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Abstract

In this work, we propose a computationally efficient algorithm for visual policy
learning that leverages differentiable simulation and first-order analytical policy gra-
dients. Our approach decouple the rendering process from the computation graph,
enabling seamless integration with existing differentiable simulation ecosystems
without the need for specialized differentiable rendering software. This decoupling
not only reduces computational and memory overhead but also effectively attenu-
ates the policy gradient norm, leading to more stable and smoother optimization.
We evaluate our method on standard visual control benchmarks using modern
GPU-accelerated simulation. Experiments show that our approach significantly
reduces wall-clock training time and consistently outperforms all baseline methods
in terms of final returns. Notably, on complex tasks such as humanoid locomotion,
our method achieves a 4x improvement in final return, and successfully learns a
humanoid running policy within 4 hours on a single GPU. Videos and code are
available on https://haoxiangyou.github.io/Dva_website/

1 Introduction

Learning to control robots from visual inputs is a key challenge in robotics, with the potential
to enable a wide range of real-world applications, ranging from autonomous driving and home
service robots to industrial automation. Most methods for learning visual policies fall into two
categories: imitation learning and reinforcement learning (RL). Imitation learning trains policies
by mimicking expert demonstrations, which are typically collected via human operation [Bojarski
et al., 2016} |Kendall et al., 2019] or teleoperation systems [Chi et al.| {2024, |Black et al.,[2024]. When
expert demonstrations are scarce or difficult to obtain, visual policies can instead be learned through
RL [Mnih et al.| 2015 |Hafner et al.,[2019]]. However, RL methods typically require long training
times and substantial computational resources, such as large-scale GPU clusters, to achieve effective
control.

Recent advances in differentiable simulation have enabled alternative policy optimization methods,
known as analytical policy gradients (APG) [Freeman et al.,[2021] Xu et al.| [2021} |Schwarke et al.,
2024]. These methods achieve much higher computational efficiency by replacing zeroth-order
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Figure 1: Fast training of humanoid running policy from pixel input. Our method learns a stable
running gait in 4 hours on a single RTX 4080 GPU.

gradient estimates with first-order gradients. However, extending APG methods to visual control
remains challenging: obtaining high-quality differentiable rendering is non-trivial, and computing
Jacobians over pixel inputs is both memory- and computationally inefficient. Consequently, existing
approaches either train separate differentiable renderers [Wiedemann et al.}[2023] [Liu et all, 2024]] or
rely on low-dimensional visual features, which demand considerable engineering effort [Heeg et al.

2024| [Cuo et al. [2024].

In this work, we propose Decoupled Visual-Based Analytical Policy Gradient (D.Va), a novel method
for learning visual policies using differentiable simulation. The core idea is to decouple visual
observations from the computation graph, eliminating the need to differentiate through the rendering
process. We find that this decoupling not only improves memory and computational efficiency by
avoiding Jacobian computations over pixel space, but also normalizes the policy gradient, making
visual policy learning more stable. We further provide a formal analysis of our new computation
graph, demonstrating that the proposed decoupling policy gradient can be interpreted as a form of
policy distillation from open-loop trajectory optimization. This reveals a fundamental connection
between open-loop trajectory optimization and closed-loop policy learning.

Finally, we benchmark a diverse set of visual policy learning methods using a GPU-accelerated simula-
tion platform that supports parallelized physics and rendering, providing a robust and scalable testbed
for evaluation. Our comparisons include the proposed D.Va, two model-free RL algorithms
let al.l [2020al, [Yarats et al., 2021]], the model-based RL method DreamerV3 [Hafner et al.| [2023], an
analytical policy gradient method with differentiable rendering, and state-to-visual distillation
2025]—a two-stage framework that first trains a state-based policy and then distills it into
a visual policy through imitation learning. Experiments highlight D.Va’s superior computational
efficiency across a wide range of control tasks.

In summary, our contributions are: (a) Proposing D.Va, a computationally efficient method for visual
policy learning; (b) Benchmarking diverse visual policy learning approaches on state-of-the-art
simulation platforms; (c) Providing an analysis of analytical policy gradients and highlighting the
new opportunities for integrating policy learning with trajectory optimization techniques.

2 Background

In this section, we formally define the policy optimization problem and introduce key concepts in
analytical policy gradient methods.

2.1 Problem formulation

We consider the dynamical system s;1 = f(s¢, a;), where s; € S denotes the state and a; € A the
action. The dynamics function f : § x A — S is assumed to be fully differentiable with respect to
both state and action. Let o; = g(s;) € O denote the observation, where g : S — O is the sensor
model. Throughout this paper, we assume s; is a low-dimensional internal representation of the robot
(e.g., joint states), while o; represents observation derived from s; (e.g., images).

Consider the trajectory 7 = {sg, a9, s1,a1,...s7,ar} , which is a sequence of state-action pairs
with horizon T'. The total return is defined as J(7) = Z?:o vt R(s¢, a;), where v € (0,1) is
the discount factor, and R : S x A — R is the reward function. We denotes the discounted
temporal reward as r; = y'R(s¢, a;). A feedback policy 7(-|o;,0) : O x ©® — A(A) is a family
of conditional probability distributions that maps an observation to a probability distribution over



actions. Typically, this distribution is modeled as a Gaussian, allowing the action to be expressed via
the reparameterization trick: a; = (o, 0) + 0 (04,0) €, wherep : Ox0 — A, 0 : OxO — A
represent the mean and standard deviation respectively, and €; ~ N(0,1) is injected noise. Given
an initial condition sg, and a sequence of injected noises £ = {€g, €1, ... €7}, a trajectory 7 can
be generated by rolling out from policy under dynamics f and sensor model g, which we explicitly
denoted as 7(so, 8, £) and the corresponding return as 7 (7(so, 6, £€)). For notational simplicity, we
omit the explicit trajectory 7 and write the return directly as J (s, 6, £). The expected return for

a given policy is defined as V(0) = Eg, ., E, (o I)j(so7 0,&), where py is initial distribution.

