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Abstract

Single-cell RNA sequencing (scRNA-seq) technology provides high-throughput
gene expression data to study the cellular heterogeneity and dynamics of complex
organisms. Graph neural networks (GNNs) have been widely used for automatic
cell type classification, which is a fundamental problem to solve in scRNA-seq
analysis. However, existing methods do not sufficiently exploit both gene-gene and
cell-cell relationships, and thus the true potential of GNNs is not realized. In this
work, we propose a bilevel graph representation learning method, named scBiGNN,
to simultaneously mine the relationships at both gene and cell levels for more
accurate single-cell classification. Specifically, scBiGNN comprises two GNN
modules to identify cell types. A gene-level GNN is established to adaptively learn
gene-gene interactions and cell representations via the self-attention mechanism,
and a cell-level GNN builds on the cell-cell graph that is constructed from the
cell representations generated by the gene-level GNN. To tackle the scalability
issue for processing a large number of cells, scBiGNN adopts an Expectation
Maximization (EM) framework in which the two modules are alternately trained
via the E-step and M-step to learn from each other. Through this interaction, the
gene- and cell-level structural information is integrated to gradually enhance the
classification performance of both GNN modules. Experiments on benchmark
datasets demonstrate that our scBiGNN outperforms a variety of existing methods
for cell type classification from scRNA-seq data.

1 Introduction

Single-cell RNA sequencing (scRNA-seq), which allows the measurement of gene expression at the
resolution of individual cells, has revolutionized transcriptomic analysis and greatly improved the
understanding of biomedical science over the past decade. Accurate cell type annotation is essential
for elucidating cellular states and dynamics in scRNA-seq data mining [1] and contributes significantly
to a broad range of downstream analyses, such as cancer biology [16] and drug development [22]. In
early studies, the cluster-then-annotate paradigm is commonly used to categorize cell types [8, 17].
These methods rely on manually selected marker genes and require prior knowledge of cell types,
which is highly subjective and prone to errors due to the unknown quality of clustering results. As
copious annotated scRNA-seq data become publicly available, many classification methods have
been developed for automatic cell type labeling.

Existing classification methods can be grouped into three categories: 1) traditional machine learning
algorithms, 2) similarity-based measurement and 3) deep learning models. The first category of
methods applies classic machine learning approaches to scRNA-seq data analysis, such as random
forest, linear discriminant analysis and support vector machine. Typical works include CasTLe [14],

NeurIPS 2023 AI for Science Workshop.



scPred [2] and scID [4]. These methods commonly have limited model capacity and do not scale
well to large datasets. The second category is based on some similarity criteria to measure the
correlation between the unlabeled cells and the reference dataset. For example, scmap [12] calculates
the similarity between the query cell and the median gene expression values for each cell type in
the reference dataset, while SingleR [3] computes Spearman correlation between cells using vari-
able genes. Similarity-based methods are heavily affected by the batch effect caused by variant
experimental conditions [9], and the adopted similarity measurement may not be suitable for the
high-dimensional and sparse scRNA-seq data [30]. To enable scalable and robust cell type identifi-
cation, deep learning models have been increasingly explored and achieved superior performance.
For instance, ACTINN [15] first uses fully connected neural networks for cell type identification.
scCapsNet [27] employs capsule networks [20] for interpretable gene feature selection in cell repre-
sentation learning, which improves the reliability of deep learning models. Furthermore, graph neural
networks (GNNs) have emerged as widely used tools for cell type annotation [28, 32, 13, 30, 26], as
they can leverage the intrinsic biological networks (e.g., gene-gene interaction network) within gene
expression profiles for more expressive representation learning on scRNA-seq data.

