−S⋆)

.

where the last inequality follows from the result in Proposition F.19. Invoking the lower bound
µπ(xL+1, XL+1−S⋆) ≥ γ|S

⋆|+1, we complete the proof of Lemma F.11.

F.3 Lemmas on Concentration of Markov Chain

Recall that we previously define X = (x1, . . . , xL) as the observed sequence and xL+1 as the value
at time L+ 1 to be predicted. For generality, we will use X = (x1, . . . , xL+1) to denote the whole
sequence in the following proof. We denote by pπ(·) the joint distribution for the sequence X with
kernel π. Recall that we have the parent set pa = {−r1, . . . ,−rn}, and as the start of a chain, we
sample the first rn tokens by (x1, . . . , xrn) ∼ µ0.

In the sequel, we will study concentration properties of the Markov chain X for a window of tokens
with window size at most M , where M > rn. To proceed, let us consider a fixed set S ⊆ [M ].
For any l ∈ [M + 1, L + 1], we define Yl = (xl, Xl−S) as a new vector containing the token at
position l and also the tokens in the past S positions prior to xl. Here, we follow the convention
that Xl−S = (Xl−i)i∈S . We also consider another fixed subset S ′ ⊆ [M ] and similarly define
Y ′
l = (xl, Xl−S′).

The concentration properties of the Markov chain are rooted in the fact that when conditioning on
all the parents, the current token is independent of all the past tokens. Given the parent set structure
pa = {−r1, . . . ,−rn}, we aim to make YL+1 approximately independent of Yl by conditioning on
some intermediate parent sets. To this end, we define A = (xL+1−M , . . . , xL−M+rn) ∈ X rn and
Bl = (xl−rn+1, . . . , xl) ∈ X rn as these intermediate parent sets. By the Markov property and the
parent set structure, we have the following conditional independence relations:

YL+1 ⊥⊥ (Bl, Yl) |A, (YL+1, A) ⊥⊥ Yl |Bl, ∀l =M + 1, . . . , L−M + rn.

To illustrate, let us consider the first condition YL+1 ⊥⊥ (Bl, Yl) |A. When l ≤ L −M + rn, the
Bl and Yl are both contained in the history {xk : k ≤ L −M + rn} = A ∪ {xk : k ≤ L −M}.
When conditioning on A, the randomness of (Bl, Yl) is measurable by the σ-algebra generated by
the “past” {xk : k ≤ L−M}. Moreover, the randomness of YL+1 is measurable by the σ-algebra
generated by the “future” {xk : k ∈ [L+ 1−M + rn, L+ 1]} when conditioning on A. Notice that
the parent to the any element in the future {xk : k ∈ [L+ 1−M + rn, L+ 1]} is either contained in
A, or can be generated conditioned on A without touching further history {xk : k ≤ L−M}. Thus,
by the Markov property, conditioning on A, YL+1 is independent of the past {xk : k ≤ L −M},
and in particular, (Bl, Yl). Similarly, since B contains the parent of xl+1, conditioning on B, Yl is
independent of xl+1 and later tokens. Moreover, given B, the randomness of Yl comes from the
randomness of xl−M , . . . , xl−rn . Since l ≤ L −M + rn, we have L + 1 −M ≥ l + 1 − rn. As
a result, conditioning on B, the randomness of (YL+1, A) comes from tokens generated no earlier
than xl+1. Therefore, (YL+1, A) and Yl are conditionally independent given Bl. We visualize the
definition of YL+1, A, Bl, and Yl in Figure 10
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Figure 10: Illustration of the definition of YL+1, A, Bl, and Yl. When conditioned on A, YL+1

is independent of (Bl, Yl). When conditioned on Bl, Yl is independent of (A, YL+1).

Similarly, for Y ′
l = (xl, Xl−S′) defined using the subset S ′, we also parallel conditional independence

relations:

Y ′
L+1 ⊥⊥ (Bl, Y

′
l ) |A, (Y ′

L+1, A) ⊥⊥ Y ′
l |Bl, ∀l =M + 1, . . . , L−M + rn.

In particular, we also have

YL+1 ⊥⊥ (Bl, Y
′
l ) |A, (YL+1, A) ⊥⊥ Y ′

l |Bl, ∀l =M + 1, . . . , L−M + rn. (F.24)

Using {Yl, Y ′
l }, we define a joint distribution ppπ over 2 + |S| + |S ′| tokens as follows. For any

E ∈ X |S|+1 and E′ ∈ X |S′|+1, the probability mass function of ppπ is defined as

ppπ(YL+1 = E, Y ′ = E′)

:=
1

L−M

L∑
l=M+1

pπ(YL+1 = E, Y ′
l = E′)

=
1

L−M

L∑
l=M+1

∑
A,Bl

µπ(YL+1 = E |A) · PL−M+rn−l
π (A |Bl) · pπ(Y ′

l = E′ |Bl) · pπ(Bl).

(F.25)

Here, Y ′ is just a placeholder for Y ′
l as pp takes an average over l and does not depend on any specific

position index. The summation
∑

A,Bl
means we sum over all possible values that A and Bl can

take. In the last line of (F.25), we decompose the joint distribution pπ(YL+1 = E, Y ′
l = E′) into the

product of the conditional distributions by the Markov property in (F.24). That is,

pπ(YL+1 = E, Y ′
l = E′) =

∑
A,Bl

pπ(YL+1 = E, Y ′
l = E′, A,Bl)

=
∑
A,Bl

pπ(Bl) · pπ(YL+1 = E,A |Bl) · pπ(Yl = E′ |Bl)

=
∑
A,Bl

pπ(YL+1 = E |A) · pπ(A |Bl) · pπ(Yl = E′ |Bl) · pπ(Bl).

