

RETAIN AND ADAPT: AUTO-BALANCED MODEL EDITING FOR OPEN-VOCABULARY OBJECT DETECTION UNDER DOMAIN SHIFTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in Open Vocabulary Object Detection (OVOD) have shown strong performance on standard benchmarks, but performance drops sharply under out-of-distribution (OOD) shifts. Continual learning offers a potential remedy by sequentially integrating new tasks, yet existing methods often struggle to balance retaining the pre-trained model capabilities with adapting to new tasks, and usually require retraining under specific task orders. To address these limitations, we observe that model editing naturally lends itself to this setting, as it enables efficient knowledge injection while retaining prior capabilities. Building on this insight, we introduce **Automatically Balanced Model Editing (ABME)**, which injects new task knowledge into the powerful OVOD models while preserving the model’s original abilities. We first store compact key-value representations with storage cost independent of task volume. Then we leverage the stored KV matrices to automatically balance the new and old knowledge for varying learning scenarios, supporting order-agnostic task insertion or removal without additional retraining. Experiments show that ABME consistently achieves a better trade-off between maintaining pre-trained performance and adapting to diverse OOD tasks compared to existing continual learning approaches for open-vocabulary object detection, and generalizes seamlessly across different models and task scales.

1 INTRODUCTION

OVOD has emerged as a promising paradigm that leverages vision–language pretraining to recognize a wide range of object categories without exhaustive annotations (Gu et al., 2021; Li et al., 2022b). Despite impressive progress on in-distribution benchmarks, recent studies reveal that OVOD models still struggle under distribution shifts, such as novel domains or previously unseen categories, leading to substantial performance degradation (Ilyas et al., 2024; Chhipa et al., 2024). In practice, domain shift can arise from changes in image style, capture conditions, or resolution, which significantly affect the reliability of detection even when the object categories remain the same. This limitation poses a critical challenge for deploying OVOD systems in real-world scenarios, where adaptability to diverse environments and continual integration of new knowledge are essential.

The conventional approach for continuously extending OVOD models to handle new concepts in multiple OOD domains is **continual learning**, which incrementally integrates new tasks while reducing forgetting across the sequence. Yet, they generally do not explicitly consider the pre-trained knowledge when balancing with the new capabilities required for multiple tasks, and they typically assume a fixed task order, limiting flexibility and efficiency; they are also highly order-sensitive, where small variations can yield large performance gaps (Lai et al., 2025; Hacohen & Tuytelaars, 2024). While **few shot fine-tuning** can perform well on a single few-shot dataset (Pan et al., 2025), it does not scale across multiple domains and frequently degrades base performance. These limitations motivate the search for a more lightweight and flexible alternative.

Model editing (Mitchell et al., 2021; Fang et al., 2024) has recently emerged as a lightweight approach for updating large pre-trained models, where small parameter modifications can effectively inject new knowledge without retraining the entire model. Importantly, it enables the insertion of multiple new concepts while preserving the model’s original capabilities, making it well-suited for



Figure 1: Comparison of paradigms for Open-Vocabulary Object Detection (OVOD) under domain shifts. (a) Pretrained models fail on OOD tasks. (b) Traditional continual learning adapts sequentially but suffers from order sensitivity, tuning overhead, and forgetting. (c) Our Auto-Balanced Model Editing (ABME) injects knowledge via key–value statistics, automatically balancing new and old tasks, achieving order-agnostic, scalable, and adaptive learning.

continual extension in complex domains. In our OVOD few-shot experiments, we observe that fine-tuning only the Feed-Forward Network (FFN) parameters achieves performance comparable to full-model fine-tuning (see Table 11), suggesting that lightweight adaptation can be as effective as updating the entire model. Inspired by these experiments, we find that model editing provides a natural paradigm for continuously extending new concepts to OVOD models. However, while model editing has been predominantly explored in the context of large language models (LLMs), its adaptation to OVOD raises unique challenges that remain underexplored. As illustrated in Fig. 1, our approach contrasts with traditional continual learning by achieving order-agnostic, scalable, and adaptive knowledge integration.

To enable model editing in OVOD, we fine-tune only the FFN layers on the support set to obtain a task-adapted model, then pass the new-concept data through it to record the input (keys) and output (values) at the edited FFN layer as KV pairs. We store compact KV matrices independent of task number, ensuring scalability without extra memory cost. Yet injecting new knowledge through these KV matrices still requires tuning a hyperparameter to balance new and old knowledge across models and task scales, which is inefficient and impractical. To overcome this issue, we propose to use the KV matrices themselves to automatically adjust this balance, eliminating the need for tedious hyperparameter tuning and enabling a general solution applicable across diverse models and task volumes. Our approach offers several advantages: it ensures **Reliability**, effectively incorporating new knowledge and achieving up to 96.4% of fine-tuned performance on novel tasks; guarantees **Locality**, by preserving 94.1% of the pre-trained model’s original capability; and provides strong **Flexibility**, as we can quickly perform direct combination or removal of task-specific KV statistics without retraining, making adaptation order-agnostic and scalable across diverse domains.

Our main contributions are as follows:

- **Introducing model editing to OVOD:** To the best of our knowledge, we are the first to bring model editing into the OVOD task, and we propose a principled way to construct key–value (KV) knowledge pairs for adapting new concepts.
- **Auto-balanced model editing:** We design a data-adaptive balancing strategy that automatically reconciles new and old knowledge, maintaining robustness across different models and task scales without manual trade-off tuning.
- **Extensive validation and generality:** We conduct comprehensive experiments on 19 few-shot datasets and validate our method on two distinct open-vocabulary detection models, Grounding DINO and GLIP, demonstrating its generality and scalability.

108

2 RELATED WORK

109

110

Model editing. Model editing aims to incorporate new knowledge while preserving performance
111 on unrelated tasks, and existing approaches fall into two categories. Methods that *preserve the*
112 *model’s parameters* avoid modifying weights, instead relying on external mechanisms: IKE (Zheng
113 et al., 2023a) and MemPrompt (Madaan et al., 2022) edit via prompts, SERAC (Meng et al.,
114 2022b) introduces a counterfactual model, T-Patcher (Huang et al., 2023) adds correction neu-
115 rons, and WISE (Wang et al., 2024) uses dual memory with conflict-free sharding. By contrast,
116 approaches that *modify the model’s parameters* directly update internal representations: Knowledge
117 Neurons (Dai et al., 2022) alter selected neurons, MEND (Mitchell et al., 2021) employs a hyper-
118 network, ROME (Meng et al., 2022a) and GLAME (Zhang et al., 2024) use locate-then-edit strategies,
119 AnyEdit (Jiang et al., 2025) performs autoregressive sequential editing, and AlphaEdit (Fang et al.,
120 2024) constrains updates in the null space. Most of these methods focus on LLMs, where FFN
121 layers are recognized as the primary locus of knowledge storage; our work extends this insight to
122 OVOD, motivating an editing-based formulation for few-shot detection.

123

123

Continual learning. Continual learning addresses the challenge of catastrophic forgetting and
124 can be grouped into three families: rehearsal-based, regularization-based, and architecture-based.
125 *Rehearsal-based* approaches replay past knowledge using either stored exemplars or synthetic data,
126 such as iCaRL (Rebuffi et al., 2017), CCL-GM (Lavda et al., 2018), GSS (Aljundi et al., 2019),
127 and GDumb (Prabhu et al., 2020). *Regularization-based* methods constrain parameter updates to
128 protect previously acquired information. Examples include BSS (Chen et al., 2019), EWC (Kirk-
129 patrick et al., 2017), MAS (Aljundi et al., 2018), and diffusion-based strategies (Jha et al., 2024).
130 *Architecture-based* methods expand or reconfigure the network to accommodate new tasks, e.g.,
131 DyTox (Douillard et al., 2022), LMC (Ostapenko et al., 2021), WSN (Kang et al., 2022), and Piggy-
132 back (Mallya et al., 2018). Although effective, these approaches are typically designed for long-term
133 incremental learning and often require large-scale replay or architectural modifications. In contrast,
134 our method targets few-shot OVOD and achieves knowledge retention efficiently by storing compact
135 key-value statistics, without the need for exemplar memory or model expansion.

136

136

OVOD. OVOD has shown strong in-distribution results by leveraging vision–language pretraining
137 and semantic alignment (Li et al., 2022b; Liu et al., 2024), yet recent studies show substantial degra-
138 dation under distribution shifts with unseen categories or domains (Ilyas et al., 2024; Chhipa et al.,
139 2024). To address this, several few-shot fine-tuning methods have been explored: ETS (Pan et al.,
140 2025) adapts parameter configurations from foundation models, Domain-RAG (Li et al., 2025) re-
141 trievals semantically and stylistically similar images for data synthesis, and CD-ViT (Fu et al.,
142 2024) applies feature alignment, reweighting, and domain prompting. While effective on small
143 datasets, these approaches are task-specific, requiring repeated fine-tuning that increases cost and
144 may compromise prior performance. In contrast, we formulate few-shot adaptation as a model editing
145 problem: instead of retraining, we inject task knowledge into FFN layers via compact KV statistics,
146 enabling a single OVOD model to handle multiple tasks while retaining base-domain capability.