However, several problems still impede GNN-based classification methods from reaching their full
potential. Firstly, although it is generally acknowledged that gene-gene and cell-cell relationships are
both beneficial to scRNA-seq analyses [13, 30], none of the existing models consider these two kinds
of structural information simultaneously. To be concrete, gene-level GNNs classify cells from the
local biological perspective of each cell’s own gene expression profile, which leverages informative
gene interactions to improve cell representations but relationships between different cells are ignored.
Cell-level GNNs consider the connectivity between cells from the global view of the whole database
but cannot well capture the fine-grained gene-level biological contexts. Secondly, most existing
works rely on predetermined biological networks for graph representation learning. For example,
sigGCN [28] utilizes the STRING database [21] to construct gene-gene interaction network, while
Li et al. [13] consider to precompute the cell-cell graph by k-nearest neighbors analysis based on
the gene expression data. Nevertheless, it is hard to evaluate whether these graphs constructed by
task-irrelevant knowledge are optimal for cell type classification. Learning task-driven adaptive
graphs may better serve GNN-based models for more accurate supervised single-cell classification.

To address these issues, we propose scBiGNN, a novel bilevel graph representation learning method
that takes advantage of the above two kinds of biological networks in scRNA-seq classification.
Specifically, scBiGNN consists of two GNN modules for cell type classification. A gene-level GNN
based on the gene-gene interaction graph is designed to produce a representation for each individual
cell, in which the interactions are adaptively learned via self-attention [23, 24]. Then the cell-cell
graph is constructed by linking cells that have similar representations generated by the gene-level
GNN (i.e., neighboring cells are more likely from the same class), upon which a cell-level GNN is
built to improve cell representations by aggregating features from the neighborhood. Such a bilevel
framework can integrate both gene- and cell-level structural information for more comprehensive
scRNA-seq graph representation learning.

In real-world scRNA-seq datasets, the dimension of the gene expression data is commonly very
high. Therefore, it is challenging to optimize our scBiGNN in an end-to-end manner when both
the gene-gene and cell-cell graphs are large. Inspired by previous studies that optimize two neural
networks in a whole framework [18, 35, 31], we employ the Expectation Maximization (EM) method
to alternately train the two GNN modules via the E-step and M-step, which theoretically maximizes
the evidence lower bound of the log-likelihood of the observed cell labels. In each step, one GNN is
fixed to generate pseudo-labels for optimizing the other. In this alternating training fashion, scBiGNN
can scale to large datasets, and gradually enhance the classification performance of both GNN
modules by reinforcing each other. To validate the effectiveness of our proposed method, we conduct
cell type classification on several popular benchmark datasets. Experimental results demonstrate that
our scBiGNN achieves superior performance over a number of baselines.

2 Background

Data Description and Pre-processing. The scRNA-seq data can be represented as a gene expression
matrix X ∈ RN×M , where N is the number of cells, M is the number of genes, and each element Xij

indicates the expression counts of the j-th gene in the i-the cell. First, genes that have zero expression
values across all the cells are removed. Then, the gene expression data of each cell is normalized
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by X̃ij = log
(
1 + s · Xij∑

m Xim

)
in which s is a scaling value and is set as 106 following existing

work [32]. After normalization, the variance value of each gene across all the cells is calculated, and
the top-T variable genes are selected (e.g., T = 1000 [28]) while others are filtered out, based on
which we can obtain the pre-processed gene expression data X̃ ∈ RN×T .

Graph Neural Networks (GNNs). The goal of GNNs is to learn effective node and graph repre-
sentations by iteratively aggregating information from the topological neighborhoods. Formally, let
G = (V,A) denote a graph where V = {v1, . . . , vn} is the node set and A ∈ Rn×n is the adjacency
matrix with each non-zero value Aij representing the edge between nodes vi and vj . We also have a
feature matrix F = [f1, . . . , fn]

⊤ ∈ Rn×f with fi ∈ Rf being the feature vector of node vi. The l-th
feature aggregration layer of GNNs can take the form of F(l) = MLP(l)

(
R(l) (A)F(l−1)W(l)

)
,

in which F(l) = [f
(l)
1 , . . . , f

(l)
n ]⊤ ∈ Rn×fl is the matrix of node representations after l aggregation

layers, F(0) = F, W(l) ∈ Rfl−1×fl is a learnable weight matrix, R(l) (A) is some operator on the
adjacency matrix such as normalization [11] and self-attention mechansim [24], and MLP(l) (·) is
the multi-layer perception (MLP) for nonlinear feature transformation. After L aggregation layers,
we can obtain the node representations F(l) (l = 0, . . . , L). To produce a graph-level represen-
tation, we can employ a read-out function that pools all the node representations into a single
vector fG = Read-Out

(
{Fl}Ll=0

)
, which is permutation invariant to the order of graph nodes, e.g.,

sum-pooling and max-pooling.