Here the second equality follows from the fact that (YL+1, A) ⊥⊥ Y ′
l |Bl and the last equality follows

from the fact that YL+1 ⊥⊥ (Bl, Y
′
l ) |A, which implies pπ(YL+1 = E |A,Bl) = pπ(YL+1 = E |A).

Moreover, we denote by P i
π the i-step transition kernel of the chain, which corresponds to the i-th

power of the transition matrix Pπ . Here, we are following the convention in the main text that

Pπ(Z
′, Z) = π(z′l | Zpa(l)) · 1(Z ′

l−rn+1:−1 = Zl−rn+1:−1). (F.26)

In the following, we always consider a fixed transition kernel π and omit the superscript/subscript π
in the matrix notation. We denote the transition matrix by Pπ and the stationary distribution by µπ

for a window of length rn. For the transition matrix, we index each row by the next rn-window Z ′

and each column by the current rn-window Z. Under this notation, since both A and Bl have lengths
rn, we have

pπ(A |Bl) = PL−M+rn−l
π (A,Bl). (F.27)

Here PL−M+rn−l
π (A |Bl) corresponds to the (A,Bl)-entry of the matrix (Pπ)

L−M+rn−l. Combin-
ing (F.24) and (F.27), we obtain the last equality in (F.25).
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In the sequel, to simplify the notation, we write Pπ and µπ as P and µ respectively. Let us consider
the reweighted transition kernel

K := diag
(√
µ
)−1 · P · diag (√µ) ,

where
√
µ is the element-wise square root of µ. Since the transition matrix is primitive by assumption

and having only one eigenvalue with value one on its spectral circle, we also have for K that the
leading eigenvalue is one with eigenvector

√
µ, i.e.

√
µ = K

√
µ and

√
µ⊤ =

√
µ⊤K. However, the

projection in the leading eigenspace (or the Perron projection) is not of our interest. The following
property of K will be useful in the subsequent proof.
Proposition F.12. For the reweighted transition matrix K, we have for any integer i ≥ 0

P i − µ1⊤ = diag (
√
µ) ·

(
K −√

µ
√
µ
⊤)i · diag(√µ−1)

Proof of Proposition F.12.

P i − µ1⊤ =
(
diag

(√
µ
)
·K · diag

(√
µ
)−1
)i

− µ1⊤

= diag
(√
µ
)
·
(
Ki −√

µ
√
µ
⊤
)
· diag

(√
µ
)−1

= diag (
√
µ) ·

(
K −√

µ
√
µ
⊤)i · diag(√µ−1)

,

where the last equality holds by noting that K −√
µ
√
µ⊤ project

√
µ to the zero vector, and for any

v ⊥ √
µ, we have (K −√

µ
√
µ⊤)v = Kv. Thus for any test vector x:

(K −√
µ
√
µ
⊤
)ix = (K −√

µ
√
µ
⊤
)i(x− ⟨√µ, x⟩ · √µ)

= Ki(x− ⟨√µ, x⟩ · √µ) = (Ki −√
µ
√
µ
⊤
)x.

This completes the proof of Proposition F.12.

Indeed, the second largest eigenvalue of K (in magnitude) determines the mixing rate of the chain.
Let λ denote the eigenvalue of K with the second largest magnitude.

Furthermore, if the transition kernel π admits a lower bound γ > 0, then we can guarantee that both
pπ and µπ admit a uniform lower bound.
Proposition F.13 (Uniform Lower Bound). Suppose π(· |Xpa) ≥ γ uniformly for some γ > 0
and pa = {−r1, . . . ,−rn}. Suppose X1:rn ∼ µ0(·) where µ0 ∈ ∆(X rn). Then for any S tokens
xl1 , xl2 , . . . , xlS such that ls ≥ rn for any s ∈ [S], we have

pπ(xl1 , . . . , xlS ) ≥ γS .

Using Proposition F.13, we show that the transition matrix Pπ is primitive.
Corollary F.14 (Uniform Lower Bound Implies Primitive Transition). Under the condition of
Proposition F.13, with π(· |Xpa) ≥ γ > 0, the transition matrix defined in (F.26) is primitive.

Proof of Corollary F.14. If the initial distribution is set to be any one-hot vector in ∆(X rn),
and taking xl1 , . . . , xlS in Proposition F.13 to be xrn+1, . . . , x2rn , we conclude that
pπ(Xrn+1:2rn |X1:rn) > 0 holds for any Xrn+1:2rn , X1:rn ∈ X rn . Recall from the definition
that for a primitive matrix P , we can find some positive integer k such that P k has all positive entries.
For our case, we can set k = rn and everything follows by noting that pπ(Xrn+1:2rn |X1:rn) =
P rn
π (Xrn+1:2rn , X1:rn).

Another corollary of Proposition F.13 is that, if we take µ0 = µπ , which is the stationary distribution,
we can replace pπ in Proposition F.13 by µπ .
Corollary F.15. Suppose π(· |Xpa) ≥ γ uniformly for some γ > 0 and pa = {−r1, . . . ,−rn}. For
the stationary distribution µπ and S tokens xl1 , xl2 , . . . , xlS such that ls ≥ rn for any s ∈ [S], we
have µπ(xl1 , . . . , xlS ) ≥ γS .

