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Unleashing the Power of Generic Segmentation Models: A Simple
Baseline for Infrared Small Target Detection

Anonymous Author(s)

ABSTRACT
Recent advancements in deep learning have greatly advanced the
field of infrared small object detection (IRSTD). Despite their re-
markable success, a notable gap persists between these IRSTD
methods and generic segmentation approaches in natural image
domains. This gap primarily arises from the significant modality
differences and the limited availability of infrared data. In this study,
we aim to bridge this divergence by investigating the adaptation
of generic segmentation models, such as the Segment Anything
Model (SAM), to IRSTD tasks. Our investigation reveals that many
generic segmentation models can achieve comparable performance
to state-of-the-art IRSTD methods. However, their full potential
in IRSTD remains untapped. To address this, we propose a sim-
ple, lightweight, yet effective baseline model for segmenting small
infrared objects. Through appropriate distillation strategies, we
empower smaller student models to outperform state-of-the-art
methods, even surpassing fine-tuned teacher results. Furthermore,
we enhance the model’s performance by introducing a novel query
design comprising dense and sparse queries to effectively encode
multi-scale features. Through extensive experimentation across
four popular IRSTD datasets, our model demonstrates significantly
improved performance in both accuracy and throughput compared
to existing approaches, surpassing SAM and Semantic-SAM by
over 14 IoU on NUDT and 4 IoU on IRSTD1k. The source code and
models will be released.

CCS CONCEPTS
• Computing methodologies → Image segmentation; Object
detection.

KEYWORDS
Infrared Small Target Detection, Segmentation, Knowledge Distil-
lation, Segment Anything Model

1 INTRODUCTION
Infrared imaging technology offers several advantages over visi-
ble light imaging, including robust anti-interference capabilities,
adaptability to various environments, and higher discernibility
[53, 59, 89]. As a result, it enjoys widespread adoption across various
domains such as video surveillance [58, 76], medical and healthcare
[15, 27, 28], remote sensing [42, 46, 67] and industrial inspection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

[2]. In critical scenarios like ocean rescue or remote sensing, where
target scales are small, it is crucial to identify small targets within
infrared images. Traditional infrared small target detection (IRSTD)
methods fall within the broader spectrum of three specific cat-
egories: filter-based [14, 20, 26, 60, 61], local information-based
[5, 18, 30, 66], and data structure-based [13, 81, 87].

Recently, deep learning approaches for IRSTD [11, 12, 34, 69, 84,
85] have gained significant attention for their capacity to function
without handcrafted priors. However, these data-centric methods
pose unique challenges. Constructing a large-scale dataset demands
expensive pixel-level annotations while publicly available datasets
are often limited in size. Consequently, researchers often resort
to data-efficient strategies, such as weakly supervised training
[33, 75] or U-shaped models [50] tailored specifically for IRSTD
[11, 12, 34, 69, 83–85], departing from architectures [16, 38, 41] com-
monly used in generic detection and segmentation tasks. Although
prior studies have shown that specially designed networks outper-
form the common architectures in generic tasks, these conclusions
often rely solely on training these models from scratch on the small-
scale IRSTD dataset, lacking thorough exploration and neglecting
resources from visible light images. Notably, the Segment Anything
Model (SAM) [31] and its derivatives [29, 36, 71, 80, 90] offer strong
backbones trained on extensive datasets and demonstrate effective-
ness across various tasks. Thus, it is curious to investigate whether
these models offer benefits for IRSTD.

In this study, we aim to build a pioneer model for IRSTD by pre-
training on vast visible light data using robust generic segmentation
models. This endeavor raises two key questions: 1) How do generic
segmentation models like SAM and its derivatives perform in the
field of IRSTD? 2) What architectural design effectively facilitates
the transferability from these segmentation models to IRSTD? To
address the questions, we undertake comprehensive experimen-
tation across various models, including SAM [31], Semantic-SAM
[36], SAM-HQ [29], as well as SAM’s efficient variants like Mobile-
SAM [80], and EfficientSAM [71]. We compare their performance
to established state-of-the-art (SOTA) methods in IRSTD. Despite
encountering significant overfitting (Check details in the Appendix)
after finetuning, certain SAM-based methods achieve comparable
performance to leading IRSTD approaches, as shown in Table 1.
Notably, Semantic-SAM consistently outperforms other models. We
hypothesize that Semantic-SAM’s hierarchical structure enhances
its capability to exploit multi-scale features compared to plain trans-
former architecture. Additionally, its training strategy facilitates
the generation of masks with varying granularity, potentially bene-
fiting transferability to the IRSTD task.

Motivated by these findings, we propose to distill the original
Swin-based Semantic-SAM encoder into a lightweight backbone to
enhance efficiency and transferability whilemitigating performance
drops from overfitting. Our approach adopts the many-to-many
training strategy from Semantic-SAM [36], sharing the decoder
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and learning objectives. After pre-training, we replace the decoder
with a feature pyramid network (FPN) [38], coupled with a modi-
fied SAM decoder to produce high-resolution masks. This refined
pipeline yields a simple and lightweight model that surpasses pre-
vious IRSTD methods and SAM’s efficient variants in performance.
Additionally, we introduce a novel query design comprising dense
and sparse queries, enhancing model performance through multi-
level information fusion. These queries interact with each stage
from the encoder to the decoder, ultimately aiding in target predic-
tion. Extensive experiments demonstrate that our model achieves
state-of-the-art performance across four public datasets. Remark-
ably, it achieves a mIoU of 97.0 on the NUDT dataset, underscoring
its exceptional capabilities.

