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ABSTRACT

Self-attention is a key component of the transformer architecture which has driven
much of recent advances in AI. Theoretical analysis of self-attention has received
significant attention and remains a work in progress. In this paper, we analyze
gradient flow training of a simplified transformer model consisting of a single
linear self-attention layer (thus it lacks softmax, MLP, layer-normalization, and
positional information) with a single head on a histogram-like problem: the input
is a sequence of symbols from an alphabet and the output is a sequence of the same
length with each position consisting of the frequency in the input sequence of the
symbol at that position in the input sequence. Our analysis goes via a reduction
to 2-layer linear neural networks in which the input layer matrix is a diagonal
matrix. We provide a complete analysis of gradient flow on these networks. Our
reduction to linear neural networks involves one assumption which we empirically
verify. Our analysis applies to various extensions of the histogram problem.

1 INTRODUCTION

Self-attention is a key component in transformers Vaswani et al. (2017) which have radically trans-
formed NLP (OpenAI, 2023), vision (Dosovitskiy et al., 2021), multimodal (Jaegle et al., 2021) and
more. Unfortunately, theoretical understanding of transformers, and in particular of self-attention,
lags far behind these dramatic advances.

Many recent works study transformers and self-attention theoretically from various viewpoints in-
cluding their expressive and computational power. Here we confine our discussion to papers on
training dynamics. Jelassi et al. (2022); Li et al. (2023); Tian et al. (2023); Boix-Adserà et al.
(2023); Zhang et al. (2023); Tarzanagh et al. (2023) analyze training dynamics of transformers for
various specific problems. While insightful, these papers generally involve stylized assumptions and
this makes it difficult to compare the results.

Our work is in this line of research but differs from the prior work in the specific problems, as-
sumptions, and proof method. We analyze gradient flow training of a simplified transformer model
consisting of a single linear self-attention layer (thus it lacks softmax, MLP, layer-normalization,
and positional information) with a single head on the histogram problem (Weiss et al., 2021): the
input is a sequence of symbols from an alphabet and the output is a sequence of the same length with
each position consisting of the frequency in the input of the symbol at that position in the input se-
quence. For example, for the input sequence adbcba, the output sequence would be [2, 1, 2, 1, 2, 2].
In addition to the basic histogram problem, we also consider its extensions. These extensions, in-
stead of counting the number of times a symbol occurs in the input, count the number of symbols
in the input that stand in a specific relation to the character. These problems require nontrivial
learning: the model needs to learn relations among the symbols and count the relevant symbols (for
basic histograms this relation is the equality relation but we allow more complex relations). These
histogram-like problems can be solved by the simplified transformer as we show via constructions.

Our method is via reduction of training of simplified transformer on the histogram problem to the
training of a linear neural network with two layers. Linear neural networks are neural networks
without nonlinearities; in other words, the output y is obtained by successively applying linear
transformations to the input: y = W1 . . .WLx. Clearly, linear neural networks are highly limited
as they are only able to compute linear functions of the input. However, their loss landscape is
non-convex in the parameters though they tend to be relatively more tractable than nonlinear neural
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networks. Moreover, their training dynamics can exhibit the richness of (nonlinear) neural networks
(Saxe et al., 2019; Kleinman et al., 2023). These characteristics have led to intense study of linear
neural networks, e.g., (Baldi & Hornik, 1989; Saxe et al., 2014; Kawaguchi, 2016; Arora et al., 2019;
Du & Hu, 2019; Zou et al., 2020; Min et al., 2021; Xu et al., 2023; Min et al., 2023). While this
work has greatly increased the understanding of linear neural networks, to our knowledge, analysis
of training of 2-layer linear networks remains open without significant assumptions.

The linear neural networks arising in our work have two layers and have a special structure:
y = W1W2x, with W1 and W2 square matrices and W2 a diagonal matrix. We call these net-
works df-linear networks for diagonal layer followed by the fully-connected layer. While df-linear
networks seem to not have been considered in the literature before, simpler diagonal linear networks
where both layers are diagonal have been. Even these networks are sufficiently rich to exhibit many
features of the training dynamics of nonlinear networks and have seen significant work recently,
e.g., Vaskevicius et al. (2019); Woodworth et al. (2020); HaoChen et al. (2021); Pesme et al. (2021);
Berthier (2023); Boix-Adserà et al. (2023). The corresponding optimization problem remains non-
convex and challenging, though the added simplicity of both layers being diagonal now allows for
studying many finer aspects of training such as the effect of noise and incremental learning (how the
complexity of the learned networks changes during training).

While the requirement of square matrices in df-linear network precludes use of large width to make
analysis tractable, W2 being diagonal allows for decoupling of different coordinates reducing the
problem to a collection of 1-dimensional problems. We give an essentially complete analysis of the
1-dimensional problem.

2 PRELIMINARIES

2.1 NOTATIONS

The set {1, 2, . . . , d} is denoted by [d]. If f is a time-dependent function, then ft and f(t) are
interchangeably used to denote the value of f at time t. The time derivative df

dt is also denoted by ḟ .

We define the map Diag : Rd → Rd×d that takes a vector a = [a1, . . . , ad]
T and produces a

diagonal matrix Diag(a) whose i-th diagonal entry is ai. Similarly, the map diag : Rd×d → Rd

takes a matrix A = [Ai,j ] as an input and produces a d-dimensional vector diag(A) whose i-th
coordinate is Aii. We also define the function D : Rd×d → Rd×d by D(A) = Diag(diag(A)); i.e.,
it retrieves the diagonal part of the matrix. We use 1 to denote an indicator; for an expression e, 1e

is 1 if e is true, and 0 if e is false.