The goal of policy optimization is to find policy parameters 8 maximizing the expected return.

2.2 Analytical policy gradient

Here, we provide background on analytical policy gradient (APG) methods. These methods compute
the policy gradient as
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Here, g denotes the total derivative, and % represents the partial derivative, both expressed in matrix
form as Jacobians. The expectation can then be estimated via empirical sum. As these methods
estimate the first-order policy gradient by backpropagation through trajectories, they are also named
as first-order policy gradients (FoPG) or backpropagation through time (BPTT).

Short-horizon actor critic (SHAC) The trajectory gradient, i.e., Vg7 (sg, 8, &), can quickly
become intractable as the horizon T increases due to exploding gradients by multiplying a series
of matrices. The exploding gradient of an individual trajectory leads to the high-variance empirical
estimate of the policy gradient [Metz et al.,[2021]], as well as an empirical bias problem [Suh et al.|
2022]]. Fortunately, these problems are largely solved by the Short-Horizon Actor-Critic (SHAC)
method [Xu et al.,|2021]]. The key idea is to truncate the long trajectory into smaller segments and
incorporate a learned value function for long-horizon predictions. More specifically, at each iteration,
the SHAC algorithm optimizes the following actor loss
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where sgi) and agi) are states and actions of the i-th trajectory rollout, and V;, : S — R is the value
function learned with TD-\ tricks [Sutton et al., [1998]].

3 Method

In this work, we extend SHAC to handle complex observations, e.g., images, whereas the original
SHAC primarily focused on low-dimensional state spaces. The main challenge in visual setting is
calculating the observation Jacobian 92, which is both computationally and memory intensive due

ds;
to the high dimensionality of images. To address this, we omit all terms of the form (g—i‘z fl—cs’: %),

resulting in a quasi-policy gradient that we refer to as the decoupled policy gradient (DPG). In this
section, we provide a formal analysis showing how the DPG works, as well as algorithm that utilizes
DPG for training a visual policy.
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Figure 2: Computation graphs of decoupled policy gradient (DPG) and APG. The policy gradient is traced
from any reward r;, propagated backward through the graph to the shared parameters 8. APG backpropagates
through the entire pipeline, whereas the DPG prevents gradient flow through the rendering process.

3.1 Decoupled policy gradient

We divide the analytical policy gradient (I)) into two parts by separating all terms involving & s ot - from
those that do not: VgV = VgV + B, where
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Detailed derivation of this decomposition is provided in Appendix @ We refer to VgV @) as the
decoupled policy gradient, which improves the policy by distilling results from open-loop trajectory
optimizations. We denote B (3)) as control regularization which captures the interdependence between
actions. Below, we provide a conceptual explanation of each term, describe the rationale behind their
naming, and validate the effectiveness of the decoupled policy gradient through experiments.

Distilling from open-loop Trajectories Here, we show how the decoupled policy gradient (@)
can be interpreted as distilling from open-loop trajectories. We begin by initializing a open-loop
sequence of controls, A = {ag,ay,...,ar}, by rolling out the policy 7(-|-; @) under the initial
condition sg. Given the open-loop control sequence A and initial condition s, the sequence of states
S = {so,s1,- .., 87} and observation O = {0g, 01, . . ., 07} can be reconstructed via dynamics f
and sensor model g. In this case, the return 7 (sg, A) = ZtT:O 74 is solely a function of the initial

condition sy and the control sequence A. The gradient of return with respect to the control sequence
A is given by

T
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We improve the control sequence by taking a small step S in the gradient direction for each action
a; =a; + fVa,J. @)

We denote the updated sequence as A := {ag, ay, ..., ar}. The behavior cloning loss is then defined
as the discrepancy between the actions generated by the current policy and those in the updated



control sequence:
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where £ = {e€g, €1, ... er} is same injected noises use to initialize open-loop sequence A.

Theorem 1. The decoupled trajectory gradient in @) equals the negative gradient of the behavior
cloning loss in Equation (), i.e., VoJ (80,0,E) = —VeLpc(0,0,A,8).

Proof. Given that the observation sequence O is generated by rolling out the policy, we have
a; = p(0o4;0) + o(04;0) © €. Therefore, the gradient of the behavior cloning loss simplifies to
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6/~BC ) ) ) = S\t T A) 5,4
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Finally, substituting V,, 7 from E.q. (6) into (9) and rearranging terms completes the proof. O

Theorem [I] highlights the close connection between feedback policy optimization and open-loop
trajectory optimization. Iteratively applying gradient ascent with decoupled policy gradient (@)
can be interpreted as alternating between two stages: (1) generating trajectories by rolling out the
current policy and improving them through trajectory optimization, and (2) distilling the optimized

trajectories back into the policy. e 100 —
E 0.5 g 75 L
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fluence current decision making, i.e., a;. Al-
together, the bias term (3 quantifies how the
previous experiences influence current actions
via coupling through the shared policy, and
thereby impacts long-term return. In contrast,
the decoupled policy gradient (4) captures how

computed from the same set of @ values collected during
SHAC training. The x-axis shows the return for each 6.
Left: Cosine similarity is generally positive, indicating
VeV is a valid ascent direction. Right: Gradient norm
between APG and DPG. In this experiment, conducted in
state space where g = identity, the control regulariza-
tion term /3 acts as a residual connection. As a result, APG

the current action affects future states, but ig-

nores the interdependence between actions. generally exhibits a smaller norm compared to DPG.

Figure [3| compares the APG V) and DPG VgV, both computed with respect to the short-horizon
actor loss (3). The cosine similarity between the two gradients is positive in most cases, indicating
that VgV generally provides a valid ascent direction for policy improvement. Another noteworthy
observation is the difference in norm between the full analytical policy gradient Vo) and our
quasi-policy-gradient estimate, DPG V). When we conduct the experiment on state space, i.e.,
o; = identity(s;) = s, the additive control regularization (3)) operates acts similarly to a residual
connection within the computation graph. The additive residual connection contribute to a smoother
optimization landscape, making the norm of full APG generally smaller than DPG, as illustrate on
Figure[3] This is not the case when the policy is conditioned on high-dimensional visual observations.
As we will show shortly in Section 4] when the sensor model g is involving complex rendering
process, adding the regularization term 5 tends to increase the overall gradient norm, which hinder
optimization.

