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ABSTRACT

For federated learning in practical settings, a significant challenge is the consider-
able diversity of data across clients. To tackle this data heterogeneity issue, it has
been recognized that federated ensemble distillation is effective. Federated en-
semble distillation requires an unlabeled dataset on the server, which could either
be an extra dataset the server already possesses or a dataset generated by training
a generator through a data-free approach. Then, it proceeds by generating pseudo-
labels for the unlabeled data based on the predictions of client models and training
the server model using this pseudo-labeled dataset. Consequently, the efficacy of
ensemble distillation hinges on the quality of these pseudo-labels, which, in turn,
poses a challenge of appropriately assigning weights to client predictions for each
data point, particularly in scenarios with data heterogeneity. In this work, we
suggest a provably near-optimal weighting method for federated ensemble distil-
lation, inspired by theoretical results in generative adversarial networks (GANs).
Our weighting method utilizes client discriminators, trained at the clients based on
a generator distributed from the server and their own datasets. Our comprehensive
experiments on various image classification tasks illustrate that our method sig-
nificantly improves the performance over baselines, under various scenarios with
and without extra server dataset. Furthermore, we provide an extensive analy-
sis of additional communication cost, privacy leakage, and computational burden
caused by our weighting method.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) has received substantial attention in both industry
and academia as a promising distributed learning approach. It enables numerous clients to collab-
oratively train a global model without sharing their private data. A major concern in deploying FL
in practice is the severe data heterogeneity across clients. In the real world, it’s probable that clients
possess non-IID (identical and independently distributed) data distributions. It is known that the data
heterogeneity results in unstable convergence and performance degradation (Li et al., 2019; Wang
et al., 2020b; Li & Zhan, 2021; Kairouz et al., 2021; Huang et al., 2023; Karimireddy et al., 2020).

To address the data heterogeneity issue, various approaches have been taken, including regularizing
the objectives of the client models (Karimireddy et al., 2020; Li et al., 2020; Liang et al., 2019; Yao
et al., 2021; Mendieta et al., 2022), normalizing features or weights (Dong et al., 2022; Kim et al.,
2023), utilizing past round models (Yao et al., 2021; Wang et al., 2023b), sharing feature informa-
tion (Dai et al., 2023; Yang et al., 2024; Tang et al., 2024), introducing personalized layers (Huang
et al., 2023), and learning the average input-output relation of client models through ensemble dis-
tillation (Chang et al., 2019; Gong et al., 2021; Deng et al., 2023; Sattler et al., 2020; Lin et al.,
2020; Cho et al., 2022; Xing et al., 2022; Park et al., 2024; Wang et al., 2023a; Tang et al., 2022;
Zhang et al., 2022; 2023b). In particular, the last approach, federated ensemble distillation, has re-
cently gained significant attention for its effectiveness in mitigating data heterogeneity and for its
advantage of being effectively applicable to heterogeneous client models. It requires an unlabeled
dataset at the server, for which pseudo labels are created based on client predictions. By training on
this pseudo-labeled dataset at the server, the server distills the knowledge from the clients. This ad-
ditional dataset can be either public (Chang et al., 2019; Gong et al., 2021; Deng et al., 2023; Sattler
et al., 2020), held only by the server due to its exceptional data collection capability (Lin et al., 2020;
Cho et al., 2022; Xing et al., 2022; Park et al., 2024), or obtained through a data-free approach (Wang
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Figure 1: A toy example of decision boundaries of aggregated models. Each point represents data,
and its color represents the label. The background color represents the decision boundary of each
model in the RGB channels. The oracle decision boundary, shown by the black lines, corresponds to
the x-axis and y-axis. For aggregated models, we consider the parameter-averaged model (McMa-
han et al., 2017) and ensemble-distilled models using uniform weighting (Lin et al., 2020), variance
weighting (Cho et al., 2022), entropy weighting (Deng et al., 2023; Park et al., 2024), domain-aware
weighting (Wang et al., 2023a), and ours. Detailed settings are provided in Appendix E.1.

et al., 2023a; Tang et al., 2022; Zhang et al., 2022; 2023b). Note that the performance of ensemble
distillation depends on the quality of the pseudo-labels, which ultimately translates into a problem
of appropriately assigning weights to client predictions for each data point, particularly in situations
of data heterogeneity. In this research stream of federated ensemble distillation, early studies like
FedDF (Lin et al., 2020) applied uniform weighting. Subsequently, algorithms such as Fed-ET (Cho
et al., 2022), FedHKT (Deng et al., 2023), FedDS (Park et al., 2024), and DaFKD (Wang et al.,
2023a) emerged, which utilize metrics like variance, entropy, and judgement of client discrimina-
tor as indicators of confidence in client predictions for weighting. However, analysis regarding the
rationale behind optimal weighting remains scarce.

In this paper, we suggest a novel weighting method for federated ensemble distillation that out-
performs previous methods (Fig. 1), with theoretically justified optimality based on some results
in generative adversarial networks (GANs) (Goodfellow et al., 2014). Our main contributions are
summarized in the following:

• We propose FedGO: Federated Ensemble Distillation with GAN-based Optimality. Our
algorithm incorporates a novel weighting method using the client discriminators that are
trained at the clients based on the generator distributed from the server.

• The optimality of our proposed weighting method is theoretically justified. We define an
optimal model ensemble and show that a knowledge-distilled model from an optimal model
ensemble achieves the optimal performance, within an inherent gap due to the difference
between the spanned hypothesis class of ensemble model and the hypothesis class of a
single model. Then, based on the theoretical result for vanilla GAN (Goodfellow et al.,
2014), we show that our weighting method using client discriminators constitutes an opti-
mal model ensemble.

• We experimentally demonstrate significant improvements of FedGO over existing research
both in final performance and convergence speed on multiple image datasets (CIFAR-
10/100, ImageNet100). In particular, we demonstrate performance across various scenar-
ios, including cases where the server holds an unlabeled dataset different from the client
datasets and where the the server does not hold an unlabeled dataset and hence some data-
free approaches are taken. Furthermore, we provide a comprehensive analysis of commu-
nication cost, privacy leakage, and computational burden for the proposed method.

2 SYSTEM MODEL AND RELATED WORK

Federated Learning In federated learning, the goal is to cooperatively train a global model based
on data distributed among K clients, by exchanging the models between a server and the clients.

We focus on classification tasks in this paper. Let X denote the data domain and y denote the
labeling function that outputs the label of the data x ∈ X . A model f(·; θ) is parameterized by
θ ∈ Θ where Θ is the set of model parameters andH = {h|h(·) = f(·; θ), θ ∈ Θ} denotes the class
of parameterized models. For a distribution q on X , h∗

q denotes the expected loss minimizer on q,
i.e., h∗

q ≜ argminh∈H Lq(h), where Lq(h) = Eq[l(h(x), y(x))] and l is the loss function. Client
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k possesses a (labeled) dataset Sk of nk data points, sampled over X i.i.d. according to distribution
pk. Then p =

∑K
k=1 πk · pk, where πk = nk∑K

k′=1
nk′

, is the average of client data distribution. The
objective of federated learning is given as follows:

min
h∈H
Lp(h) = min

h∈H
Ep[l(h(x), y(x))] (1)

= min
h∈H

K∑
k=1

πk ·Epk
[l(h(x), y(x))] = min

h∈H

K∑
k=1

πk · Lpk
(h). (2)

In each communication round t, a subset At of clients downloads the current server model and trains
it based on Sk with the objective of minimizing Lpk

(h). Then it sends the trained model to the
server. The server aggregates these client models to update the server model. The aforementioned
procedure is repeated at the next communication round. For the aggregation of client models at the
server, the FedAVG algorithm (McMahan et al., 2017) constructs the server model with parameter
θts for round t as the average of model parameters θtk for k ∈ At received in round t (line 7 of
Algorithm 1). When the client data distributions are homogeneous, each pk is same as p and hence
Lpk

becomes same as Lp. However, when the client data distributions are heterogeneous, Lpk
and

Lp are not same, leading to a significant degradation in the convergence rate of FedAVG to the
global optimum (Li et al., 2019).

In the following, we introduce federated ensemble distillation using an unlabeled dataset on the
server to address client data heterogeneity.

Federated Ensemble Distillation To address client data heterogeneity, there has been a line of
research on federated ensemble distillation using an unlabeled dataset on the server. This unlabeled
dataset may either be available from the outset (Lin et al., 2020; Cho et al., 2022; Deng et al., 2023;
Park et al., 2024) or produced through a generator trained as a part of FL by taking a data-free
approach (Rasouli et al., 2020; Guerraoui et al., 2020; Li et al., 2022; Wang et al., 2023c; Fan & Liu,
2020; Behera et al., 2022; Hardy et al., 2019; Xiong et al., 2023; Zhang et al., 2021; 2023a; Wang
et al., 2023a; Zhang et al., 2022; 2023b). With the unlabeled dataset, the server model undergoes
additional training to learn the average input-output relationship of client models.

Algorithm 1 describes this federated ensemble distillation, when the client and server model struc-
tures are the same. Here σ represents the softmax function, and KL denotes the Kullback-Leibler
divergence. If the model output already includes the softmax activation, then the softmax function is
omitted in lines 10 and 11. After averaging client model parameters in line 7, the performance of the
server model depends on the quality of the pseudo-labels, as the server model undergoes additional
training with those pseudo-labels. Moreover, the quality of pseudo-labels ỹ(·) relies on designing
the weighting function wk(·), which determines the weighting of client k’s output. Therefore, de-
signing a better-performing ensemble distillation during the server update ultimately boils down to
designing a better-performing weighting function.

For the weighting function, FedDF (Lin et al., 2020) uses uniform weights for each client, i.e.,
wk(x) = 1

|At| for all k in At. Subsequently, algorithms assigning higher weights to the outputs
of more confident clients have been proposed. In Fed-ET (Cho et al., 2022), higher weights are as-
signed to models with larger output logit variance, i.e., wk(x) =

Var(f(x;θt
k))∑

i∈At Var(f(x;θt
i))

. FedHKT (Deng
et al., 2023) and FedDS (Park et al., 2024) allocate higher weights to models with smaller output soft-
max entropy, i.e., wk(x) =

exp(−Entropy(σ(f(x;θt
k)))/τ)∑

i∈At exp(−Entropy(σ(f(x;θt
i)))/τ)

, where τ is the temperature parameter.
In DaFKD (Wang et al., 2023a), while training a global generator and client discriminators at each
round, ensemble distillation is performed on unlabeled dataset generated by the global generator by
assigning higher weights to models with larger discriminator outputs, i.e., wk(x) =

Dt
k(x)∑

i∈At Dt
i(x)

where Dt
k is the client k’s discriminator against the global generator at round t.