GNN-based Single-cell Classification. Existing GNN-based methods for cell type identification can
be categorized into two groups. The first group leverages gene-gene relationships. Specifically, Yin et
al. [32] collect several well-known gene interaction networks such as the STRING database [21], on
which GNNs are applied to aggregate information from interacting genes for each expressed gene to
improve cell representations. Wang et al. [28] also utilize the STRING database and propose sigGCN,
in which a GNN-based autoencoder is used to reconstruct gene expression data and a fully connected
neural network extracts features by taking the scRNA-seq data as input. The features generated by
the encoder part of the autoencoder and the fully connected neural network are concatenated for cell
type classification. HNNVAT [26] further introduces virtual adversarial training that adds noise to
input data to make the model robust against noise perturbations. In addition, Yang et al. [30] propose
scBERT, which follows BERT’s pretraining and fine-tuning paradigm [10] with vast amounts of
unlabelled scRNA-seq data and learns gene-gene interactions via Performers [6]. The second group
of methods focuses on cell-level relationships. As more and more research demonstrates that cell-cell
graph provides valuable structural information to learn effective cell representations for scRNA-seq
analyses [19, 25, 5, 33, 34], Li et al. [13] benchmarks several GNNs for cell type classification based
on the cell-cell graph and outperforms traditional machine learning methods. These results motivate
us to combine the merits of these two types of methods to integrate gene- and cell-level structural
information for more accurate cell type classification.

3 The Proposed Method: scBiGNN

In this section, we develop the scBiGNN framework for bilevel graph representation learning on
scRNA-seq data, in which both gene- and cell-level relationships are exploited for more accurate
cell type classification. We first introduce some preliminaries about the problem statement and the
workflow of gene- and cell-level GNNs. Then, we overview our EM-based learning framework and
elaborate the optimization procedures of the E-step and M-step respectively.

3.1 Preliminaries

Problem Statement. In our work, two biological networks are constructed based on the pre-processed
gene expression data X̃ ∈ RN×T . One is the gene-gene interaction graph Gg = (Vg,Ag) where Vg is
the set of T genes {vg

1, . . . , v
g
T } and Ag ∈ RT×T is the associated adjacency matrix representing the

interactions between genes, the other is the cell-cell graph Gc = (Vc,Ac) where Vc = {vc
1, . . . , v

c
N}

indicates the set of N cells in the scRNA-seq dataset and Ac ∈ RN×N is its adjacency matrix
encoding the relationships between cells. Given X̃ and the labels YL ∈ R|VL|×C for a subset of
annotated cells VL ⊂ Vc, the goal is to predict the labels YU ∈ R|VU |×C for the the unlabeled cells
VU = Vc\VL, where C is the number of cell types.
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Gene-level GNNs. The gene-level GNNs aim to predict the label of each cell vc
i using its own gene

expression data x̃i (the i-th row of X̃) and the gene-gene interaction network. Formally, they model
the following label distribution qϕ(yi|x̃i) for each vc

i ∈ Vc with parameters ϕ:

{fi,t}Ti

t=1 = GNNg (x̃i,A
g) ,

hi = Read-Out
(
{fi,t}Ti

t=1

)
,

qϕ(yi|x̃i) = Cat
(
yi

∣∣∣Clfg (hi)
)
, (1)

where GNNg(·) denotes the node representation learning function of the gene-level GNN, {fi,t}Ti

t=1
is the set of gene representations learned by GNNg(·), Ti is the number of genes that have non-zero
expression values in x̃i, hi is the representation of cell vc

i , Clf
g(·) denotes a classifier, and Cat(·)

stands for the categorical distribution. In this way, gene-gene structural information can be exploited
from the local biological view of each individual cell to enhance cell representation learning.