Experimental validation A comparison between full APG and our DPG in full-state space is
provided in Appendix while results under visual observations are presented in Section 4]
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Figure 4: Comparison with RL: our method achieves substantial speedups and significantly higher
rewards across all tasks. Each curve shows the average performance over five random seeds, with shaded areas
indicating standard deviation. In the humanoid task, dashed lines represent the final rewards attained by each
algorithm at the end of training. The top row highlights wall-clock efficiency; the bottom row illustrates sample
efficiency, with curves truncated at the maximum number of simulation steps for better visualization.

3.2 Decoupled visual based analytical policy gradient

Here, we introduce Decoupled Visual-Based Analytical Policy Gradient (D.Va), a visual policy
learning method built upon the decoupled policy gradient formulation. Our method is an on-policy
algorithm that updates the policy using parallel simulation to generate short-horizon trajectories.
Following SHAC, rollouts resume from previous endpoints and reset at task termination. Trajectories
are discarded after each iteration to reduce I/O overhead. To capture temporal cues such as velocity
and acceleration, we stack three consecutive image frames—following common practice in prior
work [Hafner et al.| 2023} [Mu et al., 2025]]. We also provide an ablation study on the number of
stacked frames in Appendix [D.3] The stacked frames are then encoded by a convolutional network
to produce a latent representation h, for the actor. The critic V,, in Equation (3) plays a crucial
role in achieving good overall performance. (See Appendix For efficiency, we train the critic
in the low-dimensional state space S as opposed to the observation space O. Although the critic
is trained using state information, the policy remains state-agnostic throughout the entire training
process, enabling direct deployment to downstream tasks without requiring access to privileged state
information. Full algorithm details are provided in Appendix [B.T}

ours 4 0.08
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4 Experiment DrQ.v2 %134
 “we3ss

We design our experiments to compare the proposed method ~ PreamerV3 L, '
against common visual policy learning algorithms on GPU- CURL *2.53
accelerated simulation. Performance is evaluated based on Time Porcentage (%) Time Spent (haurs)
final return, wall-clock time, and'the ngmber of epvironmgnt Forward Simulation NN Fitting
steps. All hyperparameters are listed in Appendix [C| while Planning 10 Time

additional details on setup are provided in the Appendix [E] Figure 5: Training time for Ant over

1M steps. Left: phase percentages, where
4.1 Comparison to RL methods “planning” in DreamerV3 refers to roll-

outs by learned world model. Right: ab-
Baseline We compare our method with: (1) DrQ-v2 [Yarats| solute times used per 1M steps. Most
et al., 2021]], a model-free method combining image augmen- time in visual RL is spent fitting neural
tations with DDPG [Lillicrap et al.} 2013]); (2) CURL [Laskin| networks.
et al.;,2020a], a model-free RL approach using contrastive learning and SAC [Haarnoja et al., [2018]);
and (3) DreamerV3 [Hafner et al.l |2023]], a model-based algorithm that learns a world model and
uses it for planning. All RL baselines are implemented with parallelized simulation to take advantage
of faster forward rollout.

Results Our approach achieves comparable sample efficiency to existing methods; however, it
excels in wall-clock time and final returns, as shown in Figure[d} The discrepancy between sample
and wall-clock time efficiency is because RL methods reuse past experiences through replay buffers,
whereas our on-policy method discards samples after each iteration. Consequently, RL methods spend
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builds on|Mu et al[2025]], with an enhanced expert training phase by replacing SAC with SHAC.
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Figure 7: Compare to SHAC with differential Rendering: Our method matches SHAC on 2D tasks (Cartpole
and Hopper) and outperforms SHAC on more challenging 3D tasks (Ant and Humanoid).

more time updating neural networks—such as fitting Q-functions in DrQ-v2—than collecting new
data. As illustrated in Figure[3] only a negligible proportion of time is spent on forward simulation
for the RL baselines, indicating limited potential for speedup from faster simulators. In contrast,
our method allocates a comparable amount of time to both forward simulation and backward policy
updates, suggesting it could further benefit from better simulation.

4.2 Comparison to method using privileged simulation

State-to-visual distillation ~Another class of popular methods [Loquercio et all, 2021, [Chen et al
training visual policies by first learning an expert policy with privileged state access, then
transferring knowledge to a visual policy via DAgger [2011]]. Among these,
proposes two key design choices—early stopping when the behavior cloning loss is low
and using off-policy data from a replay buffer, which greatly reduces computation and improves
performance. Our implementation of State-to-Visual distillation is based on the approach proposed
by Mu et al.|[2025]], with one key modification: we use SHAC in place of SAC for expert training.
We observe that SHAC consistently outperforms model-free SAC in settings where differentiable
simulation is available [2021]), resulting in further reduced computational time and improved
final returns for training State-to-Visual distillation.

Results Our method performs comparably to state-to-visual distillation on three relatively easy
tasks in terms of both computation time and final rewards. In these tasks, both approaches achieve
returns on par with the expert policy trained in the state space. However, on the more challenging
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Figure 8: Our method learns policies that are camera-aware, whereas the distilled policy from expert often
adopts postures that are partially occluded or blocked from the camera view.

humanoid running task, our method significantly outperforms state-to-visual distillation—achieving
high final returns, while distilled policy plateaus at substantially lower values.

