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ABSTRACT

Recent advances in Open Vocabulary Object Detection (OVOD) have shown
strong performance on standard benchmarks, but performance drops sharply un-
der out-of-distribution (OOD) shifts. Continual learning offers a potential remedy
by sequentially integrating new tasks, yet existing methods often struggle to bal-
ance retaining the pre-trained model capabilities with adapting to new tasks, and
usually require retraining under specific task orders. To address these limitations,
we observe that model editing naturally lends itself to this setting, as it enables
efficient knowledge injection while retaining prior capabilities. Building on this
insight, we introduce Automatically Balanced Model Editing (ABME), which in-
jects new task knowledge into the powerful OVOD models while preserving the
model’s original abilities. We first store compact key–value representations with
storage cost independent of task volume. Then we leverage the stored KV ma-
trices to automatically balance the new and old knowledge for varying learning
scenarios, supporting order-agnostic task insertion or removal without additional
retraining. Experiments show that ABME consistently achieves a better trade-off
between maintaining pre-trained performance and adapting to diverse OOD tasks
compared to existing continual learning approaches for open-vocabulary object
detection, and generalizes seamlessly across different models and task scales.

1 INTRODUCTION

OVOD has emerged as a promising paradigm that leverages vision–language pretraining to rec-
ognize a wide range of object categories without exhaustive annotations (Gu et al., 2021; Li et al.,
2022b). Despite impressive progress on in-distribution benchmarks, recent studies reveal that OVOD
models still struggle under distribution shifts, such as novel domains or previously unseen categories,
leading to substantial performance degradation (Ilyas et al., 2024; Chhipa et al., 2024). In practice,
domain shift can arise from changes in image style, capture conditions, or resolution, which sig-
nificantly affect the reliability of detection even when the object categories remain the same. This
limitation poses a critical challenge for deploying OVOD systems in real-world scenarios, where
adaptability to diverse environments and continual integration of new knowledge are essential.

The conventional approach for continuously extending OVOD models to handle new concepts in
multiple OOD domains is continual learning, which incrementally integrates new tasks while re-
ducing forgetting across the sequence. Yet, they generally do not explicitly consider the pre-trained
knowledge when balancing with the new capabilities required for multiple tasks, and they typically
assume a fixed task order, limiting flexibility and efficiency; they are also highly order-sensitive,
where small variations can yield large performance gaps (Lai et al., 2025; Hacohen & Tuytelaars,
2024). While few shot fine-tuning can perform well on a single few-shot dataset (Pan et al., 2025),
it does not scale across multiple domains and frequently degrades base performance. These limita-
tions motivate the search for a more lightweight and flexible alternative.

Model editing (Mitchell et al., 2021; Fang et al., 2024) has recently emerged as a lightweight ap-
proach for updating large pre-trained models, where small parameter modifications can effectively
inject new knowledge without retraining the entire model. Importantly, it enables the insertion of
multiple new concepts while preserving the model’s original capabilities, making it well-suited for
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Figure 1: Comparison of paradigms for Open-Vocabulary Object Detection (OVOD) under domain
shifts. (a) Pretrained models fail on OOD tasks. (b) Traditional continual learning adapts sequen-
tially but suffers from order sensitivity, tuning overhead, and forgetting. (c) Our Auto-Balanced
Model Editing (ABME) injects knowledge via key–value statistics, automatically balancing new
and old tasks, achieving order-agnostic, scalable, and adaptive learning.

continual extension in complex domains. In our OVOD few-shot experiments, we observe that
fine-tuning only the Feed-Forward Network (FFN) parameters achieves performance comparable
to full-model fine-tuning (see Table 11), suggesting that lightweight adaptation can be as effective
as updating the entire model. Inspired by these experiments, we find that model editing provides
a natural paradigm for continuously extending new concepts to OVOD models. However, while
model editing has been predominantly explored in the context of large language models (LLMs), its
adaptation to OVOD raises unique challenges that remain underexplored. As illustrated in Fig. 1,
our approach contrasts with traditional continual learning by achieving order-agnostic, scalable, and
adaptive knowledge integration.

To enable model editing in OVOD, we fine-tune only the FFN layers on the support set to obtain a
task-adapted model, then pass the new-concept data through it to record the input (keys) and output
(values) at the edited FFN layer as KV pairs. We store compact KV matrices independent of task
number, ensuring scalability without extra memory cost. Yet injecting new knowledge through these
KV matrices still requires tuning a hyperparameter to balance new and old knowledge across models
and task scales, which is inefficient and impractical. To overcome this issue, we propose to use
the KV matrices themselves to automatically adjust this balance, eliminating the need for tedious
hyperparameter tuning and enabling a general solution applicable across diverse models and task
volumes. Our approach offers several advantages: it ensures Reliability, effectively incorporating
new knowledge and achieving up to 96.4% of fine-tuned performance on novel tasks; guarantees
Locality, by preserving 94.1% of the pre-trained model’s original capability; and provides strong
Flexibility, as we can quickly perform direct combination or removal of task-specific KV statistics
without retraining, making adaptation order-agnostic and scalable across diverse domains.

Our main contributions are as follows:

• Introducing model editing to OVOD: To the best of our knowledge, we are the first to
bring model editing into the OVOD task, and we propose a principled way to construct
key–value (KV) knowledge pairs for adapting new concepts.

• Auto-balanced model editing: We design a data-adaptive balancing strategy that automat-
ically reconciles new and old knowledge, maintaining robustness across different models
and task scales without manual trade-off tuning.

• Extensive validation and generality: We conduct comprehensive experiments on 19 few-
shot datasets and validate our method on two distinct open-vocabulary detection models,
Grounding DINO and GLIP, demonstrating its generality and scalability.
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2 RELATED WORK

Model editing. Model editing aims to incorporate new knowledge while preserving performance
on unrelated tasks, and existing approaches fall into two categories. Methods that preserve the
model’s parameters avoid modifying weights, instead relying on external mechanisms: IKE (Zheng
et al., 2023a) and MemPrompt (Madaan et al., 2022) edit via prompts, SERAC (Meng et al.,
2022b) introduces a counterfactual model, T-Patcher (Huang et al., 2023) adds correction neu-
rons, and WISE (Wang et al., 2024) uses dual memory with conflict-free sharding. By contrast,
approaches that modify the model’s parameters directly update internal representations: Knowledge
Neurons (Dai et al., 2022) alter selected neurons, MEND (Mitchell et al., 2021) employs a hypernet-
work, ROME (Meng et al., 2022a) and GLAME (Zhang et al., 2024) use locate-then-edit strategies,
AnyEdit (Jiang et al., 2025) performs autoregressive sequential editing, and AlphaEdit (Fang et al.,
2024) constrains updates in the null space. Most of these methods focus on LLMs, where FFN
layers are recognized as the primary locus of knowledge storage; our work extends this insight to
OVOD, motivating an editing-based formulation for few-shot detection.

