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Fig. 1: Overview. Vid2Robot is a video-conditioned robot policy. Given a human demonstration (top), Vid2Robot recognizes the task
semantics and performs the same task based on the robot’s current visual observation (bottom left). A successful trajectory is presented on
the bottom right.

Abstract—Large-scale multi-task robotic manipulation systems
often rely on text to specify the task. In this work, we explore
whether a robot can learn by observing humans. To do so, the
robot must understand a person’s intent and perform the inferred
task despite differences in the embodiments and environments.
We introduce Vid2Robot, an end-to-end video-conditioned policy
that takes human videos demonstrating manipulation tasks as
input and produces robot actions. Our model is trained with
a large dataset of prompt video-robot trajectory pairs to learn
unified representations of human and robot actions from videos.
Vid2Robot uses cross-attention transformer layers between video
features and the current robot state to produce the actions
and perform the same task as shown in the video. We use
auxiliary contrastive losses to align the prompt and robot video
representations for better policies. We evaluate Vid2Robot on
real-world robots and observe over 20% improvement over BC-Z
when using human prompt videos. Further, we also show cross-
object motion transfer ability that enables video-conditioned
policies to transfer a motion observed on one object in the prompt
video to another object in the robot’s own environment. Videos
available at vid2robot.github.io.

I. INTRODUCTION

The path to creating versatile robots that assist in people’s
daily routines requires them to learn new skills on-the-go.
These skills can vary from simple preferences for arranging
dishes in the dishwasher in a specific household to com-
pletely different approaches to household cleaning. Humans
can communicate in natural language for tasks that are already

known. However, we revert to demonstrations when we want
to learn a novel skill with nuance. For example, we might
show how a particular microwave works or how to organize
our cabinets. Robots need the same ability for generalization
from demonstration, which comes so naturally to humans.

Humans can infer the intentions of other humans based
on third-person visual observations. Often, we use social
reasoning and common sense to understand others’ goals
implicitly. This ability is crucial for learning everyday tasks,
such as kneading dough or knitting, where the intricacies are
challenging to convey through still images or text [6]. We often
turn to How-To videos [32]) to learn how to perform such
tasks. If robots could act based on videos, it would enable
efficient task learning and improved interaction with humans.

This work focuses on visual imitation learning, where robots
learn to perform tasks by watching video demonstrations. This
setup offers several advantages. First, it allows robots to learn
from agents with a different embodiment, enabling new skill
acquisition without teleoperation. Second, it allows robots to
infer tasks from expert demonstrations, even if the expert is not
showing how to perform tasks in the same environment as the
robot. Finally, visual imitation learning is ideal for teaching
tasks that are difficult or impossible to describe in words.

Existing multi-task robot manipulation models (e.g. RT-
1 [8], RT-2 [9], and RT-X [35]) use language conditioning to
output a robot trajectory. Relying on text alone for task spec-
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ification makes it difficult for robots to handle polysemy and
tasks whose executions vary dramatically based on context.
For example, ‘open drawer’, ‘open cabinet’, ‘open container
with lid’ and ‘open jar with screw cap’ might share the
same verb but require very different motor control for each
interaction. Here, the agent should not generalize its policy,
whereas it should generalize from one drawer to others that
vary in type, color, and shape. For this reason, there are a
broad range of tasks for which it is hard to design primitives
for high-level planning approaches [27, 2].

Another common approach has been to use a final goal
image in goal-conditioned behavior cloning tasks [33, 25].
However, how to act is often ignored in such specifications.
For example, ‘hold the flag’ and ‘wave the flag’ can have the
same final goal image. We can resolve this ambiguity by using
several sub-goal frames, that is quite close to conditioning
robot policies with videos.

Current success of video conditioned policies in [42]
assume that the provided video is from the same workspace
with limited variability. Video-conditioned policies also lag
in performance compared to language-conditioned policies
work [22]. Based on these and related work, we identify
three main challenges for video-conditioned policies: (1) Raw
videos are high dimensional data that require more compu-
tational power and memory. (2) While unlabeled video data
are abundant on the internet, finding robot-specific video and
motion data is hard. (3) People can perform the same task
differently due to variations in objects, lighting conditions,
and other background distractions.

Despite these challenges, video-conditioned policy learning
is a core challenge robots need to master. To this end, we
study how end-to-end models with video-conditioning can
be used to specify tasks to the robot. Vid2Robot is an end-
to-end system that enables rapid adaptation to tasks speci-
fied as video demonstrations. Unlike prior work that either
learned representations from videos for only object and verb
recognition [22] or learned motor control in simulation [46],
our work demonstrates the applicability of end-to-end learned
video representations for real-world robotic control.

We present the key contributions of our work as follows: (1)
We present a transformer-based policy to encode video task
specification, demonstrated by either robot or human agent
embodiments (§II). (2) We encourage alignment between the
prompt and robot video representations using three contrastive
auxiliary losses during training (§II-E) (3) Through actual
robot experiments, we find our video-conditioned policy is
better than baselines on human prompt videos. Furthermore,
our policy is better at cross-object motion transfer (§III).