In summary, the contributions of this study are as follows:
• We investigate the SAM and its variants in the context

of IRSTD through extensive experiments. Our findings re-
veal their comparable performance with state-of-the-art
methods, offering valuable insights into adapting generic
segmentation models for IRSTD

• We propose a simple baseline model leveraging generic
segmentation models via knowledge distillation. It incorpo-
rates novel query designs to effectively encode multi-scale
features through interaction with both the encoder and
decoder.

2 RELATEDWORK
2.1 IRSTD Methods
IRSTD differs in objective from generic detection tasks. Previous
works have often approached IRSTD as a segmentation task, pri-
oritizing this perspective for improved optimization. Dai et al. in-
troduce the first public dataset for IRSTD [11], shifting the task
from model-driven to data-driven. They proposed a U-shaped net-
work featuring a bottom-up multi-level information aggregation
module, enhancing the model’s detection capabilities. Some other
works introduce model-based IRSTD techniques into the network
[82, 84, 85]. Recently, Li et al. propose a densely connected U-net
[34] and Wu et al. propose a U-net in U-net architecture to improve
the detection performance further [69].

Although U-shaped networks are highly favored for scenarios
with limited data and requiring high-resolution output, such as
IRSTD, the size of infrared small target data is often inadequate to
meet the increasing demands for model performance. One approach
to address this issue is leveraging weak supervision to alleviate
annotation burdens [33, 75]. However, a more natural avenue for
exploration is bridging the connection between IRSTD and generic
segmentation tasks, given the abundance of data available for the
latter, which can be orders of magnitude larger than IRSTD datasets.
In such a setting, U-shaped networks encounter challenges in han-
dling large volumes of data and knowledge transfer due to their
high computational complexity along with network depth and sub-
stantial differences with plain or hierarchical networks, which are
more commonly applied in general segmentation tasks.

2.2 Segment Anything Model
The Segment AnythingModel (SAM) [31] stands as a pivotal achieve-
ment in the fundamental image segmentation field, having received

extensive attention over the past year. SAM has showcased remark-
able capabilities in zero-shot transfer learning and boasts versatility
across a diverse array of vision tasks. These tasks span a broad
spectrum, encompassing medical image analysis [44, 68, 78], de-
tection of camouflaged objects [6, 21, 57], object tracking [10, 72],
analysis of AI-Generated Content (AIGC) [56, 86], and various seg-
mentation tasks [64, 74]. Furthermore, subsequent research efforts
have delved into addressing specific needs such as high-resolution
output [29], semantic understanding [36], and real-time application
[71, 80, 88, 90]. An intuitive idea is to investigate the performance
of these models, known for their strong generalization capabili-
ties, in the context of IRSTD. This exploration could shed light on
the potential applicability of SAM and other generic segmentation
models in addressing the unique challenges posed by IRSTD.

2.3 Knowledge Distillation in Segmentation
The majority of research in the realm of segmentation emphasizes
semantic awareness, aiming to capture inter and intra-class rela-
tions by transferring knowledge from teacher models to student
models. In class-agnostic segmentation, distillation techniques typ-
ically fall into three categories: direct mimic [49], relation-based
[40, 62, 79], and generation-based [3, 47, 73] approaches. With the
release of SAM and its widespread real-world applications, there
has been a growing interest in the practical deployment of SAM,
prompting several works to explore distillation techniques to re-
duce its computational cost. Recognizing the challenge of coupled
training between the image encoder and mask decoder, MobileSAM
[80] proposes to decouple their optimization processes, employ-
ing simple Mean Squared Error (MSE) loss to mimic the behavior
of teacher models directly. EfficientSAM [71], on the other hand,
adopts masked image modeling, a generation-based method, to
distill SAM into a lightweight Vision Transformer (ViT) model.
Additionally, other works introduce efficient SAM variants based
on different backbones, with many employing direct mimicry by
combining MSE loss, Binary Cross-Entropy (BCE) loss, and Dice
loss [45]. While our work does not primarily focus on the real-time
application of large vision models to the IRSTD task, we employ dis-
tillation techniques to achieve more efficient training and establish
a simple yet strong baseline for IRSTD.

2.4 Query Design
Drawing inspiration from the Global Workspace Theory in cog-
nitive science, Goyal et al. [17] proposed the concept of a shared
global workspace (learned arrays) for coordinating multiple special-
ists. Additionally, the PERCEIVER network family [24, 25] employs
a latent array to encode implicit information from the input ar-
ray. Expanding the scope further, similar approaches have been
observed in designs such as Involution [35], and VOLO [77]. In
these designs, learnable tokens replace original keys, resulting in
dynamic affinity matrices. Subsequently, models like QnA [1] and
TransNeXt [54] adopt learnable queries for attention calculation
within their backbones, demonstrating effectiveness. Moreover, the
two-way transformer design utilized by the SAM decoder can also
be interpreted as a project and broadcast workspace encoded by
learnable tokens, drawing inspiration from models such as DETR
[4], and Maskformer [9].