For theoretical aspects, generalization bounds of an ensemble model are presented in Lin et al.
(2020); Cho et al. (2022); Wang et al. (2023a) for a binary classification task under ℓ1 loss. For
nk = n

K for all k, a generalization bound for an ensemble model with fixed weights α1, ..., αK with∑
k αk = 1 is given as follows (Lin et al., 2020; Cho et al., 2022): for any δ ∈ (0, 1), the following
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Algorithm 1 Federated learning with K clients for T communication rounds, with ensemble distil-
lation exploiting unlabeled dataset on the server. Client k possesses nk data points, and the fraction
C of clients participate in each communication round. f(·; θ) stands for the model with parameter
θ, and µ stands for the step size.

Require: Client labeled dataset {Sk}Kk=1, server unlabeled dataset U
1: Initialize server model f(·, θ0s) with parameter θ0s
2: for communication round t = 1 to T do
3: At ← sample ⌊C ·K⌋ clients
4: parfor client k ∈ At do
5: θtk ← ClientUpdate(θt−1

s , Sk) ▷ Gradient update θt−1
s with Sk

6: end parfor
7: θts ←

∑
k∈At

nk∑
i∈At ni

· θtk
8: for server train epoch e = 1 to Es do
9: for unlabeled minibatch u ∈ U do

10: ỹ(u)← σ(
∑

k∈At wk(u) · f(u; θtk)) ▷ Label as a weighted sum of client predictions
11: θts ← θts − µ · ∇θt

s
KL(ỹ(u), σ(f(u; θts))) ▷ Ensemble distillation

12: end for
13: end for
14: end for
15: return f(·, θTs )

holds with probability 1− δ:

Lp(

K∑
k=1

αkh
∗
p̂k
) ≤

K∑
k=1

αk ·
[
Lp̂k

(h∗
p̂k
) +

1

2
dH△H(pk, p) + λk +O

(
log(δ−1)
√
nk

)]
. (3)

Here, p̂k is the empirical distribution by sampling nk data points i.i.d. according to pk, dH△H
denotes the discrepancy between two distributions, λk = infh Lpk

(h) + Lp(h), and τH is growth
function bounded by polynomial of the VC-dimension ofH.

On the other hand, a generalization bound for a weighted ensemble model with weight function
wk(x) =

Dt
k(x)∑

i∈At Dt
i(x))

is given as follows (Wang et al., 2023a): for any δ ∈ (0, 1) and σ > 0, the
following holds with probability 1− δ:

Lp(

K∑
k=1

wk · h∗
p̂k
) ≤ (K + 1) ·

K∑
k=1

1

K
·

Lp̂k
(h∗

p̂k
) +

√
σ2 log 2K

δ

2nk

 . (4)

The above bounds relate the loss of an ensemble model (the LHS of (3) and (4)) to the average
empirical loss of client models (the first term in the RHS of (3) and (4)). The proofs of these bounds
rely on the results in domain adaptation theory for binary classification [Shalev-Shwartz & Ben-
David, Theorem 6.11; Ben-David et al., Lemma 3]. Note that the bound (3) assumes a fixed weight
per client irrelevant to data points, hence there is a lack of analysis for assigning varying weights per
data point. The bound (4) assumes a specific weighting function of each data point, but it is too loose
because it becomes vacuous as K increases. Consequently, guidance on determining appropriate
weights for each client per data point is limited. Moreover, in federated ensemble distillation, our
ultimate interest is in the loss of the server model, knowledge-distilled from the ensemble model.
Note that the hypothesis class of ensemble models is in general larger than that of single models,
and hence there exists an inherent gap between the losses of an ensemble model and the knowledge-
distilled model. However, the above bounds do not provide an analysis on this gap.

In Section 3.1, we define an optimal model ensemble and show that the server model knowledge-
distilled from an optimal model ensemble achieves the optimal loss within the gap arising from the
distillation step, which depends on the inherent difference between the hypothesis classes of the
server model and the ensemble model, along with the distribution discrepancy between the average
client distribution p and the distribution ps of unlabeled data on the server.

Generative Adversarial Network The generative adversarial networks (GANs) are a class of
powerful generative models composed of a generator and a discriminator (Goodfellow et al., 2014;
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Gulrajani et al., 2017; Radford et al., 2015; Chen et al., 2016; Zhu et al., 2017; Choi et al., 2018;
Karras et al., 2019). They are trained in an unsupervised learning manner, requiring no class la-
bels. The discriminator aims to distinguish between real images from the dataset and fake images
generated by the generator. Meanwhile, the generator strives to produce images that can fool the
discriminator.

In Goodfellow et al. (2014), the authors showed that the output of an optimal discriminator against
a fixed generator can be expressed in terms of distributions of real and fake images.
Theorem 1. (Goodfellow et al., 2014, Proposition 1) For a fixed generator G, let pg and pdata denote
the density functions of the generated distribution by G and the real data distribution, respectively.
Then the output of an optimal discriminator D for input data x is given as follows:

D(x) =
pdata(x)

pdata(x) + pg(x)
. (5)

Using the above result, we develop a method of assigning weights to client predictions in Section 3.

3 PROPOSED METHOD

In this section, we propose a weighting method for federated ensemble distillation. First, theoretical
results are presented in Section 3.1. In Section 3.1.1, we define an optimal model ensemble and give
a bound on the loss of the server model knowledge-distilled from an optimal model ensemble. Next,
in Section 3.1.2, we propose a client weighting method to construct an optimal model ensemble,
based on Theorem 1. In Section 3.2, we introduce our FedGO algorithm, leveraging the theoretical
results. We note that a generalization bound of an ensemble model with our proposed weighting
method comparable with (3) is provided in Appendix C.

3.1 THEORETICAL RESULTS

3.1.1 ENSEMBLE DISTILLATION WITH OPTIMAL MODEL ENSEMBLE

We first define an optimal model ensemble.
Definition 1. For K clients, the ensemble of their models and weight functions {(hk, wk)}Kk=1 is
said to be an optimal model ensemble if the following holds:

Lp

(
K∑

k=1

wk · hk

)
= Ep

[
l

(
K∑

k=1

wk(x) · hk(x), y(x)

)]
≤ min

h∈H
Lp(h) = Lp(h

∗
p). (6)

We remind that the objective of federated learning is to train a model that minimizes the expected
loss over the average client distribution p as shown in (1). If {(hk, wk)}Kk=1 is an optimal model en-
semble, its expected loss over p is less than or equal to the minimum expected loss over p achievable
by a single model, i.e., minh∈H Lp(h).

However, we cannot guarantee that a knowledge-distilled model from an optimal model ensemble
would be optimal, i.e., achieve minh∈H Lp(h), due to the following two reasons: 1) the ensemble
model

∑K
k=1 wk ·hk may lie outside the hypothesis classH of a single model and 2) the distribution

used for knowledge distillation (the distribution ps of unlabeled data on the server) can be different
from p. In the following theorem, we present a bound on the expected loss over p of a single model
by taking into account these factors. For two hypotheses h, h′ ∈ H and a distribution q over X , the
expected difference between h and h′ over q, denoted Lq(h, h

′), is defined as follows:

Lq(h, h
′) ≜ Eq [(l(h(x), h

′(x))] . (7)

Theorem 2. (Informal) Let H̄ ≜ {
∑K

k=1 wk · hk|hj ∈ H, wj : X → [0, 1],
∑K

k=1 wk(x) = 1, j =
1, · · · ,K, x ∈ X} be the spanned hypothesis class, ps be a distribution on X , and {(hk, wk)}Kk=1
be an ensemble of client models and weight functions. Then for any h ∈ H, the following holds:

Lp(h) ≤ Lp(

K∑
k=1

wk · hk) + Lps
(h,

K∑
k=1

wk · hk) +
1

2
dH̄△H̄(p, ps). (8)
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The formal statement and the proof of the above theorem are in Appendix A. Let us provide a brief
sketch of the proof. Utilizing the results from Ben-David et al. (2006) and Crammer et al. (2008), we
have Lp(h) ≤ Lp(

∑K
k=1 wk · hk) + Lp(h,

∑K
k=1 wk · hk). Then from the triangular inequality, we

obtain Lp(h,
∑K

k=1 wk ·hk) ≤ Lps(h,
∑K

k=1 wk ·hk)+ |Lp(h,
∑K

k=1 wk ·hk)−Lps(h,
∑K

k=1 wk ·
hk)|. Now the desired inequality is obtained by applying the results from (Ben-David et al., Lemma
3).

From Theorem 2, we can ascertain the following. The loss of the server model h is bounded by the
sum of three losses: 1) expected loss of the ensemble model over p, 2) difference between h and∑K

k=1 wk · hk over ps, and 3) the distribution discrepancy between p and ps.

The following corollary is a direct consequence of Theorem 2 and Definition 1.
Corollary 1. (Informal) For an optimal model ensemble {(hk, wk)}Kk=1, the following holds for
any h ∈ H:

Lp(h
∗
p) ≤ Lp(h) ≤ Lp(h

∗
p) + Lps(h,

K∑
k=1

wk · hk) +
1

2
dH̄△H̄(p, ps). (9)

Corollary 1 demonstrates the powerfulness of an optimal model ensemble. If an optimal model
ensemble is constituted, the difference between the expected loss of the server model over p and
the minimum expected loss Lp(h

∗
p) = minh∈H Lp(h) is bounded by the distillation loss, which

depends on the inherent difference between the hypothesis classH and the spanned hypothesis class
H̄, along with the distribution discrepancy between p and ps.

In the next subsection, we propose a weighting method to constitute an optimal model ensemble.

3.1.2 CLIENT WEIGHTING FOR OPTIMAL MODEL ENSEMBLE

Let us assume that the server has models {h∗
pk
}Kk=1 trained by clients based on their respective data

distributions {pk}Kk=1. In the following theorem, we present weight functions {wk}Kk=1 such that
the ensemble of {h∗

pk
, wk}Kk=1 constitutes an optimal model ensemble.