II. APPROACH

A. Preliminaries

Our objective is to design a robotic system that takes in a
prompt video of a manipulation task and outputs actions that
accomplish the task demonstrated in the video. This system
must infer the underlying task from the prompt video (which
might have a different setup or embodiment than the robot)

and then manipulate the objects in its environment to achieve
the inferred task. Our model’s inputs are a prompt video V
and the robot state St = {xi}ti=t−k−1 where xi is the frame
from the robot’s camera stream at time i, k is the maximum
number of historical frames, and t is the current timestep We
train a policy π(at|St, V ) that infers the underlying task from
V and predicts task-relevant action at. We need a dataset of
paired prompt videos and robot trajectories to train this model.
Below, we will discuss in detail how to create paired datasets.

B. Datasets

We need a dataset of pairs to train a video-conditioned robot
policy: prompt videos and robot trajectories that perform the
same task. In this work, we explore prompt videos where
humans and robots perform the task. To create this dataset,
we rely on three classes of data:

1) Robot-Robot: We pair existing robot-robot videos of the
same task. For this pairing, we consider two videos to
match if they perform the same task in different settings.
We define “task” based on natural language instructions
for recording robot trajectories. These instructions typically
consist of one or two verbs surrounded by nouns, such as
‘place water bottle upright’, ‘move the coke can to the
green chip bag’ or ‘open top drawer’. Note that we use
language instructions only for pairing and as an input to
the robot policy. The objective of this pairing is two-fold:
first, to take advantage of an already labeled and collected
dataset of robot trajectories, and second, to ensure robots
can imitate when the same task in a different environment.

2) Hindsight Human-Robot: Here, we use the task instruc-
tions from the robot trajectories dataset, ask one to five
human participants to perform the task, and record a
demonstration video from the robot’s perspective/view. The
instructions are the same as before, but there is a significant
embodiment and speed variability due to different humans
performing the task with left or right hands and at a
randomized robot camera angle. This provides us with a
lot of paired data for training the policy with the available
set of instructions in the robot dataset, without having to
collect new robot trajectories.

3) Co-located Human-Robot: In this case, humans and
robots perform the same task in the same workspace. We
used this approach to collect human demonstrations and
robot trajectories in diverse spaces such as a living space
with sofas, a meeting room with whiteboards, a hardware
workstations with toy tools, a kitchen with countertop, a
refrigerator and a sink, a storage supplies area, and more.

We show examples of paired videos of the prompt and robot
demo from each of the three datasets in Figure 2. As can be
seen, there is a considerable difference in the backgrounds
and distractor objects in the Hindsight Human-Robot and Co-
located Human-Robot datasets. A different complexity arises
when comparing the first approach (Robot-Robot), where the
actor is a robot with the same morphology, to the other two
cases where the human is the actor in the prompt videos.



Prompt Video

place rxbar 

chocolate into 
top drawer

pick coke can from bottom 
drawer and place on counter

Robot Video

place pipe 
wrench in the 

toolkit

Prompt Video 
Embodiment

Prompt v/s
 Robot Scene 

Robot

Human

Human Same

Different

Dataset
Name

Robot-Robot

Hindsight 
Human-Robot

Co-located
Human- Robot

Different

Prompt Video Robot VideoPrompt Video 
Embodiment

Prompt v/s
 Robot Scene 

Robot

Human

Human Same

Different

Dataset
Name

Robot-Robot

Hindsight 
Human-Robot

Co-located
Human- Robot

Different

Fig. 2: Dataset creation. (top row) Here we show a Robot-Robot video pair for placing the rxbar into top drawer. We similarly pair existing
robot-robot videos performing the same task. (middle row) Here, we show Hindsight Human-Robot paired videos for picking a Coke can from
the bottom drawer and placing it on the counter task. We use the task instructions from robot trajectories, ask human participants to perform
the task and record a demonstration video from the robot’s perspective/view. (bottom row) Here, we show a Co-located Human-Robot pair
of videos for placing the pipe wrench in the toolkit. We record a human demonstration and a robot teleoperation in the same workspace. We
use different workspaces to perform the same task instruction, thus collecting paired videos with visually diverse prompts and robot state
observations. More details in Section II-B.

Each source represents a different level of difficulty and time
to collect. Pairing existing robot datasets requires no extra data
collection but does not involve any human demonstrations. Our
second data involves asking humans to mimic existing robot
trajectories. Hindsight human videos made data collection
easier as they do not need robot teleoperation data. However,
this did not increase the diversity of tasks in the data set.
Lastly, we collect data with humans and robots in the same
environment. While collecting co-located paired data is a
presumed gold standard, it is very time and labor-intensive
compared to the previous two approaches. Thus, it forms a
small fraction of our overall training set. After combining all
the datasets, we have ∼100k robot videos and ∼10k human
videos covering the tasks introduced in RT-1 [8] and RT-2 [9].
The robot-robot dataset makes up more than 90% of the entire
dataset. This dataset is publicly available [35]. We provide a
Python Notebook in Supplementary Material for accessible
visualization of the paired videos used in training.