Key difference Here, we highlight the key difference between our method and state-to-vision
distillation. While both can be viewed as behavior cloning from another policy, the source of the
mimicked policy differs fundamentally. In state-to-visual distillation, actions are imitated from a
frozen “expert” policy. In contrast, our method mimics actions from the “teacher” that provides
incremental improvements to the current policy. We argue that learning from an incremental “teacher”
may be more effective than learning from a fixed “expert”, especially for complex tasks. First, expert
actions may differ significantly from those produced by the current policy, making them harder to
imitate accurately. Second, expert policy may provide ineffective corrective feedback in those state
spaces that are visited by the current policy but rarely seen during its own training phase. In other
words, the expert cannot handle situations for which it has no prior experience. We hypothesize that
these two factors contribute to the performance gap observed on the humanoid task.

Another subtle but noteworthy difference is in the postures generated by the learned policies. As
illustrated in Figure[8] we empirically find that our method tends to produce more camera-aware
behaviors, whereas the distilled policy often results in self-occluded postures. Although both the
“expert” policy used in distillation and the “teacher” corrections in our method are agnostic to camera
views when providing supervision, the on-policy and iterative nature of our approach may lead to
important differences. During the student policy distillation phase, imitating actions from unblocked
visual inputs may be easier and converge quicker than learning from occluded views, which can
introduce ambiguity. Since our method continually discards outdated rollouts and relies on recent
data, the training process may be implicitly biased toward favoring trajectories that offer clearer, more
informative perspectives.

4.3 Comparison to SHAC with differentiable rendering
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Finally, we compare our method against ana-
Iytical policy gradient approaches that incorpo-
rate differentiable rendering. To the best of our
knowledge, no existing open-source baseline
combines differentiable rendering with analyt-
ical policy gradient method; therefore, we pro-
vide our own implementation.

Gradient Norms
= N
) S
3 3

o

0 2000
Returns
=== Ours

4000 100 150 200
Returns
=== SHAC with Differential Rendering

We implement differentiable rendering using Py-  Fjgure 9: Comparison of gradient norms between

Torch3D [Ravi et al.,[2020], in contrast to prior
works [Wiedemann et al., 2023} [Liu et al.| [2024],

which rely on a learned renderer. Using a dif-
ferentiable renderer based on computer graphics
eliminates the need to optimize a separate neu-
ral network and helps avoid compounding errors

SHAC with differentiable rendering and D.VA: In this
experiment, conducted in the visual space where sensor
model g represents a complex rendering process, the
control regularization term B adds to a noisy optimiza-
tion landscape. As a result, SHAC generally exhibits a
larger gradient norm compared to D.VA.

from distribution shifts as the scene evolves. Further details on our parallel rendering setup are
provided in Appendix[B.2] We then train the visual policy end-to-end under the SHAC framework.
For a fair comparison, we use identical simulations and neural architectures for both methods, and
the value functions are all defined on a low-dimensional state space.



Results Figure [/| compares our method with SHAC across four benchmark problems. We find
the performance of SHAC highly dependent on whether the task is 2D or 3D. In the 2D tasks, i.e.,
Cartpole and Hopper, SHAC achieves performance similar to ours. However, in 3D tasks, our method
consistently outperforms SHAC, with SHAC failing to learn effective locomotion. We hypothesize
that the discrepancy arises from the noisy optimization landscape introduced by the complex rendering
process. In contrast to the low-dimensional state space—where the control regularization term B (3}
acts as a residual connection and the norm of the full APG is generally smaller than that of DPG (see
Figure3)—the high-dimensional visual space involves a more complex sensor model g, which includes
3D transformations and a rasterization process. As a result, the additive control regularization term
contributes to a noisier optimization landscape. As shown in Figure[9] the gradient norm of SHAC with
differentiable rendering is generally larger than that of our method. Notably, for 3D tasks, the gradient
norm in SHAC can rapidly exceed 10'°, making the backward signal pure noise. In addition to
smoother optimization, several other factors make our method preferable to SHAC for training visual
policy in practice. First, our method is significantly more memory efficient, as shown in Figure [I0]
Second, as scene complexity increases, i.e.,  Table 1: Backward time for a single training episode.

the number of meshes and the number of ver-
tices per mesh, SHAC’s memory usage grows
rapidly. This is because the Jacobian with re- Ours  0.11(s) 0.19(¢s) 0.21(s)  0.68(s)
spect to each mesh vertex must be stored to SHAC 0.36(s) 051(s) 0.58(s) 1.38(s)
construct the computation graph. In contrast,
our method avoids storing these large Jacobians, resulting in a relatively stable memory footprint.
Therefore, our method is more suitable for tasks involving a greater number of objects and higher-
resolution meshes. Third, our method reduces the computational overhead during neural network
updates by avoiding the multiplication of large Jacobian matrices associated with rendering during
the backward pass. As shown in Table [I] our backward simulation is 2-3x faster than SHAC,
measured on the same machine. Lastly, developing high-quality differentiable rendering software
demands substantial engineering effort. In contrast, our method does not depend on such software,
enabling easier integration into existing simulation ecosystems [Todorov et al.,|2012} Xian et al.|
2024]}, with the potential to handle multi-modal observation such as point clouds or LiDAR scans.
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5 Related Work
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Visual policy learning Techniques integrating learned image en-
coders [Finn et al., 2015, |Mnih et al., 2015]] have shown promising results
in visual policy learning. Building on these approaches, algorithms such
as Kostrikov et al.| [2020], |Yarats et al.| [2021]] improve performance
through data augmentation, |Laskin et al.|[2020alb], Stooke et al.|[2021]]
leverage contrastive learning, and [Hafner et al.[[2019,[2023]], Hansen et al.| . .

. . ing. Our method is
[2022] address the visual-control problem by learning world models for 3%5, o0 memory ef-
online planning. While these methods effectively tackle image-control g jent than SHAC. Each
challenges, they often require extensive environmental interaction and gk is run with 32 paral-
suffer from computational inefficiencies. In this work, we introduce a el environments and a short
method that leverages differentiable simulation to reduce training time.  horizon length of 32.