Continual learning. Continual learning addresses the challenge of catastrophic forgetting and
can be grouped into three families: rehearsal-based, regularization-based, and architecture-based.
Rehearsal-based approaches replay past knowledge using either stored exemplars or synthetic data,
such as iCaRL (Rebuffi et al., 2017), CCL-GM (Lavda et al., 2018), GSS (Aljundi et al., 2019),
and GDumb (Prabhu et al., 2020). Regularization-based methods constrain parameter updates to
protect previously acquired information. Examples include BSS (Chen et al., 2019), EWC (Kirk-
patrick et al., 2017), MAS (Aljundi et al., 2018), and diffusion-based strategies (Jha et al., 2024).
Architecture-based methods expand or reconfigure the network to accommodate new tasks, e.g.,
DyTox (Douillard et al., 2022), LMC (Ostapenko et al., 2021), WSN (Kang et al., 2022), and Piggy-
back (Mallya et al., 2018). Although effective, these approaches are typically designed for long-term
incremental learning and often require large-scale replay or architectural modifications. In contrast,
our method targets few-shot OVOD and achieves knowledge retention efficiently by storing compact
key–value statistics, without the need for exemplar memory or model expansion.

OVOD. OVOD has shown strong in-distribution results by leveraging vision–language pretraining
and semantic alignment (Li et al., 2022b; Liu et al., 2024), yet recent studies show substantial degra-
dation under distribution shifts with unseen categories or domains (Ilyas et al., 2024; Chhipa et al.,
2024). To address this, several few-shot fine-tuning methods have been explored: ETS (Pan et al.,
2025) adapts parameter configurations from foundation models, Domain-RAG (Li et al., 2025) re-
trieves semantically and stylistically similar images for data synthesis, and CD-ViTO (Fu et al.,
2024) applies feature alignment, reweighting, and domain prompting. While effective on small
datasets, these approaches are task-specific, requiring repeated fine-tuning that increases cost and
may compromise prior performance.In contrast, we formulate few-shot adaptation as a model editing
problem: instead of retraining, we inject task knowledge into FFN layers via compact KV statistics,
enabling a single OVOD model to handle multiple tasks while retaining base-domain capability.

3 PRELIMINARY

3.1 MODEL EDITING IN LLMS

LLMs encode both factual and task-specific knowledge in their parameters, with recent studies
showing that it is largely concentrated in the FFN layers (Meng et al., 2022b; Fang et al., 2024).
Concretely, the FFN at the l-th layer can be written as:

ml︸︷︷︸
v

= W l
out σ

(
W l

in γ(h
l−1 + al)

)︸ ︷︷ ︸
k

. (1)

Here, W l
in and W l

out denote the input and output weight matrices of the FFN, respectively, while γ
represents layer normalization and σ the activation function. The terms al and hl−1 correspond to
the output of the attention block and the hidden state of the (l − 1)-th layer. Prior work suggests
that knowledge in LLMs can be abstracted as triples (s, r, o), where s denotes the subject, r the
relation, and o the object (e.g., s = The longest river in the world”, r = is”, o = “the Nile River”).
In general, the intermediate representation before the output projection is taken as the key k, while
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the projected output is defined as the value v, corresponding to (s, r) and (o), respectively, thereby
forming key–value pairs (Geva et al., 2020). Building on this formulation, model editing seeks to
replace original triples (s, r, o) with updated ones (s, r, o∗), where the new object o∗ is encoded
through key–value pairs. Specifically, the new knowledge is represented by K1 ∈ Rd0×u and
V1 ∈ Rd1×u, which correspond to the key and value representations in the FFN output projection.

3.2 MODEL EDITING FORMULATION FOR OVOD

We formalize the OVOD few-shot model editing problem as follows. Let T = {τ1, τ2, . . . , τT }
be a set of T tasks, where each task τi corresponds to an object detection problem sampled from
datasets that are OOD with respect to the base OVOD model. In practice, these tasks often come
from novel domains or contain unseen object categories, on which the pre-trained OVOD model
typically performs poorly.

Each task τi is defined by a small support set Si = {(xj , yj)}Ki
j=1, containing a few annotated

examples, and a query set Qi for evaluation. We treat the adaptation to task τi as injecting new
knowledge into the model, analogous to model editing in large language models, where the model
must quickly incorporate information from the support set to improve detection accuracy on the
corresponding query set. The practical goal of OVOD knowledge injection is twofold: to achieve
Reliability, the model should minimize the detection loss on the query sets Qi, i.e., Ldet(θ

′;Qi);
and to ensure Locality, it should simultaneously minimize the loss on the base dataset Dbase, i.e.,
Ldet(θ

′;Dbase). In this way, the model adapts effectively to new tasks while preserving its original
capability. In our editing setting, only the support sets Si are available for adaptation, while the query
setsQi and the base datasetDbase are used solely for evaluation and are not accessible during editing.
This setting is more practically relevant than conventional continual learning, which emphasizes
long-term retention but overlooks preserving the model’s original capability. These considerations
motivate us to design an editing algorithm that efficiently injects new task knowledge while retaining
the base model’s capability, as described in Sec. 4.

4 METHOD

In this section, we first introduce the construction and storage of new knowledge key–value pairs
(Sec. 4.1), then present the auto-balanced objective function (Sec. 4.2), and finally describe how to
optimize this objective and summarize the overall procedure in Alg. 1 (Sec. 4.3).

4.1 KNOWLEDGE KEY–VALUE CONSTRUCTION

Traditionally, knowledge editing in LLMs (Meng et al., 2022b) is formulated under the key–value
framework. Given a key k that encodes the subject–relation pair (s, r), the model retrieves the
corresponding value v representing the object o. To inject new knowledge, existing methods usually
keep the key k fixed, while replacing the associated value v with an updated value v∗ that encodes
the target object o∗. In practice, v∗ is obtained by adjusting v (e.g., via gradient descent) so that the
model is more likely to predict o∗ when conditioned on (s, r). To obtain the new knowledge key–
value pairs in the OVOD model, we adopt a two-stage strategy consisting of fine-tuning and storage.
In particular, we designate the parameter to be edited, such as the output projection matrix Wout ∈
Rd0×d1 in the FFN Eq. 1, with its input and output defined as the key k and value v, respectively.
During fine-tuning, for task τi, we regard the output projection matrix Wout as the only learnable
parameter while keeping all others frozen. The task-specific parameter set θi thus corresponds to
the adapted Wout, which is optimized with the following traditional detection objective:

min
θi
Ldet(θi;Si), (2)

Once the fine-tuned parameter θi is obtained, we feed the support set Si into the corresponding fine-
tuned OVOD model to extract the intermediate key–value representations, denoted as Ki ∈ Rni×d0

and Vi ∈ Rni×d1 . However, the dimension ni can be extremely large; for instance, in a vision
backbone it may scale with the number of samples and patches, making it prohibitive to store the
full Ki and Vi. In Sec. 4.3, we show that keeping the entire matrices is unnecessary. Instead, it
suffices to store the covariance and cross-covariance matrices, i.e., K⊤

i Ki and K⊤
i Vi, which are

significantly more compact while preserving the information required for subsequent optimization.