We prove Proposition F.13 as follows.
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Proof of Proposition F.13. Without loss of generality, suppose that M ≤ l1 < l2 < . . . < lS . We
will prove the statement by induction on the number of tokens S. If S = 1, we can rewrite

pπ(xl1) =
∑

Xpa(l1)

π(xl1 |Xpa(l1))p
π(Xpa(l1)) ≥

∑
Xpa(l1)

γ · pπ(Xpa(l1)) ≥ γ.

Now, suppose the statement holds for 1, 2, . . . , S − 1. Let Y = xl1 , . . . , xls−1 . Then, we have

pπ(xl1 , . . . , xlS ) =
∑

Xpa(lS)\Y

π(xlS |Xpa(lS)) · pπ(Y ) · pπ(Xpa(lS) \ Y )

≥
∑

Xpa(lS)\Y

γ · pπ(Y ) · pπ(Xpa(lS) \ Y ) = γ · pπ(Y ) ≥ γS ,

where the last inequality holds by the induction condition. Hence, we finish the proof.

Before analyzing ppπ , we first study a simpler convergence result: quantifying the closeness between∑L
l=M+1 η

L−lpπ(Bl = b)/
∑L

l=M+1 η
L−l and µπ(b) for certain values of η ∈ (0, 1].

Lemma F.16. Following the notations introduced above, for the Markov chain with parent set
pa = {−r1, . . . ,−rn}, let Dχ2(µ0 ∥µπ) be the χ2-divergence between the initial distribution µ0

and the stationary distribution µπ over the first rn tokens. Take any S ⊆ [M ] and let Yl = (xl, Xl−S)
for l =M + 1, . . . , L+ 1. Suppose L/2 ≥M ≥ rn. We have∥∥∥∥

∑L
l=M+1 p

π(Yl = ·)
L−M

− µπ(YL+1 = ·)
∥∥∥∥
TV

≤
2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
, (F.28)

∥pπ(YL+1 = ·)− µπ(YL+1 = ·)∥TV ≤ λL−M
√
Dχ2(µ0 ∥µπ) + 1. (F.29)

Proof of Lemma F.16. Let cl = ηL−l/
∑L−M+rn

l=rn
ηL−l, where η ∈ [0, 1] is a constant to be deter-

mined. Denote by µ0, a vector of length |X |rn , the initial distribution of the chain. We begin by
quantifying the total variation (TV) distance:∥∥∥∥

∑L−M+rn
l=rn

λL−lpπ(Bl = ·)∑L−M+rn
l=rn

λL−l
− µπ(·)

∥∥∥∥
TV

=

∥∥∥∥ L−M+rn∑
l=rn

cl · (pπ(Bl = ·)− µπ(·))
∥∥∥∥
TV

.

Let b ∈ X rn , representing the value for a length-rn window. Using matrix notation, we have:

L−M+rn∑
l=rn

cl (p
π(Bl = b)− µπ(b)) =

L−M+rn∑
l=rn

cl · 1⊤
b P

l−rn(µ0 − µ) =

L−M+rn∑
l=rn

cl · 1⊤
b (P

l−rn − µ1⊤)µ0

=

L−M+rn∑
l=rn

cl · 1⊤
Bdiag (

√
µ)
(
K −√

µ
√
µ
⊤)l−rn

diag (
√
µ)

−1
µ0,

where 1b is the indicator vector corresponding to b. The last equality follows from Proposition F.12.
For any test vector u ∈ {0, 1}|X |rn , using the variational representation of TV distance:∥∥∥∥ L−M+rn∑

l=rn

cl (p
π(Bl = ·)− µπ(·))

∥∥∥∥
TV

= max
u∈{0,1}|X|rn

u⊤
L−M+rn∑

l=rn

cl (p
π(Bl = ·)− µπ(·))

= max
u∈{0,1}|X|rn

L−M+rn∑
l=rn

cl · u⊤diag (
√
µ) ·

(
K −√

µ
√
µ
⊤)l−rn · diag (√µ)−1 · µ0

≤
L−M+rn∑

l=rn

cl · λl−rn ·
∥∥∥diag (√µ)−1 · µ0

∥∥∥
2
=

L−M+rn∑
l=rn

cl · λl−rn ·
√
Dχ2(µ0 ∥µπ) + 1,

(F.30)
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where the inequality holds by ∥u⊤diag
(√
µ
)
∥2 ≤ ∥√µ∥2 = 1 and K −√

µ
√
µ⊤ has leading eigen-

value with magnitude λ. The last identity follows directly from the definition of the χ2-divergence
that Dχ2(µ0 ∥µπ) + 1 =

∑
b µ0(b)

2/µπ(b).

Substituting the definition of cl, we have∥∥∥∥∥
∑L−M+rn

l=rn
ηL−lpπ(Bl = b)∑L−M+rn

l=rn
ηL−l

− µπ(A = b)

∥∥∥∥∥
TV

≤
∑L−M+rn

l=rn
ηL−l · λl−rn ·

√
Dχ2(µ0 ∥µπ) + 1∑L−M+rn

l=rn
ηL−l

.

We consider two special cases. In the first case, we set η = λ, which gives us∥∥∥∥∥
∑L−M+rn

l=rn
λL−lpπ(Bl = b)∑L−M+rn

l=rn
λL−l

− µπ(A = b)

∥∥∥∥∥
TV

≤
∑L−M+rn

l=rn
λL−rn ·

√
Dχ2(µ0 ∥µπ) + 1

(1− λL−M )/(1− λ)

≤ L · λL−rn · (1− λ)

1− λL−M
·
√
Dχ2(µ0 ∥µπ) + 1.