C. Model Architecture

Our policy takes the prompt video and the current robot
state as inputs and outputs robot actions. It consists of four
modules: (1) prompt video encoder, (2) robot state encoder,
(3) state-prompt encoder, and (4) robot action decoder. The
entire architecture is illustrated in Figure 3, and each of the
modules is detailed below:
(1) Prompt Video Encoder encodes the video demonstration
provided as a reference to convey the desired task semantics.
The prompt video encoder implicitly learns to infer what task
to perform and how to do it. The prompt encoder consists
of a per-frame Image encoder ϕp (ViT [15]) followed by a
Perceiver Resampler [1, 20] ψp. The output of the prompt
encoder ψp(ϕp(V )) = zprompt is a set of N tokens of
d-dimension to condition the policy with the task-relevant
attributes from the video.
(2) Robot State Encoder encodes the current state of the robot
given the current frame and last k frames as input. Note that

this module also encodes information about the objects and
environment visible to the robot. The architecture is similar to
the prompt encoder: a per-frame Image encoder ϕs followed
by a Perceiver Resampler ψs. Identical to the prompt encoder’s
outputs, the output of the state encoder is ψs(ϕs(St)) = zstate
that encodes the latent environment and robot state information
from the history of recent observations. We use the same image
encoder weights for both (1) and (2), that is, ϕp = ϕs = ϕ.
The role of the image encoder ϕ is to capture spatial visual
information in each frame. The perceiver resampler enables
temporal learning across frames and reduces the number of
video tokens passed into the action decoder.
(3) State-Prompt Encoder takes the prompt video encoding
zprompt and robot state encoding zstate and outputs a task
encoding relevant for action prediction, which we call prompt-
aware state tokens zstate|prompt. Here, the state encoding acts
as queries, and the prompt video encoding acts as keys and
values. Intuitively, the state-prompt encoder enables the fusion
of the state and prompt information. Suppose a prompt video
shows picking up an apple in the basket, and the current
state contains an apple, a banana, and an orange. The State-
Prompt Encoder cross-attends and learns which object to
attend to in the state based on the prompt video. Capturing
interdependencies between prompt and state is crucial for the
next step of action decoding.
(4) Robot Action Decoder predicts the action vector at for
the current state St such that it completes the task shown in the
prompt video Vp. The action decoder is a transformer decoder
architecture that uses the fixed action position tokens [52] as
input queries and the prompt-aware state tokens zstate|prompt

for keys and values. The size of the action position embedding
is N × d where N is the number of action dimensions, and
d is the transformer embedding dimension. More details on
action vector in §II-D.

The action position embeddings cross-attend to the prompt-
aware state tokens to predict the target binned action values as
output. Each output token of the action decoder corresponds to



Prompt
 Tokens

Prompt Video

Robot Visual Observations 
Action position 

embedding 

Arm BaseMode

Action

Prompt 
Resampler

Per-Frame 
Image 

Encoder

Per-Frame 
Image 

Encoder

State 
Resampler

Prompt Encoder

State Encoder

State-Prompt
Encoder

State Tokens

Action
Decoder

Fig. 3: Architecture. Our model takes the prompt video and the robot’s current observations as the input, encodes those into token embeddings
for the prompt video and the robot’s state, cross-attends to produce state-prompt encoding, and translates it into the expected robot action
at the current timestep. More details in Section II-C).

an action dimension for the mode, arm, and base. We project
each token embedding to 256 dimensions, and a softmax
layer is applied on the top to obtain the bin corresponding
to the target action vector. Unlike prior work [8, 9] that use
autoregressive action decoding that requires multiple forward
passes during inference, we use action position embeddings
for one forward pass prediction like in ACT [52]. Instead of
predicting one action for the next timestep, we follow the
approach outlined in [22, 52] and train the policy with a
prediction horizon of four steps. We always use the action bin
with the highest probability, that is, argmax over predicted
probabilities, to choose the action value for execution.
Cross-Attention Layers. In the Vid2Robot architecture, we
use Cross-Attention Transformer layers extensively in the
following modules: Prompt Resampler, State Resampler, State-
Prompt Encoder, and Action Decoder. Compared to standard
self-attention layers, which require more memory to process
the same video, cross-attention layers help manage the high
number of tokens and the resulting large attention matrices
when processing prompt and robot state videos. For example,
when using ViT-B/16, the total number of video tokens for a
16 frame reference video and a 8 frame robot state video at
224×224 resolution would be 8×196+16×196 = 4704. An
entire self-attention operation would lead to an attention matrix
with 47042 ∼ 22M entries. However, using two Perceiver
Resamplers with 64 latent tokens, we train with attention
matrices of the size 8 × 196 × 64 + 16 × 196 × 64 ∼ .3M.
Thus, cross-attention layers in Vid2Robot reduce attention
computation and enable training with paired videos.

D. Preprocessing

To efficiently train videos of varying lengths, we randomly
sample N=16 frames. We always include the first and last
frames and sort them in increasing order of time. We sample a
robot state St during training by sampling a random timestep.
We then select the preceding k − 1 frames to create a robot
state video comprising a total of k = 8 frames before. If
there are less than k − 1 frames before the current time step,
we repeat the first frame to create a fixed-size robot state

video. We normalize the pixel values in each frame between 0
and 1 and resize each frame to (224, 224). During training,
we apply photometric distortions like cropping, brightness,
contrast, hue, and saturation.

The action at that time consists of the three components:
Mode: (m) whether to terminate episode, move only arm,
move only base, or both. arm: gripper position (x, y, z),
orientation (rotation along xy, yz, zx), and the degree of
closedness (c). Base: displacement (x, y) and rotation. Overall,
the action at = [m, gx, gy, gz, θxy, θyz, θzx, c, bx, by, bθ] is an
11-dimensional vector. Each value has different ranges, which
we first use to scale the values between 0 and 1. We further
discretize the values into 256 bins each. In this study, we train
and evaluate scenarios where the base remains stationary.