4
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Algorithm 1 OVOD Auto-Balanced Model Editing (Batch-wise Accumulation)

Input: Pre-trained OVOD model (all parameters Θ), chosen editable sub-parameter W0 ⊂
Θ (W0 ∈ Rd0×d1), task datasets {St}Tt=1
Output: Updated editable weight W ∗

1: A← 0d0×d0
, B ← 0d0×d1

, s← 0d0

2: for t ∈ {1, 2, . . . , T} do
3: θt ← arg min

θ∈W0

Ldet(θ;St) ▷ Fine-tune only editable W0, keep others in Θ fixed

4: for each mini-batch (x, y) from St do
5: Forward with θt at the edited FFN layer to obtain Kb ∈ Rnb×d0 , Vb ∈ Rnb×d1

6: A← A+K⊤
b Kb ▷ accumulate K⊤K

7: B ← B +K⊤
b Vb ▷ accumulate K⊤V

8: s← s+
(∑nb

j=1 Kb[j, 1]
2, . . . ,

∑nb

j=1 Kb[j, d0]
2
)

▷ accumulate si

9: Γ2 ← diag(s1/2) ▷ Γii = s
1/4
i , Γ2

ii = s
1/2
i

10: H ← A+ Γ2

11: W ∗ ← H−1
(
B + Γ2W0

)
▷ solve via SPD linear system

12: return W ∗

4.2 AUTO-BALANCED EDITING OBJECTIVE DESIGN

In order to effectively leverage the constructed key-value representations, we first introduce a
straightforward objective: to allow the weight matrix W to absorb new knowledge while retain-
ing previously learned information, we consider the following simple formulation:

min
W

f(W ) = ∥KW − V ∥2F + λ∥W −W0∥2F , (3)

where W0 denotes the original parameter of the OVOD model. The key–value matrices (K,V ) are
obtained from the previous step by concatenating the knowledge matrices across all tasks:

K =
[
K1;K2; . . . ;KT

]
∈ Rn×d0 , V =

[
V1;V2; . . . ;VT

]
∈ Rn×d1 , (4)

where the total number of samples is n =
∑T

i=1 ni, with ni denoting the number of key–value pairs
extracted from task τi. The hyperparameter λ controls the trade-off between fitting new knowledge
and preserving the old one.

Through this optimization, the model is encouraged to acquire new knowledge while simultaneously
preserving previously learned information. Apparently, the hyperparameter λ cannot be derived
analytically but must instead be set heuristically and subsequently evaluated on both the query set
and the base set to determine its suitability. Moreover, the choice of λ is not universal: it must be
re-tuned whenever the task setting changes or a different OVOD model is employed.

A natural starting point is the λ-weighted ℓ2 regularizer in Eq. 3. However, λ is task-dependent
and requires re-tuning. To eliminate this hyperparameter, we design a data-adaptive reweighting
optimization objective:

min
W
∥KW − V ∥2F + ∥Γ(W −W0)∥2F , (5)

where Γ ∈ Rd0×d0 is a positive diagonal matrix

Γ = diag
(
s
1/4
1 , s

1/4
2 , . . . , s

1/4
d

)
, si =

∑
t

k2ti.

Intuitively, the regularization term ∥Γ(W −W0)∥2F applies a weight of s1/2i to the squared ℓ2 norm
of the i-th row of (W − W0), since Γ2

ii = s
1/2
i . In this way, the objective balances new fitting

information and prior knowledge in a data-adaptive manner, while a more detailed discussion of the
benefits of this design is deferred to the Appendix B.3.

4.3 OPTIMIZATION AND OVERALL ALGORITHM

From Eq. 5, taking the derivative with respect to W leads to a linear system. Let H := K⊤K+Γ2 ∈
Rd0×d0 , which is symmetric and positive semidefinite in general, and becomes positive definite as
long as Γ has strictly positive diagonal. The unique minimizer is:

5
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W ⋆ = H−1
(
K⊤V + Γ2W0

)
. (6)

In implementation, we never compute H−1 explicitly; instead, we solve the linear system HW ⋆ =
K⊤V +Γ2W0 using a numerical solver (e.g., torch.linalg.solve). Moreover, computing the
solution does not require storing the full key–value matrices. In practice, it suffices to maintain only
the aggregated statistics K⊤K, K⊤V , and Γ, which can be obtained by summing the corresponding
task-specific quantities:

K⊤K =

T∑
t=1

K⊤
t Kt, K⊤V =

T∑
t=1

K⊤
t Vt, Γ2 =

T∑
t=1

Γ2
t . (7)

This additive update rule is similar in spirit to the matrix update in (Wang et al., 2021), and the
detailed proof of equivalence is deferred to Appendix B.2. Although the above expressions are
written as summations over all tasks from 1 to T for convenience, they hold for any subset or
combination of tasks within {1, . . . , T}. Our method is summarized in Alg. 1.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

We conduct experiments on two cross-domain few-shot detection benchmarks, CDFSOD (Fu et al.,
2024) and ODinW-13 (Li et al., 2022a), covering 19 few-shot tasks under significant distribution
shift. We follow the standard K-shot setting with K ∈ {1, 5, 10, 30, 50}. Further details of the
datasets and training setups are provided in Appendix C.1.

Evaluation metric. Following CDFSOD and ODinW-13, we adopt the standard COCO-style Aver-
age Precision (AP) metric, computed over IoU thresholds from 0.50 to 0.95 across all object scales,
for evaluation. In addition, we use the model’s AP on the COCO dataset to measure its ability to
retain the original detection performance.

5.2 MAIN RESULTS

Table 1: Few-shot results on ODinW-
13. Avg denotes the average perfor-
mance across all 13 datasets.

Shots Method Avg COCO RR AGR

– Base Model 48.4 59.7 – –

1-
sh

ot

EWC 56.3 55.7 93.3% 93.2%
Adam-NSCL 54.7 59.0 99.8% 90.6%
SD-LoRA 55.2 54.4 91.1% 90.1%
Ours 57.9 58.5 98.0% 95.9%

Oracle 60.4 – – –

5-
sh

ot

EWC 58.5 56.5 94.6% 93.0%
Adam-NSCL 59.2 57.8 96.8% 94.1%
SD-LoRA 58.4 55.6 93.1% 92.8%
Ours 61.0 57.9 97.0% 97.0%

Oracle 62.9 – – –

10
-s

ho
t

EWC 61.3 56.7 95.0% 92.5%
Adam-NSCL 60.1 58.2 97.5% 90.6%
SD-LoRA 61.1 55.8 93.5% 92.2%
Ours 61.7 57.8 96.8% 93.1%

Oracle 66.3 – – –

To assess the trade-off between preserving prior knowl-
edge and adapting to new tasks, we use two metrics:
Retention Ratio (RR), APedited

old /APoriginal
old , which mea-

sures how well the model retains its original ability; and
Adaptation Gain Ratio (AGR), APedited

new /APfinetuned
new ,

which evaluates adaptation to new tasks relative to
full fine-tuning. Here, subscripts denote task type
(old/new), and superscripts the model variant (origi-
nal/edited/finetuned).

