
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOFORMALIZER WITH TOOL FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoformalization addresses the scarcity of data for Automated Theorem Proving
(ATP) by translating mathematical problems from natural language into formal
statements. Efforts in recent work shift from directly prompting large language
models to training an end-to-end formalizer model from scratch, achieving re-
markable advancements. However, existing formalizer still struggles to consis-
tently generate valid statements that meet syntactic validity and semantic consis-
tency. To address this issue, we propose the Autoformalizer with Tool Feedback
(ATF), a novel approach that incorporates syntactic and consistency information
as tools into the formalization process. By integrating Lean 4 compilers for syn-
tax corrections and employing a multi-LLMs-as-judge approach for consistency
validation, the model is able to adaptively refine generated statements according
to the tool feedback, enhancing both syntactic validity and semantic consistency.
The training of ATF involves a cold-start phase on synthetic tool-calling data, an
expert iteration phase to improve formalization capabilities, and Direct Prefer-
ence Optimization to reduce ineffective revisions. Experimental results show that
ATF markedly outperforms a range of baseline formalizer models, with its su-
perior performance further validated by human evaluations. Subsequent analysis
reveals that ATF demonstrates excellent inference scaling properties. Moreover,
we open-source Numina-ATF, a dataset containing 750K synthetic formal state-
ments to facilitate advancements in autoformalization and ATP research.

1 INTRODUCTION

Recent advancements in the reasoning capabilities of large language models have significantly ac-
celerated progress in the field of Automated Theorem Proving (ATP) (Yang et al., 2024). Unlike
traditional mathematical tasks, ATP requires models to start from a formalized theorem statement
and construct rigorous logical proofs that can be verified within formal languages such as Lean
(De Moura et al., 2015) and Isabelle (Paulson, 1994). However, the training of recent massive
provers, such as DeepSeek-Prover (Ren et al., 2025) and Kimina-Prover (Wang et al., 2025), is
hindered by the scarcity of formalized mathematical queries. Autoformalization addresses this by
translating mathematical problems expressed in natural language into verifiable formal statements.

A significant challenge in autoformalization is the absence of a universal automatic evaluation stan-
dard (Li et al., 2024b). As widely recognized in previous work (Liu et al., 2025b), a valid formaliza-
tion is supposed to meet two key criteria: (1) Syntactic Validity: the generated formal statements
should be compiled successfully in the target formal language, and (2) Semantic Consistency: the
translated statements should be semantically equivalent to the original mathematical problems. Ear-
lier approaches primarily focus on autoformalization by directly prompting or utilizing in-context
learning to instruct LLMs to generate valid formal statements (Azerbayev et al., 2023a; Yu et al.,
2025). However, such approaches suffer from the limited formalization capabilities of LLMs, result-
ing in suboptimal results. Recent efforts shift towards training a specialized formalizer model from
scratch (Wang et al., 2025; Wu et al., 2025; Lin et al., 2025). The formalizer is typically trained
on extensive high-quality informal-formal pairs that are both syntactically valid and semantically
consistent, demonstrating improved performance.

Despite the promise, existing formalization approaches tend to be suboptimal due to the following
issues: (1) Lack of Formal Knowledge. The scarcity of formal language data in the pre-training
corpora limits the foundational models’ ability to inherently understand and generate formal state-
ments effectively. Solely relying on post-training is insufficient for models to produce syntactically

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

How many people must be in a group for at
least two of them to be born in the same month?
Prove that the answer is 13.

Informal statements theorem thm: IsLeast
{n : ℕ | ∃ s : Finset ℕ, s.card = n ∧
∃ x ∈ s, ∃ y ∈ s, x ≠ y ∧ x % 12 =
y % 12} 13 := by sorry

theorem thm: IsLeast
{n : ℕ | ∀ s : Finset ℕ, s.card = n →
∃ m ∈ s, ∃ k ∈ s, m ≠ k ∧ m % 100 =
k % 100} 13 := by sorry

Mistakes: using existential
quantification (∃) instead of
universal quantification (∀)

Mistakes: using modulo
100 (a century) instead of
modulo 12 (month)

theorem thm: IsLeast

theorem thm: IsLeast

63%
remaining

Kimina
Autoformalizer

theorem thm: IsLeast
{n : ℕ | ∀ s : Finset ℕ, s.card = n →
∃ a ∈ s, ∃ b ∈ s, a ≠ b ∧ a % 12 =
b % 12} 13 := by sorry

theorem thm: IsLeast

.

.

.

{n : ℕ | ∀ s : Finset ℕ,
s.card = n → ∃ a ∈ s, ∃ b ∈
s, a ≠ b ∧ a % 12 = b % 12}
13 := by sorry

Figure 1: Illustration of Challenges in Autoformalization using Kimina-Autoformalizer. Approxi-
mately 40% of the statements fail to pass syntax validation, while the remaining statements tend to
exhibit subtle misalignments with the original queries.

valid statements stably. For instance, Goedel-Formalizer-v2 (Lin et al., 2025), as the currently lead-
ing formalizer, achieves only 62.31% syntax pass@1 on combibench. Additionally, considering
significant variations between different versions of formal languages (e.g. Lean 4 v.s. Lean 3), the
trained formalizer often lacks generalizability across versions. (2) Rough Consistency Validation.
Due to the high costs of manual data annotations, previous work relies on LLMs to assess the con-
sistency between informal and formal expressions. However, the reliability of such LLMs-as-judge
approach has not been thoroughly validated. As illustrated in fig. 1, generated formal statements
exhibit subtle misalignments with their informal queries, which has also been observed in previous
work (Wu et al., 2025), necessitating more precise and dependable consistency verification to ensure
the semantic equivalence of translated statements.

To address these issues, we propose Autoformalizer with Tool Feedback (ATF) which integrates
syntactic and consistency information as tools into the formalization process, thereby guiding mod-
els to adaptively refine the statements during generation. Specifically, we develop distinct tools for
syntactic validity and semantic consistency. For syntactic validity, the tool processes formal state-
ments and returns comprehensive compilation feedback from the Lean 4 compilers, offering precise
guidance for syntax corrections. For semantic consistency, we benchmark the ability of LLMs to
discern subtle misalignments between informal-formal pairs and implement a multi-LLMs-as-judge
approach for consistency validation. The integration of syntactic information effectively compen-
sates for the model’s unfamiliarity with formal languages, allowing adjustments tailored to differ-
ent language versions. Besides, the incorporation of consistency information helps the model to
identify and address misalignments between informal and formal statements, enhancing semantic
consistency. The training of ATF involves a cold-start phase on synthetic data to teach the model
effective tool usage, an expert iteration phase to enhance the model’s formalization capability and
its ability to effectively implement revisions based on tool feedback, followed by a Direct Prefer-
ence Optimization (DPO) phase to reduce ineffective revisions. Extensive experiments across three
widely-used benchmarks demonstrate that ATF achieves substantial improvements over existing
state-of-the-art formalizers (e.g., 29.13% semantic consistency improvement on CombiBench com-
pared to the strongest Goedel-V2-Formalizer-32B). We further analyze the inference-time scaling
properties of ATF and leverage it to synthesize formal statements from open-source mathematical
queries, thereby contributing resources to advance future research in autoformalization and ATP.

The core components of this paper can be highlighted as:

• We develop two evaluation tools that effectively assess the validity of formal statements,
providing accurate measurements of both syntactic validity and semantic consistency.

• We propose Autoformalizer with Tool Feedback (ATF), which enables models to invoke
evaluation tools during the formalization process and adjust statements based on feedback,
achieving superior results compared to existing baseline formalizers.