147

147

3 PRELIMINARY

148

149

3.1 MODEL EDITING IN LLMs

150

151

LLMs encode both factual and task-specific knowledge in their parameters, with recent studies
152 showing that it is largely concentrated in the FFN layers (Meng et al., 2022b; Fang et al., 2024).
153 Concretely, the FFN at the l -th layer can be written as:

154

$$\underbrace{m^l}_v = W_{\text{out}}^l \underbrace{\sigma(W_{\text{in}}^l \gamma(h^{l-1} + a^l))}_k. \quad (1)$$
155

156

Here, W_{in}^l and W_{out}^l denote the input and output weight matrices of the FFN, respectively, while γ
157 represents layer normalization and σ the activation function. The terms a^l and h^{l-1} correspond to
158 the output of the attention block and the hidden state of the $(l-1)$ -th layer. Prior work suggests
159 that knowledge in LLMs can be abstracted as triples (s, r, o) , where s denotes the subject, r the
160 relation, and o the object (e.g., $s = \text{The longest river in the world}$, $r = \text{is}$, $o = \text{“the Nile River”}$).
161 In general, the intermediate representation before the output projection is taken as the key k , while

162

162 the projected output is defined as the value v , corresponding to (s, r) and (o) , respectively, thereby
 163 forming key–value pairs (Geva et al., 2020). Building on this formulation, model editing seeks to
 164 replace original triples (s, r, o) with updated ones (s, r, o^*) , where the new object o^* is encoded
 165 through key–value pairs. Specifically, the new knowledge is represented by $K_1 \in \mathbb{R}^{d_0 \times u}$ and
 166 $V_1 \in \mathbb{R}^{d_1 \times u}$, which correspond to the key and value representations in the FFN output projection.
 167

168 3.2 MODEL EDITING FORMULATION FOR OVOD

170 We formalize the OVOD few-shot model editing problem as follows. Let $\mathcal{T} = \{\tau_1, \tau_2, \dots, \tau_T\}$
 171 be a set of T tasks, where each task τ_i corresponds to an object detection problem sampled from
 172 datasets that are *OOD* with respect to the base OVOD model. In practice, these tasks often come
 173 from novel domains or contain unseen object categories, on which the pre-trained OVOD model
 174 typically performs poorly.

175 Each task τ_i is defined by a small support set $\mathcal{S}_i = \{(x_j, y_j)\}_{j=1}^{K_i}$, containing a few annotated
 176 examples, and a query set \mathcal{Q}_i for evaluation. We treat the adaptation to task τ_i as injecting *new*
 177 knowledge into the model, analogous to model editing in large language models, where the model
 178 must quickly incorporate information from the support set to improve detection accuracy on the
 179 corresponding query set. The practical goal of OVOD knowledge injection is twofold: to achieve
 180 *Reliability*, the model should minimize the detection loss on the query sets \mathcal{Q}_i , i.e., $\mathcal{L}_{\text{det}}(\theta'; \mathcal{Q}_i)$;
 181 and to ensure *Locality*, it should simultaneously minimize the loss on the base dataset $\mathcal{D}_{\text{base}}$, i.e.,
 182 $\mathcal{L}_{\text{det}}(\theta'; \mathcal{D}_{\text{base}})$. In this way, the model adapts effectively to new tasks while preserving its original
 183 capability. In our editing setting, only the support sets \mathcal{S}_i are available for adaptation, while the query
 184 sets \mathcal{Q}_i and the base dataset $\mathcal{D}_{\text{base}}$ are used solely for evaluation and are not accessible during editing.
 185 This setting is more practically relevant than conventional continual learning, which emphasizes
 186 long-term retention but overlooks preserving the model’s original capability. These considerations
 187 motivate us to design an editing algorithm that efficiently injects new task knowledge while retaining
 188 the base model’s capability, as described in Sec. 4.

189 4 METHOD

191 In this section, we first introduce the construction and storage of new knowledge key–value pairs
 192 (Sec. 4.1), then present the auto-balanced objective function (Sec. 4.2), and finally describe how to
 193 optimize this objective and summarize the overall procedure in Alg. 1 (Sec. 4.3).

195 4.1 KNOWLEDGE KEY–VALUE CONSTRUCTION

197 Traditionally, knowledge editing in LLMs (Meng et al., 2022b) is formulated under the key–value
 198 framework. Given a key k that encodes the subject–relation pair (s, r) , the model retrieves the
 199 corresponding value v representing the object o . To inject new knowledge, existing methods usually
 200 keep the key k fixed, while replacing the associated value v with an updated value v^* that encodes
 201 the target object o^* . In practice, v^* is obtained by adjusting v (e.g., via gradient descent) so that the
 202 model is more likely to predict o^* when conditioned on (s, r) . To obtain the new knowledge key–
 203 value pairs in the OVOD model, we adopt a two-stage strategy consisting of **fine-tuning** and **storage**.
 204 In particular, we designate the parameter to be edited, such as the output projection matrix $W_{\text{out}} \in \mathbb{R}^{d_0 \times d_1}$ in the FFN Eq. 1, with its input and output defined as the key k and value v , respectively.
 205 During fine-tuning, for task τ_i , we regard the output projection matrix W_{out} as the only learnable
 206 parameter while keeping all others frozen. The task-specific parameter set θ_i thus corresponds to
 207 the adapted W_{out} , which is optimized with the following traditional detection objective:

$$\min_{\theta_i} \mathcal{L}_{\text{det}}(\theta_i; \mathcal{S}_i), \quad (2)$$

210 Once the fine-tuned parameter θ_i is obtained, we feed the support set \mathcal{S}_i into the corresponding fine-
 211 tuned OVOD model to extract the intermediate key–value representations, denoted as $K_i \in \mathbb{R}^{n_i \times d_0}$
 212 and $V_i \in \mathbb{R}^{n_i \times d_1}$. However, the dimension n_i can be extremely large; for instance, in a vision
 213 backbone it may scale with the number of samples and patches, making it prohibitive to store the
 214 full K_i and V_i . In Sec. 4.3, we show that keeping the entire matrices is unnecessary. Instead, it
 215 suffices to store the covariance and cross-covariance matrices, i.e., $K_i^\top K_i$ and $K_i^\top V_i$, which are
 significantly more compact while preserving the information required for subsequent optimization.

4.2 AUTO-BALANCED EDITING OBJECTIVE DESIGN

In order to effectively leverage the constructed key-value representations, we first introduce a straightforward objective: to allow the weight matrix W to absorb new knowledge while retaining previously learned information, we consider the following simple formulation:

$$\min_W f(W) = \|KW - V\|_F^2 + \lambda\|W - W_0\|_F^2, \quad (3)$$

where W_0 denotes the original parameter of the OVOD model. The key-value matrices (K, V) are obtained from the previous step by concatenating the knowledge matrices across all tasks:

$$K = [K_1; K_2; \dots; K_T] \in \mathbb{R}^{n \times d_0}, \quad V = [V_1; V_2; \dots; V_T] \in \mathbb{R}^{n \times d_1}, \quad (4)$$

where the total number of samples is $n = \sum_{i=1}^T n_i$, with n_i denoting the number of key-value pairs extracted from task τ_i . The hyperparameter λ controls the trade-off between fitting new knowledge and preserving the old one.

Through this optimization, the model is encouraged to acquire new knowledge while simultaneously preserving previously learned information. Apparently, the hyperparameter λ cannot be derived analytically but must instead be set heuristically and subsequently evaluated on both the query set and the base set to determine its suitability. Moreover, the choice of λ is not universal: it must be re-tuned whenever the task setting changes or a different OVOD model is employed.

A natural starting point is the λ -weighted ℓ_2 regularizer in Eq. 3. However, λ is task-dependent and requires re-tuning. To eliminate this hyperparameter, we design a data-adaptive reweighting optimization objective:

$$\min_W \|KW - V\|_F^2 + \|\Gamma(W - W_0)\|_F^2, \quad (5)$$

where $\Gamma \in \mathbb{R}^{d_0 \times d_0}$ is a positive diagonal matrix

$$\Gamma = \text{diag} \left(s_1^{1/4}, s_2^{1/4}, \dots, s_d^{1/4} \right), \quad s_i = \sum_t k_{ti}^2.$$

Intuitively, the regularization term $\|\Gamma(W - W_0)\|_F^2$ applies a weight of $s_i^{1/2}$ to the squared ℓ_2 norm of the i -th row of $(W - W_0)$, since $\Gamma_{ii}^2 = s_i^{1/2}$. In this way, the objective balances new fitting information and prior knowledge in a data-adaptive manner, while a more detailed discussion of the benefits of this design is deferred to the Appendix B.3.