Theorem 3. Let the loss function l be convex. Define the client weight functions {w∗
k}Kk=1 as

follows:

w∗
k(x) ≜

nk · pk(x)∑K
i=1 ni · pi(x)

=
πk · pk(x)∑K
i=1 πi · pi(x)

. (10)

Then, the ensemble {h∗
pk
, w∗

k}Kk=1 is an optimal model ensemble, i.e., Lp

(∑
k w

∗
k · h∗

pk

)
≤ Lp(h

∗
p).

Theorem 3 follows from some manipulations based on the convexity of the loss and the definitions
of w∗

k’s and h∗
pk

’s, and its full proof is provided in Appendix B.

Theorem 3 demonstrates that for data point x, weighting according to each client’s proportion of
having x constitutes an optimal model ensemble. However, even if weighting each client according
to Theorem 3 constitues an optimal model ensemble, it is not feasible without knowing the data
distribution pk of each client. Theorem 4 addresses this issue based on Theorem 1 and provides
hints on how to implement an optimal model ensemble.

Definition 2. (Odds): For ϕ ∈ (0, 1), its odds value Φ is defined as Φ(ϕ) = ϕ
1−ϕ .

Theorem 4. For a fixed generator G with generating distribution pg , let Dk be an optimal discrim-
inator for generator G and client k’s distribution pk. Assume that Dk outputs a value over (0, 1)
using a sigmoid activation function, and let Φk(x) ≜ Φ(Dk(x)). Then, for x ∈ supp(pg), the
following holds:

nk · Φk(x)∑K
i=1 ni · Φi(x)

=
πk · pk(x)∑K
i=1 πi · pi(x)

= w∗
k(x). (11)

Theorem 4 is a direct consequence of Theorem 1, because Φk(x) =
pk(x)
pg(x)

from Theorem 1. Theo-
rem 4 indicates that if the server once receives the optimal discriminators {Dk}Kk=1 trained by the

6
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clients, it can use those discriminators to calculate the weights for optimal model ensemble. Note
that the generator G only needs to generate a wide distribution capable of producing sufficiently
diverse samples. Therefore, one can use an off-the-shelf generator pretrained on a large dataset.

3.2 PROPOSED ALGORITHM: FEDGO

By leveraging the theoretical results in Section 3.1, we propose FedGO that constitutes an optimal
model ensemble and performs knowledge distillation. The main technical novelty of FedGO lies
in implementing the optimal weighting function w∗

k using client discriminators, which is a versatile
technique that can be integrated to both the following scenarios with/without extra server dataset.

(S1) The server holds an extra unlabeled dataset.

(S2) The server holds no unlabeled dataset, thus a data-free approach is needed.

For completeness, let us describe how the FedGO algorithm can be adapted depending on the cases
(S1) and (S2). FedGO largely consists of two stages: pre-FL and main-FL. In the pre-FL stage,
the server and the clients exchange the generator and the discriminators. First, the server obtains a
generator through one of the following three methods, and distributes the generator to the clients.

(G1) Train a generator with an unlabeled dataset on the server, which is possible under (S1).

(G2) Load an off-the-shelf generator pretrained on a sufficiently rich dataset.

(G3) Train a generator through an FL approach, e.g., using FedGAN (Rasouli et al., 2020).

After receiving the generator, each client trains its own discriminator based on its dataset and sends
the discriminator to the server.

The main-FL stage operates according to Algorithm 1, except that the server assigns weights for
pseudo-labeling according to (11) using the client discriminators. For the server unlabeled dataset
U used for distillation, which we call distillation dataset, we consider the following cases:

(D1) Use the same dataset held by the server, which is possible under (S1).

(D2) Produce a distillation dataset using the generator from (G2).

(D3) Produce a distillation dataset using the generator from (G3).

A comprehensive analysis of additional communication cost, privacy leakage, and computational
burden according to the methods for obtaining the generator and distillation set is provided in Ta-
ble 1, which shows the trade-off among the methods. In particular, an extra dataset at the server
makes the communication cost and the client-side privacy and computational burden negligible, at
the expense of server-side privacy leakage. In the absence of server dataset, the use of an off-the-
shelf generator makes all the burdens negligible, but it can be challenging to secure an off-the-shelf
generator whose generation distribution is similar to the client data distribution. Lastly, the data-free
approach (G3)+(D3) does not require an extra server dataset or an external generator, but it increases
the communication burden and the privacy and computational burden on the client side.

A detailed description of FedGO and explanation for Table 1 can be found in Appendices D and G,
respectively.

Table 1: A comprehensive analysis of additional communication burden, privacy leakage, and com-
putational burden caused by the proposed weighting method, compared to FedAVG.

Extra
Server Dataset

Generator
Preparation

Distillation
Dataset

Communication
Cost

Privacy Leakage Client-side
Computational BurdenServer-side Client-side

S1 G1 D1 Negligible Non-negligible Negligible Negligible
S1 G2 D1 Negligible Non-negligible Negligible Negligible
S2 G2 D2 Negligible - Negligible Negligible
S2 G3 D3 Non-negligible - Non-negligible Non-negligible
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4 EXPERIMENTAL RESULTS

In this section, we present the experimental results. All experimental results were obtained using
five different random seeds, and the reported results are presented as the mean± standard deviation.

4.1 EXPERIMENTAL SETTING

Datasets and FL Setup We employed datasets CIFAR-10/100 (Krizhevsky et al., 2009) (MIT
license) and downsampled ImageNet100 (ImageNet100 dataset; Chrabaszcz et al., 2017). Un-
less specified otherwise, the entire client dataset corresponds to half of the specified client dataset
(half for each class), and each client dataset is sampled from the entire client dataset according to
Dirichlet(α), akin to setups in Lin et al. (2020); Cho et al. (2022). α is set to 0.1 and 0.05 to rep-
resent data-heterogeneous scenarios. The server dataset corresponds to half of the specified server
dataset (half for each class) without labels. If not otherwise specified, the server dataset and the
client datasets partition the same dataset disjointly. We considered 20 and 100 clients (20 clients if
not specified otherwise), assuming that 40% of the clients participate in each communication round.

Models and Baselines For architecture, we employed ResNet-18 (He et al., 2016) with batch
normalization layers (Ioffe & Szegedy, 2015). For baselines, we considered the vanilla Fe-
dAVG (McMahan et al., 2017) and FedProx Li et al. (2020) that do not perform ensemble distil-
lation, FedDF (Lin et al., 2020), FedGKD+ (Yao et al., 2021) and DaFKD (Wang et al., 2023a) that
incorporate ensemble distillation. For comparison with other weighting methods, we considered the
variance-based weighting method of Cho et al. (2022), the entropy-based methods of Deng et al.
(2023) and Park et al. (2024), and the domain-aware method of Wang et al. (2023a), described in
Section 2. As an upper bound of the performance, we also compared with central training that trains
the server model directly using the entire client dataset. FedGO and DaFKD require image genera-
tors and discriminators. For the generator, we considered the three approaches (G1), (G2), and (G3)
in Section 3.2. For (G1) and (G3), we adopted the model architecture and training method proposed
in WGAN-GP (Gulrajani et al., 2017). For (G2), we employed StyleGAN-XL (Sauer et al., 2022),
pretrained on ImageNet (Krizhevsky et al., 2012). Unless specified otherwise, we assume (G1). For
discriminators, we utilized a 4-layer CNN. More experimental details are provided in Appendix E.2.

4.2 RESULTS

Test Accuracy and Convergence Speed Table 2 shows the test accuracy of the server model and
Table 3 presents the communication rounds required for the server model to achieve target accuracy
(Acctarget) for the first time, for the baselines and FedGO, on CIFAR-10/100 and ImageNet100
datasets. Our FedGO algorithm exhibits the smallest performance gap from the central training and
the fastest convergence speed across all the datasets and data heterogeneity settings.

For CIFAR-10 with α = 0.1, our FedGO algorithm shows a performance improvement of over
7%p compared to the baselines. However, we observe a diminishing gain for CIFAR-100 and Ima-
geNet100. We argue in Appendix F.1 that this is not due to the marginal improvement in FedGO’s
ensemble performance, but rather due to larger distillation loss as the server model more struggles
to keep up with the performance of the ensemble model.

Comparison of Weighting Methods Figure 2 shows the ensemble test accuracy along with com-
munication rounds on the CIFAR-10 dataset, according to weighting methods. We evaluated en-
semble test accuracy to compare the efficacy of each method in generating pseudo-labels. For the
baseline weighting methods, we considered the uniform (Lin et al., 2020), the variance-based (Cho
et al., 2022), the entropy-based (Deng et al., 2023; Park et al., 2024), and the domain-aware (Wang
et al., 2023a) methods. For fair comparison, all the baselines follow the same steps except the
weighting methods. The effectiveness of our weighting method is demonstrated by its ensemble test
accuracy outperforming all the other weighting methods over all communication rounds.

Results with 100 Clients Figure 3 shows (a) the test accuracy of the server model, (b) the test
accuracy of the ensemble model, and (c) the test loss of the ensemble model during the training
process for K = 100 clients on CIFAR-10 dataset with α = 0.05. The latter two measures were
evaluated only for algorithms incorporating ensemble distillation. FedGO achieves the test accuracy
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Table 2: Server test accuracy (%) of our FedGO and baselines on three image datasets at the 100-th
communication round. A smaller α indicates higher heterogeneity.

CIFAR-10 CIFAR-100 ImageNet100

α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

Central Training 85.33±0.25 51.72±0.65 43.20±1.00
FedAVG 58.65±5.75 46.61±8.54 38.93±0.74 36.66±0.97 29.44±0.41 27.58±0.88
FedProx 64.69±2.15 55.56±9.86 38.21±0.95 34.44±1.26 29.96±0.66 26.99±0.97
FedDF 71.56±5.09 59.53±9.88 42.74±1.22 37.18±1.03 33.48±1.00 30.94±1.60

FedGKD+ 72.59±4.10 59.96±8.60 43.35±1.14 40.47±1.00 34.10±0.67 31.42±0.93
DaFKD 71.52±5.56 67.51±10.77 44.12±2.25 39.50±0.85 33.34±0.69 31.59±1.46

FedGO (ours) 79.62±4.36 72.35±9.01 44.66±1.27 41.04±0.99 34.20±0.71 31.70±1.55

Table 3: The number of communication rounds to achieve a test accuracy of at least Acctarget.