For a vector v, ∥v∥ denotes the L2 norm. For a matrix A, ∥A∥F denotes the Frobenius norm.

2.2 TRANSFORMERS

We consider a variant of the transformer architecture given in Vaswani et al. (2017). Let the input
alphabet be Σ. We model sequence-to-sequence functions of the form f : ΣN → RN×dout , using
attention-only 1-layer transformers.

The input sequence is given to the transformer as a matrix of one-hot embeddings of the sequence,
X ∈ RN×|Σ|, where the i-th row of X corresponds to the one-hot embedding of the i-th element in
the sequence. A single layer in a transformer consists of the following parameters(where dmodel, dout
are hyperparameters):

1 Embedding Matrix: WE ∈ R|Σ|×demb

2 Query Weights: WQ ∈ Rdemb×dmodel

3 Key Weights: WK ∈ Rdemb×dmodel

4 Value Weights: WV ∈ Rdemb×dmodel

5 Output Weights: WF ∈ Rdmodel×dout .

Let E = XWE . Then forward pass through this layer is given by: Y = EWQW
T
KETEWV WF .
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To make the analysis tractable, we consider further simplifications of the above model. Similar
simplifications are made in many other theoretical studies. First, we assume demb = |Σ| = d, and fix
WE to be Id, the identity matrix. Further, instead of considering four separate learnable parameters
(WQ,WK ,WV ,WF ), we consider only two, WQK = WQW

T
K ∈ Rd×d and WV F = WV WF ∈

Rd×dout , since the output of the transformer depends only on the products of the matrices. Thus, the
output of our model is given by:

Y = XWQKXTXWV F .

From here on, we write Q = WQK and V = WV F .

Given a set of input-output pairs D for the task, training consists of minimizing a loss function
ℓ : Rd×d × Rd×dout → R. Here, we consider the squared-norm loss, given by

ℓ(Q,V ) =
1

2|D|
∑

(X,Y )∈D

∥∥XQXTXV − Y
∥∥2
F
.

3 FROM SELF-ATTENTION TO LINEAR NEURAL NETWORKS FOR
HISTOGRAMS

In this section we introduce the histogram tasks, and then present our reduction from self-attention
to linear neural networks.

3.1 HISTOGRAM TASKS

In general terms, we define histogram-like tasks as those where, given an input sequence of symbols
from an alphabet Σ, the output sequence is determined based on the frequency of each symbol’s
appearance within the input, rather than their specific order or arrangement. These tasks are well-
suited for transformers, allowing us to outline specific constructions of transformers that effectively
solve these tasks. Below, we discuss several examples of such tasks, followed by their transformer
constructions.

1. Equality Histogram: For each symbol s in the sequence, the total number of sym-
bols in the sequence with same value as s is computed, which forms the output sequence.
For example, for the input sequence adbcba, the output sequence would be [2, 1, 2, 1, 2, 2].
Concretely, let Σ = {a1, . . . , ad}. Given an N -length sequence s1s2 . . . sN ∈ ΣN , we
want to output [cs1 , cs2 , . . . , csN ], where cx =

∑
i∈[N ] 1x=si , i.e., the count of the number

of times x appears in the string. This problem was considered in Weiss et al. (2021).
2. Less than Histogram: We define an ordering on the alphabet. For each symbol s

in the sequence, the total number of symbols in the sequence which have value less than
or equal to s according to the ordering are computed, and form the output sequence. For
example, given the input sequence adbcba, and the standard lexicographical ordering, the
output sequence will be [2, 6, 4, 5, 4, 2].
Formally, we define an ordering ⪯ on Σ, and given an input string s1s2 . . . sN , the output
is the sequence [ls1 , ls2 , . . . , lsN ], where lx =

∑
i∈[N ] 1si⪯x.

3. Threshold Histogram: For this task, we define an ordering on the alphabet and a
threshold D ∈ N. For each symbol s in the sequence, we compute the number of symbols
that are at a distance of at most D according to the ordering, and form the output sequence.
For example, for D = 2 and the standard lexicographical ordering, for input adbcba, the
output will be [5, 4, 6, 6, 6, 5].

3.2 TRANSFORMER CONSTRUCTIONS FOR HISTOGRAMS

The input sequence will be given to the transformer in the form of a matrix of one-hot embeddings.
Formally, given an alphabet Σ = {a1, a2, . . . , ad}, and the input sequence s1, s2, . . . , sN , the trans-
former input is a matrix X ∈ RN×d, where the i-th row of X is esi ∈ Rd.
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(a) Weights Q for Threshold
Histogram task.

(c) The network Q · Diag(v) for
Threshold Histogram task.

(b) Weights v for Threshold
Histogram task.

Figure 1: Learned weights for Threshold Histogram task with threshold D = 2, where the
input alphabet is the set of lowercase English letters with the lexicographical ordering. The learned
network QDiag(v) matches Mthr, as predicted by our analysis.

For all of the tasks, dout = 1, so the parameters are just Q ∈ Rd×d and v ∈ Rd. The constructions
we present are not unique: given a solution (Q,v), we can always scale Q by some non-zero α ∈ R
and v by 1/α, to get a whole family of solutions. In fact, we can scale each column of Q by a
different non-zero α ∈ R, and scale the corresponding entry in v by 1/α to get a new solution. We
will show later that all solutions of histogram-like tasks admit this form, and hence the solutions are
unique upto this symmetry.

Below we give the constructions for each of the above described tasks.