• We open-source Numina-ATF, a formal dataset containing 750K formal statements from
Numina-v1.5 queries synthesized by ATF-32B (see Appendix D for details), supporting
further development of formalizers and provers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 AUTOFORMALIZATION USING LLMS

Recent research in autoformalization has focused on using LLMs to accurately interpret and con-
vert mathematical queries into structured formal languages, which can be categorized into two ap-
proaches: (1) Prompting powerful general models. Azerbayev et al. (2023a) and Wu et al. (2022)
utilize In-context learning with carefully crafted formalization examples. Yu et al. (2025) directly
asks DeepSeek-R1 (Guo et al., 2025) to transform mathematical queries into formal statements fol-
lowed by data filtering to ensure the quality of the generated statements. This approach heavily
relies on the inherent capabilities of the general model and the quality of prompts, resulting in poor
performance. (2) Training a specialized model. Wang et al. (2025) leverage human-annotated cold-
start data and employs an expert iteration strategy to train a lightweight Autoformalizer model. Lin
et al. (2025) synthesize high-quality datasets containing reasoning paths from Claude 4, integrating
reasoning capabilities into the autoformalization process. Wu et al. (2025) enhance the accuracy of
the Autoformalizer by training on a combination of a knowledge-distilled dataset and a reasoning
dataset. Though effective, this method requires extensive high-quality informal-formal pairs and
faces challenges like data scarcity and limited adaptability across different formal languages. Our
method adapts from (2) but innovatively incorporates formal standards directly into the generation
process. By leveraging the model’s reflective capabilities, it produces more accurate samples by
refining statements using syntactic and consistency feedback.

2.2 TOOL-INTEGRATED RESONING

LLMs encounter limitations in tasks demanding precise calculation, faithful verification, or access
to information beyond their knowledge. Tool-Integrated Reasoning (Lin & Xu, 2025) has emerged
as a powerful approach to tackle these challenges, integrating external tools to enhance model per-
formance. Proof assistants such as Lean 4 are well-suited to serve as tools that assist in ATP, which
enables LLMs to access theorem databases and verify the correctness of the proof process. Li et al.
(2024a) leverages retrieval-augmented generation (RAG) (Gao et al., 2023) to incorporate relevant
theorems from formal libraries into the proof construction process, enhancing the precision and rele-
vance of theorem proving. Ji et al. (2025) implement Lean 4-verifier into iterative refinement loops,
allowing models to autonomously revise candidate proofs based on feedback, which complements
the structural approach with continual improvement strategies. Different from the verification of
proof, compiler results can not check the correctness of formalization. Our approach focuses on
syntax and consistency to construct reliable tools that aid the formalization process.

3 METHODOLOGY

In this section, we systematically elaborate on the main components of ATF. We start with the
construction of tools, detailing how we design reliable validity evaluation tools from the perspectives
of syntax and consistency. Following this, we explain the ATF training pipeline, as depicted in fig. 2,
which comprises three phases: an initial cold-start phase, an expert iteration phase, and a final Direct
Preference Optimization (DPO) phase. During inference, ATF actively utilizes the developed tools
to generate Lean 4 statements, iteratively modifying the output based on feedback until it passes
both syntax and consistency checks.

3.1 TOOL DESIGN

To achieve reliable evaluation of formal statements, we design two distinct tools: syntax check
for syntactic validity and consistency check for semantic consistency. The syntactic validity tool
processes formal statements and returns detailed compilation feedback from Lean 4 compilers. We
employ a pre-check stage and a grouped execution method to ensure more stable and rapid tool
responses. The consistency check receives pairs of informal and formal statements and returns con-
sistency results along with concise explanations. Notably, we implement a multi-LLMs-as-judge
approach in consistency check, which is benchmarked to effectively discriminate minor inconsisten-
cies in formal statements. Detailed implementation of tools can be found in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Informal Data

Claude-4-Sonnet

Cold Start Data

Verified Data
Initial Formalizer Final Formlizer

Tool
Instructions

Inference Data

Rejected Data Rejected Data

Expert Iteration

Formalizer

Formalizer

SFT

Inference

DPO

Cold Start DPO

chosen

rejected

Autoformalize the following problem in Lean 4:
Prove that for all positive integers 𝑥, the expression 3! − 2 is not divisible by 13.

Prompt

<think>
Looking at this problem, I need to...
theorem thm: ∀ x : ℤ, ¬(13 ∣ (3^x - 2)) := by sorry

<tool_call>
{"name":"syntax_check",
"lean4_code":...}</tool_call>

<tool_results>
{"pass": False, "errors": ...}</tool_results>

I need to handle integer exponents properly...
theorem thm: ∀ x : ℕ, ¬(13 ∣ (3^x - 2)) := by sorry

<tool_call>{"name":"syntax_check", "lean4_code":...}
</tool_call>

<tool_results>{"pass": True}</tool_results>

Now that the syntax check passed, let me ...
<tool_call>
{"name":"consistency_check", "lean4_code" : ...}
</tool_call>

<tool_results>{"pass": True}</tool_results>

</think>
Formal Statement
theorem thm : ∀ x : ℕ, ¬(13 ∣ (3^x - 2)) := by sorry

Verification
Syntax

Consistency

Tool Call

Syntax

Figure 2: Framework of ATF consisting of three training stages: a cold-start phase to introduce basic
tool usage with synthetic trajectories, followed by an expert iteration phase to refine formalization
skills, and concluding with DPO to favor more effective paths with fewer revisions.

3.1.1 SYNTAX CHECK

Acquiring compiler feedback from Lean 4 (Moura & Ullrich, 2021) execution is an intuitive and
direct method for syntactic validation checking, and it is widely used in ATP to verify the correctness
of proofs. However, Lean 4 execution is quite time-consuming, struggling to handle large-scale
statements. This presents a challenge in acquiring low-overhead and rapid execution responses.

import Mathlib

Namespace 1

Statements 1

Namespace 2

Statements 2

Namespace B–1

Statements B-1

Namespace B

Statements B

Lean4 Code
import Mathlib

Namespace 1

Error

Namespace 2

Namespace B–1

Error

Namespace B

.

.

.

.

.

.
.
.
.

Lean4 CodeGrouped by
{import Mathlib}

Final results

Statements B-1

Statements B

Statements 2

Statements 1

.

.

.
Statements B-1

Statements B

Statements 2

Statements 1

Figure 3: Grouped Lean 4 Execution.

To overcome such drawbacks in efficiency,
we first implement a pre-check stage that fil-
ters out statements with obvious syntactic
errors before compilation, such as missing
necessary libraries and unmatched parenthe-
ses, aiming to reduce the workload. Addi-
tionally, we utilize a grouped method to en-
able batch execution of Lean 4 code. State-
ments are grouped based on import libraries.
As fig. 3 shows, statements within the same
group are concatenated into a single code
file separated by namespaces. Then, Execu-
tion results are mapped to the corresponding
statements based on their line numbers, en-
abling efficient batch processing of Lean 4 code. In this paper, we adopt Lean 4 of version 4.15 1,
which is a stable version widely utilized in previous work (Yu et al., 2025).

3.1.2 CONSISTENCY CHECK

LLMs-as-judge methods have been widely adopted to replace manual evaluations for assessing the
semantic consistency of formalizations (Huang et al., 2025). Although Wang et al. (2024) measure
the abilities of different models to distinguish semantically correct formalizations, their capacities
to discern subtle inconsistencies in similar formal statements remain underexplored.

To obtain more refined consistency feedback, we constructed a benchmark containing similar posi-
tive and negative statements. Specifically, we sampled 800 math queries from widely used formal-
ization datasets (Azerbayev et al., 2023b; Zheng et al., 2021; Tsoukalas et al., 2024), where each
query has a valid formal statement as the positive statement. We then instruct Gemini-2.5-Pro to
generate perturbations for each statement, selecting 4 different perturbations as negative statements
based on the following criteria:

• Character-level similarity with the positive statement is greater than 0.95.
• Syntactically valid but are not semantically consistent with the original statement.