CIFAR-10 CIFAR-100 ImageNet100

α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05
Acctarget 60% 45% 35% 35% 25% 25%

FedAVG 65.6±22.8 47.4±14.9 42.4±12.8 76.0±8.5 22.2±3.1 43.8±7.3
FedProx 38.0±9.1 33.0±12.7 45.6±5.9 86.0±11.8 20.8±3.8 47.6±5.8
FedDF 5.4±1.4 6.0±1.5 15.2±5.7 78.0±23.8 9.4±1.9 22.0±5.7

FedGKD+ 5.6±1.6 4.2±1.2 12.6±3.3 39.8±19.6 9.0±1.4 14.8±2.5
DaFKD 5.6±1.4 3.0±0.6 13.4±5.4 50.2±27.9 9.0±2.8 15.6±4.1

FedGO (ours) 3.0±0.9 2.0±0.6 11.0±2.1 25.4±9.1 8.4±1.0 12.6±1.6
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Figure 2: Ensemble test accuracy (%) of FedGO and other baseline weighting methods over com-
munication rounds on CIFAR-10 with α = 0.1 and α = 0.05.

of 69.52%, which is slightly lower than 72.35% with 20 clients (Table 2). In comparison, FedAVG,
FedProx, FedDF, FedGKD+, and DaFKD show significant performance drops to 33.40%, 35.07%,
44.36%, 45.44%, and 59.62%, respectively. This demonstrates that even in settings with a large
number of clients, FedGO exhibits robust performance compared to the baselines.

In terms of the test accuracy and the test loss of the ensemble model, FedGO consistently demon-
strates superior performance across all rounds compared to the baseline algorithms. Furthermore,
unlike the baseline algorithms, whose test loss initially decreases but then becomes unstable and
increases from early rounds, FedGO’s loss converges with small deviation.

FedGO with a Pretrained Generator If there exists a pretrained generator capable of generat-
ing sufficiently diverse data, the server can distribute the pretrained generator to clients instead of
training a generator from scratch using the server’s unlabeled dataset, which corresponds to the case
(G2) in Section 3.2. This approach has the advantage of saving the server’s computing resources
required for training a generator.
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Figure 3: Server test accuracy (%), test accuracy of the ensemble model (%), and test loss of the
ensemble model of our FedGO and baselines for 100 clients on CIFAR-10 dataset with α = 0.05.

Table 4 reports the performance of FedGO for various datasets with α = 0.05, when using a
generator trained with the server’s unlabeled dataset versus using a generator pretrained on Ima-
geNet (Krizhevsky et al., 2012). We observe that utilizing the pretrained generator results in supe-
rior performance on CIFAR-10 and ImageNet100, whereas it remains the same for CIFAR-100. A
key factor contributing to performance enhancement seems to be the larger model structure of the
pretrained generator and its training with a richer dataset. This enhances the generalization perfor-
mance of client discriminators, enabling optimal weighting even for test data. However, since the
assumption of Theorem 4 does not hold for x ∈ supp(p)\ supp(pg), the portion of data for which an
optimal weighting is guaranteed decreases as the portion of p’s support not covered by pg increases,
potentially leading to performance degradation. We note that ImageNet100 is a subset of ImageNet,
and ImageNet includes the classes of CIFAR-10 except deer. However, there are several classes of
CIFAR-100 not included in ImageNet, which could possibly result in no performance gain.

Table 4: Server test accuracy (%) of our FedGO with a generator trained with the unlabeled dataset
on the server (Scratch) and with an off-the-shelf generator pretrained on ImageNet (Pretrained) on
three image datasets with α = 0.05.

CIFAR-10 CIFAR-100 ImageNet100

Generator Scratch Pretrained Scratch Pretrained Scratch Pretrained

Accuracy 72.35±9.01 74.40±6.97 41.04±0.99 41.04±0.79 31.70±1.55 32.72±0.18

More Results In Appendix F, we provide more experimental results. We report ensemble test
accuracy of the baselines and FedGO, demonstrating a larger improvement compared to test accu-
racy. We also provide results for cases where the server dataset is different from the client datasets,
as well as for data-free approaches when no server dataset is available, showing significant perfor-
mance gains over the baselines. Additionally, we report the performance of FedGO with a reduced
server dataset and various discriminator training epochs, showing that even with only 20% of the
server dataset, FedGO achieves a performance gain of 15%p over FedAVG. Furthermore, FedGO
outperforms the baselines even with significantly fewer discriminator training epochs.

In Appendix G, a comprehensive analysis of communication costs, privacy, and computational costs
for FedGO and baselines is provided.

5 CONCLUSION

We proposed the FedGO algorithm, which effectively addresses the challenge of client data hetero-
geneity. Our algorithm was proposed based on theoretical analysis of optimal ensemble distillation,
and various experimental results demonstrated its high performance and fast convergence rate under
various scenarios with and without extra server dataset. Due to page limit, limitation and broader
impact of our work are provided in Appendices H and I, respectively.
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A FORMAL STATEMENT AND PROOF OF THEOREM 2

In addition to the setups and definitions introduced in Section 2, we assume binary classification
task, i.e., y(x) ∈ [0, 1] and h(x) ∈ {0, 1}, coupled with ℓ1 loss.

We first present some definitions and a lemma.
Definition A.1. (Kifer et al., 2004, Definition 1) For two distributions q and q′ over a domain X ,
let H denote a hypothesis class on X and I(h) for h ∈ H denote the set {x ∈ X : h(x) = 1}. The
H-divergence between q and q′ is

dH(q, q′) = 2 sup
h∈H
|Prx∼q[I(h)]− Prx∼q′ [I(h)]|. (12)

Definition A.2. For a hypothesis space H, the symmetric difference hypothesis space H△H is the
set of hypotheses

g ∈ H△H ⇔ g(x) = h(x)⊕ h′(x) for some h, h′ ∈ H (13)
where ⊕ is the XOR function.
Lemma A.1. For hypotheses h, h′ ∈ H and distributions q, q′ on X , we have

|Lq(h, h
′)− Lq′(h, h

′)| ≤ 1

2
dH△H(q, q′). (14)

Proof. By the definition ofH△H-distance, we have
dH△H(q, q′) = 2 sup

h∈H
|Prx∼q[h(x) ̸= h′(x)]− Prx∼q′ [h(x) ̸= h′(x)]| (15)

= 2 sup
h∈H
|Lq(h, h

′)− Lq′(h, h
′)| (16)

≥ 2|Lq(h, h
′)− Lq′(h, h

′)|, (17)
which completes the proof.

Now we are ready to present the formal statement and proof of Theorem 2.
Theorem A.1. For binary classification task with ℓ1 loss, consider hypothesis class H such that
h ∈ H outputs 0 or 1 and its spanned hypothesis class H̄ ≜ {

∑K
k=1 wk ·hk|hk ∈ H, wk : X → [0, 1]

for all k = 1, ...,K,
∑K

k=1 wk = 1}. For any h ∈ H and (
∑K

k=1 wk · hk) ∈ H̄, the following holds:

Lp(h) ≤ Lp(

K∑
k=1

wk · hk) + Lps
(h,

K∑
k=1

wk · hk) +
1

2
dH̄△H̄(p, ps). (18)

Proof. We have
Lp(h) = Ep[l(h(x), y(x)] (19)

≤ Ep[l(h(x), (

K∑
k=1

wk · hk)(x)] +Ep[l((

K∑
k=1

wk · hk)(x), y(x)] (20)

= Lp(

K∑
k=1

wk · hk) + Lp(h,

K∑
k=1

wk · hk) (21)

by triangle inequality (Ben-David et al., 2006; Crammer et al., 2008).

Since A ≤ B + |A−B|, letting A = Lp(h,
∑K

k=1 wk · hk), B = Lps(h,
∑K

k=1 wk · hk), the RHS
of (21) is upper-bounded by

Lp(

K∑
k=1

wk · hk) + Lps
(h,

K∑
k=1

wk · hk) + |Lp(h,

K∑
k=1

wk · hk)− Lps
(h,

K∑
k=1

wk · hk)| (22)

= Lp(

K∑
k=1

wk · hk) + Lps
(h,

K∑
k=1

wk · hk) +
1

2
dH̄△H̄(p, ps) (23)

by the definition of dH̄△H̄ and Lemma A.1. Thus, we prove Theorem A.1.
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B PROOF OF THEOREM 3

Before we start the proof of Theorem 3, we present the following lemma with the setups and defini-
tions introduced in Section 2.
Lemma B.1. Let the loss function l be convex and {hk}Kk=1 ⊂ H. For the weight functions
{w∗

k}Kk=1 defined in Theorem 3, the following holds:

Lp(
∑

kw
∗
k · hk) ≤

∑
k πk · Lpk

(hk). (24)

Proof. Note that

Lp(
∑

k w
∗
k · hk) = Ex∼p [l (

∑
k w

∗
k(x) · hk(x), y(x))] (25)

=

∫
l (
∑

k w
∗
k(x) · hk(x), y(x)) · p(x)dx (26)

=

∫
l (
∑

k w
∗
k(x) · hk(x), y(x)) ·

∑
j πj · pj(x)dx (27)

=

∫
l (
∑

k w
∗
k(x) · hk(x),

∑
k w

∗
k(x) · y(x)) ·

∑
j πj · pj(x)dx (28)

≤
∫

(
∑

k w
∗
k(x) · l (hk(x), y(x))) ·

∑
j πj · pj(x)dx (29)

=

∫ ∑
k

πk(x)·pk(x)∑K
i=1 πi·pi(x)

· l (hk(x), y(x)) ·
∑

j πj · pj(x)dx (30)

=
∑
k

∫
πk · pk(x) · l (hk(x), y(x)) dx (31)

=
∑
k

πk ·
∫

l (hk(x), y(x)) · pk(x)dx (32)

=
∑
k

πk · Lpk
(hk), (33)

where (29) holds due to the convexity of loss function l(·, ·). This completes the proof.

Now we present the proof of Theorem 3.