Tables 1, 2, and 3 summarize base performance, rep-
resentative baselines: EWC (Kirkpatrick et al., 2017),
Adam-NSCL (Wang et al., 2021), and SD-LoRA (Wu
et al., 2025), as well as our editing method (Ours).
Among them, Table 2 is our main experimental result.
For reference, we also include FFN fine-tune on each
target dataset as an oracle upper bound.

Effectiveness on target tasks. We report AGR to mea-
sure how effectively each method approaches full fine-
tuning. On CDFSOD-6, our method reaches 99% (1-shot), 97% (5-shot), 96% (10-shot), 96%
(30-shot), and 95% (50-shot), clearly higher than baseline methods. On ODinW-13, it achieves 96%
(1-shot), 97% (5-shot), and 93% (10-shot), again surpassing the baselines. These results indicate
that our editing strategy retains near–fine-tuning adaptation while being more efficient than prior
approaches.

6
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Table 2: Few-shot results on CDFSOD. Avg denotes the average performance across all target
datasets. “Oracle” refers to the results obtained by independently fine-tuning the FFN on each
individual dataset, serving as an upper bound for performance.

Shots Method ArTaxOr Clipart1K DeepFish DIOR NEU-DET UODD Avg COCO RR AGR

– Base Model 12.8 49.1 28.6 4.5 1.2 10.1 17.7 59.7 – –
1-

sh
ot

EWC 9.6 53.5 30.6 10.8 7.4 8.2 20.0 57.6 96.5% 90.9%
Adam-NSCL 12.4 51.5 32.1 5.8 1.4 6.9 18.4 59.0 98.8% 83.6%
SD-LoRA 13.4 45.1 28.9 10.9 10.7 9.5 19.8 52.5 87.9% 90.0%
Ours 12.1 54.8 33.6 10.5 5.0 14.1 21.7 57.5 96.3% 98.6%

Oracle 13.6 55.8 31.9 11.8 5.6 13.5 22.0 – – –

5-
sh

ot

EWC 33.3 54.4 35.7 19.5 20.0 23.4 31.0 57.1 95.6% 78.3%
Adam-NSCL 68.2 52.1 33.8 8.4 5.0 7.0 29.1 57.8 96.8% 73.5%
SD-LoRA 7.9 51.7 31.5 18.1 19.2 21.0 24.9 54.2 90.8% 62.9%
Ours 69.4 57.9 37.6 26.1 20.2 19.5 38.5 57.0 95.5% 97.2%

Oracle 69.2 60.2 35.1 29.4 22.2 21.5 39.6 – – –

10
-s

ho
t

EWC 21.3 56.5 39.9 24.4 23.3 25.7 31.9 55.5 93.0% 74.4%
Adam-NSCL 72.2 52.8 34.6 11.4 10.0 11.7 32.1 58.2 97.5% 74.8%
SD-LoRA 22.6 52.6 32.0 18.2 20.5 24.2 28.4 52.7 88.3% 66.2%
Ours 71.6 59.5 38.7 32.4 22.8 20.9 41.0 56.8 95.1% 95.6%

Oracle 72.3 61.4 36.9 37.1 25.0 24.4 42.9 – – –

30
-s

ho
t

EWC 35.1 54.9 38.1 23.1 18.3 27.6 32.9 54.1 90.6% 67.3%
Adam-NSCL 75.1 53.5 37.5 13.2 8.7 7.6 32.6 57.9 97.0% 66.7%
SD-LoRA 15.4 50.5 35.6 21.4 21.3 27.5 28.6 50.4 84.4% 58.5%
Ours 76.5 58.1 39.9 45.2 32.2 26.9 46.7 55.1 92.3% 95.5%

Oracle 77.8 61.1 44.3 49.7 35.1 25.6 48.9 – – –

50
-s

ho
t

EWC 46.2 52.0 36.0 23.8 16.6 27.1 33.6 52.8 88.4% 66.5%
Adam-NSCL 79.7 52.9 34.9 20.5 12.3 13.9 35.7 57.2 95.8% 70.7%
SD-LoRA 3.9 52.8 33.3 22.0 17.5 30.4 26.7 51.6 86.4% 52.9%
Ours 79.5 58.6 35.4 51.2 34.5 28.9 48.0 54.5 91.3% 95.0%

Oracle 81.9 62.4 40.2 54.0 35.9 28.4 50.5 – – –

Table 3: Overall performance on all 19 datasets
(CDFSOD-6 + ODinW-13). “Avg” denotes the
average performance across all 19 datasets.

Shots Method CDFSOD ODinW Avg COCO RR AGR

– Base Model 17.7 48.4 38.7 59.7 – –

1-
sh

ot SD-LoRA 18.2 58.1 45.5 53.4 89.4% 94.2%
Ours 21.7 58.3 46.7 58.5 98.0% 96.7%

Oracle 22.0 60.4 48.3 – – –

5-
sh

ot SD-LoRA 23.9 61.2 49.4 53.1 88.9% 89.0%
Ours 37.3 60.2 53.0 58.0 97.2% 95.5%

Oracle 39.6 62.9 55.5 – – –

10
-s

ho
t SD-LoRA 25.0 61.4 49.9 51.8 86.8% 84.7%

Ours 39.6 62.2 55.1 57.9 97.0% 93.5%

Oracle 42.8 66.3 58.9 – – –

Preservation of prior capability. We further
evaluate the Retention Ratio (RR) to measure
how much COCO performance is preserved af-
ter editing. Our method maintains a high RR
across different shots (most exceeding 95%),
indicating that even when achieving very high
AGR on new tasks, the model still retains the
vast majority of its original COCO capability.
This demonstrates that our edits not only adapt
effectively to novel domains but also avoid
catastrophic forgetting on the source dataset.

Flexibility. An additional advantage of our ap-
proach lies in its flexibility. Without any extra
training, we can directly combine the results from above and apply Eq. 7 to integrate the capabilities
across all 19 tasks. As shown in Table 3, our method achieves high AGR (mostly above 95%) on
new tasks while maintaining strong RR (also above 95%) on COCO, indicating that a single edited
model can effectively adapt to all 19 datasets without retraining.

5.3 ABLATION STUDY

To evaluate generality under different task volumes, we gradually increase the number of CDFSOD
target datasets by treating the first k∈{1, . . . , 6} as new tasks while keeping COCO as the old task.
For the manual-tuning baseline, we use Eq. 3 with fixed λ∈{1, 5, 10, 15, 20} and compute (i) COCO
mAP for old-task retention and (ii) the mean mAP across the k new tasks. We then average these
results across all k values to obtain an overall old-task mean and new-task mean. In contrast, our
method directly applies the auto-balanced objective in Eq. 5 without any manual hyperparameters.
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Figure 2: (a) Manual λ tuning vs. Auto-Balanced Optimization, with the horizontal axis representing
different values of λ, (b) mAP of continual learning methods on CDFSOD-6 across 20 random
dataset orders. The error bars on SD-LoRA indicate the variance across different sequences.