1https://github.com/project-numina/kimina-lean-server

4

https://github.com/project-numina/kimina-lean-server

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Performance metrics of models in consistency checks, including Precision, Recall, FNR,
TNR, and FPR.

Model Precision Recall (TPR) FNR TNR FPR
(↑) (↑) (↓) (↑) (↓)

QWQ-32B 0.8029 0.6758 0.3242 0.9171 0.0829
Qwen3-32B 0.7949 0.7367 0.2633 0.9050 0.0950
Ensemble Vote 0.8374 0.5967 0.4033 0.9421 0.0579

Following the setup in (Wang et al., 2024), we evaluate two widely used open-source models QWQ-
32B and Qwen3-32B (Yang et al., 2025) in consistency checks on the benchmark. We find that
an ensemble vote method (where consistency is only confirmed when both models give identical
conclusions) effectively enhances the models’ ability to discern subtle inconsistencies. As illustrated
in table 1, while QWQ-32B and Qwen3-32B demonstrated comparable performance, their FPR
was suboptimal (indicating that approximately 9% of inconsistent statements are misclassified). In
contrast, the ensemble vote approach effectively reduces the FPR to below 6%. Therefore, we adopt
this multi-LLMs-as-judge approach in this paper to ensure a more accurate consistency evaluation
tool. More details about Benchmark constructions can be found in Appendix A.2.

3.2 TRAINING PIPELINE

With the tools constructed above, we implement the training pipeline for ATF using Qwen3-32B.
The entire training process consists of three identical stages: a cold-start phase to teach the model the
use of tools, an expert iteration phase to enhance the model’s formalization capabilities, and a Direct
Preference Optimization (DPO) phase to reduce ineffective revisions found in multiple iterations.

Table 2: Overview of data sources.

Source Size

amc aime 1,805
olympiads ref 3,221
cn contest 20,791
olympiad 152,652

Total 178,469

Data The whole training process of ATF is conducted
based on the NuminaMath-1.5 dataset (LI et al., 2024),
which contains approximately 900k competition-level
math problems ranging from Chinese high school math
exercises to international mathematics Olympiad com-
petition problems. Following (Wang et al., 2025), we
select a challenging subset of NuminaMath-1.5, consist-
ing of 178k entries that cover several competition-level
data sources. Detailed information about different data
sources can be found in table 2.

Cold Start for Tool Integration The cold-start phase begins by prompting Claude-4-Sonnet to
generate multi-turn tool invocation reasoning paths. Considering that the consistency check using
multi-LLMs-as-judge is more time-consuming compared to the syntax check, we establish several
rules for more efficient revisions:

• Consistency check is only permitted after syntax check passes.
• Syntax check must be invoked first after revision.
• The process stops if and only if both the syntax and consistency checks pass.

Following the default format of Claude, the tool invocations and returned information are respec-
tively enclosed in <tool call></tool call> and <tool result></tool result> tags. To enable mul-
tiple rounds of tool calls and revisions within a limited context length, we prompt Claude to perform
concise reasoning. Ultimately, we extract approximately 10% queries from the dataset for data syn-
thesis, and upsample the reasoning paths with more than one revision to obtain a final 24K cold-start
dataset. We choose Qwen3-32B as the foundation model and mask the losses on tool result tokens
in training to prevent the model from directly mimicking the tool executions.

Expert Iteration for Formalization Capability Enhancement After fine-tuning the formalizer on
the synthetic cold-start dataset, the model is familiar with the format of tool invocation and has
acquired the behavior of making revisions based on error feedback from tools. Next, we conduct an
expert iteration training on the remaining data, aiming to further improve the model’s formalization

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

capabilities. Following a standard expert iteration pipeline, in each iteration, we use the current
model to generate formalization attempts on the remaining math queries and filter out those that
violate the tool invocation rules above. We collect all successful formalization trajectories with the
revision attempts < 8 and merge them with data from previous rounds for training, retaining failed
queries for the next iteration. We conduct training from the base model in each iteration, and the
configuration remains the same as in the cold-start phase.

DPO for Effective Revision After expert iteration, the formalizer excels in generating valid state-
ments through iterative tool calling and revision. However, we observe that the model sometimes
exhibits consecutive identical errors (e.g., the same syntax error appearing multiple times without
being resolved). To guide the model to reduce such ineffective revisions, we further conduct a DPO
(Rafailov et al., 2023) training to encourage the model to complete formalization in fewer attempts.
Specifically, we first perform self-sampling on the remaining data from the expert iteration. For each
math query, we select the trajectory with fewer revision attempts as the positive sample and the one
with more revision attempts as the negative sample (maintaining their revision attempt difference ≥
3), finally collecting 10K pairs. In addition to masking the loss on tool result tokens, we also mask
tool invocation-related tokens to prevent instability in tool invocation behavior. Considering that the
pairs share similar distributions, we adopt the DPO loss along with a negative log-likelihood (NLL)
loss (Dubey et al., 2024) on chosen trajectories to avoid the decline of chosen reward in training

L = −E
[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
− αE [log πθ(yw|x)] , (1)

where πθ is the policy model, πref is the reference model, yw and yl are the chosen and rejected tra-
jectories respectively, β is the temperature parameter, α is the weighting coefficient, and σ represents
the sigmoid function. Notably, we adopt DPO instead of online reinforcement learning algorithms
such as GRPO (Shao et al., 2024), because the model has already achieved strong capabilities af-
ter expert iteration, resulting in a relatively low proportion of negative trajectories in self-sampling,
which makes DPO more efficient.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Configurations For the SFT training involved in cold-start and expert iteration phases, we
conduct full parameter fine-tuning on 128 NPUs with an initial learning rate of 2e-5, using a cosine
decay style that decays to 1e-7 over 3 epochs. The DPO training is conducted with hyper-parameters
(β = 0.1) and (α = 0.3) on 128 NPUs for 1 epoch. In addition to the ATF-32B model, we also train
an ATF-8B-Distilled using the same data. Detailed training parameters are listed in Appendix B.

Baselines For baseline comparisons, we evaluate ATF against a series of the most performant for-
malizer models, including: Kimina-Autoformalizer-7B (Wang et al., 2025), StepFun-Formalizer-
7B/32B (Wu et al., 2025), and Goedel-V2-Formalizer-8B/32B (Lin et al., 2025).

Evaluations Following Wu et al. (2025), we select three widely-used ATP datasets for evaluation,
including two in-distribution datasets: FormalMath-Lite (Yu et al., 2025) and ProverBench (Ren
et al., 2025), along with an out-of-distribution dataset CombiBench (Liu et al., 2025a). To ensure
fair comparison, we perform similarity-based decontamination on all training data against these
evaluation sets. In terms of evaluation metrics, we assess both syntactic validity and consistency
validity of generated statements using the tools designed above (only syntactically valid statements
proceed to consistency evaluation). For each math query, we sample 16 times with temperature =
0.6 and report unbiased Pass@1, Pass@8, and Pass@16 pass rates. For ATF we set the max revision
attempts < 4 which results in output lengths roughly equivalent to those of Goedel-V2-Formalizer-
32B. Considering the limitations of LLMs-as-judge in terms of consistency check, we further con-
duct human evaluation on 32B-scale models as the gold standard. Specifically, we randomly sample
100 instances from each benchmark, and each instance is evaluated by 3 experts independently, with
the majority opinion serving as the final judgment. Detailed evaluation procedures are provided in
Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of different Formalizers. SC represents Syntax Check pass rate
(%) and CC represents Consistency Check pass rate (%). The best results are presented in bold and
the second with underline.