Proof. For h ∈ H, we have

Lp(h) = Ex∼p [l (h(x), y(x))] (34)

=

∫
l (h(x), y(x)) · p(x)dx (35)

=

∫
l (h(x), y(x)) ·

∑
k πk · pk(x)dx (36)

=
∑

k πk ·
∫
[l (h(x), y(x))] · pk(x)dx (37)

=
∑

k πk · Lpk
(h) (38)

≥
∑

k πk · Lpk
(h∗

pk
). (39)

Hence, it suffices to show that

Lp(
∑

kw
∗
k · h∗

pk
) ≤

∑
k πk · Lpk

(h∗
pk
), (40)

and this is the direct result of Lemma B.1 with {hk}Kk=1 = {h∗
pk
}Kk=1.

C GENERALIZATION BOUND WITH EMPIRICAL LOSS MINIMIZER

In this section, we present the generalization loss bound of the ensemble of empirical loss minimizers
of clients with our weighting method.
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Theorem C.1. For binary classification task with ℓ1 loss, the following holds for our weighting
function {w∗

k}Kk=1 defined in Theorem 3:

Lp(

K∑
k=1

w∗
k · h∗

p̂k
) ≤

K∑
k=1

πk ·

[
Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

]
(41)

≤ Lp̂(h
∗
p̂) +

K∑
k=1

πk ·
4 +

√
log(τH(2nk))

(δ/K) ·
√
2nk

, (42)

where p̂k is the empirical distribution by sampling nk data points i.i.d. according to pk, p̂ =∑K
k=1 πk · p̂k, and τH is growth function bounded by polynomial of the VC-dimension ofH.

Compared to (4), we can see that the ensemble of empirical loss minimizers with our weighting
method has a tighter generalization bound without the factor of (K + 1).

Before we prove Theorem C.1, we present the following theorem.

Theorem C.2. (Shalev-Shwartz & Ben-David, Theorem 6.11) Let H be a hypothesiss class and let
τH be its growth function. Then, for every distribution q on X and every δ ∈ (0, 1), with probability
of at least 1− δ over the m i.i.d. choice of S ∼ qm with its empirical distribution q̂, we have

|Lq(h)− Lq̂(h)| ≤
4 +

√
log(τH(2m))

δ
√
2m

. (43)

We also present the bound of growth function τH.

Lemma C.1. (Shalev-Shwartz & Ben-David, Lemma 6.10) Let H be a hypothesis class with VC-
dimension of H is smaller than d, i.e. V CDim(H) ≤ d < ∞. Then, for all m, τH(m) ≤∑d

i=0

(
m
i

)
. In particular, if m > d+ 1, then τH(m) ≤ (em/d)d, where e is Euler’s number.

Now we present the proof of Theorem C.1.

Proof. By the result of Lemma B.1 with {hk}Kk=1 = {h∗
p̂k
}Kk=1, we can derive

Lp(
∑

k w
∗
k · h∗

p̂k
) ≤

∑
k πk · Lpk

(h∗
p̂k
). (44)

Also we note that Sk ∼ pnk

k . We can derive the following inequality for k = 1, ...,K using Theorem
C.2. With probability at least of 1− (δ/K),

Lpk
(h∗

p̂k
) ≤ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

. (45)

where τH is growth function bounded by polynomial of the VC-dimension ofH.

By the union bound, we have

P

[
K⋂

k=1

(
Lpk

(h∗
p̂k
) ≤ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

)]
(46)

= 1− P

[
K⋃

k=1

(
Lpk

(h∗
p̂k
) ≥ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

)]
(47)

≥ 1−
K∑

k=1

P

[(
Lpk

(h∗
p̂k
) ≥ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

)]
(48)

≥ 1−
K∑

k=1

(δ/K) (49)

≥ 1− δ. (50)
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Hence, with probability at least 1− δ, following inequality holds for all k = 1, ..,K:

Lpk
(h∗

p̂k
) ≤ Lp̂k

(h∗
p̂k
) +

4 +
√
log(τH(2nk))

(δ/K)
√
2nk

. (51)

Furthermore, by definition of p̂,

Lp̂(h
∗
p̂) =

∑
k πk · Lp̂k

(h∗
p̂) (52)

≥
∑

k πk · Lp̂k
(h∗

p̂k
). (53)

By combining the above results, with probability of at least 1− δ, we have

Lp(
∑K

k=1 w
∗
k · h∗

p̂k
) ≤

∑
k πk · Lpk

(h∗
p̂k
) (54)

≤
K∑

k=1

πk ·

[
Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

]
(55)

≤
K∑

k=1

[
πk · Lp̂k

(h∗
p̂k
) + πk ·

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

]
(56)

≤ Lp̂(h
∗
p̂) +

K∑
k=1

πk ·
4 +

√
log(τH(2nk))

(δ/K)
√
2nk

. (57)

This completes the proof.

D DESCRIPTION OF FEDGO

Figure 4 illustrates the operation of FedGO. Algorithm 2 presents a pseudo-code of FedGO. For
training discriminators, each client optimizes the GAN loss with respect to its labeled dataset. A
pseudo-code of client discriminator update is provided in Algorithm 3.

Algorithm 2 FedGO algorithm with K clients for T communication rounds. f(·; θ) stands for the
model with parameter θ, µ stands for the step size, and Φk(x) stands for the odds value of Dk(x).

Require: Client labeled dataset {Sk}Kk=1
1: Initialize server model f(·, θ0s) with parameter θ0s
2: Prepare generate G and unlabeled dataset U ▷ By one of the methods in Table 1
3: parfor client k ∈ {1, 2, ...,K} do
4: Dk ← DiscriminatorUpdate(G,Sk) ▷ Detailed in Algorithm 3
5: end parfor
6: for communication round t = 1 to T do
7: At ← sample ⌊C ·K⌋ clients
8: parfor client k ∈ At do
9: θtk ← ClientUpdate(θt−1

s , Sk) ▷ Gradient update θt−1
s with Sk

10: end parfor
11: θts ←

∑
k∈At

nk∑
i∈At ni

· θtk
12: for server train epoch e = 1 to Es do
13: for unlabeled minibatch u ∈ U do
14: ỹ(u)← σ(

∑
k∈At w∗

k(u) · f(u; θtk)) ▷ w∗
k(u) =

nk·Φk(u)∑
i∈At ni·Φi(u)

15: θts ← θts − µ · ∇θt
s
KL(ỹ(u), σ(f(u; θts)))

16: end for
17: end for
18: end for
19: return f(·, θTs )
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2. Main FL : Ensemble distillation along with client discriminators

1. Generator preparation (G1 or G2 or G3) 2. Client discriminator training 3. Client discriminators aggregation

Generator

G

Server

𝐷𝐶
𝐷2

𝐷1

Client discriminators

1. Pre-FL : Client discriminators preparation
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Figure 4: Illustration of our FedGO algorithm.

Algorithm 3 Discriminator update for Ed epochs. µd stands for the step size and D(·, θ) is the
parameterized discriminator with parameter θ.

Require: Generator G, labeled dataset S
1: Initialize discriminator model D(·, θ0d) with parameter θ0d
2: for epoch e = 1 to Ed do
3: θed ← θe−1

d
4: for minibatch m ∈ S do
5: (xreal, y)← (images, labels) pair of minimatch m
6: xfake ← generated images by generator G
7: LossGAN (D(·, θed))← log(D(xreal, θ

e
d) + log(1−D(xfake, θ

e
d))

8: θed ← θed − µd∇θe
d
LossGAN (D(·, θed)) ▷ Update with gradient for vanilla GAN loss

9: end for
10: end for
11: return D(·, θEd

d ))

E EXPERIMENTAL DETAILS

All experiments were conducted in Python 3.8.12 environment using a 64-core Intel 2.90GHz Xeon
Gold 6226R CPU with 512GB memory, and an RTX 3090 GPU. We also implemented the algo-
rithms using PyTorch with version 1.11.0.

E.1 DETAILED EXPERIMENTAL SETTING AND ANALYSIS OF TOY EXAMPLE (FIGURE 1)

For the toy example in Figure 1, the dataset is generated from a mixture of four Gaussian distribu-
tions, each with a variance of 3. The top row of Figure 5 shows the global data distribution and the
datasets held by four clients. Each point represents data, with its color indicating the class label:
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Server data Global data distribution Client 1's data Client 2's data Client 3's data Client 4's data

Averaged model Uniform weighting Variance weighting Entropy weighting Domain weighting Our weighting

Figure 5: Top row represents the server and clients’ datasets. Bottom row, showing the decision
boundaries of the aggregated models, is the same as Figure 1 and copied here for ease of analysis.

data from Gaussians with means at (4, 4) and (-4, -4) are labeled as Red, data from the Gaussian
with mean at (-4, 4) as Blue, and data from the Gaussian with mean at (4, -4) as Green. Each Gaus-
sian provides 300 data samples. Each client holds 90% of data from the Gaussian whose mean is
in a certain quadrant (the 3rd, 4th, 2nd, 1st quadrants for Clients 1, 2, 3, and 4, respectively), and
the remaining 10% from Gaussians with means in the other quadrants. The clients’ global dataset
comprises 1200 samples, with 300 from each Gaussian. The server unlabeled dataset comprises 300
data, uniformly distributed on the square [−12, 12]× [−12, 12].
Each client trains a 3-layer MLP classifier for 2 epochs using its dataset, and a 3-layer discrim-
inator for 1 epoch using its dataset as real dataset and server dataset as fake dataset. We used
Adam (Kingma & Ba, 2014) with learning rate 0.001 and (β1, β2) = (0.9, 0.999) for classifier op-
timizer, and RMSprop (Hinton et al.) with learning rate 0.00005 for discriminator optimizer. Also
we used a batch size of 64 for both.

The bottom row of Figure 5 (same as Figure 1) illustrates the decision boundaries of server models.
The leftmost plot is from the model with averaged client model parameters, while the remaining
plots are from the server models trained via ensemble distillation for 2 epochs using pseudo-labeled
dataset: the global dataset is pseudo-labeled using uniform weighting (Lin et al., 2020), variance
weighting (Cho et al., 2022), entropy weighting (Deng et al., 2023; Park et al., 2024), domain-aware
weighting (Wang et al., 2023a) , and our weighting method. The background color indicates the
decision boundary in RGB channels. Given the Gaussian distributions, the optimal decision rule is
red in the 1st and 3rd quadrants, blue in the 2nd quadrant, and green in the 4th quadrant. Thus, the
oracle decision boundary aligns with the x-axis and y-axis, depicted by black lines.