«
o

Memory Usage (GB)

0.0
Cartpole Hopper Ant Humanoid

Figure 10: Peak mem-
ory usage during train-

Policy learning with differentiable simulation Analytical policy gradient methods [Freeman et al.}
2021} |Qiao et al., 2021} Mora et al.} 2021]] have gained traction with the rise of differentiable simula-
tion. Among them, SHAC [Xu et al., 2021]] mitigate noisy optimization via short-horizon rollouts and
a value function, making it a core technique in many downstream robotics applications [Schwarke
et al.,[2024, Song et al.|[2024]]. In a subsequent work, |Xing et al.[[[2025]] further enhanced performance
by adding an entropy term to the optimization objective, smoothing the optimization landscape and
improving stability.

Recent efforts have adapted APG to visual policy learning: |Wiedemann et al.| [2023]] incorporates
differentiable rendering, while [Heeg et al.| [2024]] uses cropped vision features for quadrotor racing.
Luo et al.|[2024]] propose a hierarchical design separating control and perception. However, these
approaches remain task-specific and engineering-heavy. In contrast, our method generalizes across
tasks and achieves higher computational efficiency than prior visual policy learning methods.



6 Conclusion

Our algorithm, D.Va, is a computationally efficient method for training visual policies utilizing
differentiable simulation and first-order policy gradients. With this approach, we are able to train
complex visual policies within hours using modest computational resources. We believe that this
improvement in computational efficiency can unlock new possibilities for the robotics community,
enabling practical end-to-end training of policies from raw observations. A key limitation of our
method is that its success depends heavily on the quality and accuracy of the simulation environment.
However, this limitation is shared by all baseline methods, as training directly in the real world is
often impractical. Future research should focus on how to effectively transfer the success of training
visual policies in simulation to real-world scenarios.
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Appendix

A Additional derivation

A.1 Derivative of analytical policy gradient separation

In this section, we provide a detailed derivation of how the analytical policy gradient VgV (I)) can

be decomposed into the decoupled policy gradient VoV (@) and control regularized term B (3)). We
achieve this decomposition through pattern matching.

We begin with the decoupled policy gradient (@), which is obtained by taking the expectation over the
gradient of individual trajectories. The gradient of each trajectory, in turn, is computed by summing
the gradients of the temporal running rewards, as follows:

VoJ (s0,0,€) Zvert (11)

The gradient of the running reward, @grt, is composed of two partial derivatives. First, the immediate
reward r, is directly influenced by the action taken at time step ¢, denoted a;. This yields the partial
derivative term:

or t 8315

8af 80
Second, the reward 7, also depends on the state st, which itself depends on the previous state st — 1
and action a;_1. In the decoupled formulation, this dependency propagates backward through time,
leading to a recursive gradient computation. Specifically, the second term is

87"15 d~St

8st do ’

dst i o : Ldsy _ _Osy dsi—1 Ost 53t1
4 18 given recursively by: 7% = 95, do T+ a

where the derivative
have

. Altogether, we
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Figure[TT]illustrates a typical backward flow on decoupled policy gradient starting with the reward
T2.
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Figure 11: Backward gradient start with ro. Left: the backward gradient flow on the decoupled policy
gradient. Right: the backward flow on control regularization. Each subplot in the row starts from the reward
node 7 and traces backward along the computation graph until it reaches the policy parameters 0, illustrating a
partial contribution to the total derivative.

We now examine how the control regularization term (3)) is formulated. Following the structure
illustrated in Figure|l 1} the control regularization is constructed by summing a series of terms of the

form:
Ory Oa; doy ds;

8at 30,5 dSt do '
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Here, the total derivative % can be computed recursively as follows:

ds;  Osy (Bat,l n Oa;_1 dog_1 dsi_1 . Os; dsi_1

do B 3af,_1 00 3ot_1 dSt_1 deo 8St_1 do
Altogether, the control regularization term is given in Eq. (3). Thus, the full analytical policy gradient
is the sum of the decoupled policy gradient and the control regularization term:

VeV = VgV + B. (14)

(13)

B Additional implementation details

B.1 D.VA algorithm

Critic Learning Our critic training follows SHAC, minimizing the mean squared error over
collected trajectories:

Ls=Eacgroy |IVols) = V(s)I3] (15)

where
h—t—1

Vis) = (1 —)\)( S A’HGf) 4 Ah—tmlght (16)
k=1

is the estimated value function and is treated as a constant target during critic learning. Here,
GF = (Z;:Ol Y R(s¢41, at+l)) + vV (s14) represents the k-step return from time ¢, and Vy is
a delayed critic function used to stabilize the training process [Mnih et al.,2015].

Full algorithm Below, we summarize our Decoupled Visual-Based Analytical Policy Gradient
(D.VA) algorithm.

Algorithm 1: D.VA (Decoupled Visual Based Analytical Policy Gradient)

Function Rollout ()
Initialize N initial states s.
fort =0toh —1do
with torch.no_grad():
compute pixel images o; = g(s;).
Sample actions a; ~ mg(0;), simulate and compute rewards r; and next states S; 1.
end for
Collect N trajectories 7 = {(s:, as, ) }1=; and compute actor loss Lg via Eq. (3.
Return 7, Lg
Function Main ()
Initialize g, V¢, V¢/ — V¢
for epoch = 1to M do
Generate N short-horizon trajectories 7 and compute actor loss Lg by calling Rollout ().
Compute decoupled policy gradient V) and update mg with Adam.
Fit value function Vj; via critic loss (I3) and update delayed target Vi < oV + (1 — a) V.
end for

B.2 Differentiable Rendering

In this section, we present the construction of our differentiable renderer, designed to facilitate
end-to-end training.

Given a state vector s = [qT, qT]T, where q € R" represents joint positions and q denotes joint
velocities, which have dimension m — 1 or m depending on the presence of quaternions. We compute
m homogeneous transformations T for forward kinematics. These transformations encode the
rotation and translation from the world frame to each joint frame and are used to transform geometry
meshes defined in local joint frames to assemble the full robot mesh. Lighting and camera poses are
also updated using these transformations to set up the full scene. Finally, we render the scene using
PyTorch3D via rasterization. Figure[I2]summarizes the whole process.
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Figure 12: Diagram for differentiable rendering
C Hyperparameters

In this section, we describe our hyperparameter tuning process and share additional insights gained
during experimentation. Detailed hyperparameter values are provided at the end.