Model FormalMath-Lite ProverBench CombiBench

SC CC SC CC SC CC
Pass@1

Kimina-Autoformalizer-7B (Wang et al., 2025) 93.11 64.77 86.44 45.95 63.19 14.00
StepFun-Formalizer-7B (Wu et al., 2025) 89.31 69.72 71.52 45.16 46.94 16.50
Goedel-V2-Formalizer-8B (Lin et al., 2025) 95.25 83.06 92.36 78.64 59.94 31.44
StepFun-Formalizer-32B (Wu et al., 2025) 91.87 73.11 69.73 49.70 55.19 25.50
Goedel-V2-Formalizer-32B (Lin et al., 2025) 95.72 85.41 91.39 79.70 62.31 36.25
ATF-8B-Distilled 96.55 91.12 91.49 85.16 74.00 51.69
ATF-32B 97.94 94.51 94.29 89.78 86.69 65.38

Pass@8
Kimina-Autoformalizer-7B (Wang et al., 2025) 99.42 86.81 95.82 65.51 93.72 26.56
StepFun-Formalizer-7B (Wu et al., 2025) 96.82 88.22 86.46 68.59 78.11 36.17
Goedel-V2-Formalizer-8B (Lin et al., 2025) 98.67 96.23 96.28 94.03 90.77 57.78
StepFun-Formalizer-32B (Wu et al., 2025) 98.05 90.63 89.03 74.71 83.14 46.10
Goedel-V2-Formalizer-32B (Lin et al., 2025) 99.21 97.68 96.28 94.27 90.64 70.58
ATF-8B-Distilled 99.95 98.82 99.11 97.24 97.49 81.88
ATF-32B 99.97 99.27 99.66 98.20 98.73 92.22

Pass@16
Kimina-Autoformalizer-7B (Wang et al., 2025) 99.76 90.67 96.52 69.13 97.00 30.00
StepFun-Formalizer-7B (Wu et al., 2025) 97.37 90.67 89.13 73.91 84.00 44.00
Goedel-V2-Formalizer-8B (Lin et al., 2025) 99.04 97.13 96.52 94.78 96.00 66.00
StepFun-Formalizer-32B (Wu et al., 2025) 98.80 93.54 91.30 79.57 87.00 51.00
Goedel-V2-Formalizer-32B (Lin et al., 2025) 99.52 98.80 96.52 95.22 93.00 79.00
ATF-8B-Distilled 100.00 99.52 99.57 97.83 99.00 87.00
ATF-32B 100.00 99.52 100.00 98.70 100.00 96.00

Human Evaluation
Kimina-Autoformalizer-7B (Wang et al., 2025) 92.00 70.00 87.00 59.00 59.00 7.00
StepFun-Formalizer-32B (Wu et al., 2025) 92.00 75.00 70.00 57.00 53.00 18.00
Goedel-V2-Formalizer-32B (Lin et al., 2025) 97.00 92.00 93.00 81.00 60.00 22.00
ATF-32B 98.00 95.00 94.00 85.00 90.00 49.00

4.2 MAIN RESULTS

Based on the main experimental results listed in table 3, we draw several summarizations:

ATF consistently outperforms all baseline models across all benchmarks on both syntax and
consistency metrics. ATF-32B achieves superior performance on all three evaluation datasets,
with particularly notable improvements in semantic consistency. For example, ATF-32B achieves
Pass@1 consistency scores of 94.51% on FormalMath-Lite, 89.78% on ProverBench, and 65.38%
on CombiBench, consistently surpassing the best baseline Goedel-V2-Formalizer-32B by margins
of 9.1%, 10.08%, and 29.13% respectively.

ATF demonstrates strong generalization capabilities in out-of-distribution scenarios. The sub-
stantial performance improvements are particularly evident on CombiBench, which contains diverse
combinatorial mathematics problems that significantly differ from the training data distribution.
While most baseline models struggle significantly on this dataset (e.g., StepFun-Formalizer-32B
achieves only 25.50% Pass@1 in consistency), ATF-32B maintains robust performance at 65.38%,
indicating strong generalization beyond the training distribution.

ATF benefits significantly from increased sampling (Pass@k) and maintains excellent perfor-
mance even at the 8B scale. The performance gains become more pronounced at higher sam-
pling rates, with ATF-32B achieving remarkable scores (>96%) on consistency checks across all
benchmarks at Pass@16. Moreover, ATF-8B-Distilled demonstrates remarkable efficiency, achiev-
ing 91.12% Pass@1 consistency on FormalMath-Lite while using significantly fewer parameters
than 32B baseline models, showcasing the effectiveness of our training methodology.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablation study of ATF components across different benchmarks using the pass@1 (%)
metric.

Components FormalMath-Lite ProverBench CombiBench

SC CC SC CC SC CC

SYNTAX CHECK + CONSISTENCY CHECK

Cold Start 93.91 89.01 91.25 84.32 61.50 42.44
+ Expert Iteration 97.85 94.15 94.16 89.10 85.12 63.88
+ DPO 97.94 94.51 94.29 89.78 86.69 65.38

SYNTAX CHECK ONLY

Cold Start 93.91 73.77 91.25 67.96 61.50 27.12
+ Expert Iteration 97.85 80.26 94.16 75.54 85.12 40.12
+ DPO 97.94 81.13 94.29 75.68 86.69 41.68

NO TOOLS

Cold Start 79.22 64.23 66.39 51.25 35.00 16.06
+ Expert Iteration 86.39 71.96 73.75 60.54 48.38 22.88
+ DPO 86.77 72.89 73.89 60.92 50.81 23.69

Human evaluation validates both the effectiveness of the consistency check tool and the supe-
rior performance of ATF. Although the strictness of the multi-LLMs-as-judge method results in
some sacrifices in recall (see table 1), ATFstill consistently outperforms the baselines, especially
on CombiBench where existing models achieve a maximum pass rate of only 22%. We further
compute the Pearson correlation coefficient (Sedgwick, 2012) between the results obtained from the
consistency check tool and those from human evaluation, yielding a coefficient of 0.746. This value
indicates a strong positive linear relationship, confirming the reliability of our consistency check.

4.3 ABLATIONS

To understand the contribution of each component in ATF, we conduct comprehensive ablation stud-
ies by systematically removing different elements. Table 4 presents the results across three configu-
rations: full ATF with both syntax and consistency checks, syntax check only, and no tools.

Tool feedback is essential for effective formalization. The comparison between different tool con-
figurations demonstrates the critical importance of our designed tools. Without any tool guidance,
performance drops dramatically across all benchmarks. For example, on CombiBench consistency
check, the no-tools configuration achieves only 23.69% Pass@1 compared to 65.38% with full tool
feedback. Adding the consistency check on top of the syntax check provides further substantial
gains, improving ProverBench consistency from 75.68% to 89.78%, highlighting that semantic val-
idation is crucial beyond syntactic correctness.

Progressive training stages yield cumulative improvements. Each training phase contributes
meaningfully to the final performance. Expert iteration provides the most substantial improvements
over cold start (e.g., CombiBench consistency improves from 42.44% to 63.88%), while DPO fur-
ther offers additional refinements. This staged approach effectively teaches the model tool usage,
enhances formalization capabilities, and improves efficiency.