Cell-level GNNs. The cell-level GNNs classify cell types by using the relationships among all the
cells in the dataset. Specifically, the workflow can be characterized as below:

{h′
i}

N
i=1 = GNNc

(
{x̃i,hi}Ni=1 ,A

c
)
,

pθ(yi|X̃) = Cat
(
yi

∣∣∣Clfc (h′
i)
)
, (2)

where GNNc(·) is the node representation learning function, {h′
i}

N
i=1 is the set of cell representations

learned by GNNc(·), Clfc(·) is a classifier, and θ is the model parameters. By aggregating features
from neighboring cells with similar characteristics, cell-level GNNs extract the cell-cell structural
information from a global view of the scRNA-seq dataset to improve single-cell classification.

Both gene- and cell-level GNNs have proved effective in scRNA-seq analyses and achieved superior
performance for automatic cell type identification. Therefore, we propose scBiGNN, a bilevel graph
representation learning method that aims to integrate these two levels of structural information to
have a more comprehensive view of scRNA-seq data.

3.2 EM Framework

Directly cascading the above gene- and cell-level GNNs and training them end-to-end would face the
scalability issue when the size of the scRNA-seq dataset is large. Moreover, as these two types of
GNNs are complementary, end-to-end learning does not allow them to interact and enhance each other.
Therefore, inspired by several previous studies [18, 35, 31], we instead employ the EM algorithm to
train these two GNN modules alternately and make them gradually reinforce each other for more
accurate cell type classification.

To be concrete, our proposed scBiGNN maximizes the evidence lower bound (ELBO) of the log-
likelihood of the observed cell labels:

log pθ(Y
L|X̃) ≥ Eqϕ(YU |X̃)

[
log pθ(Y

L,YU |X̃)− log qϕ(Y
U |X̃)

]
≜ LELBO(θ, ϕ;Y

L, X̃), (3)

where qϕ(YU |X̃) can be arbitrary distribution over YU (s.t. qϕ(YU |X̃) > 0 if pθ(YL,YU |X̃) > 0),
and the equality holds when qϕ(Y

U |X̃) equals to the true posterior distribution pθ(Y
U |YL, X̃). As

can be seen, Eq. (3) formalizes the objective function with two distributions qϕ and pθ, which can
be modeled by the abovementioned gene- and cell-level GNNs respectively. According to the EM
framework, we alternately train qϕ in the E-step (with pθ fixed) and pθ in the M-step (with qϕ fixed) to
maximize LELBO(θ, ϕ;Y

L, X̃). Thus, we can separately optimize these two GNN modules through
several iterations, leading to better scalability and making them interact and enhance each other. In
what follows, we introduce the structures of these two GNN modules and how they reinforce each
other in the training procedure.

3.3 E-step

In the E-step, the cell-level GNN (i.e., pθ) is fixed and the gene-level GNN (i.e., qϕ) is optimized to
maximize LELBO(θ, ϕ;Y

L, X̃). In this section, we first present the detailed structure of our employed
gene-level GNN, and then we introduce the optimization of qϕ in the E-step.
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Structure of Gene-level GNN. The input of the gene-level GNN module includes two embeddings.
The first is gene embedding, which assigns a unique and learnable vector egene

j ∈ Rdg to each gene
vg
j . The second is count embedding, which transforms every non-zero gene expression value X̃ij

of cell vc
i to a dg-dimensional vector through an MLP, i.e., ecount

ij = MLP(X̃ij) ∈ Rdg . The input
embedding of gene vg

j in cell vc
i is then defined as eij = egene

j + ecount
ij . By gathering and stacking

all the input embeddings of genes that have non-zero expression values in cell vc
i , we have the input

embedding matrix Ei ∈ RTi×dg for cell vc
i .