2
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Figure 1: The pipeline of our model. First, the pre-trained image encoder takes infrared images as input and generates latent
feature maps at four scales. These feature maps are passed through an FPN for bottom-up information aggregation. The decoder
takes the output of FPN and makes mask predictions. Further, we incorporate a novel query design in our model for better
cross-level information propagation.

Our proposed query design draws inspiration from models like
QnA and TransNeXt. It utilizes learnable queries instead of original
features for cross-attention knowledge transfer. Similar to DETR
and Maskformer, we also leverage sparse queries to generate the fi-
nal output. However, what sets our design apart is its operation not
only within a single mixer layer, as observed in QnA and TransNeXt,
but also across multiple levels. Moreover, we integrate both dense
and sparse queries to encode multi-scale information, further en-
hancing detection accuracy.

3 METHODOLOGY
3.1 Preliminaries
We first review the training strategies employed by variants of
SAM [31]. SAM is designed to accommodate flexible segmenta-
tion prompts, allowing for various training approaches. Generally,
random sampling from labeled training data can be used to gen-
erate prompts, driving the end-to-end training of prompt-based
mask prediction networks like SAM. SAM-HQ [29] and Efficient-
SAM [71] adopt this strategy by sampling mixed types of prompts,
including bounding boxes, randomly sampled points, and coarse
masks as input. In contrast, by employing Hungarian Matching,
Semantic-SAM adopts a multi-choice learning strategy [19, 37],
enabling the network to output six different granularity masks for a
single prompt. After finetuning these generic segmentation models
on IRSTD datasets, as shown in Table 1 and Appendix, we find:
1) the large generic segmentation models such as SAM, Semantic-
SAM, and SAM-HQ encounter significant overfitting issues (see
Appendix for details); 2) Despite overfitting, Semantic-SAM consis-
tently outperforms SAM and its variants and achieves comparable
performance to state-of-the-art IRSTD approaches. According to
the experimental results, we conjecture that Semantic-SAM’s su-
perior performance in IRSTD transferability stems from its unique
training strategy and hierarchical network architecture compared
to other SAM variants. We therefore use powerful Semantic-SAM
as the teacher model to empower our proposed small models in

RepViT M1.1

Input

Teacher

Student

Decoder
(copy)

Hungarian
matching

Hungarian
matching

GT

neck

Swin-Large Decoder 

Prompt encoder 

Figure 2: The proposed distillation framework. The modules
in blue are frozen during the distillation process, while the
modules in red are trainable.

IRSTD. The image encoder in the student model is RepViT M1.1
[63] during the pre-training distillation stage and extended to our
proposed simple baseline during the fine-tuning stage to align with
the different learning objectives. The decoder in the student model
is determined by different training stages, which will be illustrated
in detail in the following section.

Semantic-SAM comprises three fundamental modules: an image
encoder, a prompt encoder, and a mask decoder, akin to SAM and
other interactive segmentation models. During training, data is
restructured by clustering multiple ground truth (GT) masks of
varying levels that share the same click. For each image, 𝑁 prompts
(points or boxes) are sampled. Subsequently, each prompt is linked
to six queries through a query-based mask decoder, representing six
distinct granularities, resulting in 6 × 𝑁 output masks. To facilitate
multiple predictions matching with GT masks for the same click,
Semantic-SAM uses the Hungarian algorithm, enabling many-to-
many matching and yielding 𝑛(𝑛 ≤ 6 × 𝑁 ) final output-GT pairs.

3.2 Knowledge Distillation in Pre-training
The backbone in Semantic-SAM, Swin-Large [41], consumes ap-
proximately 197 million parameters and 200 GFLOPs when process-
ing 512×512 images. This poses a great challenge for the model’s
deployment in the real world, especially in edge devices. Besides,
such a large model’s fine-tuning in infrared target detection (IRSTD)

3
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usually encounters overfitting issues because of the small scale of la-
beled samples, i.e., several hundred to a thousand samples in IRSTD
datasets. To this end, we resort to knowledge distillation to help
the proposed lightweight backbone efficiently learn knowledge
from the powerful teacher, i.e., Semantic-SAM, while mitigating
performance drops from overfitting.

During knowledge distillation, the encoder of the student model
is RepViT M1.1 [63], while the decoder is copied from the pre-
trained Semantic-SAM decoder as shown in Figure 2. Besides, we
add a lightweight neck module following the student backbone
to align the channel dimension between the image encoder and
decoder. The distillation is conducted on the part of the SA-1B
dataset [31]. The model is optimized by minimizing the disparity
between the outputs of the student model and those of Semantic-
SAM.