5 ANALYSIS

5.1 SCALING ANALYSIS

While our main experiments report performance under limited resource constraints, we further in-
vestigate ATF’s inference time scaling behavior by extending both the revision attempts and the par-
allel sampling counts K. Since syntax check already achieves high pass rates, we focus our analysis
on consistency check performance. As illustrated in fig. 4a ,although ATF is trained with revision
attempts limited to fewer than 8, performance continues to improve gradually as the number of re-
vision attempts increases. This suggests that the model has learned effective revision strategies that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Revision scaling (b) Pass@K scaling

Figure 4: Inference time scaling of ATF.

generalize beyond the training constraints, enabling it to iteratively refine statements toward higher
semantic consistency. Additionally, ATF can further benefit from increased parallel sampling (from
Pass@1 to Pass@32 in fig. 4b), achieving 100% pass rates on CombiBench. This scaling behavior
indicates that our tool-integrated approach not only improves individual formalization quality but
also enhances the diversity and coverage of valid formalizations across multiple attempts.

5.2 TOOL ANALYSIS

We continue to analyze behavior of ATF when invoking the two types of tools. As shown in fig. 5,
tool usage varies significantly across datasets, with CombiBench requiring the highest average tool
calls (8.35) due to its combinatorial complexity, while FormalMath-Lite requires fewer attempts
(3.19), demonstrating ATF’s ability to adapt revision intensity based on problem difficulty. The
consistency check generally exhibits lower pass rates compared to the syntax check, reflecting the
inherent difficulty of semantic alignment versus rule-based syntactic correctness. However, Prover-
Bench presents an exception where consistency check (66.34%) outperforms syntax check (61.65%),
primarily due to the dataset’s extensive calculus-related queries that introduce additional syntactic
complexity in formal representations. We also find that the consistency check success rate consis-
tently decreases with increasing revision attempts across all datasets from 69.5% on the first attempt
to 8.8% on the 8th attempt. This declining pattern suggests that while ATF can identify semantic in-
consistencies, the revision process becomes increasingly challenging as the model exhausts its most
confident revision strategies.

(a) Average Tool Calls (b) Success Rates (c) Consistency by Attempts

Figure 5: Comparative Analysis of Tool Usage Metrics

6 CONCLUSION

In this paper, we presented Autoformalizer with Tool Feedback (ATF), a novel framework that en-
hances autoformalization by incorporating syntactic and semantic validation tools into the genera-
tion process to compensate for insufficient formal knowledge and unreliable semantic validation in
previous formalizers. Experiments across three benchmarks show that ATFsubstantially outperforms
existing formalizers and demonstrates promising scaling behavior during inference. We contribute
an open-source dataset of 750K formal statements derived from competition-level mathematical
queries, facilitating future research in autoformalization and automated theorem proving.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433, 2023a.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433, 2023b.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In International Conference on Automated Deduction,
pp. 378–388. Springer, 2015.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yanxing Huang, Xinling Jin, Sijie Liang, Peng Li, and Yang Liu. Formarl: Enhancing autoformal-
ization with no labeled data. arXiv preprint arXiv:2508.18914, 2025.

Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng
Zhang, Guorui Zhou, and Kun Gai. Leanabell-prover-v2: Verifier-integrated reasoning for formal
theorem proving via reinforcement learning. arXiv preprint arXiv:2507.08649, 2025.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi. Hunyuan-
prover: A scalable data synthesis framework and guided tree search for automated theorem prov-
ing. arXiv preprint arXiv:2412.20735, 2024a.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving. arXiv preprint arXiv:2404.09939, 2024b.

Heng Lin and Zhongwen Xu. Understanding tool-integrated reasoning. arXiv preprint
arXiv:2508.19201, 2025.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025.

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. Combibench: Benchmarking llm capability
for combinatorial mathematics. arXiv preprint arXiv:2505.03171, 2025a.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
autoformalization: towards a faithful metric and a dependency retrieval-based approach. In The
Thirteenth International Conference on Learning Representations, 2025b.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In International Conference on Automated Deduction, pp. 625–635. Springer, 2021.

10

[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Philip Sedgwick. Pearson’s correlation coefficient. Bmj, 345, 2012.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on
the putnam mathematical competition. Advances in Neural Information Processing Systems, 37:
11545–11569, 2024.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 15706–15714, 2024.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in neural informa-
tion processing systems, 35:32353–32368, 2022.

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong
Du, Jie Yan, et al. Stepfun-formalizer: Unlocking the autoformalization potential of llms through
knowledge-reasoning fusion. arXiv preprint arXiv:2508.04440, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075,
2024.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathemati-
cal reasoning of large language models. arXiv preprint arXiv:2505.02735, 2025.

Shengnan Zhang, Yan Hu, and Guangrong Bian. Research on string similarity algorithm based
on levenshtein distance. In 2017 IEEE 2nd Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), pp. 2247–2251. IEEE, 2017.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DETAILS OF THE TOOL IMPLEMENTATION

A.1 SYNTAX CHECK

Table 5: Comparison of Average
Execution Time per Statement.

Method Time (s)

individual 6.215
grouped 0.808

Specifically, the pre-check stage deployed in syntax check
aims to filter out the illegal formalization before the Lean 4
Execution, including:

• Missing necessary libraries explicitly indicated in
the prompt.

• Invalid statements that do not end with “by sorry”.

• Statements with unmatched parentheses.

Although the proportion of statements filtered by the pre-check is only approximately 2%, it helps
the subsequent grouped Lean 4 execution. This is because we find that the missing “by sorry” and
unmatched parentheses will lead to execution timeouts. During the grouped Lean 4 execution stage,
we set the batch size to 20 and a timeout of 300s for each execution. For batches that encounter
exceptions, we conduct individual calls for each statement in the batch to ensure the accuracy of the
syntax check. We conduct a fair comparison of the efficiency between grouped Lean 4 execution
and individual statement execution when processing 100K statements on a machine with 8 CPUs and
100GB of memory. The results indicate that the average processing time per statement is reduced
by 87% (from 6.2s to 0.8s in table 5)

A.2 CONSISTENCY CHECK

The construction of the benchmark for the consistency check involves the following datasets:

• FormalMATH-All (Yu et al., 2025): A comprehensive dataset consisting of a wide range
of formal mathematical statements synthesized by LLMs.

• MiniF2F (Zheng et al., 2021): A dataset created for evaluating automated theorem proving
techniques, featuring a collection of mathematical problems designed for human challenge.

• PutnamBench (Tsoukalas et al., 2024): A dataset derived from the prestigious Putnam
Mathematical Competition.

Each instance contains an informal math query and a formal statement. Initially, we filter out in-
stances that fail in Lean 4 execution. Then we employ GPT-4o to categorize each statement into
specific domains, including Algebra, Calculus, Combinatorics, Geometry, Inequalities, Logic and
Puzzles, Number Theory, and Other. Subsequently, 100 data instances are randomly selected from
each domain to serve as seeds for perturbation. We manually devise different types of perturbations
(Appendix G.1) and instruct Gemini-2.5-Pro to apply equivalent perturbations to each statement. To
enhance the difficulty of the benchmark, we reject perturbations that share a Levenshtein similar-
ity (Zhang et al., 2017) with the original statement greater than 0.95. We also make sure that the
perturbations are not equivalent to the reference statement through human verification. Finally, we
select 100 instances along with four different random perturbations for each domain, collecting 800
instances in total.

In implementations, we require the LLMs to provide brief explanations while assessing equivalence
to aid model understanding, using the same prompt as Wang et al. (2024) (Appendix G.2). When
both QWQ-32B and Qwen3-32B provide a judgment of inconsistency, the response from QWQ-
32B is prioritized as the result of the consistency check. In cases where the two models differ, the
response indicating inconsistency is used as the results.