4.3 OPTIMIZATION AND OVERALL ALGORITHM

From Eq. 5, taking the derivative with respect to W leads to a linear system. Let $H := K^\top K + \Gamma^2 \in \mathbb{R}^{d_0 \times d_0}$, which is symmetric and positive semidefinite in general, and becomes positive definite as long as Γ has strictly positive diagonal. The unique minimizer is:

270
271
272

$$W^* = H^{-1}(K^\top V + \Gamma^2 W_0). \quad (6)$$

273 In implementation, we never compute H^{-1} explicitly; instead, we solve the linear system $HW^* =$
 274 $K^\top V + \Gamma^2 W_0$ using a numerical solver (e.g., `torch.linalg.solve`). Moreover, computing the
 275 solution does not require storing the full key-value matrices. In practice, it suffices to maintain only
 276 the aggregated statistics $K^\top K$, $K^\top V$, and Γ , which can be obtained by summing the corresponding
 277 task-specific quantities:

$$278 \quad 279 \quad 280 \quad 281 \quad K^\top K = \sum_{t=1}^T K_t^\top K_t, \quad K^\top V = \sum_{t=1}^T K_t^\top V_t, \quad \Gamma^2 = \sum_{t=1}^T \Gamma_t^2. \quad (7)$$

282 This additive update rule is similar in spirit to the matrix update in (Wang et al., 2021), and the
 283 detailed proof of equivalence is deferred to Appendix B.2. Although the above expressions are
 284 written as summations over all tasks from 1 to T for convenience, they hold for any subset or
 285 combination of tasks within $\{1, \dots, T\}$. Our method is summarized in Alg. 1.

286

287 5 EXPERIMENT

288 5.1 IMPLEMENTATION DETAILS

289 We conduct experiments on two cross-domain few-shot detection benchmarks, **CDFSOD** (Fu et al.,
 290 2024) and **ODinW-13** (Li et al., 2022a), covering 19 few-shot tasks under significant distribution
 291 shift. We follow the standard K -shot setting with $K \in \{1, 5, 10, 30, 50\}$. Further details of the
 292 datasets and training setups are provided in Appendix C.1.

293 **Evaluation metric.** Following CDFSOD and ODinW-13, we adopt the standard COCO-style Average
 294 Precision (AP) metric, computed over IoU thresholds from 0.50 to 0.95 across all object scales,
 295 for evaluation. In addition, we use the model’s AP on the COCO dataset to measure its ability to
 296 retain the original detection performance.

297

300 5.2 MAIN RESULTS

301 To assess the trade-off between preserving prior knowledge and adapting to new tasks, we use two metrics:
 302 **Retention Ratio (RR)**, $AP_{\text{old}}^{\text{edited}} / AP_{\text{old}}^{\text{original}}$, which measures how well the model retains its original ability; and
 303 **Adaptation Gain Ratio (AGR)**, $AP_{\text{new}}^{\text{edited}} / AP_{\text{new}}^{\text{finetuned}}$, which evaluates adaptation to new tasks relative to
 304 full fine-tuning. Here, subscripts denote task type (old/new), and superscripts the model variant (original/edited/finetuned).

305 Tables 1, 2, and 3 summarize base performance, representative baselines: *EWC* (Kirkpatrick et al., 2017),
 306 *Adam-NSCL* (Wang et al., 2021), and *SD-LoRA* (Wu et al., 2025), as well as our editing method (*Ours*).
 307 Among them, Table 2 is our main experimental result. For reference, we also include *FFN fine-tune* on each
 308 target dataset as an oracle upper bound.

309 **Effectiveness on target tasks.** We report AGR to measure how effectively each method approaches full
 310 fine-tuning. On CDFSOD-6, our method reaches 99% (1-shot), 97% (5-shot), 96% (10-shot), 96%
 311 (30-shot), and 95% (50-shot), clearly higher than baseline methods. On ODinW-13, it achieves 96%
 312 (1-shot), 97% (5-shot), and 93% (10-shot), again surpassing the baselines. These results indicate
 313 that our editing strategy retains near-fine-tuning adaptation while being more efficient than prior
 314 approaches.

Table 1: Few-shot results on **ODinW-13**. Avg denotes the average performance across all 13 datasets.

Shots	Method	Avg	COCO	RR	AGR
—	Base Model	48.4	59.7	—	—
1-shot	EWC	56.3	55.7	93.3%	93.2%
	Adam-NSCL	54.7	59.0	99.8%	90.6%
	SD-LoRA	55.2	54.4	91.1%	90.1%
	Ours	57.9	58.5	98.0%	95.9%
	Oracle	60.4	—	—	—
5-shot	EWC	58.5	56.5	94.6%	93.0%
	Adam-NSCL	59.2	57.8	96.8%	94.1%
	SD-LoRA	58.4	55.6	93.1%	92.8%
	Ours	61.0	57.9	97.0%	97.0%
	Oracle	62.9	—	—	—
10-shot	EWC	61.3	56.7	95.0%	92.5%
	Adam-NSCL	60.1	58.2	97.5%	90.6%
	SD-LoRA	61.1	55.8	93.5%	92.2%
	Ours	61.7	57.8	96.8%	93.1%
	Oracle	66.3	—	—	—

324
 325 Table 2: Few-shot results on **CDFSOD**. Avg denotes the average performance across all target
 326 datasets. “Oracle” refers to the results obtained by independently fine-tuning the FFN on each
 327 individual dataset, serving as an upper bound for performance.

Shots	Method	ArTaxOr	Clipart1K	DeepFish	DIOR	NEU-DET	UODD	Avg	COCO	RR	AGR
—	Base Model	12.8	49.1	28.6	4.5	1.2	10.1	17.7	59.7	—	—
1-shot	EWC	9.6	53.5	30.6	10.8	7.4	8.2	20.0	57.6	96.5%	90.9%
	Adam-NSCL	12.4	51.5	32.1	5.8	1.4	6.9	18.4	59.0	98.8%	83.6%
	SD-LoRA	13.4	45.1	28.9	10.9	10.7	9.5	19.8	52.5	87.9%	90.0%
	Ours	12.1	54.8	33.6	10.5	5.0	14.1	21.7	57.5	96.3%	98.6%
	Oracle	13.6	55.8	31.9	11.8	5.6	13.5	22.0	—	—	—
5-shot	EWC	33.3	54.4	35.7	19.5	20.0	23.4	31.0	57.1	95.6%	78.3%
	Adam-NSCL	68.2	52.1	33.8	8.4	5.0	7.0	29.1	57.8	96.8%	73.5%
	SD-LoRA	7.9	51.7	31.5	18.1	19.2	21.0	24.9	54.2	90.8%	62.9%
	Ours	69.4	57.9	37.6	26.1	20.2	19.5	38.5	57.0	95.5%	97.2%
	Oracle	69.2	60.2	35.1	29.4	22.2	21.5	39.6	—	—	—
10-shot	EWC	21.3	56.5	39.9	24.4	23.3	25.7	31.9	55.5	93.0%	74.4%
	Adam-NSCL	72.2	52.8	34.6	11.4	10.0	11.7	32.1	58.2	97.5%	74.8%
	SD-LoRA	22.6	52.6	32.0	18.2	20.5	24.2	28.4	52.7	88.3%	66.2%
	Ours	71.6	59.5	38.7	32.4	22.8	20.9	41.0	56.8	95.1%	95.6%
	Oracle	72.3	61.4	36.9	37.1	25.0	24.4	42.9	—	—	—
30-shot	EWC	35.1	54.9	38.1	23.1	18.3	27.6	32.9	54.1	90.6%	67.3%
	Adam-NSCL	75.1	53.5	37.5	13.2	8.7	7.6	32.6	57.9	97.0%	66.7%
	SD-LoRA	15.4	50.5	35.6	21.4	21.3	27.5	28.6	50.4	84.4%	58.5%
	Ours	76.5	58.1	39.9	45.2	32.2	26.9	46.7	55.1	92.3%	95.5%
	Oracle	77.8	61.1	44.3	49.7	35.1	25.6	48.9	—	—	—
50-shot	EWC	46.2	52.0	36.0	23.8	16.6	27.1	33.6	52.8	88.4%	66.5%
	Adam-NSCL	79.7	52.9	34.9	20.5	12.3	13.9	35.7	57.2	95.8%	70.7%
	SD-LoRA	3.9	52.8	33.3	22.0	17.5	30.4	26.7	51.6	86.4%	52.9%
	Ours	79.5	58.6	35.4	51.2	34.5	28.9	48.0	54.5	91.3%	95.0%
	Oracle	81.9	62.4	40.2	54.0	35.9	28.4	50.5	—	—	—

353
 354 **Preservation of prior capability.** We further
 355 evaluate the Retention Ratio (RR) to measure
 356 how much COCO performance is preserved af-
 357 ter editing. Our method maintains a high RR
 358 across different shots (most exceeding 95%),
 359 indicating that even when achieving very high
 360 AGR on new tasks, the model still retains the
 361 vast majority of its original COCO capability.
 362 This demonstrates that our edits not only adapt
 363 effectively to novel domains but also avoid
 364 catastrophic forgetting on the source dataset.