Current work for efficient SAM variants only trains the image
encoder part during their distillation stages [80], using MSE loss
to mimic the teacher encoder’s output directly. Despite their suc-
cess, we find its inadequacy in fully exploiting the rich granular-
ity representation of Semantic-SAM’s decoder output, as features
from the image encoder do not directly correspond to the final
output mask while the decoder’s outputs encapsulate much richer
task-related information. Hence, as shown in Figure 2, we adopt a
combination of binary cross-entropy (BCE) loss and DICE loss [45]
in the pre-training stage to align the student’s outputs 𝑆𝑓 𝑖𝑛𝑎𝑙 with
teacher’s final outputs 𝑇𝑓 𝑖𝑛𝑎𝑙 . Technically, we propose to employ
KL-divergence loss along both the channel [55] and spatial [23]
dimensions between the intermediate teacher and student outputs
𝑇𝑚𝑖𝑑 , 𝑆𝑚𝑖𝑑 , i.e., the 6 × 𝑁 outputs before Hungarian Matching, to
help the student recognize the significance of Semantic-SAM’s out-
puts. This combination aims to maintain the shapes of masks and
simultaneously highlight the relationships among different granu-
larities, thereby enhancing the distillation performance. The final
distillation loss can be formulated as follows:

LDIS = LBCE + 𝜆 ∗ (LDICE + LKL + LCD), (1)

where LBCE, LDICE, LKL and LCD represent the BCE loss, DICE loss,
vanilla KL loss, and channel-wise KL loss, respectively. 𝜆 is a hyper-
parameter to balance the losses.

3.3 Model Design
After pre-training, we take the pre-trained student backbone as the
image encoder in our proposed baseline model for IRSTD.We follow
EdgeSAM [91] to integrate a tiny FPN behind the image encoder to
enhance multi-scale feature representation. Besides, we modify the
SAM decoder to handle high-resolution inputs from the FPN. FPN
and the new decoder are both re-initialized, which helps the model
avoid overfitting issues. Apart from the above design, we introduce
a novel query design comprising dense and sparse queries that
interact with the image encoder, FPN, and mask decoder, to further
enhance the propagation of semantic information and integrate
features across various scales.

The popular multi-scale module FPN progressively upsamples
the features from the bottom and performs spatial element-wise
addition. However, we observe from experiments that the resulting
model tends to rely more heavily on the features from the top layers
rather than the image encoder’s deep layers, which contain rich

Algorithm 1 Pseudocode of query design in image encoder.

# Variables: Encoder queries Q_encoder, Q_dense
# Functions: Image_Encoder()
def init():

Q_encoder = Embeddings(n,d)
def Sparse_func(Q, S):

Q, S = Cross_attn(q=Q, k=S, v=S)
Q = Self_attn(MLP(Q))
Q, S = Cross_attn(q=S, k=Q, v=Q)

def Dense_func(Q, S):
list = []
list.append(Q).append(S)
Q ,S = Deformable_attn(list)

def forward(I):
for layer in Image_Encoder():

S_i = layer(S_i-1)
Q_dense = Query_embed(S_0)
Q_encoder, S_i = Sparse_func(Q_encoder, S_i)
Q_dense, S_i = Dense_func(Q_encoder, S_i)

and high-level semantic information. This phenomenon leads to a
critical scenario where the clearly discriminative targets depending
on the deeper layer features are not recognized as predictions by
the decoder, resulting in low detection accuracy. Therefore, we aim
to build a more effective multi-level aggregation module that can
encode critical information from layer to layer. This module should
seamlessly integrate into various architectures and be applicable
throughout the network, offering versatility and adaptability. In-
spired by [1, 17, 54], we propose a novel design based on query
learning to enhance information aggregation and better semantic
information propagation.
Query design: As illustrated in the top left part in Figure 1, the
proposed design consists of two types of queries: sparse queries and
dense queries. For dense queries, we initialize them as Q𝑑𝑒𝑛𝑠𝑒 ∈
R𝑚× 𝐻

2 ×𝑊
2 by a duplication of the image encoder’s first stage out-

put. Recognizing the significant computational complexity of cross-
attention mechanisms, we opt for multi-scale deformable attention
[92] between dense queries and the image features of the image
encoder’s next three stages. The deformable attention has linear
complexity with the spatial size and thus will not introduce much
computation burden. For sparse queries, we categorize them into
three groups based on their initial interaction points with the model,
i.e., sparse encoder queries Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∈ R𝑛×𝑑 , sparse FPN queries
Q𝐹𝑃𝑁 ∈ R𝑛×𝑑 , and sparse decoder query Q𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ∈ R1×𝑑 , where
𝑛 is the number of queries (4 by default) and 𝑑 is the dimension size.
All the sparse queries are learnable and initialized from scratch and
have the same channel dimension size. Note that Q𝑑𝑒𝑐𝑜𝑑𝑒𝑟 only has
one query corresponding to the final output mask. As illustrated in
the top right part of Figure 1, within the image encoder, the sparse
encoder queries interact with the features of the image encoder’s
four stages in a bottom-up fashion, and each interaction is achieved
by bi-direction attention follows by four steps: (1) cross-attention
from queries to features, (2) a point-wise MLP to encode the queries,
(3) self-attention on queries, (4) cross-attention from features to
queries. The output of steps 3 and 4 are the updated sparse queries
and image features for the following modules. Then, the obtained
sparse encoder queries concatenate with the next sparse tokens, i.e.,
FPN queries, and then interact with each granularity level of fea-
tures within FPN through several bi-direction attention operations