C.1 How we tune hyperparameters

For all baseline methods, we initialized hyperparameters using values reported in the original papers.
We then identified the most sensitive hyperparameters and tuned them sequentially. Additional
attention is given to those hyperparameters emphasized in the original works. This process involved
over 500 experiments, with some trials manually terminated early when it became evident that the
chosen hyperparameters were suboptimal. In contrast, we did not apply additional tuning to our
proposed method, as the combination of hyperparameters from state-based SHAC and the encoder
architecture from DrQV2 already yielded strong performance.

We summarize our key findings from the tuning process and present the final hyperparameter values
used in the following sections.

C.2 Key findings and experimental settings

DrQ-v2 We implement DrQ-v2 with parallelized forward simulation to improve wall-clock time
efficiency. During each training episode, we concurrently collect new samples using the current policy
across multiple parallel environments. After data collection, we perform several update steps on the
Q-functions using the data from the replay buffer. The forward pass accounts for only a small portion
of the total training time with parallelization, as shown in Figure[5] The majority of computation time
is instead dedicated to updating the agent’s neural network, i.e., Q-function and Actor. We found
that the ratio between agent update steps and new sample collection plays a critical role in achieving
good performance. While performing multiple agent updates per environment step can improve
sample efficiency, it may negatively impact wall-clock time performance. In addition, we observe
that excessive updates can harm final policy performance due to outdated data from the replay buffer.
Therefore, we carefully tune both the number of parallel environments and the number of updates per
training episode, aiming to maximize wall-clock efficiency and final return. The hyperparameters
used in our experiments are listed in Table[2] The primary difference from the original DrQ-v2 setup
is that we increase both the number of parallel environments and the number of agent updates per
step, while the ratio is kept the same. Unless otherwise noted, the same parameters are used across
all four tasks. We kept neural architecture identical to that used in the original paper and summarize
in Table Bland [t

CURL We also apply parallelized forward simulation to CURL to accelerate training. Similar to
DrQ-v2, the update frequency plays a critical role in achieving strong performance. We tune the
number of parallel environments to optimize wall-clock efficiency within the available GPU memory
budget. The training parameters used for CURL are listed in Table[5} Notably, CURL uses a similar
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Table 2: DrQ-v2 training parameters

Parameter name Value
Number of parallel environments 32; 16 for Cartpole
Number of agent updates 16; 8 for Cartpole
Replay buffer capacity 10°
Action repeat 2
Mini-batch size 256
N-step returns 3
Discount factor ~ 0.99
Learning rate 10~%; (8 x 10~ for Humanoid)
Critic Q-function soft-update rate 0.01
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0, 0.1, 500000);

linear(1.0, 0.1, 2000000) for humanoid

Table 3: DrQV2 encoder architectures

Parameter name Value

Input image size (height x width) 84 x 84

Convolution kernel size 3,3,3,3
Convolution output channel size 32, 32, 32, 32
Convolution activation function Relu

Table 4: DrQ-v2 actor-critic architecture

Task name Trunk size Policy network Critic network

Cartpole 50 [1024, 1024] [1024, 1024]
Hopper 50 [1024, 1024] [1024, 1024]
Ant 50 [1024, 1024] [1024, 1024]
Humanoid 100 [1024, 1024] [1024, 1024]

architecture to DrQ-v2 (see Table E], and EI]); both are adopted from |Yarats et al.|[2020]]. To ensure
a fair comparison, we use the same architecture for both algorithms, avoiding confounding factors
introduced by architectural differences.

DreamerV3 Our implementation of DreamerV3 builds upon the open-source repository available
athttps://github.com/NM512/dreamerv3-torch. We parallelized the environment stepping
in our implementation; however, we observed that this parallelization has minimal impact on per-
formance—consistent with the findings reported by the author of the repository. Additionally,
DreamerV3 is a memory-intensive algorithm, which limits the degree of parallelism we can apply.
The detailed hyperparameters for training are mostly kept the same as those used in |[Hafner et al.
[2023]] and listed in Table @ The neural architecture remains unchanged from the [Hafner et al.| [2023].

D.Va (Ours) Architecture details: Stacked images are first processed by an encoder to generate
a hidden state. The encoder is a 4-layer convolutional network, identical to that used in DrQ-
v2 (Table [3). The hidden state is then passed to the actor network to generate actions. The actor
network consists of a trunk network and a policy network, following the design of DrQ-v2. The trunk
network is a single linear layer followed by layer normalization. The policy and critic network is
adopted from the state-based SHAC: MLP network with ELU activation and layer normalization.
The detailed network architectures are provided in Table
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Table 5: CURL training parameters

Parameter name Value
Number of parallel environments 16
Number of agent updates 8
Replay buffer capacity 10°
Action repeat 2
Batch size 32
Discount factor 0.99
Actor learning rate 1073
Critic learning rate 1073
Adam ((1, B2) for actor and critic (0.9, 0.99)
Q-function soft-update rate 0.01
Initial temperature 0.1
Temperature learning rate 1071

Adam (3, B2) for temperature (0.5, 0.99)

Table 6: DreamerV3 training parameters

Parameter name Value

Image size (height x width) (64 x 64)

Number of parallel environments 4
Batch size 16
Batch length 64
Train ratio 512
Action repeat 2
Replay buffer capacity 10°
Action repeat 2
Discount factor v 0.997
Discount lambda A 0.95
Actor learning rate 3x107°
Critic learning rate 3x107°
Actor-critic adam epsilon 107°
World model learning rate 1071
World model adam epsilon 1078
Critic EMA decay 0.98
Reconstruction loss scale 1.0
Dynamics loss scale 0.5
Representation loss scale 0.1
Actor entropy scale 3x10~%
Return normalization decay 0.99