The averaged parameter model exhibits a blurred decision boundary compared to models trained
via ensemble distillation. Furthermore, among the models with ensemble distillation, the decision
boundary of the model trained via our weighting method is closest to the oracle decision boundary.

E.2 DETAILED EXPERIMENTAL SETTINGS FOR IMAGE CLASSIFICATION TASKS

Hyperparameter Tuning We identified the best-performing hyperparameters on CIFAR-100 with
Dirichlet α = 0.05 and used the same values for other settings. During the ensemble distillation
process, we trained both clients and server with the Adam optimizer (Kingma & Ba, 2014) at a
learning rate of 0.001 with batch size 64, without weight decay. The (β1, β2) parameters for Adam
were set to (0.9, 0.999). Additionally, we applied cosine annealing (Loshchilov & Hutter, 2016) to
decay the server learning rate until the final communication round T = 100 as in Lin et al. (2020),
except for the results of F.2 and F.4.

For the client and server classifier training epochs, we performed a grid search to find the optimal
number of training epochs. The initial grid was {5, 10, 30, 50}, and the experiments were conducted
with 30 client epochs and 10 server epochs (Es = 10) for CIFAR-10/100. To leverage the increased
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number of steps due to the additional number of data, experiments on ImageNet100 were conducted
with 10 client classifier epochs and 3 server classifier epochs (Es = 3).

To train the generator utilized by our FedGO from scratch, we trained the WGAN-GP model
following the training method proposed in Gulrajani et al. (2017). The generator and discrimi-
nator of WGAN-GP were trained using the Adam optimizer with a learning rate of 0.0002 and
(β1, β2) = (0, 0.9). The training was conducted with a batch size of 64 until the generator com-
pleted 100,000 gradient steps. The generator was updated every 5 steps of the discriminator, and a
gradient penalty coefficient λ of 10 was used.

When training a generator in a data-free setting, i.e., the case (G3), we applied the same hyperpa-
rameters as in the scratch training, except for the gradient steps. For gradient steps, we used the
same number of training epochs for the local generator as those used in classifier training.

For the client discriminator, we adopted the hyperparameters from
https://github.com/Ksuryateja/DCGAN-MNIST-pytorch/blob/master/gan mnist.py and trained
it with a batch size of 64 for 30 epochs for CIFAR-10/100, and for 10 epochs for ImageNet100. The
optimizer Adam was used with a learning rate of 0.0002, and (β1, β2) = (0.5, 0.999).

FedProx (Li et al., 2020) introduces a proximal term to the client training loss, which helps to address
heterogeneity by penalizing large deviations from the server model. The proximal term is multiplied
by a coefficient µ and added to the primary objective loss. We performed a grid search to tune the
value of µ from {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}, and chose the best value µ = 0.001.

FedHKT (Deng et al., 2023) and FedDS (Park et al., 2024) introduce a temperature parameter τ > 0,
which allows client weights to approach uniform weighting as τ increases. By following Deng et al.
(2023), we set τ = 1.

FedGKD (Yao et al., 2021) introduces an additional buffer of length M on the server, where the
server model is stored after each round. The server then creates an additional model with averaged
parameters from the models stored in the buffer and sends this model to the clients each round. Each
client uses a temperature parameter τ to compute the knowledge distillation loss on the received
additional model, multiplies this loss by γ/2, and adds it to the primary objective loss. Consequently,
it is necessary to tune three additional hyperparameters: M , τ , and γ. We conducted a grid search
with M and τ in {1, 3, 5, 10} and γ in {0.1, 0.05, 0.01, 0.005, 0.001}. The best performing
parameters were M = 5, τ = 3, and γ = 0.001.

Similar to our FedGO, DaFKD (Wang et al., 2023a) utilizes discriminators to implement client
weighting function. However, unlike FedGO, DaFKD trains the generator and discriminators col-
laboratively. To focus on the weighting method, the domain-aware weighting method in Figure 2 is
implemented by only modifying the weighting step in our FedGO algorithm.

Model Implementation We used ResNet-18 (He et al., 2016) as the classifica-
tion model, following the implementation from https://github.com/kuangliu/pytorch-
cifar/blob/master/models/resnet.py. Additionally, our FedGO requires extra generator and
discriminator models. When training the generator from scratch, we utilized the WGAN-GP
model as proposed in Gulrajani et al. (2017), following its official open-source implemen-
tation1. We re-implemented this code in PyTorch for our experiments. For a pretrained
off-the-shelf generator, we utilized StyleGAN-XL (Sauer et al., 2022) model pretrained on
ImageNet (Krizhevsky et al., 2012) with resolution of 32×32. We downloaded the model
parameters from https://github.com/autonomousvision/stylegan-xl and implemented the model
using these parameters. For the client discriminator, we adopted a simple 4-layer CNN
discriminator, following the implementation from https://github.com/Ksuryateja/DCGAN-
MNIST-pytorch/blob/master/gan mnist.py. To address the widely known overfitting issue of the
discriminator (Adlam et al., 2019; Yang et al., 2022) and the resulting dominance of client weights,
we employed a composition of two sigmoid activations for the discriminator output. This ensures
that the odds value Φk for client k’s discriminator Dk is constrained between 1 and e.

Heterogeneous Client Data Split To introduce non-iid distributions among client datasets, we
ensured that each client’s distribution follows a Dirichlet distribution Dir(α), similar as in Lin et al.

1https://github.com/igul222/improved wgan training
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(2020); Wang et al. (2020a); Marfoq et al. (2022); Li et al. (2023). As the parameter α increases, each
client tends to have a more homogeneous distribution, whereas smaller α values result in increased
data heterogeneity among clients. We conducted experiments for each dataset with α values of 0.1
and 0.05. The number of data samples that each client has per class for CIFAR-10/100 datasets with
α values of 0.1 and 0.05 is illustrated in Figures 6 and 7. It’s worth noting that ImageNet100 also has
100 classes, so the trends observed in CIFAR-100 would likely align with those in ImageNet100.
We can observe that when α = 0.05, the difference in the number of data samples per class for each
client is more pronounced compared to when α = 0.1. This results in more skewed distributions for
individual clients.
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Figure 6: Client data split for CIFAR-10 with α = 0.1, 0.05.
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Figure 7: Client data split for CIFAR-100 with α = 0.1, 0.05.

Details for Dataset We normalized the pixel values of all image datasets to fall within the range
[−1, 1], ensuring that the generated data also has pixel values within this range. Additionally, for
both the training datasets of clients and the server’s unlabeled dataset, we conducted further data
augmentation using PyTorch’s random horizontal flip.

Selection of Acctarget We used the highest multiple of 5 of the test accuracy (%) achieved by the
FedAVG algorithm within 100 rounds for all five different random seeds as Acctarget for Table 3.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ENSEMBLE TEST ACCURACY COMPARISON AND ANALYSIS

Figure 8 shows the ensemble test accuracy on the server’s unlabeled dataset during the training
process for our FedGO algorithm and the baseline ensemble algorithms: FedDF, FedGKD+, and
DaFKD. It demonstrates that using pseudo-labels generated by theoretically guaranteed weighting
methods allows the server to achieve higher final performance and faster convergence.

However, in Table 2 of the paper, the performance gap between our method and the baselines on
CIFAR-100 and ImageNet100 was not as large as that on CIFAR-10. We infer the reason from
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Theorem 2. The second term on the RHS of Theorem 2 can be interpreted as the distillation loss
due to the difference between the hypothesis class and the spanned hypothesis class. Even if our
ensemble is close to optimal, the knowledge-distilled server model may not follow the performance
of the ensemble if it hard for a single model to learn the pseudo-labels, and we conjectures that it
becomes harder as the number of classes increases.

To support our hypothesis, we show the minimum of mean distillation loss for five different random
seeds during 100 round of communication rounds in Table 5. The distillation loss increases pro-
gressively from CIFAR-10 to CIFAR-100 to ImageNet100. In addition, the distillation loss is higher
for α = 0.05 than for α = 0.1, which explains why the gap from the central training is larger for
α = 0.05.
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(a) CIFAR-10 with α = 0.1
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(b) CIFAR-10 with α = 0.05
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(c) CIFAR-100 with α = 0.1
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(d) CIFAR-100 with α = 0.05
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(e) ImageNet100 with α = 0.1
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(f) ImageNet100 with α = 0.05

Figure 8: Ensemble test accuracy (%) of FedGO and baselines over communication rounds on three
image datasets with α = 0.1, 0.05.
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Table 5: Minimum mean distillation loss of FedGO on three image datasets with α = 0.1, 0.05.

Dataset CIFAR-10 CIFAR-100 ImageNet100

α = 0.1 0.175 0.237 0.363
α = 0.05 0.266 0.348 0.539

F.2 ENSEMBLE DISTILLATION WITH A DIFFERENT SERVER DATASET

Our theoretical justification of constituting an optimal ensemble in Corollary 1 allows heterogeneity
between the server data distribution ps and the client average distribution p. To demonstrate the
effectiveness of FedGO when ps ̸= p which makes more sense in practice, we report the results
when clients have the half of the CIFAR-10 dataset and the server has the half of the CIFAR-100
(unlabeled) dataset, in Table 6. The experimental results demonstrate that ensemble distillation
even with heterogeneous server dataset is helpful in improving the performance. Furthermore, by
employing optimal model ensemble, our FedGO algorithm, with theoretical performance guarantee,
shows improvement over FedDF and DaFKD.

Table 6: Server test accuracy (%) and ensemble test accuracy (%) of our FedGO and baselines with
heterogeneous server dataset: CIFAR-10 for client dataset and CIFAR-100 for server’s unlabeled
dataset.