4
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Figure 3: Details of decoding. Our model employs a multi-
stage approach formask predictions. First, after the image en-
coder, the sparse encoder queries Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , updated through
a two-layer MLP, interact with dense queries Q𝑑𝑒𝑛𝑠𝑒 updated
via a convolutional layer to generate early predictions. Sub-
sequently, following the FPN, the processed queries Q𝐹𝑃𝑁

are combined with the FPN output to produce intermedi-
ate predictions. In the final stage, the Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , Q𝐹𝑃𝑁 and
Q𝑑𝑒𝑐𝑜𝑑𝑒𝑟 are incorporated into the modified SAM decoder.
After interacting with image features through a two-way
transformer, Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 and Q𝐹𝑃𝑁 are discarded, and the de-
coder makes mask predictions with a spatially point-wise
product betweenmask features andQ𝑑𝑒𝑐𝑜𝑑𝑒𝑟 updated byMLP.

in a top-down manner. Note that all levels of FPN features have the
same channel dimension size, guaranteeing dimension consistency
between sparse queries and FPN features. Finally, all sparse queries
are concatenated together, and useful information from features
within the decoder is obtained through bidirectional attention be-
tween queries and features. We summarize the pipeline of our query
design in the image encoder as pseudocode in Algorithm 1.
Decoding process: As illustrated in Figure 3, the model involves
three decoding processes throughout the entire pipeline, i.e., two
early decoding processes and one final decoding process. First, after
the image encoder, we apply a convolutional layer to the dense
queriesQ𝑑𝑒𝑛𝑠𝑒 as the mask feature and feed the first sparse encoder
query Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∈ R1×𝑑 to a 2-layer MLP simultaneously, resulting
in a mask prediction by spatially point-wise product between the
mask feature and the MLP’s output. The process after FPN is similar.
We use FPN output as mask features and the first sparse FPN query
Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∈ R1×𝑑 as the other multiplier. The early mask predic-
tion after FPN is encoded by a lightweight convolutional block and
then added back to FPN feature maps as clues, following the proce-
dure of dense prompt in SAM. We observe from experiments the

early decoding processes facilitate effective information propaga-
tion between different modules, further enhancing the mask quality
predicted by the final decoder. For the final decoding process, we
modified the SAM’s decoder by replacing the 2-layer deconvolu-
tional layer with a two-layer 3 × 3 convolutional block, since we
already have high-resolution features from the hierarchical archi-
tecture. Several stacked two-way transformer blocks process the
sparse queries and the image feature maps. Then the dot product
between the sparse decoder query and feature maps constructs the
final mask prediction. The overall process can be formulated as:

Z = ImageEncoder(I,Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ), (2)
F = FPN(Z,Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ,Q𝐹𝑃𝑁 ), (3)

M = Decoder(F,Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ,Q𝐹𝑃𝑁 ,Q𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ), (4)

where I, Z, and M denote the input images, feature maps after
encoder, and mask prediction, respectively.

4 EXPERIMENTS
4.1 Experimental Settings

Datasets. During the distillation process, we conduct training
on 1% of the entire SA-1B dataset with files named from sa_000000 to
sa_000009. We monitor the distillation pre-training progress using
the evaluation set of COCO2017 [39] with panoptic segmentation
annotations.

To evaluate our methods in the context of IRSTD, we consider
four publicly available datasets: SIRST [11], NUDT [34], IRSTD1k
[85], and MDFA [65]. The SIRST dataset contains 420 infrared im-
ages with resolution varying from 100 × 100 to 300 × 300. We
follow [11] to split 256 images as training set, and the rest are for
evaluation set. The NUDT dataset proposed in [34] contains 1,327
256× 256 images and we adhere to their approach by assigning 663
images to the training set and the remaining images to the evalua-
tion set. IRSTD-1k dataset provides 1,001 images at the resolution
of 512 × 512. Following [85], we select 800 images as the training
set. Notably, we exclude six images from the remaining set due to
inaccurate annotations. To ensure fairness, we test all methods un-
der the same settings and provide details of these excluded images
in the appendix. Additionally, the MDFA dataset comprises 10,000
images for the training set and 100 images for the evaluation set.

Network details. The RepViT [63] is a hierarchical model that
outputs latent features of four different sizes: { 14 ,

1
8 ,

1
16 ,

1
32 }. In the

context of the IRSTD task, we observe that the large downsampling
rate in the original backbone is too aggressive for detecting tiny
targets. Therefore, we adjust the initial embedding of RepViT from
4× downsampling to 2× downsampling for IRSTD1k and 1× for the
other three datasets. For the tiny FPN employed after the image
encoder, it first applies 4 convolutional layers with 1× 1 kernel size
to map the output from the image encoder uniformly to 256 chan-
nels. Then, the smaller-size feature maps are upsampled through
nearest interpolation and added to larger feature maps for multi-
level information aggregation. Finally, a 3 × 3 convolutional layer
is employed to process the output. For the proposed query design,
we set the number of queries 𝑛 4 for Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , 4 for Q𝐹𝑃𝑁 and 1
for Q𝑑𝑒𝑐𝑜𝑑𝑒𝑟 . The Q𝑑𝑒𝑛𝑠𝑒 are duplicated from the image encoder’s
first stage output. The architecture design and hyper-parameters of
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Figure 4: The ablation study on the proposed query design, From the left to right is (a) Heatmaps of P3 and P2 stages before
learned queries are applied. (b) Heatmaps of P3 and P2 stages after learned queries applied. (c) Specific location of P3 and P2 in
FPN.
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Figure 5: Ablation study on early decoding through visualization of attention maps where the main branch features attend to
the queries. (a), the input images. (b), the attention maps without early decoding. (c), the attention maps with early decoding.
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Table 1: A comprehensive comparisonwith previous IRSTDapproaches and generic segmentationmodels on theNUDT, IRSTD1k,
SIRST and MDFA datasets. The evaluation metrics are IoU (10−2), Pd (10−2) and Fa (10−6), the best results are highlighted.