In the second case, we set η = 1, which gives us∥∥∥∥∥
∑L−M+rn

l=rn
pπ(Bl = ·)

L−M
− µπ(A = ·)

∥∥∥∥∥
TV

≤
∑L−M+rn

l=rn
λl−rn

√
Dχ2(µ0 ∥µπ) + 1

L−M
≤
√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ)
.

Note that the TV distance is an f -divergence. Thus, we can use the data processing inequality to obtain
the desired result for Yl from the above inequality. To do so, note that

∑L
l=M+1 p

π(Yl = ·)/(L−M)

and µπ(YL+1 = ·) can be transformed from
∑L−M+rn−1

l=rn
pπ(Bl = ·)/(L−M) and µπ(A = ·) by

the same emission kernel
pπ(YL+1 = · |A = ·) = pπ(Yl = · |Bl−M+rn = ·) = µπ(YL+1 = · |A = ·) = µπ(Yl = · |Bl−M+rn = ·).
Therefore, by the data processing inequality, it holds that∥∥∥∥
∑L

l=M+1 p
π(Yl = ·)

L−M
− µπ(YL+1 = ·)

∥∥∥∥
TV

≤
∥∥∥∥
∑L−M+rn

l=rn
pπ(Bl = ·)

L−M
− µπ(A = ·)

∥∥∥∥
TV

≤
√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ)
.

Similarly for pπ(YL+1 = ·) and µπ(·), we have
∥pπ(YL+1 = ·)− µπ(YL+1 = ·)∥TV ≤ ∥pπ(A = ·)− µπ(A = ·)∥TV

≤ max
u∈{0,1}|X|rn

u⊤ · diag (√µ) ·
(
K −√

µ
√
µ
⊤)L−M · diag (√µ)−1 · µ0 ≤ λL−M

√
Dχ2(µ0 ∥µπ) + 1,

where the latter two inequality follows from the same arguments as in (F.30). Hence, the proof is
completed.

We have established that the average
∑L

l=M+1 p
π(Yl = ·)/(L −M) converges to µπ(A = ·) in

total variation distance. This represents a “first-order” convergence since it involves the average
of the marginal distribution of Yl. However, the quantity of interest in (F.25) is the average of the
joint distribution of YL+1 and Yl, which concerns “second-order” convergence. This is studied in the
following lemma.
Lemma F.17. Following the notations introduced above, for the Markov chain with parent set
pa = {−r1, . . . ,−rn}, letDχ2(µ0 ∥µπ) be the χ2-divergence between the initial distribution µ0 and
the stationary distribution µπ over the first rn tokens. Take any S,S ′ ⊆ [M ] and let Yl = (xl, Xl−S)
and Y ′

l = (xl, Xl−S′) for l =M + 1, . . . , L+ 1. Suppose L/2 ≥M ≥ rn. For ppπ defined in (F.25),
we have

∥ppπ(YL+1 = ·, Y ′ = ·)− µπ(YL+1 = ·)× µπ(Y ′ = ·)∥TV ≤ 2M

L
+

4
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) ·
√
minE µπ(YL+1 = E)

.

In particular, we have∥∥∥∥ppπ(YL+1 = ·, Y ′ = ·)− µπ(YL+1 = ·)×
(

1

L−M

L∑
l=M+1

pπ(Y ′
l = ·)

)∥∥∥∥
TV

≤ 2M

L
+

2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) ·
√
minE µπ(YL+1 = E)

. (F.31)
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Proof of Lemma F.17. Let us take µπ(E) · (L −M)−1
∑L

l=M+1 p
π(Yl = E′) as the intermediate

distribution, and we have by (F.25) that

ppπ(YL+1 = E, Y ′ = E′)− µπ(YL+1 = E) ·
(

1

L−M

L∑
l=M+1

pπ(Yl = E′)

)

=
1

L−M

L−M+rn∑
l=M+1

∑
A,Bl

µπ(YL+1 = E |A) ·
(
PL−l−(M−rn)(A |Bl)− µπ(A)

)
· pπ(Y ′

l = E′ |Bl) · pπ(Bl)︸ ︷︷ ︸
(I)

+
1

L−M

L∑
l=L−M+rn+1

(pπ(YL+1 = E, Y ′
l = E′)− µπ(YL+1 = E)pπ(Y ′

l = E′))︸ ︷︷ ︸
(II)

. (F.32)

where we use the fact that
∑

A µ
π(YL+1 = E |A)µπ(A) = µπ(Y = E) for the first line. The second

term on the right hand side can be easily controlled as we already have an L−1 factor. We let TV0 be
the total variation distance of the second term. It is easy to see that

TV0 :=
1

2

∑
E,E′

|(II)| ≤ M − rn
L−M

≤ M

L−M
,

where we remark that (II) is a function of both E and E′, and the total variation distance is just taking
the sum of the absolute values of the differences. Here, we also use the fact that L ≥ 2M . Using
Proposition F.12, we can also rewrite the first term on the right hand side of (F.32) in the matrix form
as

(I) =
1

L−M

L−M+rn∑
l=M+1

µπ(YL+1 = · |A = ·) · diag (√µ) ·
(
K −√

µ
√
µ
⊤)L−l−(M−rn) · diag (√µ)−1

· diag(pπ(Bl = ·)) · pπ(Y ′
l = · |Bl = ·)⊤.