365 **Flexibility.** An additional advantage of our ap-
 366 proach lies in its flexibility. Without any extra
 367 training, we can directly combine the results from
 368 all 19 tasks. As shown in Table 3, our method achieves high AGR (mostly above 95%) on
 369 new tasks while maintaining strong RR (also above 95%) on COCO, indicating that a *single edited*
 370 *model* can effectively adapt to all 19 datasets without retraining.

371 5.3 ABLATION STUDY

372
 373 To evaluate generality under different task volumes, we gradually increase the number of CDFSOD
 374 target datasets by treating the first $k \in \{1, \dots, 6\}$ as *new tasks* while keeping COCO as the old task.
 375 For the manual-tuning baseline, we use Eq. 3 with fixed $\lambda \in \{1, 5, 10, 15, 20\}$ and compute (i) COCO
 376 mAP for old-task retention and (ii) the mean mAP across the k new tasks. We then average these
 377 results across all k values to obtain an overall *old-task mean* and *new-task mean*. In contrast, our
 378 method directly applies the auto-balanced objective in Eq. 5 without any manual hyperparameters.

Table 3: Overall performance on all **19** datasets (CDFSOD-6 + ODinW-13). “Avg” denotes the average performance across all 19 datasets.

Shots	Method	CDFSOD	ODinW	Avg	COCO	RR	AGR
—	Base Model	17.7	48.4	38.7	59.7	—	—
1-shot	SD-LoRA	18.2	58.1	45.5	53.4	89.4%	94.2%
	Ours	21.7	58.3	46.7	58.5	98.0%	96.7%
	Oracle	22.0	60.4	48.3	—	—	—
5-shot	SD-LoRA	23.9	61.2	49.4	53.1	88.9%	89.0%
	Ours	37.3	60.2	53.0	58.0	97.2%	95.5%
	Oracle	39.6	62.9	55.5	—	—	—
10-shot	SD-LoRA	25.0	61.4	49.9	51.8	86.8%	84.7%
	Ours	39.6	62.2	55.1	57.9	97.0%	93.5%
	Oracle	42.8	66.3	58.9	—	—	—

379 above and apply Eq. 7 to integrate the capabilities
 380 across all 19 tasks. As shown in Table 3, our method achieves high AGR (mostly above 95%) on
 381 new tasks while maintaining strong RR (also above 95%) on COCO, indicating that a *single edited*
 382 *model* can effectively adapt to all 19 datasets without retraining.

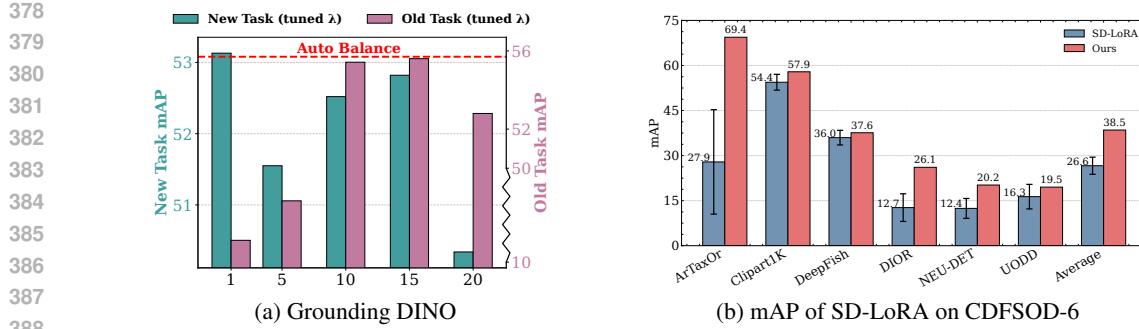


Figure 2: (a) Manual λ tuning vs. Auto-Balanced Optimization, with the horizontal axis representing different values of λ , (b) mAP of continual learning methods on CDFSOD-6 across 20 random dataset orders. The error bars on SD-LoRA indicate the variance across different sequences.

Table 5: Continual learning methods combined with ours on **CDFSOD** 10-shot. This combination leads to significant improvements on the new CDFSOD tasks while also enhancing the retention of the original COCO task performance.

Method	ArTaxOr	Clipart1K	DeepFish	DIOR	NEU-DET	UODD	Avg	COCO	RR	AGR
EWC	21.3	56.5	39.9	24.4	23.3	25.7	31.9	55.5	93.0%	74.4%
EWC+Ours	73.3	59.3	39.6	31.6	23.8	22.3	41.7	55.7	93.3%	97.2%
SD-LoRA	22.6	52.6	32.0	18.2	20.5	24.2	28.4	52.7	88.3%	66.2%
SD-LoRA+Ours	69.5	57.9	34.8	26.4	22.0	20.1	38.5	56.0	93.8%	89.7%
Oracle	72.3	61.4	36.9	37.1	25.0	24.4	42.9	—	—	—

Generality across task volumes. Fig. 2a shows that the red dashed line (Auto-Balanced) consistently exceeds the bars corresponding to fixed- λ settings in terms of new-task mAP, while simultaneously maintaining competitive COCO performance (right axis; compressed scale). This demonstrates that Auto-Balanced Optimization generalizes well across varying task volumes and outperforms careful manual tuning, all without the need for parameter search.

Order-agnostic learning. Fig. 2b evaluates continual learning methods on the six CDFSOD datasets by randomly shuffling their order and repeating the process 20 times. Results show that conventional continual learning is highly sensitive to task order, as indicated by the large error bars for SD-LoRA. In contrast, our method aggregates tasks according to Eq. 7, achieving stable performance regardless of task order.

As shown in Table 4, we conduct an ablation study on the exponent α in $\Gamma = \text{diag}(s_1^\alpha, s_2^\alpha, \dots, s_d^\alpha)$, where $s_i = \sum_t k_{ti}^2$. The results indicate that smaller exponents (e.g., $\frac{1}{4}$ or $\frac{1}{8}$) yield consistently better performance on CDFSOD-6 (5-shot) while maintaining comparable COCO accuracy.

ABME combined with continual learning. Table 5 shows that when applying our method for model editing on top of conventional continual learning approaches, significant improvements are achieved. Under the CDFSOD 10-shot setting, EWC+Ours improves by 9.8 mAP, SD-LoRA+Ours improves by 10.1 mAP, and further gains are also observed on the COCO old tasks. Moreover, we trained the GLIP model on CDFSOD under the 1/5/10-shot settings using our method. As shown in Table 6, our method achieved an average RR of 97.9% and an AGR of 95.7% across the three settings, demonstrating its generalizability across different models.

Ablation on Editing Regions. Model editing in LLMs typically requires locating specific layers for knowledge injection. Following this, we screened FFN layers across different modules (e.g., backbone vs. encoder-decoder) Mitchell et al. (2021). As shown in Table 7, editing FFN layers across the entire architecture (Ours) achieves the best balance between new-task adaptation and old-task retention, outperforming edits restricted to specific sub-modules.

Table 4: Ablation on exponent α in Γ on **CDFSOD** 5-shot.

α	CDFSOD	COCO
1	0	0
1/2	36.6	57.0
1/4	38.5	57.0
1/8	38.5	56.9

432 Table 6: GLIP few-shot results on **CDFSOD**. We apply our ABME method on GLIP under the 1, 5,
 433 and 10-shot settings. The results show that our approach achieves consistently high RR and AGR.

434 435 436 437 438 439 440 441											
–	Base Model	12.0	52.5	35.7	6.6	1.7	5.9	19.1	59.4	–	–
1-shot	Ours	32.9	55.5	36.1	16.1	11.1	4.2	26.0	58.8	99.0%	98.1%
	Oracle	33.8	55.2	36.2	17.3	11.9	4.5	26.5	–	–	–
5-shot	Ours	51.8	55.1	41.5	28.1	20.5	14.1	35.2	58.1	97.8%	94.6%
	Oracle	54.7	54.9	43.7	31.3	21.2	17.1	37.2	–	–	–
10-shot	Ours	51.4	56.5	39.1	34.1	23.5	18.6	37.2	57.6	97.0%	94.4%
	Oracle	53.1	56.7	41.0	38.3	25.4	21.7	39.4	–	–	–

442 Table 7: Ablation on screening FFN layers in different modules (Grounding DINO, 5-shot CDF-
 443 SOD). We report New-task mAP and COCO mAP. "Back." refers to FFNs in the Backbone, and
 444 "Enc-Dec" to FFNs in the Encoder-Decoder.

| 445
446
447
448 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Edited FFNs | Back.(shallow) | Back.(mid) | Back.(last) | Back. (All) | Enc-Dec (All) | Back.(mid)+Enc-Dec | All FFNs (Ours) |
| New-task | 23.4 | 22.3 | 20.6 | 35.1 | 33.9 | 36.2 | 38.5 |
| Old-task | 56.5 | 59.6 | 59.3 | 58.3 | 56.5 | 58.4 | 57.0 |

449
 450 **Impact of Editing Location (FFN vs. Self-Attention).** To validate our design choice of targeting
 451 FFN layers, we compare the performance of ABME when applied to FFN versus Self-Attention
 452 (SA) layers. As shown in Table 8, editing FFN layers yields a superior adaptation performance of
 453 38.5 mAP on CDFSOD, outperforming SA editing (36.3 mAP) by 2.2 mAP. This confirms that FFN
 454 layers are the more effective site for injecting semantic knowledge in OVOD models. However, it
 455 is worth noting that our method still recovers 93.6% of the independent fine-tuning performance
 456 (Layer Oracle) even on SA layers. This demonstrates that while FFN is the optimal location, our
 457 auto-balanced algorithm generalizes robustly across different network structures.