E. Training

Action Prediction Loss. We train Vid2Robot end-to-end with
behavior cloning. We use a classification loss on actions
discretized and tokenized into N=256 bins. Given the robot
trajectory for performing a task with current visual observa-
tions xt, we have the corresponding expert action at. The
action prediction loss is Cross Entropy between the predicted
action and the expert action as: LCE(at, ât) =

∑
τ at log ât.

This loss trains all the model parameters, as shown in Fig 3.
Auxiliary Losses. Although our dataset size is substantial, it
is insufficient for training large transformer-based models. To
prevent over-fitting on the training set, we add three auxiliary
losses to encourage learning features that help understand
semantics in prompt videos.

Video Alignment Loss: We want to encourage temporal
alignment between prompt videos and robot videos performing
that show the same task. By aligning prompt videos with
the robot videos, we want the image encoder to learn to
be invariant to different embodiments, lighting, backgrounds,
view angles, and distractor objects while still encoding features
relevant to predicting task progress.

Our choice of loss is the temporal-cycle consistency loss
introduced in [18]. This loss can encode the task progress
when trained on videos of different agents performing the
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Fig. 4: Training Setup. We show all the losses used for training Vid2Robot, particularly how each loss connects to its different modules.
Along with (1) the main action prediction loss, we apply three auxiliary losses: (2) temporal video alignment loss, (3) a contrastive loss
between the prompt and robot video performing the same task, and (4) a contrastive loss between a prompt/robot video with the language
embedding. More details are in Section II-E.

same task [50]. This loss is applied on per-frame image
embeddings of the prompt Vp and robot Vr videos during
training. To apply the loss, we average pool the per-frame
embeddings output in spatial dimensions from image encoder
ϕ and apply a projector head of 2-layer MLP [11]. We call
this as alignment pooling layer Φ on the per-frame image
embeddings, as shown in Fig 4. For each video Vi, this results
in a sequence of embeddings Ei = {Φ(v1i ),Φ(v2i ), ...Φ(v

Li
i )},

where Li is the number of frames in the ith video. We apply
TCC loss on encoding Ep and Er for prompt and robot
video, respectively. Intuitively, the TCC loss ensures that the
representation of every frame of Ep should correspond to Er

and vice versa. Applying TCC in Vid2Robot involves two
steps: First, we compute soft neighbor of tth frame of Ep

(Et
p in short) in Er and call it Ẽt

pr.

Ẽt
pr =

Lr∑
k

αkE
k
r , where αk =

e−∥Et
i−Ek

j ∥
2∑Lj

k e−∥Et
i−Ek

j ∥2
(1)

Second, we find the corresponding frame for this newly
computed soft-neighbor in Ep. This is called cycle-back in [18]
and it involves similar soft-neighbour computation as in Equa-
tion 1 to obtain say Êt

pr, which ideally should be same as t,
that is, (Êt

pr − t)2 should be minimized. TCC loss minimizes
such mean squared error between all frames for prompt and
robot video encodings, and vice-versa, that is,

LTCC(Ep, Er) =
∑
t∈Vp

(Êt
pr − t)2

LTCC =
LTCC(Ep, Er) + LTCC(Er, Ep)

2

(2)

Prompt-Robot Video Contrastive Loss (VVCL): We want
to encourage the prompt encodings to learn task semantics
from video tokens in a self-supervised manner. While we pair
prompt and robot video using natural language, this does not
effectively capture the visual similarity of low-level motions
like reaching for objects and rotating the robot arm. For
this, we apply contrastive loss between the latent features
of the robot and the prompt videos. We use an Attention
Pooling layer to merge features from the N prompt tokens
to produce a single embedding for each video. We apply
the SigLIP [51] loss between video-video pairs to encourage
videos showing the same task, involving similar motions and
interacting objects, to be close to each other while being
away from other videos in the batch. A batch contains the
same number of robot and prompt videos, say B. We use the
prompt encoder ψp(ϕ(·)) to obtain a batch of full robot video
embeddings Zrobot and prompt video embeddings Zprompt,
each of size B×d. We multiply them, Zrobot·ZT

prompt to obtain
a B × B matrix. Adding a learnable temperature τ and bias
b, we have our logit matrix as Ŷ = (Zrobot ·ZT

prompt) ∗ τ + b.
We consider the videos of robot and prompt performing the
same task as positives and assign them a label of 1 along
the diagonal and -1 for off-diagonal pairs, that is, the label
matrix Y = 2IB −1. SigLIP loss is the negative loglikelihood
σ′(Z1, Z2) = −

∑
log σ(Y ·(Z1 ·ZT

2 )∗t+b). The video-video
contrastive loss is as follows:

LV V CL = σ′(Zprompt, Zrobot) (3)

Video-text Contrastive Loss (VTCL): We want to encourage
a part of the embedding space to be aware of object names
and verbs, as shown in the prompt and the robot videos.
We apply a contrastive loss between prompt tokens produced



by the robot video and the text instructions of the task. A
version of this loss has been applied before by BC-Z [22]
as auxiliary language regression loss. We use an Attention
Pooling layer [49] with one latent query to merge features
from the N prompt tokens to produce a single embedding for
each video. We retrieve B pairs of video and text embeddings
as a batch. Similar to Equation 3, we apply SigLIP [51] loss as
LV TCL to encourage every video to have similar embeddings
to their textual description embeddings, and be different from
other text embeddings in the batch.