FedAVG FedDF DaFKD FedGO (ours)

α = 0.1
Server test accuracy 58.65±5.75 59.89±1.88 60.84±2.65 60.92±1.95

Ensemble test accuracy - 62.62±0.90 63.88 ± 2.02 64.23±1.29

α = 0.05
Server test accuracy 46.61±8.54 49.21±4.48 52.31±4.26 52.89±3.47

Ensemble test accuracy - 56.06±207 59.30 ±1.33 60.43 ±0.56

F.3 RESULTS WITH ALTERNATIVE MODEL ARCHITECTURES

In the main paper, we conducted experiments with ResNet-18 model structure. In this subsection, we
present the results with VGG11 (Simonyan & Zisserman, 2014) (with BatchNorm Layers (Ioffe &
Szegedy, 2015)) and ResNet-50 models. For VGG11, both the client and server models are trained
using SGD with a learning rate of 0.01 and momentum of 0.9, and all the other settings including
hyperparameters are kept identical to those in the main paper. We implemented VGG11 based
on https://github.com/chengyangfu/pytorch-vgg-cifar10. For ResNet-50, all the settings including
optimizer and hyperparameters are set to the same as the main paper. Table 7 presents the server test
accuracy of FedGO and baseline algorithms with the aforementioned model structures on CIFAR-10
with α = 0.1 after 100 communication rounds.

Table 7: Server test accuracy (%) of central training, FedDF, FedGKD+ and FedGO on CIFAR-10
with α = 0.1 after 100 communication rounds, when utilizing VGG11 and ResNet-50.

VGG11 ResNet-50

Central training 83.27 ± 0.60 85.12 ± 0.44
FedDF 68.59 ± 4.65 65.21 ± 4.62

FedGKD+ 67.81± 3.60 66.21± 3.01
FedGO (ours) 72.53 ± 4.10 75.52 ± 4.30

We can see that our FedGO algorithm consistently achieves performance gains over FedDF and
FedGKD+ across different model structures.
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F.4 DATA-FREE FEDGO

In practice, the server may have no extra dataset. In this case, we first prepare a generator and
then generate a distillation dataset using the generator. The generator can either be an off-the-shelf
pretrained model or trained through an FL approach (Rasouli et al., 2020; Guerraoui et al., 2020; Li
et al., 2022; Wang et al., 2023c; Fan & Liu, 2020; Behera et al., 2022; Hardy et al., 2019; Xiong
et al., 2023; Zhang et al., 2021; 2023a), corresponding to the 3rd and 4th scenarios in Table 1 in our
main paper, respectively.

Figures 9 and 10 present the results for the two data-free approaches with 100 clients on CIFAR-10
dataset. We employed styleGAN (Karras et al., 2019) pretrained with ImageNet dataset for the off-
the-shelf generator, and applied the FedGAN algorithm (Rasouli et al., 2020) for training a generator.
For both the approaches, our FedGO shows performance gains in server test accuracy, ensemble test
accuracy, and ensemble test loss compared to the uniform weighting of FedDF (Lin et al., 2020)
and the domain-aware weighting of DaFKD (Wang et al., 2023a). In particular, the improvement of
FedGO over FedDF is much larger than that of DaFKD over FedDF. Note that the ensemble test loss
of DaFKD becomes larger than that of FedDF after a certain round.

In both data-free approaches, we have ps = pg , under which our weighting method is optimal
for ∀x ∈ ps = pg from Theorem 4 in our main paper. Note that the distance between p and
pg = ps for the generator trained from FedGAN is smaller than that for the off-the-shelf generator.
Consequently, despite using a simpler generator trained on a smaller dataset, we observe that the
performance of FedGO using the generator trained from FedGAN is slightly better than that using
the off-the-shelf generator.

Finally, we can observe performance degradation compared to the case where the distillation is
performed on a real dataset. This can be attributed to the naive reuse of generated images, which
has been identified as a cause of performance degradation (Yoon et al., 2024; Wang et al., 2024).
An interesting future work would be on improving the performance of knowledge distillation using
generated images. Still, experimental results demonstrate that ensemble distillation is beneficial in
improving performance even with generated images. Furthermore, by employing an optimal model
ensemble, our FedGO shows improvement over FedDF and DaFKD.
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(b) Ensemble test accuracy
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(c) Ensemble test loss

Figure 9: Test accuracy of server model (%), ensemble test accuracy (%), and test loss of ensemble
model of the data-free FedGO with an off-the-shelf generator (the case (G2)+(D2) of Table 1) and
baselines with 100 clients on the CIFAR-10 dataset with α = 0.05.

F.5 IMPACT OF SERVER MODEL HYPERPARAMETERS ON PERFORMANCE

F.5.1 AMOUNT OF UNLABELED DATA

Figure 11 shows the test accuracy of the server model and the test accuracy of the ensemble model
during the training process for our FedGO algorithm. We conducted experiments by reducing the
server dataset size to 50% and 20% of the size assumed in our main CIFAR-10 experiments. For
these experiments, the server epochs were adjusted to ensure the same number of gradient steps:
doubled for 50% and quintupled for 20%, while keeping other hyperparameters the same.

Figure 11 demonstrates that when the server dataset size decreases, the test accuracy of the ensem-
ble model remains nearly consistent, while that of the server model decreases. This suggests that
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Figure 10: Test accuracy of server model (%), ensemble test accuracy (%), and test loss of ensem-
ble model of the data-free FedGO with a generator trained from FedGAN (the case (G3)+(D3) of
Table 1) and baselines with 100 clients on the CIFAR-10 dataset with α = 0.05.

even with pseudo-labels of similar quality, the performance of the server model can decline as the
server dataset size decreases. This can be interpreted as the server model becoming more prone
to overfitting as the distillation dataset becomes smaller (Hinton, 2015). Note that FedGO has the
performance improvement of about 15% over FedAVG even with only 20% of the dataset, which
corresponds to 20% of the total client dataset size.
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Figure 11: Server test accuracy (%) and ensemble test accuracy (%) of our FedGO on the CIFAR-10
dataset with α = 0.05, according to the size of the unlabeled dataset at the server. In the legend,
X% means that the size of the unlabeled dataset at the server is reduced to X% of the size assumed
in our main CIFAR-10 setting.

F.5.2 SERVER MODEL TRAINING EPOCHS

Table 8 shows the impact of server model training epochs on FedGO’s performance on CIFAR-10
with α = 0.1 after 100 communication rounds. Using 5 epochs outperforms 1 epoch, with minimal
performance differences beyond 5 epochs. Notably, even with only 1 epoch, FedGO significantly
outperforms all the baselines trained with 10 server epochs in Table 2.

Table 8: Server test accuracy (%) and ensemble test accuracy (%) of FedGO on CIFAR-10 with
α = 0.1 after 100 communication rounds, according to the number of server model training epochs.

Epoch 1 5 10 20

Server Test Accuracy 74.03±6.41 79.56±5.30 79.62±4.36 78.32±5.13
Ensemble Test Accuracy 77.16±0.88 80.97±0.87 81.56±0.48 81.39±0.75

F.5.3 SERVER MODEL LEARNING RATE DECAY

In the main paper, we used cosine learning rate decay by following the experimental setting of
FedDF. As shown in Table 9, the absence of learning rate decay results in further performance
improvement. Specifically, an ensemble test accuracy of 85.20% is achieved, which is comparable
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to the central training model’s accuracy of 85.33%, demonstrating the effectiveness of our provably
near-optimal weighting method.

Table 9: Server test accuracy (%) and ensemble test accuracy (%) of FedGO on CIFAR-10 with
α = 0.1 after 100 communication rounds, with and without learning rate decay during server model
training.

FedGO
with LR decay without LR decay

Server Test Accuracy 79.62±4.36 80.18±2.16
Ensemble Test Accuracy 81.56±0.48 85.20±1.33

F.6 IMPACT OF GENERATOR AND DISCRIMINATOR QUALITY ON PERFORMANCE

F.6.1 GENERATOR TRAINING STEPS

Table 10 shows the performance of our FedGO with varying generator training steps (100,000 in
the main setup) alongside baseline algorithms after 50 communication rounds, while keeping all
other settings unchanged from the main setup. FedGO with the generator trained for 25,000 steps
performs better than that with the randomly initialized generator (0 steps), with little performance
improvement beyond 25,000 steps. Remarkably, even a randomly initialized generator outperforms
FedDF with uniform weighting and achieves performance comparable to DaFKD with a generator
trained for 100,000 steps.

Table 10: Server test accuracy (%) and ensemble test accuracy (%) of FedGO on CIFAR-10 with
α = 0.1 after 50 communication rounds, according to the number of generator training steps.

FedDF DaFKD FedGO (ours)
Generator Training Steps - 100,000 0 25,000 50,000 75,000 100,000

Server Test Accuracy 70.18 ± 2.56 71.42 ± 3.11 71.12 ± 2.07 76.74 ± 3.16 78.43 ± 0.99 78.89 ± 1.55 78.24 ± 1.61
Ensemble Test Accuracy 73.55± 2.41 74.54± 2.80 74.88± 1.63 79.12± 1.97 80.72± 0.75 80.87± 0.98 80.82± 0.82

F.6.2 DISCRIMINATOR TRAINING EPOCHS

Table 11 shows the final performance of the FedGO algorithm for different numbers of discriminator
training epochs on CIFAR-10 with α = 0.05. It can be seen that training the discriminator more
times results in better final performance. Additionally, we note that among the baselines in Table 2
and Figure 2, except DaFKD which originally trains the generator and discriminators at each round,
the highest performance is achieved by the variance weighting method, with the test accuracy of
67.51±10.77%, indicating that there is a performance gain from the FedGO algorithm with just 5
epochs of discriminator training.

Table 11: Server test accuracy (%) of FedGO on CIFAR-10 with α = 0.05 at the 100-th communi-
cation round, according to the number of discriminator training epochs at the clients.

Epoch 1 5 10 30 50

Accuracy 63.96±9.03 71.38±7.76 70.84±8.88 72.35±9.01 76.92±5.08

F.6.3 DISCRIMINATOR ARCHITECTURES

Table 12 presents the number of parameters, the number of FLOPs required for the forward com-
putation, and the performance of FedGO on CIFAR-10 with α = 0.1 at the 100-th communication
round, when the following three different client discriminator structures are used:

• CNN: The baseline architecture used in the main setting. It consists of four convolutional
layers.
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• CNN+MLP: A variation of the CNN architecture, where the last two convolutional layers
in the CNN are replaced by a single multi-layer perceptron (MLP) layer, resulting in a
three-layer shallow network.

• ResNet: A deeper architecture based on ResNet-8, an 8-layer residual network.