When considering the ℓ1-norm of the above term, we introduce a test matrix U of shape |X ||YL+1| ×
|X ||YL+1| with each element of U chosen from {0, 1}. Let TV1 be the total variation distance of the
first term (I). Then, we have

TV1 ≤ max
U

Tr

[
1

L−M

L−M+rn∑
l=M+1

µπ(YL+1 = · |A = ·) · diag (√µ) ·
(
K −√

µ
√
µ
⊤)L−l−(M−rn)

· diag (√µ)−1 · diag(pπ(Bl = ·)) · pπ(Y ′
l = · |Bl = ·)⊤ · U(·, ·)⊤

]
.

To upper bound this quantity, we consider each row of U as U(E, ·) = u(· |E)⊤. Note that u(· |E)
is also a {0, 1}-valued vector. By expanding the trace, we have

TV1 ≤
∑
E

max
u(· |E)

1

L−M

L−M+rn∑
l=M+1

µπ(YL+1 = E |A = ·) · diag (√µ)

·
(
K −√

µ
√
µ
⊤)L−l−(M−rn) · diag (√µ)−1 · diag(pπ(Bl = ·)) · pπ(Y ′

l = · |Bl = ·)⊤ · u(· |E).

Note that the ℓ2-norm of the vector in the last line can be upper bounded by∥∥∥(K −√
µ
√
µ
⊤)L−l−(M−rn) · diag (√µ)−1 · diag(pπ(Bl = ·)) · pπ(Y ′

l = · |Bl = ·)⊤ · u(· |E)
∥∥∥
2

≤
∥∥∥λL−l−(M−rn) · diag (√µ)−1 · diag(pπ(Bl = ·)) · 1

∥∥∥
2
= λL−l−(M−rn)

∥∥diag (√µ)−1 · pπ(Bl = ·)
∥∥
2

= λL−l−(M−rn)
√
Dχ2(pπ(Bl = ·) ∥µπ(Bl = ·)) + 1 ≤ λL−l−(M−rn)

√
Dχ2(µ0 ∥µπ) + 1,

(F.33)
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where the first inequality holds by noting that pπ(Y ′
l = · |Bl = ·)⊤ · u(· |E) is a vector with

element within [0, 1], and also invoking the operator norm of the matrix rK −√
µ
√
µ⊤. The second

identity follows from the definition of the χ2-divergence that Dχ2(pπ(Bl = ·) ∥µπ(·)) + 1 =∑
b p

π(Bl = b)2/µπ(b). The last inequality is the data processing inequality as pπ(Bl = ·) can be
transformed from µ0(Brn) and µπ(Bl) can be transformed from µπ(Brn) by the same emission
kernel µπ(Bl = · |Brn = ·). Consequently, we have for the TV distance that

TV1 ≤ 1

L−M

L−M+rn∑
l=M+1

λL−l−(M−rn) ·
√
Dχ2(µ0 ∥µπ) + 1

· max
{v(· |E)}E : ∥v(· |E)∥2≤1

∑
E,A

µπ(YL+1 = E |A) ·
√
µπ(A) · v(A |E)

≤
√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ)
· max
{v(· |E)}E : ∥v(· |E)∥2≤1

∑
A,E

µπ(A |YL+1 = E)√
µπ(A)

· v(A |E) · µπ(YL+1 = E)

≤ max
{v(· |E)}E : ∥v(· |E)∥2≤1

√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ)
·
√
Iχ2(A;YL+1) + 1 ·

√∑
A,E

v(A |E)2 · µπ(YL+1 = E).

where in the first equality, we use the variational form of the ℓ2-norm for vector µπ(YL+1 = E |A =
·) · diag(√µ). In the second inequality, we apply (F.33) and use the Bayes rule. The last inequality
follows from the Cauchy-Schwarz inequality. Here, the mutual information Iχ2(A;YL+1) + 1 can be
upper bounded by

Iχ2(A;YL+1) + 1 =
∑
A,E

µπ(YL+1 = E |A)
µπ(YL+1 = E)

· µπ(YL+1 = E,A) ≤ 1

minE µπ(YL+1 = E)
,

and the last term involving v(A |E) can be upper bounded by 1 thanks to the constraint on v(· |E).
In conclusion,

TV1 ≤
√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ) ·
√
minE µπ(YL+1 = E)

.

Lastly, let us relate the intermediate distribution to the final distribution µπ(Y = ·)× µπ(Y ′ = ·),
where we define the total variation distance TV2 as

TV2 :=

∥∥∥∥µπ(·) ·
(

1

L−M

L∑
l=M+1

pπ(Y ′
l = ·)

)
− µπ(·) · µπ(·)

∥∥∥∥
TV

=

∥∥∥∥( 1

L−M

L∑
l=M+1

pπ(Y ′
l = ·)

)
− µπ(·)

∥∥∥∥
TV

.

Invoking (F.28) of Lemma F.16, we have this quantity upper bounded by

TV2 ≤
√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ)
.

Using the triangular inequality for the total variation distance, we have

∥ppπ(YL+1 = ·, Y ′ = ·)− µπ(YL+1 = ·)× µπ(Y ′ = ·)∥TV

≤ TV0 +TV1 +TV2

≤ M

L−M
+

2
√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ) ·
√
minE µπ(YL+1 = E)

≤ 2M

L
+

4
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ) ·
√
minE µπ(YL+1 = E)

,

and the upper bound for (F.31) follows by the same arguments. Hence, the proof is completed.