Datasets
Method Publication Type NUDT IRSTD1k SIRST MDFA

IoU ↑ Pd ↑ 𝐹𝑎 ↓ IoU ↑ Pd ↑ 𝐹𝑎 ↓ IoU ↑ Pd ↑ 𝐹𝑎 ↓ IoU ↑ Pd ↑ Fa ↓
ACM [11] WACV’21 68.90 97.05 11.29 62.41 91.44 35.58 70.77 93.08 3.7 40.83 83.08 90.33
FC3-Net [84] ACM MM’22 78.56 93.86 23.922 65.07 91.54 15.55 72.44 98.14 10.85 45.62 85.29 56.76
ISNet [85] CVPR’22 Specific 81.77 96.3 44.47 69.93 92.6 9.21 79.83 99.02 4.61 43.44 76.42 238.15
DNA-net [34] TIP’23 88.99 98.62 4.7798 69.38 93.3 11.66 79.26 98.48 2.3 41.44 75.73 180.66
UIU-net [69] TIP’23 92.19 97.77 15.44 69.96 91.54 65.93 70.13 95.37 35.36 41.28 75.73 86.66
SAM [31] ICCV’23 74.10 98.3 13.32 69.12 92.61 5.88 75.21 99.07 6.82 45.27 83.08 14.64
SAM-HQ [29] NIPS’23 74.02 98.31 14.48 68.85 91.54 9.56 75.27 97.22 2.87 44.99 81.61 24.41
Efficient-SAM [71] CVPR’24 Generic 63.20 93.75 19.51 68.29 91.24 11.58 71.57 98.14 5.744 41.9 76.47 77.51
MobileSAM [80] Arxiv’23 59.91 96.61 19.39 65.37 88.73 10.28 64.96 97.22 12.74 33.84 67.64 150.14
Semantic-SAM [36] Arxiv’23 83.18 97.14 12.36 70.27 92.25 20.16 78.67 99.07 5.48 45.53 0.8 273.85
Ours 95.53 99.15 9.07 71.28 92.25 11.89 74.49 96.29 29.97 43.74 78.67 23.19
Ours+query design 97.04 99.55 0.6897 74.21 94.36 6.47 79.83 100 2.05 46.86 83.08 24.41

Table 2: Ablation study of the key modules in our model. We show a roadmap for transforming the baseline model to our final
model step by step. To better investigate the impact of each component, we highlight the gain in red and degradation in blue.

Datasets
step Method NUDT IRSTD1k SIRST MDFA

IoU Pd Fa IoU Pd Fa IoU Pd Fa IoU Pd Fa
0 Baseline model 89.59 98.62 35.27 66.41 90.49 17.74 60.77 95.37 107.35 41.9 89.7 115.35
1 +Distillation 95.53 (+5.94) 99.15 (+0.53) 9.07 (+26.2) 71.28 (+4.87) 92.25 (+1.76) 11.89 (+5.85) 74.49 (+13.72) 96.29 (+0.92) 29.97 (+77.38) 43.74 (+1.84) 78.67 (-11.03) 23.19 (+92.16)
2 +Query design in FPN 95.22 (-0.31) 99.36 (+0.21) 8.8 (-0.27) 71.28 (+0.0) 92.95 (+0.70) 11.58 (+0.31) 74.5 (+0.01) 97.22 (+0.93) 17.95 (+12.02) 43.38 (-0.36) 84.55 (+5.88) 32.34 (-9.15)
3 +Early decoding after FPN 96.14 (+0.92) 99.36 (+0.00) 4.13 (+4.67) 71.69 (+0.41) 93.3 (+0.05) 10.93 (+0.65) 75.58 (+1.08) 99.07 (+1.85) 24.23 (-6.28) 45.04 (+1.66) 81.61 (-2.94) 18.54 (+13.80)
4 + Extending query design to image encoder 92.57 (-3.57) 98.94 (-0.42) 5.58 (-1.45) 72.23 (+0.54) 93.36 (+0.06) 9.91 (+1.02) 76.43 (+0.85) 100 (+0.93) 15.98 (+8.25) 45.26 (+0.22) 83.28 (+1.67) 24.41 (-5.87)
6 +Early decoding after image encoder 96.46 (+3.89) 99.36 (+0.42) 1.81 (+3.77) 73.68 (+1.45) 93.66 (+0.30) 7.43 (+2.48) 77.99 (+1.56) 100 (+0.00) 7.97 (+8.01) 46.09 (+0.83) 86.76 (+3.48) 39.06 (-14.65)
7 +Queries and early prediction as prompt 97.04 (+0.58) 99.55 (+0.19) 0.69 (+1.12) 74.21(+0.53) 94.36 (+0.70) 6.47 (+0.96) 79.83 (+1.84) 100(+0.00) 2.05 (+5.92) 46.86 (+0.77) 83.08 (-3.68) 24.41 (+14.65)

the decoder are consistent with SAM’s decoder except for replacing
the upsample block with a two-layer 3 × 3 convolutional block.