Table 5: Continual learning methods combined with ours on CDFSOD 10-shot. This combination
leads to significant improvements on the new CDFSOD tasks while also enhancing the retention of
the original COCO task performance.

Method ArTaxOr Clipart1K DeepFish DIOR NEU-DET UODD Avg COCO RR AGR

EWC 21.3 56.5 39.9 24.4 23.3 25.7 31.9 55.5 93.0% 74.4%
EWC+Ours 73.3 59.3 39.6 31.6 23.8 22.3 41.7 55.7 93.3% 97.2%
SD-LoRA 22.6 52.6 32.0 18.2 20.5 24.2 28.4 52.7 88.3% 66.2%
SD-LoRA+Ours 69.5 57.9 34.8 26.4 22.0 20.1 38.5 56.0 93.8% 89.7%
Oracle 72.3 61.4 36.9 37.1 25.0 24.4 42.9 – – –

Generality across task volumes. Fig. 2a shows that the red dashed line (Auto-Balanced) con-
sistently exceeds the bars corresponding to fixed-λ settings in terms of new-task mAP, while si-
multaneously maintaining competitive COCO performance (right axis; compressed scale). This
demonstrates that Auto-Balanced Optimization generalizes well across varying task volumes and
outperforms careful manual tuning, all without the need for parameter search.

Order-agnostic learning. Fig. 2b evaluates continual learning methods on the six CDFSOD
datasets by randomly shuffling their order and repeating the process 20 times. Results show that
conventional continual learning is highly sensitive to task order, as indicated by the large error bars
for SD-LoRA. In contrast, our method aggregates tasks according to Eq. 7, achieving stable perfor-
mance regardless of task order.

Table 4: Ablation on exponent
α in Γ on CDFSOD 5-shot.

α CDFSOD COCO

1 0 0
1/2 36.6 57.0
1/4 38.5 57.0
1/8 38.5 56.9

As shown in Table 4, we conduct an ablation study on the
exponent α in Γ = diag(sα1 , s

α
2 , . . . , s

α
d ), where si =

∑
t k

2
ti.

The results indicate that smaller exponents (e.g., 1
4 or 1

8 ) yield
consistently better performance on CDFSOD-6 (5-shot) while
maintaining comparable COCO accuracy.

ABME combined with continual learning. Table 5 shows
that when applying our method for model editing on top of
conventional continual learning approaches, significant improvements are achieved. Under the CDF-
SOD 10-shot setting, EWC+Ours improves by 9.8 mAP, SD-LoRA+Ours improves by 10.1 mAP,
and further gains are also observed on the COCO old tasks. Moreover, we trained the GLIP model
on CDFSOD under the 1/5/10-shot settings using our method. As shown in Table 6, our method
achieved an average RR of 97.9% and an AGR of 95.7% across the three settings, demonstrating its
generalizability across different models.

Ablation on Editing Regions. Model editing in LLMs typically requires locating specific layers
for knowledge injection. Following this, we screened FFN layers across different modules (e.g.,
backbone vs. encoder-decoder) Mitchell et al. (2021). As shown in Table 7, editing FFN layers
across the entire architecture (Ours) achieves the best balance between new-task adaptation and
old-task retention, outperforming edits restricted to specific sub-modules.
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Table 6: GLIP few-shot results on CDFSOD. We apply our ABME method on GLIP under the 1, 5,
and 10-shot settings. The results show that our approach achieves consistently high RR and AGR.

Shots Method ArTaxOr Clipart1K DeepFish DIOR NEU-DET UODD Avg COCO RR AGR

– Base Model 12.0 52.5 35.7 6.6 1.7 5.9 19.1 59.4 – –

1-shot
Ours 32.9 55.5 36.1 16.1 11.1 4.2 26.0 58.8 99.0% 98.1%
Oracle 33.8 55.2 36.2 17.3 11.9 4.5 26.5 – – –

5-shot
Ours 51.8 55.1 41.5 28.1 20.5 14.1 35.2 58.1 97.8% 94.6%
Oracle 54.7 54.9 43.7 31.3 21.2 17.1 37.2 – – –

10-shot
Ours 51.4 56.5 39.1 34.1 23.5 18.6 37.2 57.6 97.0% 94.4%
Oracle 53.1 56.7 41.0 38.3 25.4 21.7 39.4 – – –

Table 7: Ablation on screening FFN layers in different modules (Grounding DINO, 5-shot CDF-
SOD). We report New-task mAP and COCO mAP. ”Back.” refers to FFNs in the Backbone, and
”Enc-Dec” to FFNs in the Encoder-Decoder.

Edited FFNs Back.(shallow) Back.(mid) Back.(last) Back. (All) Enc-Dec (All) Back.(mid)+Enc-Dec All FFNs (Ours)
New-task 23.4 22.3 20.6 35.1 33.9 36.2 38.5
Old-task 56.5 59.6 59.3 58.3 56.5 58.4 57.0

Impact of Editing Location (FFN vs. Self-Attention). To validate our design choice of targeting
FFN layers, we compare the performance of ABME when applied to FFN versus Self-Attention
(SA) layers. As shown in Table 8, editing FFN layers yields a superior adaptation performance of
38.5 mAP on CDFSOD, outperforming SA editing (36.3 mAP) by 2.2 mAP. This confirms that FFN
layers are the more effective site for injecting semantic knowledge in OVOD models. However, it
is worth noting that our method still recovers 93.6% of the independent fine-tuning performance
(Layer Oracle) even on SA layers. This demonstrates that while FFN is the optimal location, our
auto-balanced algorithm generalizes robustly across different network structures.

Table 8: Comparison of editing FFN vs. SA layers on CDFSOD (5-shot). ”Layer Oracle” denotes
the upper bound achieved by independently fine-tuning the specific layer type on each dataset.

Editing Target CDFSOD Layer Oracle % of Oracle COCO
Base Model 17.7 - - 59.7
Self-Attention Layers 36.3 38.8 93.6% 57.8
FFN out Layers 38.5 39.6 97.2% 57.0

5.4 SCALABILITY AND VERSATILITY ANALYSIS

Scalability to large-scale heterogeneous domains. To simulate extreme domain shifts and long-
term adaptation, we extended CDFSOD to 90 sequential tasks using ImageCorruptions (Michaelis
et al., 2019). We specifically selected the most severe intensity (level 5 of 5) to challenge the model
limits. As shown in Table 9, ABME achieves 23.8 mAP, closely matching the Oracle (26.4 mAP)
while retaining 96.3% of the original COCO performance.

Generalization to CLIP-based Classification. To verify cross-architecture generalization, we ap-
plied ABME to CLIP (Radford et al., 2021) (ViT-B/16) (Dosovitskiy, 2020) on 11 diverse datasets
under a 5-shot setting. As shown in Table 10, our unified model achieves 74.1% accuracy, outper-
forming specific continual learning baselines (ZSCL (Zheng et al., 2023b), WiSE-FT (Wortsman
et al., 2022)) and the Zero-shot Base (65.3%). It recovers ∼92% of the Oracle(FFN out) perfor-
mance (80.4%), demonstrating effective adaptation beyond object detection. Oracle (FFN-out) and
Oracle (Full) refer to independent fine-tuning per dataset on FFN output layers and all parameters,
respectively. Specific dataset details are provided in the Appendix C.1.