LV TCL = (σ′(Zprompt, Ztext) + σ′(Zrobot, Ztext))/2 (4)

Overall, we apply the mean of all four losses for training
that is L = 1

4 (LCE + LTCC + LV V CL + LV TCL).

F. Implementation

We trained the model (implemented in Jax) for 200K
iterations. We use AdamW optimizer with an initial learning
rate of 8e-5 using a cosine learning rate schedule with warmup
steps 2,000 and a final learning rate of 1e-6. We use 2 Perceiver
Resampler layers with 64 latent tokens for both the Prompt
and State Resamplers. Both state-prompt encoder and action
decoder are 4-layer deep cross-attention transformers.

III. EXPERIMENTS

We present results with real robot evaluations for our
multi-task video-conditioned policy. One of the fundamental
questions we tackle in this work is how well robots can imitate
humans performing manipulation tasks. Because of differences
in embodiments, humans perform manipulation tasks at a
different speed and style. We study the effect of using robots
and human videos as prompts.
Metrics. We refer to a rollout as a sequence of actions inferred
from the policy and executed on the robot from an initial state
observation and prompt video until the policy terminates or
takes the maximum number of steps, whichever is lower.

We define success for a rollout when the policy executes the
task instruction as shown in the prompt video. A successful
rollout involves correct actions to be taken successively in the
environment without any assistance for resets or recovery. We
ask a human evaluator to observe whether: (1) whether the
robot reached the correct location?, (2) grasped the correct
object?, (3) released the object at the correct location?, and
(4) terminated the task correctly?

If the answer to any question is “no”, the answer to
subsequent questions is assumed to be “no”. If all questions
are answered “yes”, only then the rollout is considered “suc-
cessful”. For each task instruction, we record a few rollouts
per policy with different distractor objects, background, and
lighting conditions. We take the average success recorded
across all the rollouts for a task and call it that task’s Success
Rate. We also report aggregated success rate across tasks as
Overall Success Rate. We also analyze the partial success
across the four milestones in Section III-A.

We looked into automating success detection with concrete
criteria or decision rules for evaluation but found that this

automation can overlook the process of performing the task.
Consider the task of “knocking the water bottle over”. Case 1:
The robot successfully grasps the bottle, turns it, and places it
on the table. Case 2: The robot fails to grasp, pinches the bottle
away, and lands in a knocked-down orientation. While Case
1 is desired and expected behavior according to the training
data, Case 2 is a failure as it is unintended. With rule-based
verification of the final state, we would have deemed both Case
1 and 2 successful. With human evaluators, we focus on the
entire process of achieving the task instead of the final state.
Setup. We evaluate the policies by varying the object place-
ment, lighting conditions, background surfaces, and distractor
objects. When evaluating a set of policies, we ensure compa-
rable initial object configurations for rollouts. We randomize
the initial state only after all policies’ rollouts have been
performed. For all rollouts, we sample prompt videos not
seen during training. In all the experiments, we use a mobile
manipulator, the Google Robot. It has an ego-centric camera
view, a single arm with seven degrees of freedom, and a two-
fingered soft gripper. Refer to [8] for more details.
Baselines. We compare our model with BC-Z [22], a video-
conditioned policy using a ResNet-18 encoder. BC-Z [23]
processes demonstration-observation pairs via a FiLM [38]
conditioned ResNet encoder and feds into a ResNet-based
policy network to predict robot actions. We use the same data
to train the BC-Z and Vid2Robot for a fair comparison. BC-Z
does not have a terminate action, so we run these rollouts for
a fixed maximum number of steps.
Key Questions and Results. We address the following ques-
tions in this work: (1) What is the success rate gap due to
prompt embodiment (robot vs. human) across tasks? (§III-A1)
(2) How do video-conditioned policies perform with unseen
task videos? (Fig 5, §III-A2) (3) Is Vid2Robot’s overall
success significantly better than BC-Z baseline? (§III-B) (4)
Can learned motion representations handle out-of-distribution
object interactions? (§III-C)

A. Task-based success

We compare our Vid2Robot model and baseline BC-Z with
robot- and human-performed prompt videos in Table I. We
train both Vid2Robot and BC-Z on the same data mixture
containing robot-robot and human-robot paired data. Prompt
videos cover a subset of the training tasks. However, the videos
are unseen by the models. In this evaluation, we investigate
each model’s ability to infer the task specification from the
prompt video as well as the current observed state of the robot.

To test the model’s capabilities in different settings on real
robots, we assess rollouts on the following nine tasks: ‘knock
water bottle over’, ‘move rxbar chocolate near coke can’,
‘move green jalapeno chip bag near coke can’, ‘pick green
rice chip bag’, ‘place coke can upright’, ‘pick coke can from
bottom drawer and place on counter’, ‘open middle drawer’,
‘close middle drawer’, and ‘place apple into top drawer’.

We ask four evaluators to carry out two rollouts per task for
a prompt video dataset and policy setting (a row in Table I).
Overall, we have eight trials per task to evaluate a policy’s
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Human Prompt Videos Robot Policy Rollout Videos
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Fig. 5: Policy Rollouts. Each row shows a prompt video of a human doing a task on the left, and on the right, we show the corresponding
successful robot rollouts using Vid2Robot. Note how visually different the prompts are, while the policy rollouts have different lighting and
backgrounds, as well as the number and placement of the distractor objects.