1. Equality Histogram: Consider Qeq = I , the identity matrix, and veq = 1d, the
vector of all ones. Then, if y = XQeqX

TXveq = XXTX1d, we have

yi = (XXT1N )i =

N∑
j=1

eTsiesj =

N∑
j=1

1si=sj .

2. Less than Histogram: Assume that the ordering is such that ai ⪯ aj ⇐⇒ i ≤ j
(for other orderings, we can just permute the constructions given here). Then, vlt = 1d,
and Qlt = Ld, where Ld is a lower triangular matrix of all ones i.e. Ld(i, j) = 1 if i ≥ j
else it is 0. Thus, if y = XQltX

TXvlt, we have

yi = (XLdX
T1N )i =

N∑
j=1

eTsiLdesj =

N∑
j=1

Ld(si, sj) =

N∑
j=1

1sj⪯si .

3. Threshold Histogram: Define vthr = 1d and Qthr = Td, where Td ∈ Rd×d is such
that Td(i, j) = 1 if |i − j| ≤ D, otherwise Td(i, j) = 0. It can be verified that this
construction solves the Threshold Histogram task.

3.3 REDUCTION TO DF-LINEAR NETWORKS

A unifying feature of each of the above described tasks is that the output depends only on the
frequency of each of the symbols from the alphabet present, and does not depend on the order in
which they appear. Therefore, the output can be described by a function g : Rd → RN , where the
input to g is c, where c is the vector of frequencies of symbols in the input i.e. ci is the number
of times the i-th symbol appears in the input. In fact, all the above tasks also depend linearly on
c, and we can write g(c) = XMc, for some matrix M ∈ Rd×d. This can also be seen from
the constructions above. For example, for the Equality Histogram task, the output can be
written in terms of the frequency vector as geq(c) = Xc, and so, Meq = I . For the Less than
Histogram task, the output can be written as glt(c) = XLdc, and Mlt = Ld, and similarly, for
the Threshold Histogram task, we have Mthr = Td.
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The above fact allows us to reduce the training dynamics of transformers trained on histogram-like
tasks, to the dynamics of relatively simpler networks which we call DF-Linear Networks. These
networks are linear networks where the first layer is constrained to be a diagonal matrix, and the
next layer is a fully connected layer.

Lemma 3.1. Consider a histogram task with the objective function given by g(c) = XMc for a
matrix M ∈ Rd×d, where c ∈ Rd is the vector of frequencies. Then, for a dataset of input-output
pairs D, we have

ℓtf(Q,v) =
1

2|D|
∑

(X,y)∈D

∥∥XQXTXv − y
∥∥2

=
1

2|D|
∑

(X,y)∈D

∥∥∥Diag(cX)1/2 (QDiag(v)−M) cX

∥∥∥2 ,
where cX is the vector of frequencies associated to the input X .

Proof. Observe that for input (X,y) ∈ D we have XTX = Diag(cX), and y = XMcX . Thus,
we can write the transformer loss as

ℓtf(Q,v) =
1

2|D|
∑

(X,y)∈D

∥∥XQXTXv − y
∥∥2

=
1

2|D|
∑

(X,y)∈D

∥XQDiag(cX)v −XMcX∥2

=
1

2|D|
∑

(X,y)∈D

∥XQDiag(v)cX −XMcX∥2

=
1

2|D|
∑

(X,y)∈D

∥X(QDiag(v)−M)cX∥2

=
1

2|D|
∑

(X,y)∈D

cTX(QDiag(v)−M)T Diag(cX)(QDiag(v)−M)cX)

=
1

2|D|
∑

(X,y)∈D

∥∥∥Diag(cX)1/2 (QDiag(v)−M) cX

∥∥∥2 .

The above lemma allows us to characterize the solution sets of the histogram tasks exactly. The loss
function will be zero only when Diag(cX)1/2 (QDiag(v)−M) cX = 0 for all (X,y) ∈ D. For
a randomly sampled dataset, this would imply that, almost surely, QDiag(v) = M or equivalently,
viqi = mi for all i ∈ [d], where qi (resp. mi) is the i-th column of Q (resp. M ). Figure 1 show
visualizations of learned parameters for a transformer trained on the Threshold Histogram
task. Note that the learned Q and v parameters belong to the above described solution set.

In Section 4, we analyze the training dynamics of DF-Linear Networks, i.e. gradient flow on the
objective ℓdf(Q,v) = 1

2 ∥Q · Diag(v)−M∥2F . This is a simplification from the full histogram
objective as derived in Lemma 3.1 and subject of the following assumption.

Assumption 3.1. Let D be a randomly sampled dataset for a histogram task. Let (Qtf(t),vtf(t))
(resp. (Qdf(t),vdf(t))) be the parameters for the transformers at time t, under gradient flow on ℓtf
(resp. ℓdf), starting from (Q0,v0). Then, with high probability, there exist constants C, σ, T > 0,
depending on the data D, such that, for all t ≥ T ,

ℓtf(Qtf(t),vtf(t)) ≤ Cℓdf(Qdf(σt),vdf(σt)).

Assumption 3.1 completes the reduction of the transformer dynamics to the DF-Linear Networks
dynamics. Note that if the gradient flow on the transformer loss converges to a zero loss solution
(Q∗

tf,v
∗
tf), then we would have Q∗

tf · Diag(v∗
tf) = M . Similarly, if gradient flow on the DF-Linear
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(a) Loss curves for gradient descent. (b) The norms of the gradients.

Figure 2: Loss and the norm of the gradient for gradient descent on ℓtf and ℓdf, starting from the
same initialization. The dynamics of ℓtf are just scaled dynamics of ℓdf.