Visualization results. As shown in Fig. 3 and Fig. 4, the Base model (Grounding DINO pretrained)
struggles under domain shifts, resulting in many missed detections, false positives, and heavily
overlapping features. EWC and Adam-NSCL provide limited improvements in detection and fea-
ture separation, but still fail to generalize well. In contrast, our proposed ABME method achieves

9
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Table 9: Performance on 90 sequential tasks with
extreme domain shifts (15 corruption types). De-
tailed average performance across the 15 corruption
types is provided in Table 12.

Method 90 Tasks COCO
Base Model 10.1 59.7
Adam-NSCL 20.8 57.2
Ours 23.8 57.5
Oracle 26.4 -

Table 10: Generalization to CLIP on 11
classification datasets (5-shot).

Method Avg Acc (%)
Base (Zero-shot) 65.3
ZSCL 67.4
WiSE-FT 71.9
Ours 74.1
Oracle(FFN out) 80.4
Oracle(Full) 77.5

B
as

e
E

W
C

O
ur

G
T

Figure 3: Comparison of Grounding DINO pretrained model (Base), EWC, our proposed method
(Ours), and ground truth (GT) across different datasets.
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(c) Our

Figure 4: t-SNE visualization results of the Base model (Grounding DINO pretrained), Adam-
NSCL, and our ABME method on the DIOR dataset, all trained on CDFSOD with 10-shot setting.

stronger detection of novel objects, reduces false detections, and produces more compact and clearly
separated feature clusters, demonstrating superior robustness against domain shifts.

6 CONCLUSION

We proposed an auto-balanced model editing framework for OVOD that treats few-shot adaptation
as knowledge injection into FFN layers and introduces a method that eliminates the need for tedious
hyperparameter tuning by automatically balancing new and old knowledge. Our method achieves
performance close to full fine-tuning on new tasks while retaining most original capabilities, and
its compact key–value design supports flexible task combinations without retraining. We believe
this editing-based perspective offers a lightweight and scalable alternative to traditional continual
learning pipelines, and we hope it can inspire a new paradigm of continual learning for visual tasks,
ultimately enabling more robust and adaptive open-world perception systems.
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ETHICS STATEMENT

All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve
interventions with human participants or personally identifiable information. We use only publicly
available datasets under their original licenses and follow the terms of use. Potential risks and our
mitigations are summarized below:

• Privacy & Security. We do not collect or release any personal data. When showing quali-
tative examples, all images/videos are from public datasets; any sensitive content is filtered.

• Bias & Fairness. We report results on multiple benchmarks and provide detailed settings to
facilitate external auditing. We acknowledge possible dataset biases and encourage follow-
up evaluation on broader demographics and domains.

• Dual Use / Misuse. The method could be misused to enable undesired large-scale labeling
or surveillance. To reduce misuse, we release only research artifacts (code/configs) and
exclude any tools for scraping or re-identifying individuals.

• Legal Compliance. We comply with licenses of all third-party assets (code, models, and
datasets) and cite their sources. Any additional third-party terms are respected.

• Research Integrity. We document preprocessing, training recipes, and evaluation proto-
cols; random seeds and hyperparameters are provided to enable reproducibility.

Where applicable, institutional review information is withheld for double-blind review and can be
provided after acceptance.

REPRODUCIBILITY STATEMENT

We provide detailed training configurations, including hyperparameters and optimization settings, in
the main paper and Appendix. In addition, we will release code to ensure reproducibility, covering:
(i) random seeds; (ii) full data preprocessing and splits; (iii) code structure with scripts to reproduce
the main tables and figures; (iv) checkpoints and logs for the primary models.
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A THE USE OF LLMS

We used ChatGPT-4o to polish our manuscript, using the following prompt:

I want you to act as an expert in scientific writing. I will
provide you with some paragraphs in English and your task is
to improve the spelling, grammar, clarity, conciseness, and
overall readability of the text provided, while breaking down long
sentences, reducing repetition and increasing logic. You should use
artificial intelligence tools, such as natural language processing,
rhetorical knowledge, and your expertise in effective scientific
writing techniques to reply. Provide the output as a table in
a readable mode. The first column is the original sentence, the
second column is the sentence after editing, and the third column
provides explanation of your edits and reasons. Please edit the
following text in a scientific tone:

B THEORETICAL ANALYSIS

B.1 ANALYSIS OF OPTIMIZATION FUNCTIONS

The optimization problem is given by:

min
W
∥KW − V ∥2F + ∥Γ(W −W0)∥2F (8)

where Γ is a diagonal matrix defined as:

Γ = diag(s1/41 , s
1/4
2 , . . . , s

1/4
d ), si =

∑
j

k2ij (9)

To find the optimal solution, we take the first-order derivative and set it equal to zero:

KT (KW − V ) + Γ2(W −W0) = 0 (10)

⇒ (KTK + Γ2)(W −W0) = KTV −KTKW0 (11)

⇒ ∆W = (KTK + Γ2)−1KT (V −KW0) (12)

B.2 MATRIX UPDATING RULE

We have the following expressions for K and V :

K =


K1

K2

...
KT

 , V =


V1

V2

...
VT


For KTK, we can express it as:

KTK =

T∑
t=1

KT
t Kt (13)
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For KTV , we have:

KTV =

T∑
t=1

KT
t Vt (14)

B.3 THEORETICAL ANALYSIS OF THE AUTO-BALANCING MECHANISM

The objective function is formally defined as:
min
W
∥(KW − V )∥2F + ∥Γ(W −W0)∥2F , (15)

where the diagonal matrix Γ is set as Γii = s
1/4
i , with si =

∑
t k

2
ti representing the accumulated

feature energy of the input key matrix K. In practice, the raw feature energy si inherently exhibits
extreme variations across different feature dimensions and tasks (e.g., varying from 104 to 106 in
our CDFSOD 5-shot experiments). This creates a severe scale imbalance for optimization: a fixed
scalar λ would be either too negligible for high-energy dimensions or too restrictive for low-energy
ones. To resolve this, we derived our Γ design based on the optimization curvature to automatically
normalize these scales.

Feature-wise Adaptivity via Curvature Analysis. We address the optimization imbalance by ana-
lyzing the Hessian (curvature) of the objective function L.

• Data Term Curvature: The Hessian of the first term ∥KW − V ∥2F with respect to W is
2KTK. Suppose the input feature K has a magnitude scale Mk. The curvature of this term
scales quadratically, i.e.,O(M2

k ). This creates extremely steep optimization landscapes for
high-energy features, leading to dominance in updates if not balanced.

• Adaptive Regularization: The Hessian of our regularization term is 2Γ2. Since the feature
energy si scales with O(M2

k ), our design Γii = s
1/4
i implies that Γ2 scales linearly with

O(Mk) (as Γ2 ∝ √si ∝Mk).