Pre-training details. During pertaining on SA-1B, we adopt dis-
tillation loss LDIS mentioned in section 3.2, and the hyper-parameter
𝜆 is set to 5. Then, we train the model for 20 epochs using the Py-
Torch framework with a batch size of 16. Following [36], we use
AdamW optimizer[43] with a multi-step learning rate. Initially, the
learning rate is set to 1e-4 and reduced by 10 at 90% and 95% of
the total number of steps. The training process is conducted on 8
Nvidia GeForce 4090 GPUs.

Tuning details on IRSTD datasets. We use a combination of
binary cross entropy loss and DICE loss [45] for the fine-tuning
stage: L𝑚𝑎𝑠𝑘 = L𝐵𝐶𝐸 + 𝜆𝐷𝐼𝐶𝐸L𝐷𝐼𝐶𝐸 , where 𝜆𝐷𝐼𝐶𝐸 is set to 5. Ad-
ditionally, we follow PointRend [32] and Implicit PointRend [8],
which demonstrate that segmentation models can effectively train
with their mask loss calculated using a subset of randomly sampled
points instead of the entire mask.

After resizing images from the SIRST dataset to 256 × 256, we
acquire four datasets with three different sizes: IRSTD1k with sizes
of 5122, SIRST and NUDT with 2562, and MDFA with 1282. Then,
we train our model for 150 epochs with a cosine learning rate
schedule from 1e-4 to 1e-6 with 10 warm-up iterations. For data
augmentation, we use a random resize (uniformly from 0.5 to 2.0)
and fixed-size crop from Detectron 2 [70]. Notably, we do not apply
data augmentation on the NUDT dataset, as we have observed a
degradation in performance.

Evaluation metrics. Following previous works [11, 33, 69, 84,
85], we adopt the intersection of union (𝐼𝑜𝑈 ), probability of detec-
tion (Pd), and false-alarm rate (Fa) as evaluation metrics.

Baselines. To demonstrate the effectiveness of our model, we
select five state-of-the-art IRSTD methods for comparison. Since
these models are not trained on the SA-1B dataset, we include three
large vision models SAM [31], SAM-HQ [29] and Semantic-SAM
[36], as well as two efficient variants of SAM: MobileSAM [80] and
EfficientSAM [71], for a comprehensive comparison.

Specifically, SAM is trained on the SA-1B dataset for approxi-
mately 2 epochs, starting from a pre-trained ViT model. Semantic-
SAM is trained using seven datasets, i.e., SA-1B, COCO panoptic
[39], ADE20k panoptic [93], PASCAL part [7], PACO [48], Par-
tImageNet [22], and Objects365 [52]. SAM-HQ fine-tunes the pre-
trained SAM model on a high-quality dataset, HQSeg-44K [29].
Regarding the efficient variants, MobileSAM is trained on 1% of the
SA-1B dataset, similar to our approach. EfficientSAM is initially pre-
trained on the ImageNet-1K training set [51] and then fine-tuned
on the entire SA-1B dataset.

4.2 Main Results
We conduct comprehensive experiments involving five state-of-the-
art IRSTD approaches and five generalist segmentation models on
four datasets, as summarized in Table 1. Our model demonstrates
strong performance across different datasets and scales. On the
IRSTD1k dataset with an image size of 5122, our model outper-
forms the second-best model, Semantic-SAM, by approximately 4
IoU, achieving the highest detection probability of 94.36% while
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maintaining the lowest false-alarm rate 𝐹𝑎 . On the NUDT and SIRST
datasets with image sizes of 2562, our model achieves an impressive
97.04 IoU, 99.55% detection probability, and 0.6897e-4% false-alarm
rate on the NUDT dataset, and 79.83 IoU, 100% detection probability,
and 2.05e-4% false-alarm rate on the SIRST dataset. Regarding the
MDFA dataset with an image size of 1282, our model still delivers ro-
bust performance, reaching 46.86 IoU, 83.08% detection probability,
and 24.41e-4% false-alarm rate.

4.3 Ablation Study
4.3.1 The Journey to Our Model. As shown in Table 2, our jour-
ney begins with a baseline model consisting of three components:
RepViT M1.1 as the image encoder, followed by an FPN and a mod-
ified SAM decoder. Without distillation and learned queries, the
model demonstrates subpar performance across all four datasets.

Subsequently, we conduct knowledge distillation from Semantic-
SAM using 1% of the SA-1B datasets, as outlined in step 1. This
process incorporates three essential factors: the multi-granularities
awareness from Semantic-SAM and the multi-choice training strat-
egy employed by Semantic-SAM, together with abundant segmen-
tation priors derived from visible images. This effort substantially
enhances the model’s performance, resulting in significant improve-
ments of 5.94, 4.87, 13.72, and 1.84 IoU on the NUDT, IRSTD1k,
SIRST, and MDFA datasets, respectively. This establishes a strong
model that outperforms previous state-of-the-art IRSTD methods
and SAM variants.