In the following, we use a similar technique as in Lemma F.17 to derive a bound for the chi-square
divergence.
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Lemma F.18. For the χ2-divergence between the empirical distribution (L − M)−1
∑L

l=M+1

1(Yl = ·) and the stationary distribution µπ(·), we have

E
[
Dχ2

(
1

L−M

L∑
l=M+1

1(Yl = ·)
∥∥∥µπ(YL+1 = ·)

)]
≤

4(1− λ)−1
√
Dχ2(µ0 ∥µπ) + 1 + 16M

L ·minE µπ(YL+1 = E)
,

where the expectation is with respect to X ∼ pπ .

Proof of Lemma F.18. By definition of the χ2-divergence, what we aim to bound is just

E
[∑

E

(
(L−M)−1

L∑
l=M+1

1(Yl = E)− µπ(E)

)2/
µπ(E)

]

= E
[∑

E

(L−M)−2
∑L

l,l′=M+1 1(Yl = Yl′ = E)− µπ(E)2

µπ(E)

]

= E
[∑

E

L∑
l,l′=M+1

1(Yl = Yl′ = E)

(L−M)2µπ(E)
− 1

]
=
∑
E

L∑
l,l′=M+1

pπ(Yl = Yl′ = E)

(L−M)2µπ(E)
− 1.

To study the above quantity, for l ≥ 2M − rn + 2, we define

J1(l) :=
∑
E

l−M+rn−1∑
l′=M+1

pπ(Yl = Yl′ = E)

(L−M)2µπ(E)
− l − 2M + rn

(L−M)2
.

Following our convention, we let Al = Xl−M :l−M+rn−1 and Bl′ = Xl′−rn+1:l′ be two length-rn
window and by the Markov property, we have

Yl+1 ⊥⊥ (Bl′ , Yl′) |Al, (Yl+1, Bl) ⊥⊥ Yl′ |Bl′ .

Let us fix an index l ≥ 2M − rn + 2 and take a summation over M + 1 ≤ l′ ≤ l −M + rn − 1.
Expanding the joint distribution, we have

J1(l) :=
1

(L−M)2

l−M+rn−1∑
l′=M+1

∑
E,Al,Bl′

µπ(Yl = E |Al) ·
(
P l−l′−M+rn−1(Al |Bl′)− µπ(Al)

)
· pπ(Yl′ = E |Bl′) · pπ(Bl′) · µπ(Yl′ = E)−1

=
1

(L−M)2

l−M+rn−1∑
l′=M+1

Tr
[
µπ(Yl = · |Al = ·) · diag (√µ) ·

(
K −√

µ
√
µ
⊤)l−l′−M+rn−1

· diag
(√
µ
)−1 · diag(pπ(Bl′ = ·)) · pπ(Yl′ = · |Bl′ = ·)⊤ · diag(µπ(Yl′ = ·)−1)

]
=

1

(L−M)2

l−M+rn−1∑
l′=M+1

Tr
[
diag(µπ(Yl′ = ·)−1/2) · µπ(Yl = · |Al = ·) · diag (√µ)

·
(
K −√

µ
√
µ
⊤)l−l′−M+rn−1 · diag

(√
µ
)−1 · diag(pπ(Bl′ = ·))

· pπ(Yl′ = · |Bl′ = ·)⊤ · diag(µπ(Yl′ = ·)−1/2)
]
,

where the first identity follows from the fact that∑
E,Al,B′

l

µπ(Yl = E |Al) · µπ(Al) · pπ(Yl′ = E |Bl′) · pπ(Bl′) · µπ(Yl′ = E)−1

=
∑
E

pπ(Yl′ = E) · µπ(Yl′ = E) · µπ(Yl′ = E)−1 = 1,

and the second identity follows from Proposition F.12. We next invoke the Cauchy-Schwarz inequality
for trace, i.e., Tr(W⊤V )2 ≤ Tr(W⊤W ) Tr(V ⊤V ), where we take

W⊤ = diag(µπ(Yl = ·)−1/2) · µπ(Yl = · |Al = ·) · diag(√µ) ·
(
K −√

µ
√
µ
⊤)l−l′−M+rn−1

,

V = diag
(√
µ
)−1 · diag(pπ(Bl′ = ·)) · pπ(Yl′ = · |Bl′ = ·)⊤ · diag(µπ(Yl′ = ·)−1/2)

= diag
(√
µ
)
· pπ(Yl′ = · |Bl′ = ·)⊤ · diag(µπ(Yl′ = ·)−1/2)
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Note that√
Tr(W⊤W ) ≤ λl−l′−M+rn−1 ·

√
Tr (diag(µπ(Yl = ·)−1)µπ(Yl = · |A = ·)diag (µ)µπ(Yl = · |A = ·)⊤)

= λl−l′−M+rn−1 ·

√√√√∑
Al,Yl

µπ(Yl, Al)2

µπ(Yl) · µπ(Al)
.

Following the same calculation, we have√
Tr(V ⊤V ) =

√√√√ ∑
Yl′ ,Bl′

pπ(Yl′ , Bl′)2

µπ(Yl′)µπ(Bl′)
.

Therefore,

J1(l) ≤
1

(L−M)2

l−M+rn−1∑
l′=M+1

λl−l′−M+rn−1 ·

√√√√∑
Al,Yl

µπ(Yl, Al)2

µπ(Yl) · µπ(Al)
·
∑

Yl′ ,Bl′

pπ(Yl′ , Bl′)2

µπ(Yl′)µπ(Bl′)
.