This formulation achieves a critical balance mechanism:

• Adaptivity: The regularization strength Γ2 grows with feature magnitude (O(Mk)), pro-
viding necessary constraints for strong features compared to fixed scalars.

• Plasticity: The regularization grows slower than the data term (O(Mk) vs. O(M2
k )). This

”sub-quadratic” scaling prevents the regularization from becoming over-rigid (which would
happen if Γii = s

1/2
i , where Γ2 ∼ O(M2

k )), thereby allowing sufficient injection of new
knowledge even for high-signal features.

C EXPERIMENT

In our experiments, we primarily adopt Grounding DINO (Liu et al., 2024), a state-of-the-art open-
vocabulary object detector that unifies grounding with strong detection performance. We also evalu-
ate on GLIP (Li et al., 2022b), a vision-language pre-training model that aligns detection with phrase
grounding, in order to verify the generality of our auto-balance strategy across different models and
task scales.

For fine-tuning, we update only the output layers of all FFN modules. The batch size is set to 8 for
Grounding DINO and 2 for GLIP, and we use the AdamW optimizer with a learning rate of 1×10−4.
Training is conducted for 18 epochs on most datasets, with slight adjustments under different shot
settings to achieve better adaptation.

C.1 TRAINING DETAILS

CDFSOD. The Cross-Domain Few-Shot Object Detection (CDFSOD) benchmark (Fu et al.,
2024) uses MS-COCO (Lin et al., 2014) as the source domain and includes six heterogeneous tar-
get domains: ArTaxOr, Clipart1K, DIOR, DeepFish, NEU-DET, and UODD. These domains differ
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substantially in visual style, resolution, and object distribution, providing a challenging setup for
cross-domain transfer.

ODinW-13. ODinW-13 (Li et al., 2022a) is a subset of the ELEVATER benchmark (Li et al.,
2022a), consisting of 13 diverse object detection tasks drawn from various open-world datasets. The
benchmark emphasizes robustness to domain shifts and serves as a standard evaluation for open-
vocabulary detectors.

Few-shot setting. Together, CDFSOD and ODinW-13 form 19 few-shot tasks with clear dis-
tribution shifts, on which open-vocabulary detectors typically experience performance degrada-
tion resembling out-of-distribution scenarios. We follow the standard K-shot protocol with K ∈
{1, 5, 10, 30, 50}, where K labeled images per class are sampled as the support set and the re-
maining images are used for evaluation. For fair comparison, all baseline methods are consistently
applied to the output layers across all FFN modules of the model.

EWC. For Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), we introduce a
quadratic penalty on parameter updates, weighted by the Fisher information estimated from the
previous task. The regularization coefficient is set to λEWC = 10000. We use the AdamW optimizer
with a learning rate of 1 × 10−4 and a batch size of 8, training for 18 epochs on most tasks. The
overall objective can be written as

L(θ) = LT+1(θ) +
λEWC

2

∑
t

∑
i

Ft,i

(
θi − θ∗t,i

)2
, (16)

where LT+1(θ) denotes the standard loss on the current task, Ft,i represents the Fisher information
of parameter θi estimated from task t, and θ∗t,i is the optimal parameter value obtained after training
on task t. This regularization term penalizes large deviations from previously important parameters,
thereby mitigating catastrophic forgetting across sequential tasks.

Adam-NSCL. For Adam-NSCL (Null-Space Continual Learning with Adam) (Wang et al., 2021),
we constrain parameter updates to the approximate null space of previously learned features, follow-
ing the SVD-based formulation. Specifically, we select the null-space basis U l

2 associated with the
smallest singular values of Λl

2, and adaptively choose Λl
2 with diagonal entries λ ∈ {λ | λ ≤

aλl
min}, where λl

min is the smallest singular value. In our experiments, we set the hyperparameter
a = 40. Optimization is performed using the Adam optimizer with a learning rate of 1 × 10−4, a
batch size of 8, and training for 18 epochs on most tasks.

SD-LoRA. For SD-LoRA (Spectral Decay LoRA) (Wu et al., 2025), we adopt the same adapter
structure as LoRA but additionally apply spectral decay regularization on the low-rank updates to
improve stability across sequential tasks. The hyperparameters are set as follows: rank r = 16,
initial spectral decay coefficient αinit = 1.0, dropout rate 0.0, LoRA learning rate 0.002, and LoRA
weight decay 0.0. Training is performed for 18 epochs on most tasks with a batch size of 8.

Training Details for CLIP Experiments. We evaluated our method on 11 diverse classification
datasets, organized in the following order: Aircraft, Caltech101, CIFAR100, DTD, EuroSAT, Flow-
ers102, Food101, MNIST, OxfordPets, StanfordCars, and SUN397. For optimization, we standard-
ized the training duration to 500 iterations per dataset. Regarding the scope of parameter updates,
our ABME method specifically targets the output projection layers of all FFN blocks within the
ViT-B/16 (Dosovitskiy, 2020) encoder, whereas the baseline methods (ZSCL (Zheng et al., 2023b)
and WiSE-FT (Wortsman et al., 2022)) involve full-model fine-tuning.

D ADDITIONAL BASELINE COMPARISONS AND RESOURCE EFFICIENCY

D.1 COMPARISON WITH STATE-OF-THE-ART METHODS

17
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Table 11: Few-shot results on CDFSOD 5-shot using Grounding DINO-B. The base model is the
pre-trained Grounding DINO-B without fine-tuning. Methods marked with † denote the final model
obtained by sequential fine-tuning on a single model, evaluated across all datasets.

Method ArTaxOr Clipart1K DeepFish DIOR NEU-DET UODD Average COCO

Base model 12.8 49.1 28.6 4.5 1.2 10.1 17.7 59.7
FFN Wout only 69.2 60.2 35.1 29.4 22.2 21.5 39.6 –
Fully fine-tune 70.3 59.3 37.0 29.4 22.3 24.3 40.5 –
Fully fine-tune† 52.4 51.1 35.2 22.6 19.8 22.1 33.9 47.9

Table 12: Performance comparison of different methods under various corruptions on CDFSOD 5-
shot. All values represent mean Average Precision (AP) in percentage. Note that Oracle is obtained
by independent fine-tuning on each corrupted dataset (averaged over 90 total datasets). Contin-
ual learning setting follows a sequential training protocol according to the table rows; specifically,
within each corruption, it trains on ArTaxor, Clipart1k, DeepFish, DIOR, NEU-DET, and UODD
sequentially.