Networks loss converges to a zero loss solution (Q∗
df,v

∗
df), then Q∗

df · Diag(v∗
df) = M . In both the

cases, due to the symmetries inherent in the objective function, we can derive a conserved quantity
which further constrains the possible solutions. The conserved quantity, given by Lemma A.1, is
the same for both loss functions, since the initializations are the same and both functions satisfy
the same symmetries. The two constraints together have only a single solution; thus, we get that
(Q∗

tf,v
∗
tf) = (Q∗

df,v
∗
df).

Assumption 3.1 holds true experimentally. We optimize ℓtf and ℓdf using gradient descent (as an
approximation of gradient flow), starting from the same initialization. For the transformer training,
a dataset consisting of 100 random strings of length 100 were sampled, where each element of the
string was uniformly sampled from the first 10 letters of the alphabet, and the task considered was
the Equality Histogram task. Figure 2 depicts the training dynamics during optimization for
the two loss functions. Note that, apart from a scaling factor, the dynamics are similar.

4 CONVERGENCE ANALYSIS OF DF-LINEAR NETWORKS

In this section we prove that gradient flow on the squared-norm loss for DF-Linear Networks con-
verges, for all initializations, apart from a measure-zero set of initial points, which we characterize.

We consider the loss function ℓdf(Q,v) = 1
2 ∥QDiag(v)−M∥2F , for a d× d target matrix M . To

ease the clutter of notations we refer to ℓdf by just ℓ.

The proof has two main steps. First, we show that the dynamics of the gradient flow can be decou-
pled across the dimensions of the parameters. This can be seen immediately if we write down the
objective in the following form:

ℓ(Q,v) =
1

2

∑
i∈[d]

∥viqi −mi∥2 ,

where qi is the i-th column of Q. Following this, we reduce the dynamics along each dimension to
a dynamical system, which can be analysed completely. Thus, we get the following theorem.
Theorem 1. Consider the loss function ℓ : Rd×d × Rd → R defined as

ℓ(Q,v) =
1

2
∥Q · Diag(v)−M∥2F .

Consider the gradient flow on ℓ, starting from (Q0,v0), where Q0 ∈ Rd×d and v0 ∈ Rd.

Let Q0 = [q
(0)
1 , . . . , q

(0)
d ], M = [m1, . . . ,md] and v0 = [v

(0)
1 , . . . , v

(0)
d ]T , and for each i ∈ [d] let

δi =

∥∥∥q(0)
i

∥∥∥2 − v
(0)
i

2

∥mi∥
, ρi =

√
1 +

δ2i
4

+
δi
2
, and ρ̄i = 1/ρi.
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Further define the quantities T, α and γ as

T = max
i

{
ln

(
ρ̄2i

∣∣∣∣∣ρiv(0)i ∥mi∥ − q
(0)T

i mi

ρ̄iv
(0)
i ∥mi∥+ q

(0)T

i mi

∣∣∣∣∣
)}

and

α = min
i

{∥mi∥ ρ̄i} and γ =

{
1 if δi = 0 for some i

0 otherwise.

Then, provided that −ρ̄iv
(0)
i ̸= q

(0)T

i mi for all i ∈ [d], the loss function ℓ exhibits the following
decay for all t > T :

ℓ(t) = O
(
dmax

i
∥mi∥2 · tγ exp (−2αt)

)
.

Proof. The proof follows by reducing the gradient flow equations to a set of dynamical systems of
the form described in Equation 2. Let Q = [q1 · · · qd], M = [m1 · · ·md] and V = Diag(v). Then,
we have

dQ
dt

= − ∂ℓ

∂Q
= −(QV −M)V ,

dv
dt

= − ∂ℓ

∂v
= −diag(QT (QV −M)).

Abbreviating the time derivative dv
dt to v̇ etc., for each i ∈ [d], we get

q̇i = vi(mi − viqi),

v̇i = qT
i mi − vi ∥qi∥2 .

Further, following lemma A.1 we note that D(QTQ− vtv
T
t ) is conserved throughout the trajectory.

So, let the i-th diagonal entry of the conserved quantity at initialization be βi. Then for all t we have
∥qi∥2 − v2i = βi, (1)

for some constants βi ∈ R. Using this, we get the system of equations:
q̇i = vi(mi − viqi),

v̇i = qT
i mi − v3i − βivi.

Let pi = qT
i mi. Then, we have

ṗi = vi ∥mi∥2 − v2i pi,

v̇i = pi − v3i − βivi.

Finally, to get the desired form, we make the substitution ai = pi/ ∥mi∥3/2 and bi = vi/ ∥mi∥1/2.
Hence, we get

ȧi = ∥mi∥ (bi − b2i ai),

ḃi = ∥mi∥ (ai − b3i − δibi).

where δi = βi/ ∥mi∥. The above equation has the same form as Equation 2. Thus, from Theorem
2 we get that, as t → ∞, (ai(t), bi(t)) converges to ±(

√
ρi,

√
ρ̄i). Therefore, we get that vi(t)

converges to ±∥mi∥1/2 ·
√
ρ̄i, and pi(t) converges to ±∥mi∥3/2 ·

√
ρi.

Furthermore, we have

ℓ(Q,v) =
1

2

d∑
i=1

∥viqi −mi∥2

=
1

2

d∑
i=1

[
v2i ∥qi∥

2
+ ∥mi∥2 − 2vipi

]
=

1

2

d∑
i=1

∥mi∥2
[
b4i + δib

2
i − 1 + 2(1− aibi)

]
≤ 1

2

d∑
i=1

∥mi∥2
[
|ρ̄i − b2i | · |ρi + b2i |+ 2 · |1− aibi|

]
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Thus, from Theorem 2, we get the required result.