B HYPERPARAMETER OF TRAINING

The specific hyperparameter settings for ATF training are listed in table 6.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: Training Hyperparameters for ATF-32B

(a) Cold Start & Expert Iteration

Hyperparameter Value
Epochs 3
Batch Size 128
Max Length 40,960
Learning Rate (LR) 2× 10−5

Minimum Learning Rate 1× 10−7

LR Decay Style Cosine
LR Warmup Fraction 0.1
Adam Beta1 0.9
Adam Beta2 0.95
Weight Decay 1× 10−2

Gradient Clipping 1.0

(b) DPO

Hyperparameter Value
Epochs 1
Batch Size 64
Max Length 40,960
Learning Rate (LR) 2× 10−6

Minimum Learning Rate 1× 10−7

LR Decay Style Cosine
LR Warmup Fraction 0.03
Adam Beta1 0.9
Adam Beta2 0.99
Weight Decay 1× 10−2

Gradient Clipping 1.0
Temperature Weighting 0.1
NLL Loss Weighting 0.3

C EVALUATION DETAILS

The benchmarks used in the main experiments are listed:

• FormalMath-Lite (Yu et al., 2025): a streamlined version of the FormalMath benchmark,
focusing on essential formal mathematical statements.

• Proverbench (Ren et al., 2025): a challenging datasets proposed by DeepSeek-Prover-V2,
containing a diverse set of logical statements.

• Combibench (Liu et al., 2025a): A benchmark tailored for combinatorial problem solving.

We select these three benchmarks for their timeliness, which minimizes the likelihood of data con-
tamination with existing baselines.

Since these benchmarks are designed for ATP, there are multiple data instances having the same
mathematical query, or a single query containing multiple subproblems. To address this, we manu-
ally perform the following operations:

• For duplicate queries, we retain only the first one.

• For queries with multiple subproblems, we manually split them into several queries.

Table 7 shows the amount of data before and after processing for each benchmark.

Table 7: Data Amount Before and After Processing for Each Benchmark

Benchmark Before Processing After Processing
FormalMath-Lite 425 418
Proverbench 325 230
Combibench 100 100

To prevent data contamination, we employ the all-MiniLM-L6-v2 model to compute embedding
similarities between our training data and the benchmark above. We subsequently exclude train-
ing samples that exhibit a cosine similarity > 0.8 with the benchmark data. In terms of Human
Evaluations, we invite three experts whose research areas involve formal languages. Each person is
provided with the original mathematical query and the formal statement, as well as the results from
the consistency check execution. They are allowed to refer to the explanation presented in the tool
invocation results or ask Claude 4 for additional help. Each participant has been paid according to
the number of queries they handled.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D DETAILS OF NUMINA-ATF

Numina-V1.5 (LI et al., 2024) contains a substantial collection of high-quality competition-level
mathematical problems and has been extensively utilized as training data in ATP. However, the
original dataset only includes mathematical queries expressed in natural language, lacking cor-
responding formalized statements. Although some open-source formal statement datasets exist,
they either suffer from low quality https://huggingface.co/datasets/Goedel-LM/
Goedel-Pset-v1 or cover only a limited subset https://huggingface.co/datasets/
AI-MO/NuminaMath-LEAN. To facilitate subsequent related research, we employed ATF-32B
to perform statement synthesis on the complete Numina-V1.5 dataset, yielding 752,553 informal-
formal pairs that have been validated for both syntax and consistency.

E THE USE OF LARGE LANGUAGE MODELS

Large language models are used solely as writing assistance tools to improve sentence clarity, format
tables, and enhance readability. LLMs do not contribute to the core research contributions, experi-
mental design, or scientific content of this work. The authors take full responsibility for all content
presented in this paper.

F CASE STUDY

Case Study: Ladies’ Club Partition into Two Cliques

Natural Language Problem:
There are 100 members in a ladies’ club. Each lady has had tea (in private) with exactly 56 of the
other members of the club. The Board, consisting of the 50 most distinguished ladies, has all had
tea with one another. Prove that the entire club may be split into two groups in such a way that,
within each group, any lady has had tea with any other.
ATF-32B Output:
<think>
Looking at this problem, I need to formalize a graph theory statement about partitioning a graph
into two cliques. Let me analyze the key components:
1. 100 ladies in a club (vertices in a graph)
2. Each lady has had tea with exactly 56 others (each vertex has degree 56)
3. The 50 most distinguished ladies all had tea with each other (a clique of size 50)
4. We need to prove the club can be split into two groups, where each group forms a clique
This is equivalent to showing the complement graph is bipartite.
Let me write the initial Lean 4 statement:
import Mathlib
import Aesop

theorem my_favorite_theorem :
∀ (G : SimpleGraph (Fin 100)) [DecidableRel G.Adj],
(∀ v : Fin 100, G.degree v = 56) →
(∃ (S : Finset (Fin 100)), S.card = 50 ∧ ∀ u v ∈ S, G.Adj u v) →
∃ (A B : Finset (Fin 100)), A ∪ B = Finset.univ ∧ A ∩ B = ∅ ∧
(∀ u v ∈ A, G.Adj u v) ∧ (∀ u v ∈ B, G.Adj u v) := by sorry

<tool_calls>
{

"name": "syntax_check",
"arguments": {
"lean4_code": "import Mathlib\nimport Aesop\n\ntheorem my_favorite_theorem : \n

∀ (G : SimpleGraph (Fin 100)) [DecidableRel G.Adj],\n (∀ v : Fin 100, G.
degree v = 56) →\n (∃ (S : Finset (Fin 100)), S.card = 50 ∧ ∀ u v ∈ S, G.Adj u
v) →\n ∃ (A B : Finset (Fin 100)), A ∪ B = Finset.univ ∧ A ∩ B = ∅ ∧ \n (∀
u v ∈ A, G.Adj u v) ∧ (∀ u v ∈ B, G.Adj u v) := by sorry"}

}
</tool_calls>

<tool_results>
Function: syntax_check

14

https://huggingface.co/datasets/Goedel-LM/Goedel-Pset-v1
https://huggingface.co/datasets/Goedel-LM/Goedel-Pset-v1
https://huggingface.co/datasets/AI-MO/NuminaMath-LEAN
https://huggingface.co/datasets/AI-MO/NuminaMath-LEAN

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Output: {
"pass": false,
"errors": [
{
"severity": "error",
"pos": {
"line": 7,
"column": 48

},
"endPos": {
"line": 7,
"column": 50

},
"data": "unexpected token ’∈’; expected ’,’"

}
]

}
</tool_results>

The syntax check failed due to incorrect quantifier syntax. I need to fix the ‘∀ u v ∈ A‘ and ‘∀ u v
∈ B‘ expressions. Let me correct this:

import Mathlib
import Aesop

theorem my_favorite_theorem :
∀ (G : SimpleGraph (Fin 100)) [DecidableRel G.Adj],
(∀ v : Fin 100, G.degree v = 56) →
(∃ (S : Finset (Fin 100)), S.card = 50 ∧ ∀ u ∈ S, ∀ v ∈ S, G.Adj u

v) →
∃ (A B : Finset (Fin 100)), A ∪ B = Finset.univ ∧ A ∩ B = ∅ ∧
(∀ u ∈ A, ∀ v ∈ A, G.Adj u v) ∧ (∀ u ∈ B, ∀ v ∈ B, G.Adj u v) :=

by sorry

<tool_calls>
{

"name": "syntax_check",
"arguments": {
"lean4_code": "import Mathlib\nimport Aesop\n\ntheorem

my_favorite_theorem : \n ∀ (G : SimpleGraph (Fin 100)) [DecidableRel
G.Adj],\n (∀ v : Fin 100, G.degree v = 56) →\n (∃ (S : Finset (Fin
100)), S.card = 50 ∧ ∀ u ∈ S, ∀ v ∈ S, G.Adj u v) →\n ∃ (A B : Finset
(Fin 100)), A ∪ B = Finset.univ ∧ A ∩ B = ∅ ∧ \n (∀ u ∈ A, ∀ v ∈ A,
G.Adj u v) ∧ (∀ u ∈ B, ∀ v ∈ B, G.Adj u v) := by sorry"}
}
</tool_calls>