Corruption Base Adam-NSCL Ours Oracle

gaussian noise 8.6 18.0 21.6 23.0
shot noise 8.1 18.1 21.6 23.1
impulse noise 8.7 18.4 22.1 23.4
defocus blur 11.6 23.0 25.7 28.2
glass blur 11.4 24.2 27.1 30.3
motion blur 9.3 20.5 22.7 24.3
zoom blur 2.7 6.2 6.9 10.7
snow 9.6 20.0 23.0 24.9
frost 10.1 20.3 22.9 24.2
fog 14.2 26.7 29.6 32.4
brightness 12.9 25.5 28.8 31.6
contrast 8.7 20.5 21.8 26.2
elastic transform 12.0 24.9 28.6 33.3
pixelate 12.2 24.5 28.2 31.6
jpeg compression 11.5 22.5 25.9 28.2
Average 10.1 20.8 23.8 26.4
COCO 59.7 57.2 57.5 –

To further validate the effectiveness of ABME, we included two additional state-of-the-art continual
learning baselines: SGP (Saha & Roy, 2023) and SVFCL (Wang et al., 2025). We evaluated all
methods under the CDFSOD 5-shot setup. As shown in Table 13, ABME significantly outperforms
these recent approaches.

Table 13: Extended comparison on CDFSOD 5-shot. We incorporated two additional baselines:
SGP and SVFCL. ABME achieves the best trade-off between plasticity (New-task mAP) and stabil-
ity (Old-task mAP).

Method New-task mAP ↑ Old-task mAP ↑ RR ↑ AGR ↑
EWC (2017) 31.0 57.1 95.6% 78.3%
Adam-NSCL (2021) 29.1 57.8 96.8% 73.5%
SGP (2023) 32.6 46.1 77.2% 82.3%
SD-LoRA (2025) 24.9 54.2 90.8% 62.9%
SVFCL (2025) 33.2 52.9 88.6% 83.8%
ABME (Ours) 38.5 57.0 95.5% 97.2%
Oracle 39.6 59.7 – –
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D.2 RESOURCE CONSUMPTION ANALYSIS

We compared the training time, GPU memory usage, and extra storage cost of all methods on the
CDFSOD 5-shot setup. All models were trained on the same hardware configuration. As detailed in
Table 14, ABME maintains constant resource efficiency comparable to standard FFN fine-tuning,
requiring only a fixed ∼1.3 GB storage independent of the task count. In contrast, baselines ex-
hibit varying overheads: EWC accumulates storage costs as tasks are added (0.7 → 3.4 GB),
while Adam-NSCL requires increased memory for subsequent tasks compared to the initial stage
(1640 → 1731 MB). SD-LoRA suffers from linear memory growth and the longest training time.
Furthermore, our final optimization step (solving Eq. 5) typically completes in <10 seconds, incur-
ring negligible operational overhead.

Table 14: Resource consumption analysis on CDFSOD 5-shot. For metrics formatted as ”Start→
End” (e.g., 932 → 977), the values correspond to the consumption recorded during the training
of the first task and the final task, respectively, indicating the variation in resource usage as tasks
accumulate.

Method Training Time (s) GPU Memory (MB) Extra Storage (GB) CDFSOD (New) COCO (Old)
SD-LoRA 1121 932→ 977 – 24.9 54.2
EWC 1044 1640 0.7→ 3.4 31.0 57.1
Adam-NSCL 904 1640→ 1731 1.1 29.1 57.8
ABME (Ours) 1029 1640 1.3 38.5 57.0
Oracle (FFN-out) 1024 1640 – 39.6 –

E CORE IMPLEMENTATION CODE

We provide the core PyTorch implementation of the Auto-Balanced Model Editing (ABME) algo-
rithm below. For clarity, we present the solver for a single layer. The input stats dictionary
contains the accumulated sufficiency statistics extracted from the support set:

• kk: The autocorrelation matrix of keys K⊤K ∈ Rdin×din .

• kv: The cross-correlation matrix K⊤V ∈ Rdin×dout .

• sum x, sum y: Sum of input keys and output values (for bias handling).

• n: Total number of support samples.

1 import torch
2

3 @torch.no_grad()
4 def solve_abme_layer(W_old, b_old, stats, eps=1e-8):
5 """
6 Apply ABME update to a single linear layer (FFN output).
7

8 Args:
9 W_old: Original weights [out_dim, in_dim]

10 b_old: Original bias [out_dim]
11 stats: Dictionary containing KˆT K, KˆT V, etc.
12 """
13 out_dim, in_dim = W_old.shape
14

15 # -------------------------------------------------------
16 # 1. Load Statistics
17 # -------------------------------------------------------
18 # kk: KˆT K [in, in], kv: KˆT V [in, out]
19 kk = stats[’kk’].to(W_old.dtype)
20 kv = stats[’kv’].to(W_old.dtype)
21 sx = stats[’sum_x’].to(W_old.dtype).reshape(in_dim, 1)
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22 sy = stats[’sum_y’].to(W_old.dtype).reshape(1, out_dim)
23 n = torch.tensor(stats[’n’], dtype=W_old.dtype)
24

25 # -------------------------------------------------------
26 # 2. Construct Augmented System (incorporating bias)
27 # -------------------------------------------------------
28 # A corresponds to the augmented KˆT K matrix
29 A = torch.zeros((in_dim + 1, in_dim + 1), dtype=W_old.dtype)
30 A[:in_dim, :in_dim] = kk
31 A[:in_dim, in_dim:] = sx
32 A[in_dim:, :in_dim] = sx.t()
33 A[in_dim, in_dim] = n
34

35 # B corresponds to the augmented KˆT V matrix
36 B = torch.zeros((in_dim + 1, out_dim), dtype=W_old.dtype)
37 B[:in_dim, :] = kv
38 B[in_dim:, :] = sy
39

40 # -------------------------------------------------------
41 # 3. Prepare Original Parameters [W0; b0]
42 # -------------------------------------------------------
43 W0_aug = torch.cat([W_old.t(), b_old.reshape(1, out_dim)], dim=0)
44

45 # -------------------------------------------------------
46 # 4. Compute Auto-Balanced Regularization Matrix (Gammaˆ2)
47 # -------------------------------------------------------
48 # Get diagonal energy s_i = (KˆT K)_ii
49 s = kk.diag()
50

51 # Numerical stability
52 floor = s.mean() * eps
53 s = torch.clamp(s, min=floor)
54

55 # Our design: Gamma = diag(sˆ{1/4}) => Gammaˆ2 = diag(sqrt(s))
56 P = torch.zeros((in_dim + 1,), dtype=W_old.dtype)
57 P[:in_dim] = s.sqrt() # Regularization for weights
58 P[in_dim] = torch.sqrt(n) # Regularization for bias
59

60 # -------------------------------------------------------
61 # 5. Solve the Linear System
62 # -------------------------------------------------------
63 # Objective: (A + Gammaˆ2) W* = (B + Gammaˆ2 W0)
64 A_reg = A + torch.diag(P) # LHS Matrix
65 RHS = B + W0_aug * P.unsqueeze(1) # RHS Term
66

67 # Solve using Cholesky or LU (torch.linalg.solve)
68 W_new_aug = torch.linalg.solve(A_reg, RHS)
69

70 # -------------------------------------------------------
71 # 6. Extract Updated Weights and Bias
72 # -------------------------------------------------------
73 W_new = W_new_aug[:in_dim, :].t() # [out_dim, in_dim]
74 b_new = W_new_aug[in_dim, :] # [out_dim]
75

76 return W_new, b_new

Listing 1: PyTorch implementation of the ABME update for a single layer.
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