Remark 1. We make the following remarks as extension of theorem 1.

1. Bad initializations. We note that the loss function decays to 0 given that certain initial
conditions hold. In particular, suppose v0 is fixed. Then the convergence to 0 fails only if

Q0 ∈
⋃
i∈[d]

{Q : qT
i mi + ρ̄iv

(0)
i = 0}.

This set is a union of hypersurfaces in the space Rd×d. Thus, with random initialization,
the loss function decays to 0 with probability 1.

2. Effect of imbalance. When the conserved quantities in Equation 1 are equal to 0 for all
i ∈ [d], we say that the inputs are “balanced”. This is the condition on initialization that
is assumed in Arora et al. (2019). Therefore, the numbers δis can be said to measure the
“imbalance” on the inputs. To isolate the contribution of these quantities to the decay of
the loss function we assume that the columns of M are normalized. That is ∥mi∥ = 1 for
all i ∈ [d]. Without loss of generality suppose δ1 = maxi {δi}. Then we get α = ρ1. Thus
the decay of the loss function is controlled by the largest imbalance across the different
components.

5 SOLUTION TO A SPECIAL DYNAMICAL SYSTEM

We show in the previous sections that the dynamical system described in equation 2 is crucial to
proving convergence of gradient descent on certain networks. This section is dedicated to explicitly
finding a solution to this system. In particular, we prove the following theorem.
Theorem 2. Let x and y be continuous functions on (0,∞) described by the dynamical system

ẏ = c1(x− x2y),

ẋ = c1(y − x3 − cx), (2)

where c1 > 0 and c are constants. Let ρ =
√
1 + c2

4 + c
2 , ρ̄ = 1/ρ and 2a = ρ+ ρ̄. Then the limit

limt→∞(xt, yt) = (x∞, y∞) exists, and it depends on the initialization (x0, y0) as follows:

(x2
∞, y2∞) =

{
(
√
ρ̄,
√
ρ) if − ρ̄x0 ̸= y0,

(0, 0) otherwise.

Further, with −ρ̄x0 ̸= y0, as x2
t converges to ρ̄ and xtyt converges to 1, we obtain a T > 0 such

that for all t > T the residues decay at the following rate:

|ρ̄− x2
t | and |1− xtyt| =

{
O(t · e−2c1·t) if c = 0,

O(e−2ρ̄c1·t) otherwise,

where T depends on the initialization as follows:

2ac1 · T =


− ln

∣∣∣ (ρ̄x0+y0)
(ρx0−y0)

∣∣∣ if − ρ̄x0 > y0,

− ln (ρ̄x0+y0)
(ρx0−y0)

+ ln ρ2 if − ρ̄x0 < y0 < 0,

0 otherwise.

Proof sketch. We look at the dynamical system expressed in Equations 2, and substitute the expres-
sion for y from the second equation into the first equation. This gives a second-order differential
equation in the function x. These are generally difficult to solve. However, one can discover two
quantities dependent on x and y, namely

r =
y

x
and s =

1− xy

(ρx− y)(ρ̄x+ y)
=

1− xy

x2(ρ− r)(ρ̄+ r)
,
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which evolve by obeying only first order differential equations (these quantities are simplified ver-
sions of quantities which appeared while solving the second order differential equation in x). In
particular, we get

ṙ = c1(ρ− r)(ρ̄+ r) and ṡ = c1(1 + cs).

Upon solving these differential equations with suitable constants determined by the initial values we
get

rt = ρ− 2a

c2 · e(2ac1)t + 1
and st =

{
1
c

[
c3 · e(cc1)t − 1

]
if c ̸= 0,

c1 · t+ c4 if c = 0.

Now, substituting y = rx in the definition of s we obtain the relation

x2 = [r + s(ρ− r)(ρ̄+ r)]
−1

.

As r converges to ρ, we get that ρ̄ + r is eventually bounded below and above by strictly positive
constants. Further, when c ̸= 0, the function s increments with an exponential rate of cc1, but
ρ − r depletes with an exponential rate of 2ac1. Together, the function s(ρ − r) depletes with an
exponential rate of 2ρ̄. Therefore, x2 converges to ρ̄. A similar analysis is done when c = 0.

For the convergence of 1 − xy we write it as 1 − rx2. As we have convergence information for r
and x2 individually, we obtain the same for 1− xy.

Remark. Given a first-order differential equation, it could be easy to find a solution that satisfies
it using formal integration. However, to ensure that the quantities of interest (functions of x and
y) have the exact trajectory as the obtained solution requires uniqueness properties. This can turn
out to be difficult, especially when the solution has possible points of discontinuity. A full proof of
Theorem 2 appears in the appendix and addresses these issues.

6 ADDITIONAL RELATED WORK

Early work by Baldi & Hornik (1989) showed that for 2-layer linear networks, under very mild
conditions, every local minimum is a global minimum. Furthermore, they fully characterized the
saddle points in this case; in particular, all saddle points are strict (the Hessian at the saddle point has
at least one strictly negative eigenvalue). Kawaguchi (2016) studied the landscape of deeper linear
networks and showed that every local minimum is a global minimum for them as well; however,
now saddle points need not be strict. Arora et al. (2019) gave a trajectory-based analysis gradient
descent training of linear neural networks for any depth for suitable initializations. Du & Hu (2019)
gave an analysis for initializations used in practice under the assumption that the network is wide:
the intermediate widths of the network are much larger compared to input and output widths. Later
papers Xu et al. (2023); Min et al. (2023) provided improved guarantees. But to our knowledge
for depth two or more there are no guarantees without assuming either wide networks or stylized
initializations.