<tool_results>
Function: syntax_check
Output: {

"pass": true,
"errors": []

}
</tool_results>

Now let me verify the consistency with the corrected code:

<tool_calls>
{

"name": "consistency_check",
"arguments": {
"lean4_code": "import Mathlib\nimport Aesop\n\ntheorem

my_favorite_theorem : \n ∀ (G : SimpleGraph (Fin 100)) [DecidableRel
G.Adj],\n (∀ v : Fin 100, G.degree v = 56) →\n (∃ (S : Finset (Fin
100)), S.card = 50 ∧ ∀ u ∈ S, ∀ v ∈ S, G.Adj u v) →\n ∃ (A B : Finset

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(Fin 100)), A ∪ B = Finset.univ ∧ A ∩ B = ∅ ∧ \n (∀ u ∈ A, ∀ v ∈ A,
G.Adj u v) ∧ (∀ u ∈ B, ∀ v ∈ B, G.Adj u v) := by sorry"}
}
</tool_calls>

<tool_results>
Function: consistency_check
Output: {

"pass": true,
"explanations": "1. Mathematical Text Analysis: The problem involves

a graph of 100 nodes (club members) where each node has degree 56.
There exists a subset S of 50 nodes (the Board) forming a clique. The
goal is to partition the graph into two cliques A and B. Key elements:
100 members, degree 56 for all, a 50-node clique subset, and
partitioning into two cliques.\n2. Lean4 Code Analysis: The theorem
formalizes a SimpleGraph on Fin 100 (100 nodes). The premises require ∀
v, degree v = 56, and ∃S (Finset) with |S|=50 and ∀u,v ∈ S, Adj u v.
The conclusion requires ∃A,B (Finsets) partitioning Finset.univ (A ∪ B =
univ, A ∩ B = ∅) where ∀u,v ∈ A, Adj u v and similarly for B.\n3.

Comparative Analysis: All structural elements match. The 100 members
are modeled via Fin 100. The degree condition is correctly captured.
The Board’s clique is formalized via ∃S with card 50 and mutual
adjacency. The partition into two cliques is accurately represented via
A and B with the required properties. No semantic drift or missing
elements detected. Lean syntax is valid and precise.\n4. Accuracy
Confirmation: The formalization is exact. All components of the problem
(node count, degree, Board clique, partition into two cliques) are
preserved without additions or omissions."
}
</tool_results>

</think>
Final Statement

import Mathlib
import Aesop

theorem my_favorite_theorem :
∀ (G : SimpleGraph (Fin 100)) [DecidableRel G.Adj],
(∀ v : Fin 100, G.degree v = 56) →
(∃ (S : Finset (Fin 100)), S.card = 50 ∧ ∀ u ∈ S, ∀ v ∈ S, G.Adj u

v) →
∃ (A B : Finset (Fin 100)), A ∪ B = Finset.univ ∧ A ∩ B = ∅ ∧
(∀ u ∈ A, ∀ v ∈ A, G.Adj u v) ∧ (∀ u ∈ B, ∀ v ∈ B, G.Adj u v) :=

by sorry

Goedel-V2-Formalizer-32B:
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem my_favorite_theorem :
∀ (ladies : Finset N) (tea_relation : N → N → Prop),
ladies.card = 100 →
(∀ l ∈ ladies, (ladies.filter (λ x => tea_relation l x)).card = 56) →
(∀ a b, a ∈ ladies → b ∈ ladies → tea_relation a b → tea_relation

b a) →
∃ (board : Finset N), board ⊆ ladies ∧ board.card = 50 ∧
(∀ a b, a ∈ board → b ∈ board → a ̸= b → tea_relation a b) →

∃ (group1 group2 : Finset N),
group1 ∪ group2 = ladies ∧

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

group1 ∩ group2 = ∅ ∧
(∀ a b, a ∈ group1 → b ∈ group1 → a ̸= b → tea_relation a b) ∧
(∀ a b, a ∈ group2 → b ∈ group2 → a ̸= b → tea_relation a b) :=

by sorry

(Inconsistent. The formalization’s logical structure is incorrect. It presents the existence of the
board as a conditional derivation rather than as a given precondition. This changes the logical
structure of the problem, making the formalization incorrect.)

Kimina-Autoformalizer-7B:
import Mathlib

theorem my_favorite_theorem
(tea : Fin 100 → Fin 100 → Prop)
(h_sym : ∀ i j, tea i j = tea j i)
(h_antisymm : ∀ i j, i ̸= j → tea i j ∨ tea j i)
(h_antisymm’ : ∀ i j, i ̸= j → (tea i j → tea j i))
(h_antisymm’’ : ∀ i j, i ̸= j → (tea j i → tea i j))
(h_antisymm’’’ : ∀ i j, i ̸= j → (tea i j → ¬tea j i))
(h_antisymm’’’’ : ∀ i j, i ̸= j → (¬tea i j → tea j i)) :
∃ s1 s2 : Finset (Fin 100), s1 ∪ s2 = Finset.univ ∧
s1 ∩ s2 = ∅ ∧ ∀ i ∈ s1, ∀ j ∈ s1, i ̸= j → tea i j ∧
∀ i ∈ s2, ∀ j ∈ s2, i ̸= j → tea i j := by sorry

(Inconsistent. This formalization lacks two core conditions of the problem (degree 56 and the
existence of a 50-person complete subgraph) and contains contradictory assumptions.)

StepFun-Formalizer-32B:
import Mathlib
import Aesop

theorem my_favorite_theorem
(tea : Fin 100 → Fin 100 → Prop)
(h1 : ∀ i j, tea i j = tea j i)
(h2 : ∀ i, ∃! j, tea i j)
(h3 : ∃ b : Finset (Fin 100), b.card = 50 ∧ ∀ i ∈ b, ∀ j ∈ b, tea

i j) :
∃ s1 s2 : Finset (Fin 100), s1 ∪ s2 = Finset.univ ∧
s1 ∩ s2 = ∅ ∧
∀ i ∈ s1, ∀ j ∈ s1, tea i j ∧
∀ i ∈ s2, ∀ j ∈ s2, tea i j := by sorry

(Inconsistent. ”Each person drinks tea with 56 people” is incorrectly formalized as ”Each person
drinks tea with 1 person.”)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G PROMPTS

G.1 PROMPT FOR STATEMENT PERTURBATIONS

Prompt for Statement Perturbations

Role: Lean4 Semantic Perturbation Expert

Input:

- Original Lean4Code: A Lean 4 theorem statement that needs to be perturbed.