458 Table 8: Comparison of editing FFN vs. SA layers on CDFSOD (5-shot). "Layer Oracle" denotes
 459 the upper bound achieved by independently fine-tuning the specific layer type on each dataset.

460 461 462 463 464	460 461 462 463 464	460 461 462 463 464	460 461 462 463 464	460 461 462 463 464
Editing Target	CDFSOD	Layer Oracle	% of Oracle	COCO
Base Model	17.7	-	-	59.7
Self-Attention Layers	36.3	38.8	93.6%	57.8
FFN out Layers	38.5	39.6	97.2%	57.0

468 5.4 SCALABILITY AND VERSATILITY ANALYSIS

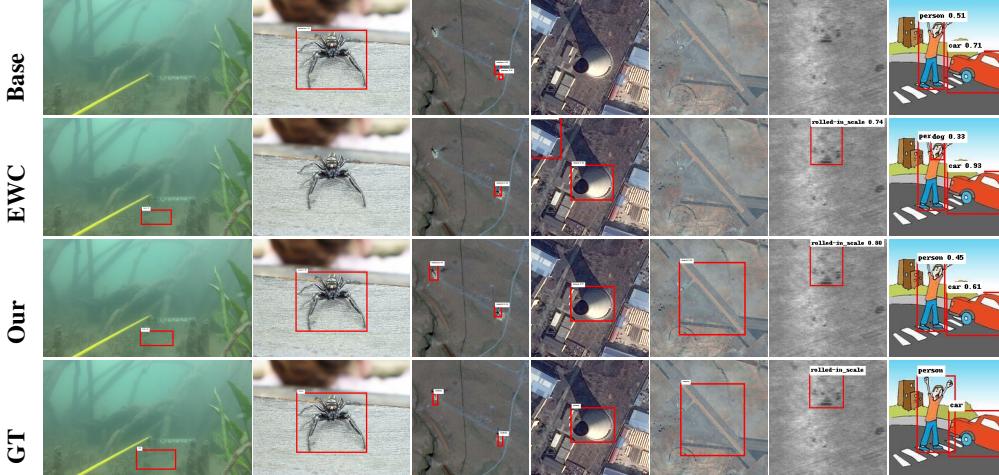
469
 470 **Scalability to large-scale heterogeneous domains.** To simulate extreme domain shifts and long-
 471 term adaptation, we extended CDFSOD to 90 sequential tasks using ImageCorruptions (Michaelis
 472 et al., 2019). We specifically selected the most severe intensity (level 5 of 5) to challenge the model
 473 limits. As shown in Table 9, ABME achieves 23.8 mAP, closely matching the Oracle (26.4 mAP)
 474 while retaining 96.3% of the original COCO performance.

475
 476 **Generalization to CLIP-based Classification.** To verify cross-architecture generalization, we ap-
 477 plied ABME to CLIP (Radford et al., 2021) (ViT-B/16) (Dosovitskiy, 2020) on 11 diverse datasets
 478 under a 5-shot setting. As shown in Table 10, our unified model achieves 74.1% accuracy, outper-
 479 forming specific continual learning baselines (ZSCL (Zheng et al., 2023b), WiSE-FT (Wortsman
 480 et al., 2022)) and the Zero-shot Base (65.3%). It recovers ~92% of the Oracle(FFN out) perfor-
 481 mance (80.4%), demonstrating effective adaptation beyond object detection. Oracle (FFN-out) and
 482 Oracle (Full) refer to independent fine-tuning per dataset on FFN output layers and all parameters,
 483 respectively. Specific dataset details are provided in the Appendix C.1.

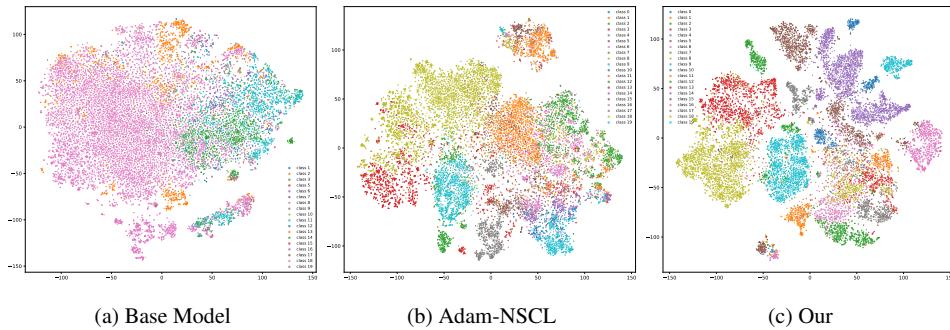
484 **Visualization results.** As shown in Fig. 3 and Fig. 4, the Base model (Grounding DINO pretrained)
 485 struggles under domain shifts, resulting in many missed detections, false positives, and heavily
 486 overlapping features. EWC and Adam-NSCL provide limited improvements in detection and fea-
 487 ture separation, but still fail to generalize well. In contrast, our proposed ABME method achieves

486
487
488
489
Table 9: Performance on 90 sequential tasks with
extreme domain shifts (15 corruption types). De-
tailed average performance across the 15 corruption
types is provided in Table 12.

Method	90 Tasks	COCO
Base Model	10.1	59.7
Adam-NSCL	20.8	57.2
Ours	23.8	57.5
Oracle	26.4	-



511
512
513
Figure 3: Comparison of Grounding DINO pretrained model (Base), EWC, our proposed method
(Ours), and ground truth (GT) across different datasets.



524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Figure 4: t-SNE visualization results of the Base model (Grounding DINO pretrained), Adam-NSCL, and our ABME method on the DIOR dataset, all trained on CDFSOD with 10-shot setting.

stronger detection of novel objects, reduces false detections, and produces more compact and clearly separated feature clusters, demonstrating superior robustness against domain shifts.

6 CONCLUSION

We proposed an auto-balanced model editing framework for OVOD that treats few-shot adaptation as knowledge injection into FFN layers and introduces a method that eliminates the need for tedious hyperparameter tuning by automatically balancing new and old knowledge. Our method achieves performance close to full fine-tuning on new tasks while retaining most original capabilities, and its compact key-value design supports flexible task combinations without retraining. We believe this editing-based perspective offers a lightweight and scalable alternative to traditional continual learning pipelines, and we hope it can inspire a new paradigm of continual learning for visual tasks, ultimately enabling more robust and adaptive open-world perception systems.

Table 10: Generalization to CLIP on 11 classification datasets (5-shot).

Method	Avg Acc (%)
Base (Zero-shot)	65.3
ZSCL	67.4
WiSE-FT	71.9
Ours	74.1
Oracle(FFN out)	80.4
Oracle(Full)	77.5

ETHICS STATEMENT

All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve interventions with human participants or personally identifiable information. We use only publicly available datasets under their original licenses and follow the terms of use. Potential risks and our mitigations are summarized below:

- **Privacy & Security.** We do not collect or release any personal data. When showing qualitative examples, all images/videos are from public datasets; any sensitive content is filtered.
- **Bias & Fairness.** We report results on multiple benchmarks and provide detailed settings to facilitate external auditing. We acknowledge possible dataset biases and encourage follow-up evaluation on broader demographics and domains.
- **Dual Use / Misuse.** The method could be misused to enable undesired large-scale labeling or surveillance. To reduce misuse, we release only research artifacts (code/configs) and exclude any tools for scraping or re-identifying individuals.
- **Legal Compliance.** We comply with licenses of all third-party assets (code, models, and datasets) and cite their sources. Any additional third-party terms are respected.
- **Research Integrity.** We document preprocessing, training recipes, and evaluation protocols; random seeds and hyperparameters are provided to enable reproducibility.

Where applicable, institutional review information is withheld for double-blind review and can be provided after acceptance.

REPRODUCIBILITY STATEMENT

We provide detailed training configurations, including hyperparameters and optimization settings, in the main paper and Appendix. In addition, we will release code to ensure reproducibility, covering: (i) random seeds; (ii) full data preprocessing and splits; (iii) code structure with scripts to reproduce the main tables and figures; (iv) checkpoints and logs for the primary models.

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 139–154, 2018.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online continual learning. *Advances in neural information processing systems*, 32, 2019.

Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning. *Advances in neural information processing systems*, 32, 2019.