We further have∑
Yl′ ,Bl′

pπ(Yl′ , Bl′)
2

µπ(Yl′)µπ(Bl′)
≤ max

Yl′ ,Bl′

{
pπ(Yl′ |Bl′)

µπ(Yl′)

}
·
∑
Bl′

pπ(Bl′)
2

µπ(Bl′)

≤
Dχ2(pπ(Bl′ = ·) ∥µπ(Bl′ = ·)) + 1

minE µπ(YL+1 = E)
≤

Dχ2(µ0 ∥µπ) + 1

minE µπ(YL+1 = E)
,

where the last inequality holds by the data processing inequality. Similarly, we have∑
Al,Yl

µπ(Yl, Al)
2

µπ(Yl) · µπ(Al)
≤ max

Yl,Al

{
µπ(Yl |Al)

µπ(Yl)

}
≤ 1

minE µπ(YL+1 = E)
.

Therefore, we conclude that

J1(l) ≤
√
Dχ2(µ0 ∥µπ) + 1

(L−M)2(1− λ) ·minE µπ(YL+1 = E)
,

and

2

L∑
l=2M−rn+2

J1(l) ≤
2
√
Dχ2(µ0 ∥µπ) + 1

(L−M)(1− λ) ·minE µπ(YL+1 = E)
,

where we double the value as l > l′ only contributes to half of the terms in the double summation.
Note that in the above summation for l > l′, we only include terms satisfying l − l′ ≥M − rn + 1
and l − (M + 1) ≥M − rn + 1. For the remaining (l, l′) not included above, each term is bounded
above by∣∣∣∣ 1

(L−M)2

(∑
E

pπ(Yl = Yl′ = E)

µπ(E)
− 1

)∣∣∣∣ ≤ 1

(L−M)2 minE µπ(YL+1 = E)
,

and we have no more than 4L(M − rn + 1) of these terms in total. As a result, we conclude with
L/2 ≥M ≥ rn that

J1 ≤
4(1− λ)−1

√
Dχ2(µ0 ∥µπ) + 1 + 16M

L ·minE µπ(YL+1 = E)
.

Hence, we complete the proof of Lemma F.18.

Proposition F.19. Let us define

rµπ
X(z, Z−S⋆) =

µπ(z, Z−S⋆) exp
(
a ·
∏

h∈S⋆ 1(z−h = xL+1−h)
)∑

z′,Z′
−S⋆

µπ(z′, Z ′
−S⋆) exp

(
a ·
∏

h∈S⋆ 1(z′−h = xL+1−h)
) ,
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where Z−S⋆ = (z−h)h∈S⋆ and µπ is the stationary distribution of the Markov chain over a window
of size M + 1. We also treat rµπ

X(·) as a length |X | vector where X is the state space of the Markov
chain. Let pνπX(z, Z−S⋆) =

∑L
l=M+1 σ

⋆
l 1(xl = z,Xl−S⋆ = Z−S⋆) where

σ⋆
l =

exp(a ·
∏

h∈S⋆ 1(xl−h = xL+1−h))∑L
l′=M+1 exp(a ·

∏
h∈S⋆ 1(xl′−h = xL+1−h))

.

Then, we have

EX [∥rµπ
X(z = ·, Z−S⋆ = ·)− pνπX(z = ·, Z−S⋆ = ·)∥1] ≤

4
(
(1− λ)−1

√
Dχ2(µ0 ∥µπ) + 1 + 4M

)1/2
L1/2 ·minxL+1,XL+1−S⋆ µπ(xL+1, XL+1−S⋆)

.

Proof of Proposition F.19. To unify the notations, we let Z = (z−M , . . . , z−1) and define

pµπ
X(z, Z−S⋆) =

1

L−M

L∑
l=M+1

1(xl = z,Xl−S⋆ = Z−S⋆),

R(Z−S⋆ , XL+1−S⋆) = exp (a · 1(Z−S⋆ = xL+1−S⋆)) .

Using these notations, we can define the normalizing factor in rµπ
X and y⋆X respectively as

Φ =
∑

z,Z−S⋆

µπ(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆), pΦ =
∑

z,Z−S⋆

pµπ
X(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆).

We also define

ϕ(z, Z−S⋆) = µπ(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆), pϕ(z, Z−S⋆) = pµπ
X(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆).

We can then rewrite the objective as

∥rµπ
X(z = ·, Z−S⋆ = ·)− pνπX(z = ·, Z−S⋆ = ·)∥1

=
∑

z,Z−S⋆

∣∣∣∣ϕ(z, Z−S⋆)

Φ
−

pϕ(z, Z−S⋆)

pΦ

∣∣∣∣ ≤ ∑
z,Z−S⋆

pϕ(z, Z−S⋆) · |pΦ− Φ|+ |ϕ(z, Z−S⋆)− pϕ(z, Z−S⋆)| · pΦ

Φ · pΦ

=
|pΦ− Φ|+

∑
z,Z−S⋆

|ϕ(z, Z−S⋆)− pϕ(z, Z−S⋆)|
Φ

≤
2
∑

z,Z−S⋆
|ϕ(z, Z−S⋆)− pϕ(z, Z−S⋆)|

Φ
.