TABLE I: Task Success Rate for Robot and Human prompts.

Prompter Model pick pick-place on place into open close move near knock over place upright Overall

Robot BC-Z 75.0% 50.0% 61.5% 16.7% 66.7% 44.0% 58.3% 50.0% 52.6%
Vid2Robot 75.0% 58.8% 50.0% 91.7% 100.0% 33.3% 41.7% 16.7% 54.9%

Human BC-Z 50.0% 12.5% 12.5% 0.0% 50.0% 43.8% 12.5% 50.0% 30.6%
Vid2Robot 100.0% 50.0% 50.0% 62.5% 87.5% 43.8% 25.0% 12.5% 52.8%

task success rate. We report an overall success rate per row
over nine tasks with eight trials per task, that is, 9×8 = 72
trials. In total, we required 72×4=288 rollouts for Table I.

1) What is the gap in success rate due to embodiment
difference in prompt videos?: When prompted with robot and
human videos, we compare our model with BC-Z, which is a
strong baseline for our comparisons. The overall success rate
of our model Vid2Robot outperforms BC-Z for Human prompt
videos by 20%, and is comparable for Robot prompt videos.
Note that there is an order of magnitude more training samples
for robot trajectories than human videos in our training mix-
ture. Hence, there isn’t a significant gap in performance for
robot prompt videos. Our model outperforms BC-Z in most
tas for human prompt video, showing that Vid2Robot captures
the task semantics from prompt videos better than the baseline.
Our model outperforms in tasks like picking something from a
drawer, placing it on the counter, and opening/closing drawers
by a large margin. The most challenging task is placing upright
and knocking over. We analyze the failure reasons in §V Fig 9.

2) How well do video-conditioned policies perform when
shown a task in an unseen video?: In addition to marking a
rollout as a success, we recorded partial success annotations
per rollout. In Fig 6, we observe that our model reaches to
the correct object 78%, about 8% more than baseline. The
policies sometimes fail to get the correct object and go towards
a distractor instead. Next, grasping errors happen, particularly
with small and deformable objects and collision-prone areas
like drawer handles or counter’s edges. Here, our model (65%)
outperforms BC-Z (45%) by a large margin of 20% — a
successful grasp is often the most challenging part of a rollout
and crucial for success. After grasping, most tasks require
releasing at a correct location. Both models slightly drop
in success rate due to incorrect release during the rollouts.
While BC-Z runs for a fixed number of steps, our policy
Vid2Robot predicts when to terminate. We observe that the
rate of release and terminate is almost identical, about 57%
for our model, which implies that after releasing at the correct
location, Vid2Robot mostly terminates successfully.



Fig. 6: Partial Success Rate for BC-Z and Vid2Robot. Our policy
Vid2Robot outperforms BC-Z in terms of reaching the correct object,
grasping it, releasing it at the correct location and then terminating
the episode correctly. Note that BC-Z does not have terminate control.

TABLE II: Real Robot Evaluation of Vid2Robot and BC-Z with
more trials to ascertain the statistical significance of the results.

Model place coke can upright close middle drawer Overall

BC-Z 19.4 ± 9.5% 39.2 ± 10.8% 30.2 ± 7.1%
Vid2Robot 39.1 ± 9.9% 48.7 ± 11.2% 43.4 ± 7.2%

B. Tasks with More Rollouts

To comment on the statistical significance of our results,
we conducted more trials while limiting the evaluation to
two tasks, namely ‘place coke can upright’ and ‘close middle
drawer’ for real robot policy evaluations, and reported mean
success rate with confidence intervals. In total, we conducted
314 real robot rollouts for results reported in Table II.

C. Cross-object motion transfer

We trained our Vid2Robot and baseline with paired videos
as discussed in Section II-B. Due to the pairing, the training
data included only those scenarios where the interaction object
shown in the prompt is present in the current robot observa-
tions. But what if we provided a prompt video of one object
and tested on other objects? Does it make the same motion
as shown in the prompt video? Interestingly, we found our
model to perform learned manipulation actions on objects not
seen in the prompt video. We call this emergent behavior as
cross-object motion transfer.

We compare Vid2Robot with BC-Z for cross-object motion
transfer ability with five prompt videos, namely, ‘knock water
bottle over’, ‘pick green rice chip bag’, ‘place coke can
upright’, ‘pick coke can from bottom drawer and place on
counter’, and ‘place apple into top drawer’. We evaluate
each case of a prompt video by placing unrelated objects
in robot’s initial observation. The objects used for evaluation
are ‘orange’, ‘green can’, ‘chips bag’, ‘banana’, ‘pink piggy
soft toy’, ‘wrist watch’. We selected objects with different
shapes, sizes, and deformability to evaluate situations requiring
different grasps for success.

The evaluation setup is similar to Section III-A. Here, the
evaluator sets up one of the objects for a task and records

Prompt video showing task “Place coke can upright”

Policy Rollout Videos with above prompt video but different objects

Robot places green can upright, not the chips bag or banana.

Robot places chips bag upright.

Robot places stapler upright.

Robot places unseen soft toy upright.