Table 12: Server test accuracy (%) of FedGO on CIFAR-10 with α = 0.1 at the 100-th commu-
nication round along with the number of parameters and the number of FLOPs for the forward
computation, according to different client discriminator structures.

FedGO

Discriminator Structure CNN CNN+MLP ResNet

Number of Parameters 662,528 142,336 1,230,528
FLOPs 17.6 MFLOPs 9.18 MFLOPs 51.1 MFLOPs

Server Test Accuracy 79.62±4.36 79.71±4.71 78.73±5.03

Table 12 shows almost identical performances regardless of client discriminator architectures,
demonstrating the robustness of FedGO to the discriminator architecture. In particular, the
CNN+MLP discriminator, which has less than a quarter of the parameters and around the half of
the FLOPs compared to the original CNN structure, achieves similar performance.

G COMPREHENSIVE ANALYSIS OF COMMUNICATION, PRIVACY, AND
COMPUTATIONAL COMPLEXITY

Let us provide a detailed explanation for Table 1. If the server dataset is available from the outset
(first two rows in Table 1), we only need one-shot communication of generator (from the server to
the clients) and discriminators (from the clients to the server). Hence, additional communication
burden and client-side privacy leakage are negligible. In particular, for our experiments, the param-
eters of the ResNet-18 classifier are approximately 90MB when stored as a PyTorch state dict. In
comparison, the generator and discriminator models are 4.61MB and 2.53MB, respectively. Over
100 communication rounds, during which ResNet-18 is transmitted repeatedly, the additional com-
munication burden introduced by FedGO is nearly negligible. However, the server dataset is used for
distillation for each communication round, incurring non-negligible privacy leakage on the server
side. If there is no server dataset (last two rows in Table 1), there is no additional privacy leakage
on the server side. To train a generator through FL (last row), multiple rounds of GAN exchanges
between the server and clients are required, leading to non-negligible increase in communication
burden, client-side privacy leakage and computational burden. If we use a pretrained generator in-
stead (third row), additional communication burden, client-side privacy leakage and computational
burden become negligible, but it is challenging in general to secure an off-the-shelf generator which
generates data with a distribution similar to the client data distribution.

In the following, we provide a quantitative analysis of additional privacy leakage of FedGO com-
pared to FedAVG, and an explicit comparison of computational cost for FedGO and baselines.

G.1 PRIVACY ANALYSIS

For privacy measure, we consider local differential privacy (LDP) Dwork et al. (2006) which is
widely accepted both in academia and industry. Note that when the data is provided n times by in-
dependently applying an LDP mechanism with privacy budget ϵ for each provision, the total privacy
budget becomes nϵ from the parallel composition result (Dwork et al., 2014).

Let T denote the total number of communication rounds in the main-FL stage. For the case (G3)
in Section 3.2, let T ′ denote the total number of communication rounds to train a GAN in the pre-
FL stage. For simplicity, we assume that every client participates in FL for each communication
round. Let ϵM , ϵD, and ϵG denote the privacy budgets of LDP mechanisms applied to the classifier,
discriminator, generator sent from each client at each communication round, respectively. Let ϵ̂M
and ϵ̂G denote the privacy budgets of LDP mechanisms applied to the classifier and the generator
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sent from the server when the server uses its own dataset in case of (S1) for training the generator
and for distillation, respectively.

Table 13 shows the client-side and the server-side total privacy leakage of FedAVG and FedGO under
various scenarios. For FedAVG, each client provides the classifier T times, and hence the client-
side total privacy leakage becomes T · ϵM . Let us first analyze the additional client-side privacy
leakage of FedGO under various scenarios. For FedGO with the method (G1)+(D1), (G2)+(D1), or
(G2)+(D2), the client sends its discriminator only once, incurring extra privacy leakage of ϵD, which
is negligible with large T . For FedGO with (G3)+(D3), the clients need to send the discriminator and
the generator for T ′ times to train a GAN in the pre-FL stage, leading to a non-negligible additional
privacy leakage of T ′ · (ϵD + ϵG) compared to other FedGO scenarios. Next, server-side privacy
issues arise only when the server has its own dataset. If the server trains the generator from its dataset
and provides it to the clients for the case of (G1), it yields the privacy leakage of ϵ̂G. In addition,
if the server uses its dataset for distillation and applies an LDP mechanism with privacy budget ϵ̂M
to the classifier for each communication round for the case of (D1), it results in a non-negligible
amount of additional privacy leakage T · ϵ̂M .

Table 13: Quantitative analysis of the client-side and the server-side total privacy leakage of FedAVG
and FedGO under various scenarios.

Client-side Server-side

FedAVG T · ϵM −

FedGO

(G1)+(D1) T · ϵM + ϵD ϵ̂G + T · ϵ̂M
(G2)+(D1) T · ϵM + ϵD T · ϵ̂M
(G2)+(D2) T · ϵM + ϵD −
(G3)+(D3) T ′ · (ϵD + ϵG) + T · ϵM + ϵD −

G.2 COMPUTATIONAL COST COMPARISON

Table 14 shows the floating point operations (FLOPs) during CIFAR-10 training for the baselines
and FedGO with the four scenarios described in Table 1. 1 MFLOP represents 106 FLOPs.

First, on the client side, the computational cost for FedGO with (G1) or (G2) is comparable to that
of FedAVG and FedDF, which only optimize the client’s vanilla supervised loss. The cost is roughly
half of the cost of FedGKD+, which includes a regularization term in the client objective. This
reduction is because the client only needs to train the discriminator only once during the pre-FL
stage. In each round, FedAVG and FedDF compute 4.17e+7 MFLOPs per client update, whereas
the computational cost for training a client’s discriminator is 3.29e+7 MFLOPs—less than the cost
for one round of classifier training. The additional computation cost for FedGO with (G1) or (G2)
is therefore minimal, especially considering its fast convergence speed.2 Note that the client-side
computational cost of FedProx is same as that of FedAVG because the proximal term computation,
1.07e+10, is negligible.

However, in FedGO with (G3), clients train the generator using an FL approach during the pre-FL
stage, leading to a significant computational cost on the client side. The same applies to DaFKD,
which also trains a generator through an FL approach. The slight difference between DaFKD and
FedGO with (G3) is due to one additional step of training client’s discriminator in the pre-FL stage
of FedGO. However, as the computational and communication capabilities of devices continue to
improve, many recent studies like those referenced in the main paper are actively exploring data-free
FL approaches.

Next, on the server side, in FedGO with (G1)+(D1), training a generator using server dataset in-
volves significant additional computation compared to FedDF due to the 100,000 steps required
for training a ResNet-based generator and discriminator. However, given that federated learning
typically involves a server with ample resources and clients with limited computational resources,
this increase in server-side computation is more affordable in practice, compared to increasing the

2We note that the computational cost exceeds 2%, rather than being below 1%, because in each round,
only C = 0.4 proportion of clients are sampled to participate in federated learning, rather than full client
participation.
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computational burden on clients. Furthermore, while the computation for training the generator
is irrelevant to the number of clients, the computation required for pseudo-labeling scales linearly
with the number of clients. Note that the total computational cost in Table 14 assumes 20 clients.
In real-world scenarios, where 100+ clients may participate in FL, the relative proportion of the
computational cost for training the generator will decrease.

Note that using an off-the-shelf generator reduces the additional server-side computational cost of
FedGO. FedGO with (G2)+(D1) requires approximately 2% more computation than FedDF, but
achieves a significant performance gain of about 13%p on CIFAR-10 with α = 0.05 in Table 2.
The reason why FedGO with (G2)+(D2) has a higher server-side computational cost compared to
FedGO with (G2)+(D1) is that FedGO with (G2)+(D2) generates distillation dataset using a heavy
generator, StyleGAN.

FedGO with (G3)+(D3) also generates distillation dataset using a generator but the generator used
here is lighter than StyleGAN generator used in (G2)+(D2). The computational cost for the genera-
tion of distillation dataset in FedGO with (G3)+(D3) is 2.11e+7 MFLOPs which is negligible com-
pared to the computational cost for pseudo-labelling and ensemble distillation which is 5.07e+10
MFLOPs. On the other hand, note that the computational cost of FedGO with (G3)+(D3) is slightly
lower than DaFKD while both train a generator using an FL approach. The reduction mainly comes
from the difference that FedGO with (G3)+(D3) generates a distillation dataset only once after the
training of the generator, while DaFKD updates the distillation dataset in every communication
round. Finally, note that the server-side computational cost of FedGO with (G3)+(D3) is compa-
rable to the case (G2)+(D1), even though (G3) trains a generator through an FL approach. This is
because the server’s role is limited to averaging the clients’ generator and discriminator, incurring
negligible additional computational cost on the server side.

Table 14: The number of MFLOPs for training our FedGO and baselines on CIFAR-10 for 100
communication rounds.

FedAVG FedProx FedDF FedGKD+ DaFKD
FedGO (ours)

(G1)+(D1) (G2)+(D1) (G2)+(D2) (G3)+(D3)

Client-side 3.33e+10 3.33e+10 3.33e+10 6.67e+10 8.81e+11 3.40e+10 3.40e+10 3.40e+10 8.82e+11
Server-side 7.82e+3 7.82e+3 5.00e+10 5.00e+10 5.28e+10 1.39e+11 5.07e+10 6.01e+10 5.07e+10

Total 3.33e+10 3.33e+10 8.33e+10 1.17e+11 9.34e+11 1.73e+11 8.47e+10 9.41e+10 9.32e+11

H LIMITATION

Our study does not provide specific guidance on the selection of discriminator architectures, which
may affect the overall performance of the federated learning system. Additionally, although our
FedGO algorithm can be extended to model heterogeneous scenarios as in FedDF, we found it
challenging to define an optimal model ensemble for multiple hypothesis classes. Consequently, it
appears difficult to apply the results of Theorem 2 and Corollary 1 in such cases.

I BROADER IMPACTS

In this work, we proposed a federated learning algorithm that demonstrates strong performance in
scenarios where client data is heterogeneous. This capability makes our approach highly effective
for distributed learning in many practical situations, where data across different clients can vary
significantly. By efficiently handling such data diversity, our algorithm holds the potential to enhance
the applicability and robustness of federated learning systems in real-world applications.
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