Table 7: D.Va actor-critic architecture

Task name Trunk size Policy network Critic network

Cartpole 64 [64, 64] [64, 64]
Hopper 128 [128, 64, 32] [64, 64]
Ant 128 [128, 64, 32] [64, 64]
Humanoid 256 [256, 128] [128, 128]

For training, we apply a linear decay schedule to adjust the learning rate over episodes, with specific
hyperparameters provided in Table

17



Table 8: D.Va training parameters

Parameter name | Cartpole | Hopper | Ant | Humanoid
Short horizon length i 32

Number of parallel environments N 64

Actor learning rate 0.002

Critic learning rate 0.0002 | 0.002 0.0005
Target value network « 0.2 0.995
Discount factor 0.99

Value estimation A 0.95

Adam (81, 32) (0.7,0.95)

Number of critic training iterations 16

Number of critic training minibatches 4

State-to-visual Distillation The architecture is kept identical to that used for D.Va, which can be
found in Table[3]and[7} As described earlier, the architecture is constructed by simply concatenating
the DrQv2 encoder with the SHAC state-based architecture, ideally, no method is unfairly favored.
The hyperparameters are tuned following the guidelines of Mu et al.| [2025]]. We found that, to
make State-to-Visual Distillation work effectively, the most critical factor is the data collection
strategy and the frequency of network updates, consistent with the findings reported in [Mu et al.
[2025]]. Specifically, we collect data in a SHAC-style manner: instead of executing long, continuous
trajectories, we roll out short-horizon segments that resume from the endpoint of the previous rollout.
Notably, this implementation is the same as that used in Mu et al.[[2025]]. The detail parameters are
listed in Table

Table 9: State-to-visual Distillation training parameters

Parameter name Value
Short horizon length i 32
Number of parallel environments N 64

Learning rate 0.002

Adam (51, 52) (0.7,0.95)

Batch size 128
Early stop threshold 0.1
Maximum reply buffer size 10°

SHAC with differentiable rendering The neural architecture is kept identical to ours and is
detailed in Table [3| and Table [/| For 3D tasks such as Ant and Humanoid, we observed that the
gradient norm quickly diverges to infinity as the horizon length h increases. To address this, we use
an even smaller horizon length compared to the one used for training state-based SHAC. The number
of parallel environments is also reduced due to GPU memory constraints. The specific parameter
values are provided in Table[I0]

D Additional Experiment

D.1 Compare DPG to SHAC on state space

We provide additional experiments to valid using decoupled policy gradient is enough to gain good
performance in many scenarios. Here, we conduct on state space, with a single line change on the
original SHAC code: actions = actor(obs) to actions = actor(obs.detach()). We kept
all hyperparameters identical to those reported in SHAC. Figure[I3|compares the training performance
of the SHAC with full analytical policy gradient[I]to our decoupled policy gradient[d We find that
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Table 10: Visual-SHAC training parameters

Parameter name | Cartpole | Hopper | Ant | Humanoid
Short horizon length i 32 32 8 32
Number of parallel environments N 64 64 32 32
Critic learning rate 0.0002 0.002 0.0005
Target value network « 0.2 0.995
Actor learning rate 0.002
Discount factor 0.99
Value estimation A 0.95
Adam (81, 32) (0.7,0.95)
Number of critic training iterations 16
Number of critic training minibatches 4
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Figure 13: Comparison between DPG and SHAC on state space: Experiments are conducted with low-
dimensional state observations and results are averaged over five random seeds. All hyperparameters are kept
identical to those used in the original SHAC. DPG still achieves comparable results in the settings that favor

SHAC.

the decoupled policy gradient achieves performance comparable to SHAC on low-dimensional state
spaces, even under settings that favor SHAC.

D.2 Ablation on Value Function

In this section, we present an ablation study on the value function. As shown in Figure[T4] without
the value function, our method fails to learn an effective policy. This result highlights the critical role
of the value function in analytical policy gradient methods.

%10° Cartpole %10° Hopper %10° Ant x10 Humanoid
2 7 6
4
c >0 4
=
2 1 2
& 2.5 2
. 0/ 0.0 0
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D.Va w/ Value Function = D.Va w/o Value Function

Figure 14: Ablation study on value function. D.Va without value function fail to learn effective
control for most of the tasks.

D.3 Ablation on number of frames

In this section, we present an ablation study on the effect of the number of concatenated frames used
as input to the policy. Table[TT]shows the final return achieved with different numbers of stacked
frames as input to the policy. We observe that as long as the number of frames is not extremely low
(e.g., one), the method achieves comparable final performance.
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Table 11: Final Return Achieved with Different Number of Stacked Frames

Number of frames Cartpole Hopper Ant Humanoid
1 2068 £ 29.83 4398.48 +266.80 5681 + 1344.52  5596.94 + 937.92
2 21154+21.20  5055.23 £6.73 7418 £ 862.39  5342.00 £ 1680.70
3 2139 +22.42  5067.13 +18.14 7218 +£986.00  7475.77 + 812.48
4 2155+ 2549  5055.03 £ 2.08 9680 + 222.27  7498.79 £ 623.11
5 2095 +£22.5  5072.33 £14.62 8286 + 880.50 6345.61 + 37.76
6 2140 £29.84 5077.63 £23.74 8243 +£799.45  6578.59 £ 717.24

D.4 Additional tasks

We include an additional quadruped walking task using ANYmal [Hutter et al.,[2016], with third-party
side-view images as input. As shown in Figure[I3] our method learns a visual locomotion policy
within 20 minutes on a single GPU.

Figure 15: ANYmal locomotion: Our method is able to learn ANYmal locomotion from purely
third-party visual input within 20 minutes.

D.5 More gradient norm analysis
Figure[T6]shows the gradient norms of the visual policy computed using SHAC and D.Va, respectively.

We observe that the gradient norms for the two 3D tasks blow up, which explains why SHAC with
differentiable rendering fails to learn an effective visual policy for these tasks, as shown in Figure[7]
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Figure 16: Gradient norms computed using SHAC and D.Va are shown for all environments. The
gradient norms for the Ant and Humanoid tasks blow up.