Fig. 7: Qualitative results for cross-object motion transfer. (Top-
blue) Prompt video of placing coke can upright; (Green) Policy
rollouts with a green can, chips bag, stapler and a soft toy in front
of the robot. Vid2Robot infers the motion of place upright in the
prompt video and applies it to other objects. The policy adheres to
the prompt video by picking the green can instead of the chips bag
or banana.

rollouts for each model. We compare two models on five tasks
with six objects, so every evaluator runs 2×5×6=60 rollouts.
We repeat the evaluation with four raters, thus reporting results
in Table III on 4×60 = 240 rollouts.

In Fig 7, we show the above experimental setup qualita-
tively. We use a prompt video to ‘place coke can upright’
and observe that the policy can transfer the action of ‘placing
upright’ to objects, like a green can, a chips bag, a stapler,
and a soft toy. The policy shows an implicit notion of learned
pragmatics, by selecting green can over other objects.

In Table III, we observe that BC-Z is often unable to
complete the tasks when testing cross-object motion transfer.
In contrast, our model (34%) performs better than BC-Z
(17%) in this setting and performs the motion indicated in
the prompt video. Our model is comparable to BC-Z with a
45% success rate on picking out-of-distribution objects. More
importantly, tasks involving placing into drawers demonstrate
significant improvement (29% → 54%). For specific tasks like
picking from drawers, placing on counters, and knocking over,
Vid2Robot completes the task 25%−29% of the time, whereas
BC-Z is unable to perform.



TABLE III: Cross-object motion transfer success.

pick- place place knock
Model pick place on into upright over Overall

BC-Z 45.8% 0.0% 29.2% 12.5% 0.0% 17.5%
Vid2Robot 45.8% 25.0% 54.2% 16.7% 29.2% 34.2%

D. Ablations

We analyze our proposed approach to understand the fol-
lowing: (a) Can the policy learn possible interactions with the
environment from state observations alone, without needing
prompt videos? (b) How do the auxiliary loss functions impact
the model’s performance?

1) What is the impact of the prompt for task inference?:
First, we motivate the importance of prompt videos with
an example. Consider a Coke can and other objects on the
countertop as the robot’s state observation. If a Coke can exists
in the robot’s view, it is hard to infer whether the task is to
“pick a Coke can”, “move a Coke can close to a chocolate
bar”, “move a Coke can near an orange can,” or “knock over
Coke can”. Furthermore, once the robot starts taking action,
it can end up in new states, like being close to rxbar, which
make it especially difficult to predict tasks from the current
state only. Below, we empirically measure the success rate of
a policy that does not have access to a suitable prompt video.

We evaluated the “no-prompt” case, in which both models
see blank frames as input prompt videos. In this setup, we
evaluated three tasks. For each task, we rolled out the policy
20 times. In total, we ran 2 × 20 × 3 = 120 actual robot
rollouts for this experiment. Here, the success rate is 23%
for Vid2Robot and 5% for BC-Z over 20 rollouts per task per
policy. We find that performance improves when we condition
the policies on the prompt videos. The success rate improves
from 5% to 52.6% for BC-Z and from 23% to 54.6% for
Vid2Robot. (Refer Table I). This experiment underlines the
importance of prompt videos for task success.

2) What is the role of auxilliary losses?: Second, we
analyze the role of additional loss functions in the overall
success rate. In Section II-E, we presented action prediction
loss and three auxiliary losses. We investigate the impact
of (1) not using any auxiliary loss and (2) adding auxiliary
language loss. We consider the tasks similar to those described
in Section III-A, 9 tasks for evaluating each policy. We have
3 model variants: the original Vid2Robot, the one without
video-text contrastive loss (CL), and the one with only action
prediction loss. We ask three human evaluators to run a model
variant for two rollouts each. In total, we report results with
3×3×9×2=162 rollouts in Fig 8. The error bars show the
standard deviation for success.

What is the impact of not using any auxiliary loss? We
observe that the performance of our model (61%) improves
significantly by enforcing representation constraints through
auxiliary losses, compared to using only action prediction loss
(45%). It highlights the importance of the proposed auxiliary
losses in Section II-E.

Fig. 8: Ablation for auxilliary losses used in Vid2Robot. We com-
pare our proposed approach that has all auxiliary losses (green, left)
with a variant without language contrastive loss that was originally
proposed in BC-Z (orange, middle) and a version with no auxilliary
losses (blue, right). More details in (§III-D)

What is the impact of the auxiliary language loss? BC-Z
proposed to use language representations to improve video
representations for conditioning the policy. We compare our
policy with another variant trained with all losses but the
Video-Text CL. We observe only a borderline improvement
of 1-2% in the success rate when using language loss. This
implies that video alignment and video contrastive loss con-
tribute significantly towards performance improvement.

IV. RELATED WORK

Task Specifications for Robots The development of general-
purpose robots hinges on effectively grounding task spec-
ifications. Videos are a dense source of information that
provides information about what to do and how to do it in
the physical world. Recent works have used videos for task
specification [4, 24, 42]. Another line of work uses videos
to learn world models to predict future visual observations
[31, 28, 10, 33, 16].