Then, to address the ineffectiveness of FPN, we introduce a novel
query design to levitate multi-scale information, as outlined from
step 2 to step 3 in Table 2, and extend it to the image encoder in
the stage of step 4 and step 5. Furthermore, we propose to use
sparse queries and early predictions to prompt the decoder, as
noted in step 7. Our final model significantly outperforms the pre-
trained model, achieving a gain of 1.51, 2.93, 5.34, and 3.12 IoU, as
well as improvement in detection probability of 0.4%, 2.11%, 5.34%,
and 3.12% on the NUDT, IRSTD1k, SIRST, and MDFA datasets,
respectively. Furthermore, we observed a reduction in false-alarm
rates from 9.07e-4% to 0.69 e-4%, from 11.89e-4% to 6.47e-4%, and
from 29.97e-4% to 2.05e-4% on the NUDT, IRSTD1k, and SIRST
datasets, respectively. These results validate the effectiveness of the
key designs in our model for enhancing detection performance.

4.3.2 Analysis on theQueryDesign. As illustrated in 4.3 and Table 2,
introducing the query design significantly enhances the model’s
performance. Here, We further analyze the impact of the learned
queries by visualizing specific layers and attention maps in Figure 4
and Figure 5.

In particular, we visualize the output of the P3 and P4 stages
before and after the queries are applied, as depicted in Figure 4c.
The heatmaps in Figure 4a and 4b highlight the differences. Our
finding indicates that within the vanilla FPN, the targets identified
by higher-level feature maps are diminished after the fusion with
low-level features. However, this issue is substantially alleviated by
the proposed queries. In Figure 4b, we consistently observe clearer
expression of targets in both the P3 and P2 stages. The resulting
output demonstrates improved visual quality with finer-grained
edges, which is achieved through the combination of high-level
semantics contained in queries and high-resolution feature maps.

Study on the impact of early decoding. The direct training of
queries, by linking them to the output prediction, plays a pivotal role
in enabling queries to retain valuable information. As demonstrated
in Table 2, the removal of direct training of queries leads to a
significant deterioration in performance, evidenced by a noticeable
decline in IoU points on the NUDT, IRSTD1k, SIRST, and MDFA
datasets. Specifically, there is a drop of 3.89, 1.45, 1.56, and 0.83 IoU
points on these datasets.

In Figure 5, we visualize the attention map where the queries
attend to the main branch features. Specifically, Figure 5 (a) shows
the input images, while Figure 5 (b) and (c) depicts the attention
maps without and with early decoding, respectively. The attention
maps in Figure 5 (c) exhibit a more accurate response to the target
compared to those in Figure 5 (b), underscoring the importance of
early decoding.

Computational complexity analysis. Our proposed query
design strikes a balance between quality and efficiency. Given an
input 𝑥 ∈ R𝑏×ℎ×𝑤×𝑑 and sparse queries such as encoder queries
Q𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∈ R𝑏×𝑛×𝑑 where 𝑏 is the batch size, ℎ, 𝑤 , and 𝑑 denote
the height, width, and dimension of the input, 𝑛 is the number of
queries. For a bi-direction attention module depicted in Figure 1,
the computational complexity is:

O𝑏𝑖−𝑎𝑡𝑡𝑛. = 34𝑏𝑛𝑑2 + 8𝑏ℎ𝑤𝑑2 + 8𝑏𝑛ℎ𝑤𝑑 + 4𝑏𝑛2𝑑 (5)
Here, we consider the impact of linear projection and dot product

for the complexity above. Since 𝑛 is set to 4 forQ𝑒𝑛𝑐𝑜𝑑𝑒𝑟 andQ𝐹𝑃𝑁 ,
ℎ ×𝑤 ≫ 𝑑 , the complexity is dominated by the second term. The
module is of linear complexity with spatial size.

The multi-scale deformable attention module involving dense
queriesQ𝑑𝑒𝑛𝑠𝑒 is also of linear complexity withℎ and𝑤 . The details
can be checked in [92]

5 CONCLUSION
This paper presents a robust segmentation baseline for Infrared
Small Target Detection (IRSTD). We begin by investigating the
capabilities of the popular vision foundation model SAM and its
variants in the context of IRSTD. Subsequently, we propose to use
a specific distillation strategy to transfer knowledge from generic
models to a more efficient architecture, thus establishing a sim-
ple, efficient, yet effective baseline, unleashing the potential of the
generic segmentation models. Based on the pre-trained model, we
introduce a novel query design to aggregate multi-level features
and facilitate effective cross-level semantics propagation. Extensive
experiments conducted on four public IRSTD datasets showcase
the significantly improved performance of our model compared to
SAM, its variants, and previous state-of-the-art methods in IRSTD.

Limitations. Although we demonstrate that a large amount
of visible light data can benefit the IRSTD, training on such data
requires considerable time and resources. We encourage future
research to delve deeper into analyzing the impact of the type and
quantity of visible light images on infrared detection ability. By
conducting thorough analyses, researchers can identify the most
effective strategies for training more efficiently. This could lead
to simpler and more effective approaches for IRSTD, ultimately
benefiting various applications and domains.
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