Prakash Chandra Chhipa, Kanjar De, Meenakshi Subhash Chippa, Rajkumar Saini, and Marcus Liwicki. Open-vocabulary object detectors: Robustness challenges under distribution shifts. In *European Conference on Computer Vision*, pp. 62–79. Springer, 2024.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in pretrained transformers. In *ACL*, pp. 8493–8502, 2022.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers for continual learning with dynamic token expansion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9285–9295, 2022.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv preprint arXiv:2410.02355*, 2024.

594 Yuqian Fu, Yu Wang, Yixuan Pan, Lian Huai, Xingyu Qiu, Zeyu Shangguan, Tong Liu, Yanwei Fu,
 595 Luc Van Gool, and Xingqun Jiang. Cross-domain few-shot object detection via enhanced open-set
 596 object detector. In *European Conference on Computer Vision*, pp. 247–264. Springer, 2024.

597

598 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 599 key-value memories. *arXiv preprint arXiv:2012.14913*, 2020.

600

601 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
 602 and language knowledge distillation. *arXiv preprint arXiv:2104.13921*, 2021.

603

604 Guy Hacohen and Tinne Tuytelaars. Forgetting order of continual learning: Examples that are
 605 learned first are forgotten last. *arXiv preprint arXiv:2406.09935*, 2024.

606

607 Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
 608 Transformer-patcher: One mistake worth one neuron. *ArXiv*, abs/2301.09785, 2023.

609

610 Sadia Ilyas, Ido Freeman, and Matthias Rottmann. On the potential of open-vocabulary models
 611 for object detection in unusual street scenes. In *European Conference on Computer Vision*, pp.
 612 201–217. Springer, 2024.

613

614 Saurav Jha, Shiqi Yang, Masato Ishii, Mengjie Zhao, Christian Simon, Muhammad Jehanzeb Mirza,
 615 Dong Gong, Lina Yao, Shusuke Takahashi, and Yuki Mitsufuji. Mining your own secrets: Dif-
 616 fusion classifier scores for continual personalization of text-to-image diffusion models. *arXiv
 617 preprint arXiv:2410.00700*, 2024.

618

619 Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guojun Ma, Mingyang Wan, Xiang Wang, Xiangnan
 620 He, and Tat-seng Chua. Anyedit: Edit any knowledge encoded in language models. *arXiv preprint
 621 arXiv:2502.05628*, 2025.

622

623 Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark
 624 Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with win-
 625 ning subnetworks. In *International conference on machine learning*, pp. 10734–10750. PMLR,
 626 2022.

627

628 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 629 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 630 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
 631 114(13):3521–3526, 2017.

632

633 Guannan Lai, Yujie Li, Xiangkun Wang, Junbo Zhang, Tianrui Li, and Xin Yang. Order-robust
 634 class incremental learning: Graph-driven dynamic similarity grouping. In *CVPR*, pp. 4894–4904,
 635 2025.

636

637 Frantzeska Lavda, Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Continual clas-
 638 sification learning using generative models. *arXiv preprint arXiv:1810.10612*, 2018.

639

640 Chunyuan Li, Haotian Liu, Liunian Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping Jin,
 641 Houdong Hu, Zicheng Liu, Yong Jae Lee, et al. Elevater: A benchmark and toolkit for evaluating
 642 language-augmented visual models. *Advances in Neural Information Processing Systems*, 35:
 643 9287–9301, 2022a.

644

645 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
 646 Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-
 647 training. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 648 pp. 10965–10975, 2022b.

649

650 Yu Li, Xingyu Qiu, Yuqian Fu, Jie Chen, Tianwen Qian, Xu Zheng, Danda Pani Paudel, Yanwei
 651 Fu, Xuanjing Huang, Luc Van Gool, et al. Domain-rag: Retrieval-guided compositional image
 652 generation for cross-domain few-shot object detection. *arXiv preprint arXiv:2506.05872*, 2025.

653

654 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 655 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 656 conference on computer vision*, pp. 740–755. Springer, 2014.

648 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 649 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 650 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 651 2024.

652 Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-assisted prompt editing to
 653 improve GPT-3 after deployment. *arXiv preprint arXiv:2201.06009*, 2022.

654 Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
 655 tiple tasks by learning to mask weights. In *Proceedings of the European conference on computer*
 656 *vision (ECCV)*, pp. 67–82, 2018.

657 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 658 associations in gpt. In *NeurIPS*, pp. 17359–17372, 2022a.

659 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 660 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022b.

661 Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexan-
 662 der S. Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detec-
 663 tion: Autonomous driving when winter is coming. *arXiv preprint arXiv:1907.07484*, 2019.

664 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
 665 editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.

666 Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning
 667 via local module composition. *Advances in Neural Information Processing Systems*, 34:30298–
 668 30312, 2021.

669 Jiancheng Pan, Yanxing Liu, Xiao He, Long Peng, Jiahao Li, Yuze Sun, and Xiaomeng Huang.
 670 Enhance then search: An augmentation-search strategy with foundation models for cross-domain
 671 few-shot object detection. In *Proceedings of the Computer Vision and Pattern Recognition Con-*
 672 *ference*, pp. 1548–1556, 2025.

673 Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
 674 our progress in continual learning. In *European conference on computer vision*, pp. 524–540.
 675 Springer, 2020.

676 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 677 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 678 models from natural language supervision. In *International conference on machine learning*, pp.
 679 8748–8763. PMLR, 2021.

680 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 681 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on*
 682 *Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

683 Gobinda Saha and Kaushik Roy. Continual learning with scaled gradient projection. In *Proceedings*
 684 *of the AAAI conference on artificial intelligence*, volume 37, pp. 9677–9685, 2023.

685 Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
 686 and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
 687 language models. In *NeurIPS*, pp. 53764–53797, 2024.

688 Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
 689 covariance for continual learning. In *Proceedings of the IEEE/CVF conference on Computer*
 690 *Vision and Pattern Recognition*, pp. 184–193, 2021.

691 Zhiwu Wang, Yichen Wu, Renzhen Wang, Haokun Lin, Quanxiang Wang, Qian Zhao, and Deyu
 692 Meng. Singular value fine-tuning for few-shot class-incremental learning. *arXiv preprint*
 693 *arXiv:2503.10214*, 2025.

702 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
703 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
704 fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF conference on computer vision*
705 and pattern recognition, pp. 7959–7971, 2022.

706 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhu Li, Hanspeter Pfister, Deyu
707 Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incre-
708 mental learning. In *ICLR*, pp. 58337–58353, 2025.

709 Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, and Zhumin Chen. Knowledge graph
710 enhanced large language model editing. *arXiv preprint arXiv:2402.13593*, 2024.

711 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
712 we edit factual knowledge by in-context learning? *arXiv preprint arXiv:2305.12740*, 2023a.

713 Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
714 zero-shot transfer degradation in continual learning of vision-language models. In *Proceedings of*
715 the IEEE/CVF international conference on computer vision, pp. 19125–19136, 2023b.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A THE USE OF LLMs**
757758 We used ChatGPT-4o to polish our manuscript, using the following prompt:
759760 I want you to act as an expert in scientific writing. I will
761 provide you with some paragraphs in English and your task is
762 to improve the spelling, grammar, clarity, conciseness, and
763 overall readability of the text provided, while breaking down long
764 sentences, reducing repetition and increasing logic. You should use
765 artificial intelligence tools, such as natural language processing,
766 rhetorical knowledge, and your expertise in effective scientific
767 writing techniques to reply. Provide the output as a table in
768 a readable mode. The first column is the original sentence, the
769 second column is the sentence after editing, and the third column
770 provides explanation of your edits and reasons. Please edit the
771 following text in a scientific tone:
772
773774 **B THEORETICAL ANALYSIS**
775776 **B.1 ANALYSIS OF OPTIMIZATION FUNCTIONS**
777778 The optimization problem is given by:
779

780
$$\min_W \|KW - V\|_F^2 + \|\Gamma(W - W_0)\|_F^2 \quad (8)$$

781

782 where Γ is a diagonal matrix defined as:
783

784
$$\Gamma = \text{diag}(s_1^{1/4}, s_2^{1/4}, \dots, s_d^{1/4}), \quad s_i = \sum_j k_{ij}^2 \quad (9)$$

785
786

787 To find the optimal solution, we take the first-order derivative and set it equal to zero:
788

789
$$K^T(KW - V) + \Gamma^2(W - W_0) = 0 \quad (10)$$

790

791
$$\Rightarrow (K^T K + \Gamma^2)(W - W_0) = K^T V - K^T K W_0 \quad (11)$$

792

793
$$\Rightarrow \Delta W = (K^T K + \Gamma^2)^{-1} K^T (V - K W_0) \quad (12)$$

794

795 **B.2 MATRIX UPDATING RULE**
796797 We have the following expressions for K and V :
798

800
$$K = \begin{bmatrix} K_1 \\ K_2 \\ \vdots \\ K_T \end{bmatrix}, \quad V = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_T \end{bmatrix}$$