Zhang et al. (2023) analyze 1-layer linear self-attention layer similar to the one considered in this
paper. The specific problem they analyze is linear regression motivated by results in von Oswald
et al. (2023). They note a connection to linear networks and require special initializations similar to
Arora et al. (2018).

7 CONCLUSION

We analyzed the gradient flow training dynamics of linear self-attention for a natural class of
histogram-like problems. Our proof depended on reduction to df-linear neural networks and an
assumption on the loss function which we experimentally verified. We find our assumption to be
intuitively plausible and it is a very interesting problem to prove it. Stronger versions of the assump-
tion have the potential to lead to analysis of linear self-attention on a larger class of problems such as
in-context learning for linear regression. Many other problems remain: we used parameters WQK

and WV F instead of the original parameters. Can our techniques be combined with results on wide
neural networks, such as Du & Hu (2019), to allow the original parametrization?

9
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Enric Boix-Adserà, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua M. Susskind. Trans-
formers learn through gradual rank increase. CoRR, abs/2306.07042, 2023. doi: 10.48550/arXiv.
2306.07042. URL https://doi.org/10.48550/arXiv.2306.07042.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=YicbFdNTTy.

Simon S. Du and Wei Hu. Width provably matters in optimization for deep linear neural networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 1655–1664. PMLR, 2019. URL
http://proceedings.mlr.press/v97/du19a.html.

Jeff Z HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the implicit
bias of the noise covariance. In Conference on Learning Theory, pp. 2315–2357. PMLR, 2021.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and João Carreira.
Perceiver: General perception with iterative attention. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 4651–4664.
PMLR, 2021. URL http://proceedings.mlr.press/v139/jaegle21a.html.

Samy Jelassi, Michael E. Sander, and Yuanzhi Li. Vision transformers provably learn spatial struc-
ture, 2022.

Kenji Kawaguchi. Deep learning without poor local minima. In Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp.
586–594, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
f2fc990265c712c49d51a18a32b39f0c-Abstract.html.

Michael Kleinman, Alessandro Achille, and Stefano Soatto. Critical learning periods emerge even
in deep linear networks. CoRR, abs/2308.12221, 2023. doi: 10.48550/arXiv.2308.12221. URL
https://doi.org/10.48550/arXiv.2308.12221.

10

http://proceedings.mlr.press/v80/arora18a.html
http://proceedings.mlr.press/v80/arora18a.html
https://openreview.net/forum?id=SkMQg3C5K7
https://www.sciencedirect.com/science/article/pii/0893608089900142
https://www.sciencedirect.com/science/article/pii/0893608089900142
http://jmlr.org/papers/v24/22-1395.html
https://doi.org/10.48550/arXiv.2306.07042
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://proceedings.mlr.press/v97/du19a.html
http://proceedings.mlr.press/v139/jaegle21a.html
https://proceedings.neurips.cc/paper/2016/hash/f2fc990265c712c49d51a18a32b39f0c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f2fc990265c712c49d51a18a32b39f0c-Abstract.html
https://doi.org/10.48550/arXiv.2308.12221


Under review as a conference paper at ICLR 2024

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. arXiv
preprint arXiv:2012.04728, 2020.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding, 2023.
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A APPENDIX

A.1 ADDITIONAL LEMMAS

In this section we prove two Lemmas used in the proofs of Theorem 1 and Theorem 2.

The following lemma captures how conservation laws arise from symmetries of a function. This is
a well known phenomenon, e.g. see Marcotte et al. (2023); Kunin et al. (2020); Zhao et al. (2022)
and related to Noether’s theorem about relationship between symmetries and conserved quantities
in physics.
Lemma A.1. Let f : Rd×d × Rd → R be a differentiable function such that it enjoys the following
symmetry:

f(AC−1,Cb) = f(A, b)

for all A, b and diagonal matrices C. Then, under gradient flow on f at all times t we have the
following conservation:

d
(
D(AT

t At − btb
T
t )
)

dt
= 0.

where the function D : Rd×d → Rd×d retrieves the diagonal part of the matrix i.e. D(A) =
Diag(diag(A)).

Proof. Fix any t. Let S be any arbitrary matrix. Consider the function g(x) depending on the
diagonal matrix S, defined in a neighborhood of 0 as

g(x) = f(A(x), b(x)) = f(Ate
−xS , exSbt) = f(At, bt).

Differentiating both sides with respect to x at the point 0 we get

0 = g′(0) =
〈

df
dA (A(0), b(0)) , dA

dx (0)
〉
+
〈

df
db (A(0), b(0)) , db

dx (0)
〉

=
〈

df
dA (At, bt) ,−AtS

〉
+
〈

df
db (At, bt) ,Sbt

〉
=
〈 dAt

dt ,AtS
〉
−
〈 dbt

dt ,Sbt
〉

=
〈
AT

t
dAt

dt − dbt

dt b
T
t ,S

〉
.

As the above holds for every diagonal matrix S, we conclude that D
(
AT

t
dAt

dt − dbt

dt b
T
t

)
= 0. Fi-

nally, we observe that

dD(AT
t At−btb

T
t )

dt = D
(
AT

t
dAt

dt − dbt

dt b
T
t

)
+D

(
AT

t
dAt

dt − dbt

dt b
T
t

)T
= 0.

For the proof of Theorem 2, we need the following lemma.