Goal: Generate 6 different semantic perturbations of the given Lean4 statement. Each
perturbation should:

- Change the semantic meaning while maintaining syntactic similarity
- Be syntactically valid Lean4 code
- Be non-equivalent to the original statement
- Represent subtle but meaningful changes
- Output the complete code including all imports, definitions, and context
- Keep the original theorem name unchanged, only modify the theorem content/statement
- Preserve all other parts of the code (imports, helper definitions, etc.) exactly as given

Perturbation Methods for Reference (apply different ones):

1. Quantifier Modification

- Change ∀ to ∃ or vice versa
- Modify quantifier scope or order
- Add/remove quantifier constraints

2. Logical Operator Changes

- Switch ∧ (and) with ∨ (or)
- Change → (implies) to ↔ (iff) or vice versa
- Modify negation placement

3. Basic Operator / values Changes

- Change + to -
- Change the values of variables
- Swap two variables

4. Relational Operator Perturbation

- Change = to ̸=, < to ≤, > to ≥, etc.
- Swap left and right sides of relations
- Modify strict vs non-strict inequalities

5. Structural Modifications

- Modify variable scoping or binding
- Alter type constraints or domains

6. Boundary Condition Changes

- Modify edge cases or boundary values
- Change inclusive/exclusive conditions

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

- Alter constraint ranges

Output Format:

Return exactly one JSON object with 6 perturbations:

{
"original_analysis": "Brief analysis of the original statement’
s key semantic components",
"perturbations": [

{
"id": 1,
"method": "Perturbation method used",
"lean_code": "Modified Lean4 statement",
"semantic_change": "Explanation of how the meaning
changed"

},
{

"id": 2,
"method": "Perturbation method used",
"lean_code": "Modified Lean4 statement",
"semantic_change": "Explanation of how the meaning
changed"

},
...
{

"id": 6,
"method": "Perturbation method used",
"lean_code": "Modified Lean4 statement",
"semantic_change": "Explanation of how the meaning
changed"

}
]

}

— Start of Original Lean4Code —
{formal statement}
— End of Original Lean4Code —

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G.2 PROMPT FOR CONSISTENCY CHECK

Prompt for Consistency Check

Role: Lean & Formal Verification Expert

Input:

- Mathematical Text: A math problem and its answer (no proof).
- Lean4Code: A Lean 4 theorem statement formalizing the problem. Proof is intentionally
omitted (e.g., sorry).

Goal: Determine if the Lean theorem statement is an exact and faithful formalization
of the mathematical problem. Do not evaluate or consider the answer or the proof. Your
sole task is to verify the correctness of the formalization.

Evaluation Stages (All required):

1. Mathematical Text Analysis
Identify all structurally and semantically relevant components of the mathematical problem,
including variables, types, quantifiers, constraints, logic structure, conclusion, and so on.
The analysis should be based on the actual content of the text.

2. Lean4 Code Analysis (ignore proof part)
Extract all structurally and semantically relevant components from the Lean statement,
including variables, types, conditions, quantifiers, constraints, the final claim, and so on.
The analysis should reflect the actual content present in the Lean code.

3. Comparative Analysis
Check for exact correspondence between the math and Lean statements; you may refer to
aspects like:
- Semantic alignment, logic structure, and quantifier correctness.
- Preservation of constraints and boundary assumptions.
- Accurate typing and use of variables.
- Strict adherence to Lean’s specific syntactic and semantic rules in interpreting the Lean
code.
- Syntactic validity and proper Lean usage (free from errors).
- Use of symbols and constructs without semantic drift.
- No missing elements, no unjustified additions, and no automatic corrections or comple-
tions.

4. Accuracy Confirmation
If correct: clearly confirm why all elements match.
If incorrect: list all mismatches and explain how each one affects correctness.

Note: While the analysis may be broad and open to interpreting all relevant features,
the final judgment must be based only on what is explicitly and formally expressed in the
Lean statement.

Do not consider or assess any part of the proof. Your judgment should be entirely
about the accuracy of the statement formalization.

Output Format: Return exactly one JSON object:

{
"reasons": "1. Mathematical Text Analysis: [...]
2. Lean4 Code Analysis: [...]
3. Comparative Analysis: [...]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

4. Accuracy Confirmation: [...match confirmation or list of
discrepancies...]",
"is_assistant_correct":[Correct/Incorrect]"

}

G.3 SYSTEM PROMPT FOR COLD START DATA SYNTHESIS

System Prompt For Cold Start Data Synthesis

You are an expert in mathematics and Lean 4.
Given a problem in natural language, your task is to convert the problem into valid Lean 4
statement with a header.
Your code should start with

import Mathlib
import Aesop

MANDATORY TOOL USAGE REQUIREMENT

You MUST use the provided tools to help verify your Lean4 statement. Tool calling
is MANDATORY for EVERY code version you write. You CANNOT consider any code
validated without explicit tool verification.

TOOLS:

- syntax check: Call this function to verify whether a Lean4 statement can be com-
piled through Lean4 syntax, and return the compilation result.
- consistency check: Call this function to verify whether the Lean4 statement that has
passed the syntax check is consistent with the original problem, return the responses of
judge.

STRICT VERIFICATION WORKFLOW:

Step 1: Carefully analyze the problem statement and its mathematical meaning. Identify
key components, relationships, and constraints. Write your initial Lean4 statement based on
this analysis
Step 2: ALWAYS call syntax check to verify your code compiles
Step 3: ONLY if syntax check returns “pass”: True, then call consistency check
Step 4: If either check fails, carefully analyze the specific error messages. Identify the root
causes of the issues. Then modify your code and RESTART the verification process
Step 5: REPEAT until BOTH checks pass successfully

HANDLING VERIFICATION FAILURES TIPS:

- If syntax check fails: Analyze the errors, fix the issues, and IMMEDIATELY call
syntax check again with the corrected code
- If consistency check fails: Review explanations, modify the statement to align with the
problem, then restart verification with syntax check
- After ANY code modification, no matter how minor, you MUST verify it with tools before
proceeding

FINAL RESULT CRITERIA:

- A statement is considered correct ONLY when it explicitly passes BOTH syntax check
(“pass”: True) AND consistency check (“pass”: True)
- Only after successful verification by BOTH tools should you present the code as the final
result

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

- Do NOT declare completion without evidence of successful tool verification

LEAN 4 CODE REQUIREMENTS:

- The Lean 4 code must contain NO comments. All your reasoning, explanations,
and analysis should be provided separately before presenting the code. The code itself
should be clean and free of any embedded comments or documentation.
- All code must be compatible with Lean4 v4.15 syntax and features. Use only constructs
and libraries available in this specific version, including proper notation, declaration formats,
and namespace handling.
- Before you pass the Lean4 code as the arguments in tool call, you should write the code
first. Remember add “:= by sorry” to the end of the statement.
- You should only output the statement in Lean 4 format as the final result. You should NOT
complete the proof.

TOOL USE REQUIREMENTS:

- You MUST call the verification tools for EACH version of your code. Failure to
call tools or skipping verification steps is NOT permitted. Never assume your code is
correct without explicit tool verification.
- Always provide your reasoning, approach, and analysis before calling any verification
tool. Explain what you’re trying to achieve with the code and how it addresses the problem
requirements.
- After receiving tool results, you must analyze them and explain your next steps before
making additional tool calls.

G.4 SYSTEM PROMPT FOR ATF INFERENCE

System Prompt For ATF Inference

You are an expert in mathematics and Lean 4. Your task is to convert natural language
problems into valid Lean 4 formal statements (Compatible with Lean 4 v4.15).

Your code must begin with:

import Mathlib
import Aesop

You MUST use the provided tools to verify your Lean 4 statements:

- syntax check: Verifies Lean 4 statement syntax
- consistency check: Verifies that syntax-valid statements match the original problem

Verification workflow:

- Analyze the problem and create initial Lean 4 statement
- Call syntax check to verify compilation
- If syntax check passes, call consistency check
- If any check fails, analyze errors, modify code and restart verification
- Repeat until BOTH checks pass

22

	Introduction
	Related Work
	Autoformalization using LLMs
	Tool-integrated Resoning

	Methodology
	Tool Design
	Syntax Check
	Consistency Check

	Training Pipeline

	Experiments
	Experimental Setup
	Main Results
	Ablations

	Analysis
	Scaling analysis
	tool analysis

	conclusion
	Details of the Tool implementation
	Syntax Check
	Consistency Check

	Hyperparameter of Training
	Evaluation Details
	Details of Numina-ATF
	The Use of Large Language Models
	Case Study
	Prompts
	Prompt for Statement Perturbations
	Prompt for Consistency Check
	System Prompt For Cold Start Data Synthesis
	System Prompt For ATF Inference