801
802
803
804
805

806 For $K^T K$, we can express it as:
807

808
$$K^T K = \sum_{t=1}^T K_t^T K_t \quad (13)$$

809

810 For $K^T V$, we have:

$$812 \quad 813 \quad 814 \quad 815 \quad 816 \quad 817 \quad 818 \quad 819 \quad 820 \quad 821 \quad 822 \quad 823 \quad 824 \quad 825 \quad 826 \quad 827 \quad 828 \quad 829 \quad 830 \quad 831 \quad 832 \quad 833 \quad 834 \quad 835 \quad 836 \quad 837 \quad 838 \quad 839 \quad 840 \quad 841 \quad 842 \quad 843 \quad 844 \quad 845 \quad 846 \quad 847 \quad 848 \quad 849 \quad 850 \quad 851 \quad 852 \quad 853 \quad 854 \quad 855 \quad 856 \quad 857 \quad 858 \quad 859 \quad 860 \quad 861 \quad 862 \quad 863$$

$$K^T V = \sum_{t=1}^T K_t^T V_t \quad (14)$$

B.3 THEORETICAL ANALYSIS OF THE AUTO-BALANCING MECHANISM

The objective function is formally defined as:

$$\min_W \|(K W - V)\|_F^2 + \|\Gamma(W - W_0)\|_F^2, \quad (15)$$

where the diagonal matrix Γ is set as $\Gamma_{ii} = s_i^{1/4}$, with $s_i = \sum_t k_{ti}^2$ representing the accumulated feature energy of the input key matrix K . In practice, the raw feature energy s_i inherently exhibits extreme variations across different feature dimensions and tasks (e.g., varying from 10^4 to 10^6 in our CDFSOD 5-shot experiments). This creates a severe scale imbalance for optimization: a fixed scalar λ would be either too negligible for high-energy dimensions or too restrictive for low-energy ones. To resolve this, we derived our Γ design based on the optimization curvature to automatically normalize these scales.

Feature-wise Adaptivity via Curvature Analysis. We address the optimization imbalance by analyzing the Hessian (curvature) of the objective function \mathcal{L} .

- **Data Term Curvature:** The Hessian of the first term $\|K W - V\|_F^2$ with respect to W is $2K^T K$. Suppose the input feature K has a magnitude scale M_k . The curvature of this term scales quadratically, i.e., $\mathcal{O}(M_k^2)$. This creates extremely steep optimization landscapes for high-energy features, leading to dominance in updates if not balanced.
- **Adaptive Regularization:** The Hessian of our regularization term is $2\Gamma^2$. Since the feature energy s_i scales with $\mathcal{O}(M_k^2)$, our design $\Gamma_{ii} = s_i^{1/4}$ implies that Γ^2 scales linearly with $\mathcal{O}(M_k)$ (as $\Gamma^2 \propto \sqrt{s_i} \propto M_k$).

This formulation achieves a critical balance mechanism:

- **Adaptivity:** The regularization strength Γ^2 grows with feature magnitude ($\mathcal{O}(M_k)$), providing necessary constraints for strong features compared to fixed scalars.
- **Plasticity:** The regularization grows slower than the data term ($\mathcal{O}(M_k)$ vs. $\mathcal{O}(M_k^2)$). This “sub-quadratic” scaling prevents the regularization from becoming over-rigid (which would happen if $\Gamma_{ii} = s_i^{1/2}$, where $\Gamma^2 \sim \mathcal{O}(M_k^2)$), thereby allowing sufficient injection of new knowledge even for high-signal features.

C EXPERIMENT

In our experiments, we primarily adopt **Grounding DINO** (Liu et al., 2024), a state-of-the-art open-vocabulary object detector that unifies grounding with strong detection performance. We also evaluate on **GLIP** (Li et al., 2022b), a vision-language pre-training model that aligns detection with phrase grounding, in order to verify the generality of our auto-balance strategy across different models and task scales.

For fine-tuning, we update only the output layers of all FFN modules. The batch size is set to 8 for Grounding DINO and 2 for GLIP, and we use the AdamW optimizer with a learning rate of 1×10^{-4} . Training is conducted for 18 epochs on most datasets, with slight adjustments under different shot settings to achieve better adaptation.

C.1 TRAINING DETAILS

CDFSOD. The Cross-Domain Few-Shot Object Detection (CDFSOD) benchmark (Fu et al., 2024) uses MS-COCO (Lin et al., 2014) as the source domain and includes six heterogeneous target domains: ArTaxOr, Clipart1K, DIOR, DeepFish, NEU-DET, and UODD. These domains differ

864 substantially in visual style, resolution, and object distribution, providing a challenging setup for
 865 cross-domain transfer.
 866

867 **ODinW-13.** ODinW-13 (Li et al., 2022a) is a subset of the ELEVATER benchmark (Li et al.,
 868 2022a), consisting of 13 diverse object detection tasks drawn from various open-world datasets. The
 869 benchmark emphasizes robustness to domain shifts and serves as a standard evaluation for open-
 870 vocabulary detectors.
 871

872 **Few-shot setting.** Together, CDFSOD and ODinW-13 form 19 few-shot tasks with clear dis-
 873 tribution shifts, on which open-vocabulary detectors typically experience performance degra-
 874 dation resembling out-of-distribution scenarios. We follow the standard K -shot protocol with $K \in$
 875 $\{1, 5, 10, 30, 50\}$, where K labeled images per class are sampled as the support set and the re-
 876 maining images are used for evaluation. For fair comparison, all baseline methods are consistently
 877 applied to the output layers across all FFN modules of the model.
 878

879 **EWC.** For Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), we introduce a
 880 quadratic penalty on parameter updates, weighted by the Fisher information estimated from the
 881 previous task. The regularization coefficient is set to $\lambda_{\text{EWC}} = 10000$. We use the AdamW optimizer
 882 with a learning rate of 1×10^{-4} and a batch size of 8, training for 18 epochs on most tasks. The
 883 overall objective can be written as
 884

$$\mathcal{L}(\theta) = \mathcal{L}_{T+1}(\theta) + \frac{\lambda_{\text{EWC}}}{2} \sum_t \sum_i F_{t,i} (\theta_i - \theta_{t,i}^*)^2, \quad (16)$$

885 where $\mathcal{L}_{T+1}(\theta)$ denotes the standard loss on the current task, $F_{t,i}$ represents the Fisher information
 886 of parameter θ_i estimated from task t , and $\theta_{t,i}^*$ is the optimal parameter value obtained after training
 887 on task t . This regularization term penalizes large deviations from previously important parameters,
 888 thereby mitigating catastrophic forgetting across sequential tasks.
 889

890 **Adam-NSCL.** For Adam-NSCL (Null-Space Continual Learning with Adam) (Wang et al., 2021),
 891 we constrain parameter updates to the approximate null space of previously learned features, follow-
 892 ing the SVD-based formulation. Specifically, we select the null-space basis U_2^l associated with the
 893 smallest singular values of Λ_2^l , and adaptively choose Λ_2^l with diagonal entries $\lambda \in \{\lambda \mid \lambda \leq$
 894 $a\lambda_{\min}^l\}$, where λ_{\min}^l is the smallest singular value. In our experiments, we set the hyperparameter
 895 $a = 40$. Optimization is performed using the Adam optimizer with a learning rate of 1×10^{-4} , a
 896 batch size of 8, and training for 18 epochs on most tasks.
 897

898 **SD-LoRA.** For SD-LoRA (Spectral Decay LoRA) (Wu et al., 2025), we adopt the same adapter
 899 structure as LoRA but additionally apply spectral decay regularization on the low-rank updates to
 900 improve stability across sequential tasks. The hyperparameters are set as follows: rank $r = 16$,
 901 initial spectral decay coefficient $\alpha_{\text{init}} = 1.0$, dropout rate 0.0, LoRA learning rate 0.002, and LoRA
 902 weight decay 0.0. Training is performed for 18 epochs on most tasks with a batch size of 8.
 903

904 **Training Details for CLIP Experiments.** We evaluated our method on 11 diverse classification
 905 datasets, organized in the following order: Aircraft, Caltech101, CIFAR100, DTD, EuroSAT, Flow-
 906 ers102, Food101, MNIST, OxfordPets, StanfordCars, and SUN397. For optimization, we standar-
 907 dized the training duration to 500 iterations per dataset. Regarding the scope of parameter updates,
 908 our ABME method specifically targets the output projection layers of all FFN blocks within the
 909 ViT-B/16 (Dosovitskiy, 2020) encoder, whereas the baseline methods (ZSCL (Zheng et al., 2023b)
 910 and WiSE-FT (Wortsman et al., 2022)) involve full-model fine-tuning.
 911

912 D ADDITIONAL BASELINE COMPARISONS AND RESOURCE EFFICIENCY

913
 914
 915
 916
 917

918 D.1 COMPARISON WITH STATE-OF-THE-ART METHODS

918
 919 Table 11: Few-shot results on **CDFSOD** 5-shot using **Grounding DINO-B**. The base model is the
 920 pre-trained Grounding DINO-B without fine-tuning. Methods marked with \dagger denote the final model
 921 obtained by sequential fine-tuning on a single model, evaluated across all datasets.