Lemma A.2. Suppose f and h are continuous functions defined in the interval I where ḟt satisfies
ḟt = ht · ft. Then, fa = 0 for some a ∈ I =⇒ ft = 0 on I.

Proof. Let H be the anti-derivative of h on I. Then observe that at all t ∈ I we have

dfe−H

dt = −fhe−H + fhe−H = 0.

Hence f = c · eH for some constant c. Plugging the condition fa = 0 gives c = 0 =⇒ f ≡ 0.

A.2 PROOF OF THEOREM 2

In the proof sketch of Theorem 2 we have defined the quantities r and s as functions of x and y, and
obtained their solutions via formal integration of partial fractions. However, as mentioned earlier,
this cannot be done rigorously as the integrands which appear in these equations may not be defined
at several points. So, here we take a reverse approach. We start by defining r and s as the solutions
obtained through formal integration. We go on to show rigorously that the desired functions of x
and y must align with the functions r and s.
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Proof. (Theorem 2) Let us first consider x0, y0 ̸= 0. We would like to keep track of the trajectory
of the ratio yt

xt
. First consider the time varying function r defined according to its initial value r0 as

follows

rt =

{
ρ− 2a

c2·e(2ac1)t+1
if r0 ̸= ρ,

ρ if r0 = ρ,
(3)

where c2 = 2a
(ρ−r0)

− 1 when r0 ̸= ρ. Then rt has the following derivative:

ṙ = c1(ρ− r)(ρ̄+ r).

When r0 ≥ −ρ̄, equivalently c2 /∈ [−1, 0), the function rt is continuous everywhere. So (rx− y) is
also continuous everywhere. Setting r0 = y0

x0
and computing the derivative of (rx− y) gives us

d(rx−y)
dt = −c1(r + x2)(rx− y) and r0 · x0 − y0 = 0.

Thus (rx− y) satisfies the requirements of Lemma A.2 giving rtxt = yt for all t.

When r0 < −ρ̄, equivalently c2 ∈ (−1, 0), then r is discontinuous at the point T = −(ln |c2|)
2ac1

.
But this time r−1 is continuous everywhere. Thus applying Lemma A.2 in a similar fashion to
(x− r−1y) gives us xt = r−1

t yt for all t. One can see that r−1
t = 0 only at the point T . Therefore,

dividing by r−1
t gives rtxt = yt for all t ̸= T . Therefore we get a complete characterization of the

relation between xt, yt and rt as follows:

rt · xt =

{
yt for all t if y0

x0
≥ −ρ̄,

yt when t ̸= −(ln |c2|)
2ac1

if y0

x0
< −ρ̄.

(4)

Note that we have used x0, y0 ̸= 0 to initialize r0 as required above. In particular, we have used
x0 ̸= 0 to define r0 ≥ −ρ̄ and used y0 ̸= 0 to define r0 < −ρ̄. Let us now consider the following
cases.

Case 1. Suppose y0

x0
/∈ {ρ,−ρ̄}. Here consider the time varying functions s given by

st =

{
1
c

[
c3 · e(cc1)t − 1

]
if c ̸= 0

c1 · t+ c4 if c = 0,

where the constants c3 and c4 can be fixed by fixing the initial values s0 as follows: c3 = 1 + c · s0
and c4 = s0. We further note that the derivative of s is given by

ṡ = c1(1 + cs).

First note that s is continuous everywhere on (0,∞). Then the map g := s(ρ̄x+y)(ρx−y)−(1−xy)
is also continuous everywhere. We fix s0 as given below and also compute the derivative of g as
follows

s0 =
1− x0 · y0

x2
0(ρ−

y0

x0
)(ρ̄+ y0

x0
)

and ġ = −c1x
2g.

We have used the conditions y0

x0
/∈ {ρ,−ρ̄} of this case in fixing s0 as above. Thus, the requirements

for applying Lemma A.2 are satisfied, and as a result we have g ≡ 0. That is,

st(ρxt − yt)(ρ̄xt + yt) = 1− xtyt for all t. (5)

For sufficiently large t the equation rt · xt = yt is defined (as stated in equation 4). So we substitute
yt = rt · xt in the expression for st in the above equation 5 to get

1− rtx
2
t = st(ρ− rt)(ρ̄+ rt)x

2
t

=⇒ x2
t = [rt + st(ρ− rt)(ρ̄+ rt)]

−1
. (6)

Convergence Analysis. With these expressions in place, we are all set to investigate the limiting
behavior of xt and yt. Let x∞, y∞ and r∞ be the limits of xt, yt and rt respectively. We will show
that these limits exist. We will see that we need rt to be bounded away from −ρ̄ and 0. For this we
simply look at the expression for rt under different initializations, and find a T in every case such
that for all t > T this required property of being bounded away from 0 and −ρ̄ holds. We note that
the monotonicity of rt helps us make this argument. We organize the observation in the following
table.
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r0 = y0

x0
c2 = (ρ̄ + r0)/(ρ − r0) T rt on (T,∞) rt

(−∞,−ρ̄) (−1, 0) − (ln |c2|)/2ac1 decreasing (ρ, rT )
(−ρ̄, 0] (0, ρ̄2] (ln ρ̄2 − ln c2)/2ac1 increasing (rT , ρ)
(0, ρ) (ρ̄2,∞) 0 increasing (r0, ρ)
(ρ,∞) (−∞,−1) 0 decreasing (ρ, r0)

Note that rt being bounded away from −ρ̄ means that | rt
(ρ̄+rt)

| is bounded, for sufficiently large t

depending on the initialization as stated in the above table. We use this and the expression for x2 in
equation 6 to observe that

|1− xy| = |1− rx2| =
∣∣∣∣1 + r/(ρ̄ + r)

s(ρ− r)

∣∣∣∣−1

= O (|s(ρ− r)|) .