E Setup

E.1 Tasks Descriptions

We select four classical RL tasks across different complexity levels. The camera views are similar to
those used in [Yarats et al [2021], as illustrated in Figure[I7} Except for Cartpole, where the camera
is fixed to the world frame, all other cameras track the position of the robot’s base joint. The motion
of Cartpole and Hopper is constrained to 2D, whereas Ant and Humanoid are free to move in 3D
space. The body of the Ant may block the view of some of its legs due to the side-view camera setup,
making the environment partially observable. In contrast, the joints in all other environments remain
visible from the camera regardless of posture, resulting in fully observable settings.

The reward functions are identical to those used in the SHAC paper, except for the Cartpole system,
where we add a health score to prevent the cart from moving off-screen. The details are summarized
as follows:
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Cartpole Hopper Ant Humanoid

Figure 17: Camera views of each environment in ManiskillV3

Cartpole: The running rewards are defined as
R: =10 — 6% - 0.16* - 0.052% — 0.13?, (17)

where 6, x denote the angle of pole from upright position and position of cart; and 0, & are the angular
and linear velocity respectively. The total trajectory length is 240, and early termination is triggered
when Cartpole is outside the camera views, i.e.,|z| > 2.5.

Hopper: The running rewards are defined as
0
30°
where v, is the forward velocity, 6 is the orientation of base joint and

Rheight = {_200Ai’ An<0
Ap, A>0

is designed to penalize the low height state. The total trajectory length is 1000, and early termination
is triggered when the height of the hopper is lower than -0.45m.

R: = Vg — ( )2 + Rheight - 0'1”3'”7 (18)

: Ay =clip(h +0.3,-1,0.3), (19)

Ant: The running rewards are defined as
R: =wv, + O.IRup + Rheading +p, —0.27, (20)

where v, is forward velocity, Ryp, Rheading 15 the projection of base orientation in upright and forward
direction, encouraging the agent to be vertically stable and run straightforward, p, is the height of the
base. The total trajectory length is 1000, and early termination is triggered when the height of the ant
is lower than 0.27m.

Humanoid: The running rewards are defined as

R: =v; 4+ 0.1Ryp + Rhcading + Rheighe — 0.002||al], (21)
where v, is forward velocity, Ryp, Rheading i the projection of base orientation in the upright and
forward direction, and

R —QOOA,%, AL <0
height — Ah, A >0

The total trajectory length is 1000, and early termination is triggered when the height of the torso is
lower than 0.74m.

. Ay, = clip(h — 0.84, —1,0.1). (22)

E.2 Simulation

We use the same differentiable simulation framework proposed in SHAC as the underlying dy-
namics model. For the three benchmark RL methods and the state-to-visual tasks, we employ
ManiSkill-V3 12024] for rendering. In contrast, for visual-SHAC, we implement a cus-
tom differentiable rendering pipeline using PyTorch3D, as detailed in Appendix [B.2] All software
components are GPU-accelerated and parallelized. We evaluate our method under both rendering
pipelines. To ensure a fair comparison, all experiments presented in Section ] are conducted using
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the same rendering setup across different methods. We find the ManiSkill implementation to be fairly
efficient—approximately 3x faster than our differentiable rendering pipeline—and therefore, we
use differentiable rendering only when necessary. However, aside from the difference in forward
rendering speed, we find that the final return and sample efficiency of our method remain similar
across both rendering pipelines.

E.3 Hardware

All experiments are conducted on a single NVIDIA GeForce RTX 4080 GPU (16GB) with an Intel
Xeon W5-2445 CPU and 256GB RAM. Unlike the case of simulating dynamics alone—where
tens of thousands of environments can be parallelized at once—heterogeneous rendering requires
significantly more memory. As a result, our hyperparameter tuning is carefully constrained to stay
within the available memory budget.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We summarize our contribution into three parts:

* Claim: We provide a novel computationally efficient method for training visual policy.
Support: The detailed implementation of our algorithm is provided in Section [3|and
Appendix [B.T] The experimental validation is provided in Section[4]

* Claim: We benchmark common visual-policy learning methods under GPU-accelerated
simulation.

Support: The experiments are provided in Section [d] Additionally, we provide a
computational bottleneck analysis for selected methods.

* Claim: We provide an analysis of analytical policy gradients and show deep connection
between open-loop trajectory optimization with closed-loop trajectory optimization
Support: The analysis is provided in Section[3] with both conceptual explanations and
numerical evidence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitation of our method lies in its reliance on the quality of the
simulation environment, as discussed in Section @ However, we argue this limitation is
shared by most existing methods in the field. As result, our next goal is to transfer the
success to real-world scenario.

The computational efficient of our method across different complexity is demonstrate in
Sectiond] The scaling of memory usage is also shown in Figure[I0}

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a formal proof of Theorem [1|in Section [3| Theorem |1|follows
directly from a straightforward application of the chain rule and does not require any
assumptions beyond differentiability.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All additional information to reproduce the results including the general setting
and hyperparameters are includes in Appendix [B] Appendix [C|and Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: the code is available at https://github.com/HaoxiangYou/D.VA
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Appendix [C|and Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each task and algorithm, we run experiments with five different random
seeds and report both the mean and standard deviation in Section 4] following common
practice in the reinforcement learning literature.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics. Our work adheres
fully to these guidelines and does not involve any specific social concerns or ethical risks.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not explicitly discuss societal impacts in the paper. However, our work
may contribute to reducing the carbon footprint by enabling more efficient algorithms. We
do not foresee any potential negative societal impacts arising from this research, as it is
focused on foundational algorithmic improvements without direct application to sensitive or
high-risk domains.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve any models or datasets that pose a high risk of
misuse. Therefore, no additional safeguards are necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our implementation is entirely based on open-source software and code. We
properly cite all tools and packages used in our work.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released as part of this work at the time of submission.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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