Furthermore, notice that∑
z,Z−S⋆

|ϕ(z, Z−S⋆)− pϕ(z, Z−S⋆)|
Φ

=

∑
z,Z−S⋆

|(µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆)) ·R(Z−S⋆ , XL+1−S⋆)|∑

z,Z−S⋆
µπ(z, Z−S⋆) ·R(Z−S⋆ , XL+1−S⋆)

≤
∑

z,Z−S⋆
|(µπ(z, Z−S⋆)− pµπ

X(z, Z−S⋆))|+ (ea − 1)
∑

z,Z−S⋆∈ΓX
|µπ(z, Z−S⋆)− pµπ

X(z, Z−S⋆)|
1 + (ea − 1) ·

∑
z,Z−S⋆∈ΓX

µπ(z, Z−S⋆)

≤
∑

z,Z−S⋆

|µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆)|+

∑
z,Z−S⋆∈ΓX

|(µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆))|∑

z,Z−S⋆∈ΓX
µπ(z, Z−S⋆)

.

(F.34)

where we define ΓX = {Z−S⋆ : Z−S⋆ = XL+1−S⋆}. Note that when Z−S⋆ ∈ ΓX , we have
R(Z−S⋆ , XL+1−S⋆) = ea and when Z−S⋆ /∈ ΓX , we have R(Z−S⋆ , XL+1−S⋆) = 1. For the first
term on the right-hand side of (F.34), we have by Cauchy-Schwarz that

EX

[ ∑
z,Z−S⋆

|µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆)|

]
≤
(
EX

[ ∑
z,Z−S⋆

(µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆))2

µπ(z, Z−S⋆)

])1/2

≤
(

4(1− λ)−1
√
Dχ2(µ0 ∥µπ) + 1 + 16M

L ·minxL+1,XL+1−S⋆ µπ(xL+1, XL+1−S⋆)

)1/2

,
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where in the last inequality, we invoke Lemma F.18 where we take Yl = xl in the lemma. For the
second term on the right hand of (F.34), we note that

EX

[∑
z,Z−S⋆∈ΓX

|(µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆))|∑

z,Z−S⋆∈ΓX
µπ(z, Z−S⋆)

]
≤
∑
E,z

EX

[
|µπ(z, Z−S⋆ = E)− pµπ

X(z, Z−S⋆ = E)|
µπ(Z−S⋆ = E)

· 1(XL+1−S⋆ = E)

]

≤
∑
E,z

(
EX

[(µπ(z, Z−S⋆ = E)− pµπ
X(z, Z−S⋆ = E)√

µπ(Z−S⋆ = E)

)2]
· p

π(XL+1−S⋆ = E)

µπ(Z−S⋆ = E)

)1/2

≤
(
EX

[∑
E,z

(µπ(z, Z−S⋆ = E)− pµπ
X(z, Z−S⋆ = E))

2

µπ(Z−S⋆ = E)

]
·
∑
E,z

pπ(XL+1−S⋆ = E)

µπ(Z−S⋆ = E)

)1/2

,

(F.35)

where the last two inequalities follow from the Cauchy-Schwarz inequality. We have an upper bound
for the second term on the right-hand side of (F.35) that(∑

E,z

pπ(XL+1−S⋆ = E)

µπ(Z−S⋆ = E)

)1/2

≤

√
1

minE µπ(Z−S⋆ = E)
.

We can also apply Lemma F.18 to the first term with YL+1 = (xL+1, XL+1−S⋆) and conclude that(
EX

[∑
E,z

(µπ(z, Z−S⋆ = E)− pµπ
X(z, Z−S⋆ = E))

2

µπ(Z−S⋆ = E)

])1/2

≤
(

4(1− λ)−1
√
Dχ2(µ0 ∥µπ) + 1 + 16M

L ·minxL+1,XL+1−S⋆ µπ(xL+1, XL+1−S⋆)

)1/2

.

In summary, we have

EX [∥rµπ
X(ek)− y⋆(k)∥1]

≤ 2

minxL+1,XL+1−S⋆ µπ(xL+1, XL+1−S⋆)
·
(
(1− λ)−1

√
Dχ2(µ0 ∥µπ) + 1 + 4M

L

)1/2

+ 2

(
(1− λ)−1

√
Dχ2(µ0 ∥µπ) + 1 + 4M

L ·minxL+1,XL+1−S⋆ µπ(xL+1, XL+1−S⋆))

)1/2

.

Note that the second term is dominated by the first term. Thus, we conclude the proof of Proposi-
tion F.19.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The convergence results are established in Theorem 3.6 and we relate the
learned transformer model to the generalized induction head in the following discussions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed in §B.2

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full set of assumptions in Assumption 3.3 and Assumption 3.5.
We provide a complete and correct proof in §E and §F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the complete details for our numerical experiment in §B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not release the data and code, but the details provided in §B are sufficient
for reproducing the synthetic data and the experiment results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training and test details in §B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars because the training behavior is consistent across
different runs, and the goal of the experiments is to corroborate our main theoretical results,
rather than achieving better performance on benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We provide information about compute resources in §B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and we confirm that our
submission adheres to the guidelines therein.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: In the current paper, we focus on developing theoretical understanding of
transformers, and the goal is to analyze existing architectures instead of proposing new
models for better performance. Therefore, we do not see immediate societal impact of our
paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We use common and standard Python libraries and write our own code for the
experiments. Also, the data used in experiments is synthetic.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets in the current paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We perform theoretical analysis and numerical simulations on synthetic data,
and the process is not related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As clarified in the answer above, our study is not related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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