Similarly, we further use rt being bounded away from 0 for the following residue

|ρ̄− x2| = ρ̄
∣∣1− rx2 + r−ρ

r (rx2 − 1 + 1)
∣∣

≤ ρ̄|1− rx2|+ ρ̄
∣∣ r−ρ

r

∣∣ (1 + |1− rx2|
)

= O
(
|1− rx2|

)
= O (|s(ρ− r)|) .

Thus, s(ρ− r) is the quantity of interest, and therefore we study its limiting behavior. When c ̸= 0,
we have

|st(ρ− rt)| =
2a

|c|

∣∣∣∣ c3 · ec(c1t) − 1

c2 · e2a(c1t) + 1

∣∣∣∣ ≤ c5 · e−(2ρ̄c1)t,

where c5 > 0 is some constant. Here we have used 2a − c = 2ρ̄. Similarly, when c = 0, we do a
similar calculation to obtain

|st(ρ− rt)| = 2a

∣∣∣∣ c1t+ c4
c2 · e2c1t + 1

∣∣∣∣ ≤ c6 · t · e−(2c1)t,

for some constant c6 > 0. In either case, we therefore conclude that limt→∞ st(ρ − rt) = 0. As
|s(ρ− r)| decays to 0 we get that x∞ = ±

√
ρ̄ and x∞ · y∞ = 1. Thus, y∞ = ±√

ρ with the same
sign as x∞ (as r∞ positive). This case is hence complete.

Case 2. Suppose y0

x0
= ρ. Then equation 3 tells us that r = ρ for all t. Substituting y = ρx in ẋ

gives the equation

ẋ = c1x(ρ̄− x2) =⇒ dx2

dt
= 2c1x

2(ρ̄− x2).

Here consider the time varying function X defined as

Xt =
ρ̄

1+c2e−2c1ρ̄t

where c2 = ρ̄
X0

− 1. Setting X0 = x2
0 we get that Xt is continuous everywhere as c2 > −1. For the

function (Xt − x2
t ) we have an initial condition equalling 0 and the derivative condition

d(X − x2)

dt
= 2c1(x

2 +X + ρ̄)(X − x2).

Thus we apply Lemma A.2 obtaining x2
t = Xt at all t. We also have that limx2 = ρ̄ where

∣∣ρ̄− x2
∣∣

decays with an exponential rate of −2ρ̄c1. This is the same limit and convergence rate which we
obtain in Case 1.

Case 3. Suppose y0

x0
= −ρ̄. Equation 3 tells us that rt = −ρ̄ for all t. This reduces ẋ to ẋ =

−(ρ+ x2)x ≤ −ρ · x, thus ensuring that x decays to 0 with an exponential rate of at least ρ. Thus,
in this case (x∞, y∞) = (0, 0).
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Figure 3: Training loss ℓdf and the theoretical bound for the loss given in Theorem 1, for Equality
Histogram trained using gradient descent starting from random initialization. We see the expo-
nential convergence of the loss to 0, as described in Theorem 1.

The only initial case that remains is when x0 = 0 or y0 = 0. Suppose x0 = 0 and y0 ̸= 0. Then
note that ẋ0 = c1y0 ̸= 0. Then for very small ϵ > 0 we get xϵ, yϵ ̸= 0. Thus we can apply the same
convergence analysis with our initial assumption of nonzero x and y starting from time ϵ. A similar
analysis can be done for x0 ̸= 0 and y0 = 0.

Finally if x0 = y0 = 0, the function doesn’t change. The collation of these steps complete the proof
for theorem 2.

A.3 ADDITIONAL EXPERIMENTS

In this section we describe some additional experiments to validate the claims presented.

Random Initialization To experimentally validate the theoretical results presented, we train a DF-
Linear network to minimize the ℓdf loss on the EqualityHistogram task, using gradient descent.
Figure 3 shows the training loss and the theoretical bounds derived in Theorem 1 starting from
random Gaussian initialization. Note that, since gradient descent is a discretization of gradient flow,
the time step N post which we expect to see exponential decay was calculated as N = T/η.

Initializing Close to the Bad Initializations From Remark 1, we know the set of bad initializations
- initializations that lead us to saddle points. For example, for the Equality Histogram task,
one such set of points is v0 = c1d and Q0 = −cId, for c ∈ R i.e. the set of points such that
q
(0)T

i mi+ ρ̄iv
(0)
i = 0 for all i ∈ [d]. Initializing from this set, the trajectory converges to the saddle

point at Q = 0,v = 0.

Figure 4 shows the trajectories of two systems, one initialized close to this set (satisfying q
(0)T

i mi+

ρ̄iv
(0)
i = 0.01), and the other initialized slightly farther away from this set (satisfying q

(0)T

i mi +

ρ̄iv
(0)
i = 0.1), with all other parameters same. We see that, for initializations close to the set of

points that lead to the saddle point, it takes longer to converge - we remain close to the saddle point
for longer. This can also be seen theoretically - the time T following which exponential decay occurs
is much larger for initializations close to the set of bad initializations, and similarly, the rate of decay
is much smaller.
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Figure 4: Loss curves for gradient descent on ℓdf starting from different distances to the set of points
that lead to a saddle point. Note that initializations closer to the set of bad initializations get closer
to the saddle point, and take longer to escape.
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