Method	ArTaxOr	Clipart1K	DeepFish	DIOR	NEU-DET	UODD	Average	COCO
Base model	12.8	49.1	28.6	4.5	1.2	10.1	17.7	59.7
FFN W_{out} only	69.2	60.2	35.1	29.4	22.2	21.5	39.6	–
Fully fine-tune	70.3	59.3	37.0	29.4	22.3	24.3	40.5	–
Fully fine-tune \dagger	52.4	51.1	35.2	22.6	19.8	22.1	33.9	47.9

922
 923
 924
 925
 926
 927 Table 12: Performance comparison of different methods under various corruptions on CDFSOD 5-
 928 shot. All values represent mean Average Precision (AP) in percentage. Note that **Oracle** is obtained
 929 by independent fine-tuning on each corrupted dataset (averaged over 90 total datasets). Contin-
 930 ual learning setting follows a sequential training protocol according to the table rows; specifically,
 931 within each corruption, it trains on ArTaxor, Clipart1k, DeepFish, DIOR, NEU-DET, and UODD
 932 sequentially.

Corruption	Base	Adam-NSCL	Ours	Oracle
gaussian_noise	8.6	18.0	21.6	23.0
shot_noise	8.1	18.1	21.6	23.1
impulse_noise	8.7	18.4	22.1	23.4
defocus.blur	11.6	23.0	25.7	28.2
glass.blur	11.4	24.2	27.1	30.3
motion.blur	9.3	20.5	22.7	24.3
zoom.blur	2.7	6.2	6.9	10.7
snow	9.6	20.0	23.0	24.9
frost	10.1	20.3	22.9	24.2
fog	14.2	26.7	29.6	32.4
brightness	12.9	25.5	28.8	31.6
contrast	8.7	20.5	21.8	26.2
elastic_transform	12.0	24.9	28.6	33.3
pixelate	12.2	24.5	28.2	31.6
jpeg_compression	11.5	22.5	25.9	28.2
Average	10.1	20.8	23.8	26.4
COCO	59.7	57.2	57.5	–

928
 929
 930
 931
 932
 933 To further validate the effectiveness of ABME, we included two additional state-of-the-art continual
 934 learning baselines: SGP (Saha & Roy, 2023) and SVFCL (Wang et al., 2025). We evaluated all
 935 methods under the CDFSOD 5-shot setup. As shown in Table 13, ABME significantly outperforms
 936 these recent approaches.

937
 938 Table 13: Extended comparison on CDFSOD 5-shot. We incorporated two additional baselines:
 939 SGP and SVFCL. ABME achieves the best trade-off between plasticity (New-task mAP) and stabil-
 940 ity (Old-task mAP).

Method	New-task mAP \uparrow	Old-task mAP \uparrow	RR \uparrow	AGR \uparrow
EWC (2017)	31.0	57.1	95.6%	78.3%
Adam-NSCL (2021)	29.1	57.8	96.8%	73.5%
SGP (2023)	32.6	46.1	77.2%	82.3%
SD-LoRA (2025)	24.9	54.2	90.8%	62.9%
SVFCL (2025)	33.2	52.9	88.6%	83.8%
ABME (Ours)	38.5	57.0	95.5%	97.2%
Oracle	39.6	59.7	–	–

972
973

D.2 RESOURCE CONSUMPTION ANALYSIS

974
975
976
977
978
979
980
981
982

We compared the training time, GPU memory usage, and extra storage cost of all methods on the CDFSOD 5-shot setup. All models were trained on the same hardware configuration. As detailed in Table 14, ABME maintains **constant resource efficiency** comparable to standard FFN fine-tuning, requiring only a fixed ~ 1.3 GB storage independent of the task count. In contrast, baselines exhibit varying overheads: EWC accumulates storage costs as tasks are added ($0.7 \rightarrow 3.4$ GB), while Adam-NSCL requires increased memory for subsequent tasks compared to the initial stage ($1640 \rightarrow 1731$ MB). SD-LoRA suffers from linear memory growth and the longest training time. Furthermore, our final optimization step (solving Eq. 5) typically completes in **<10 seconds**, incurring negligible operational overhead.

983
984
985
986
987

Table 14: Resource consumption analysis on CDFSOD 5-shot. For metrics formatted as "Start \rightarrow End" (e.g., 932 \rightarrow 977), the values correspond to the consumption recorded during the training of the **first task** and the **final task**, respectively, indicating the variation in resource usage as tasks accumulate.

988
989
990
991
992
993
994
995
996
997

Method	Training Time (s)	GPU Memory (MB)	Extra Storage (GB)	CDFSOD (New)	COCO (Old)
SD-LoRA	1121	932 \rightarrow 977	—	24.9	54.2
EWC	1044	1640	0.7 \rightarrow 3.4	31.0	57.1
Adam-NSCL	904	1640 \rightarrow 1731	1.1	29.1	57.8
ABME (Ours)	1029	1640	1.3	38.5	57.0
Oracle (FFN-out)	1024	1640	—	39.6	—

998
999
1000
1001
1002

E CORE IMPLEMENTATION CODE

1003
1004
1005
1006
1007
1008

- kk : The autocorrelation matrix of keys $K^\top K \in \mathbb{R}^{d_{in} \times d_{in}}$.
- kv : The cross-correlation matrix $K^\top V \in \mathbb{R}^{d_{in} \times d_{out}}$.
- sum_x , sum_y : Sum of input keys and output values (for bias handling).
- n : Total number of support samples.

1009 1
1010 2
1011 3
1012 4
1013 5
1014 6
1015 7
1016 8
1017 9
1018 10
1019 11
1020 12
1021 13
1022 14
1023 15
1024 16
1025 17
21

```

import torch
@torch.no_grad()
def solve_abme_layer(W_old, b_old, stats, eps=1e-8):
    """
    Apply ABME update to a single linear layer (FFN output).

    Args:
        W_old: Original weights [out_dim, in_dim]
        b_old: Original bias [out_dim]
        stats: Dictionary containing K^T K, K^T V, etc.
    """
    out_dim, in_dim = W_old.shape

    # -----
    # 1. Load Statistics
    # -----
    # kk: K^T K [in, in], kv: K^T V [in, out]
    kk = stats['kk'].to(W_old.dtype)
    kv = stats['kv'].to(W_old.dtype)
    sx = stats['sum_x'].to(W_old.dtype).reshape(in_dim, 1)

```

```

102622     sy = stats['sum_y'].to(W_old.dtype).reshape(1, out_dim)
102723     n = torch.tensor(stats['n'], dtype=W_old.dtype)
102824
102925     # -----
103026     # 2. Construct Augmented System (incorporating bias)
103127     # -----
103228     # A corresponds to the augmented  $K^T K$  matrix
103329     A = torch.zeros((in_dim + 1, in_dim + 1), dtype=W_old.dtype)
103430     A[:in_dim, :in_dim] = kk
103531     A[:in_dim, in_dim:] = sx
103632     A[in_dim:, :in_dim] = sx.t()
103733     A[in_dim, in_dim] = n
103834
103935     # B corresponds to the augmented  $K^T V$  matrix
104036     B = torch.zeros((in_dim + 1, out_dim), dtype=W_old.dtype)
104137     B[:in_dim, :] = kv
104238     B[in_dim:, :] = sy
104339
104440     # -----
104541     # 3. Prepare Original Parameters [W0; b0]
104642     # -----
104743     W0_aug = torch.cat([W_old.t(), b_old.reshape(1, out_dim)], dim=0)
104844
104945     # -----
105046     # 4. Compute Auto-Balanced Regularization Matrix ( $\Gamma^2$ )
105147     # -----
105248     # Get diagonal energy  $s_i = (K^T K)_{ii}$ 
105349     s = kk.diag()
105450
105551     # Numerical stability
105652     floor = s.mean() * eps
105753     s = torch.clamp(s, min=floor)
105854
105955     # Our design:  $\Gamma = \text{diag}(s^{1/4}) \Rightarrow \Gamma^2 = \text{diag}(\sqrt{s})$ 
106056     P = torch.zeros((in_dim + 1,), dtype=W_old.dtype)
106157     P[:in_dim] = s.sqrt()      # Regularization for weights
106258     P[in_dim] = torch.sqrt(n) # Regularization for bias
106359
106460     # -----
106561     # 5. Solve the Linear System
106662     # -----
106763     # Objective:  $(A + \Gamma^2) W^* = (B + \Gamma^2 W_0)$ 
106864     A_reg = A + torch.diag(P)      # LHS Matrix
106965     RHS = B + W0_aug * P.unsqueeze(1) # RHS Term
107066
107167     # Solve using Cholesky or LU (torch.linalg.solve)
107268     W_new_aug = torch.linalg.solve(A_reg, RHS)
107369
107470     # -----
107571     # 6. Extract Updated Weights and Bias
107672     # -----
107773     W_new = W_new_aug[:in_dim, :].t() # [out_dim, in_dim]
107874     b_new = W_new_aug[in_dim, :]      # [out_dim]
107975
108076     return W_new, b_new

```

Listing 1: PyTorch implementation of the ABME update for a single layer.