Recall our example of “open drawer”, “open cabinet”,
and “open jar” in the §I. Video-conditioned policies like
Vid2Robot are capable of doing these tasks because these
policies identify the tasks of ”open jar” and ”open drawer”
from visuals, unlike language-conditioned which have the
same embedding of the verb ‘open’ for each task. Note that
language is not an input to Vid2Robot. Therefore, the verb
does not directly influence the action; this is a critical differ-
ence between Vid2Robot and existing language-conditioned
robot policies. While language [48, 8, 35, 36], final goal
images [25, 7], and others like hand-drawn inputs [45] have
been proposed as means for task specification, learning from
prompt videos is complementary to these approaches and
inevitable for rapid adaptation of trained polices to perform
new manipulation skills at deployment.
Learning from Human Demonstrations As videos of hu-
mans performing various tasks proliferate on the internet,
several works aim to address how to leverage this information
for robot learning. The difference in robot versus human
embodiment poses a significant challenge, for which existing
approaches range from translating the image of a human into
the robot [44] to inpainting for agent-agnostic representations
[3]. Many prior works propose to leverage off-the-shelf models
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Fig. 9: Failure analysis with policy rollouts. (Top) Policy predicts gripper pose and depends on the IK solver to move the arm. Sometimes,
the IK solution can block the robot’s camera view. (Middle) Grasping failures happen, especially with transparent and deformable objects.
(Bottom) Distractor objects and differences in lighting and background may cause recognition errors, where policy might perform the correct
motion but with an incorrect object(s).

for hand pose estimation and contact tracking [5, 13, 39],
object-centric representations [40, 21], as well as reward
functions for reinforcement learning [3, 29, 44].

XIRL [50], GraphIRL[26] and other RL approaches [41, 37]
take a lot of time and manual effort for resetting scenes during
the policy learning phase, limiting their applicability to real
robots. Furthermore, RL often leads to unsafe situations with
real-world robots. We compare Vid2Robot to another end-to-
end behavior cloning method, BC-Z, that has been shown
to scale to multiple tasks. Other methods [34, 46, 5] cast
this problem into visual representation learning to accelerate
learning of downstream motor control tasks. While these
modular learning solutions work well in limited datasets, they
are prone to compounding errors in each component and are
not efficiently scalable. End-to-end training approaches for
goal-conditioned imitation learning [12, 43, 19, 14] are also
largely limited in simulation and hindered by sim-to-real gap.
In contrast, we tackle this as an end-to-end large multi-task
learning from human videos with real robot evaluations.
Imitation via Paired Demonstrations Our setup of paired
prompt videos and robot trajectory is most similar to the One-
Shot Visual Imitation literature. Many prior works assume
access to pairs, where the first video demonstrates the task,
and the second video shows the agent’s visual observations.
Some of the early works [17] proposed training a demon-
stration network via temporal convolution and neighborhood
attention to condition a manipulation policy network. In more
recent approaches like [12, 30, 21], paired demonstrations and
observations are used to train a transformer policy, often with
additional constraints like inverse dynamics prediction[12] or
contrastive representation learning [30]. However, evaluating
these approaches is usually limited to a specific set of simu-

lated tasks and hardly to real robots.
BC-Z [22] is most similar to our work, which reports real

robot evaluations. While our training setup has similarities
with BC-Z, our model Vid2Robot couples large image en-
coders, cross-attention layers, and contrastive auxiliary losses
to learn a manipulation policy that imitates a human showing
a task. Recent approaches for self-supervised skill discovery
like XSkill [47] learn skills from unpaired human and robot
videos, while our approach uses text descriptions of the task to
pair them explicitly. The paired human and robot videos con-
tain different backgrounds, lighting, and object arrangements,
thereby training the visual representations to be invariant to
these settings, and focus on the task semantics instead.

V. LIMITATIONS AND FUTURE DIRECTIONS

In Sec III, we show that our approach has improved over
previous work but there is a gap in performance for video-
conditioned policies. Below we discuss the limitations of our
work and provide insights for the future.

First, we qualitatively investigate some reasons for the
failure of a policy rollout. In Fig 9, we illustrate and explain
three examples of how self-occlusion, grasping errors, and the
presence of distractors can lead to failure during any rollout.

Second, we observe a significant drop in the grasping
success in Figure 6. While we use robot camera observation
to estimate the state and implicitly learn depth estimation, it is
often incomplete when occlusion or the robot gripper is out of
camera view. Enhancing the state information with multimodal
sensor fusion may improve the grasp success rate.

Third, we consider carefully collected short task instruction
demonstrations from three different sources as shown in Sec-
tion II-B, all of which are 5 to 20-second videos. To test our



models on long-horizon demonstrations or ‘in-the-wild’ videos
online, we need effective pairing strategies for videos and a
few corresponding robot trajectories to train the policy.

VI. CONCLUSION

We present Vid2Robot, an end-to-end video-conditioned
robot policy. Our proposed system trains on paired videos such
that both videos demonstrate the same task but differ in diverse
settings of lighting, background, and distractor objects. We use
cross-attention (i) to learn the joint latent representations from
prompt and state encodings and then (ii) to decode the action.
We train the entire model for action prediction with cross-
entropy loss and three auxiliary losses that encourage learning
of generalizable latent representations to infer tasks directly
from raw pixels to suitable actions. Vid2Robot outperforms
BC-Z by over ∼20% when prompted with human videos.
Further, Vid2Robot outperforms BC-Z by ∼17% for cross-
object motion transfer; that is, if the prompt video didn’t
have the exact object as the object the robot is manipulating
now, the model still produces valid actions for the same
verb but different objects. Cross-object motion transfer is a
promising direction for further extending pragmatic transfer
learning of motion to new objects. We hope Vid2Robot enables
bootstrapping data collection and human-robot interaction with
rapid adaptation to new skills.
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