Inspired by attention-based models [23, 24], the gene-level GNN of scBiGNN adaptively learns
gene-gene interactions via the self-attention mechanism. Specifically, the feature aggregation layer of
GNNg(·) is defined as

R(l) (Ag) = softmax
(
(F

(l−1)
i W(l)

g )(F
(l−1)
i W(l)

g )⊤
)
,

F
(l)
i = MLP(l)

g

(
R(l) (Ag)F

(l−1)
i W(l)

g

)
, (4)

where softmax (·) is the row-wise softmax operation, W(l)
g is a learnable weight matrix, MLP(l)

g (·) is

an MLP, F(l)
i is the output feature matrix of the l-th layer, and F

(0)
i = Ei for each cell vc

i . Moreover,
in each layer of GNNg(·), we can also employ the multi-head attention mechanism [23], which
performs several different attention functions of Eq. (4) and concatenates their outputs as the feature
matrix. After L layers, we can obtain the set of gene representations {f ji,t}

Ti
t=1 in which f ji,t is the t-th

row of F(L)
i and the superscript j indicates that it corresponds to the gene vg

j . The read-out function
in Eq. (1) can take the form of the weighted sum of all the gene representations to produce the cell
representation for vc

i :

hi = Read-Out
(
{f ji,t}

Ti
t=1

)
=

∑
j
αjf

j
i,t, (5)

where αj can be a learnable weight for gene vg
j (j = 1, . . . , T ) or set as 1/Ti which performs average

pooling. Then, qϕ(yi|x̃i) can be obtained by feeding hi to an MLP classifier, as shown in Eq. (1).

Optimization of Gene-level GNN. Maximizing LELBO(θ, ϕ;Y
L, X̃) in the E-step is equivalent

to making qϕ(Y
U |X̃) approximate the true posterior distribution pθ(Y

U |YL, X̃). According to
the EM framework, the standard operation is to minimize the Kullback-Leibler (KL) divergence
KL(qϕ(Y

U |X̃)∥pθ(YU |YL, X̃)). However, directly optimizing the KL divergence is nontrivial, as
it depends on the entropy of qϕ(YU |X̃), which is hard to deal with [35]. Moreover, for vc

i ∈ VU ,
when pθ(yi|YL, X̃) is close to the one-hot categorical distribution, it would face the instability
issue caused by log y with y approaching zero. Therefore, following several EM-based optimization
methods [18, 35, 31], we instead treat the fixed pθ(Y

U |YL, X̃) as the target and minimize the
reverse KL divergence KL(pθ(Y

U |YL, X̃)∥qϕ(YU |X̃)) to make qϕ(YU |X̃) approximate the target.
Assuming that the labels of different cells are independent, which is reasonable as the organization
and function of each cell are not determined by other cells, we can derive the following loss function
for unlabeled cells:

LU
E = −Epθ(YU |YL,X̃)

[
log qϕ(Y

U |X̃)
]
= −

∑
vc
i∈VU

Epθ(yi|YL,X̃) [log qϕ(yi|x̃i)] , (6)

where pθ(yi|YL, X̃) = pθ(yi|X̃) is the categorical distribution predicted by the cell-level GNN for
vc
i ∈ VU in the previous M-step. That is, the pseudo-labels predicted by the cell-level GNN are

used for training the gene-level GNN. Additionally, the gene-level GNN can also be trained by the
ground-truth labels of cells in VL. Therefore, we have the loss function for labeled cells:

LL
E = −

∑
vc
i∈VL

log qϕ(yi|x̃i), (7)

where yi is the ground-truth label for cell vc
i ∈ VL. Combining Eqs. (6) and (7), the overall

objective in the E-step for optimizing ϕ is to minimize LE = LU
E + βLL

E with β being a balancing
hyper-parameter (we set β = 1 in this work), which can be solved via stochastic gradient descent
(SGD). To be more specific, in each update step of SGD, we sample a batch of labeled cells
BL and a batch of unlabeled cells BU to perform gradient descent ϕ ← ϕ − γg∇ϕL̃E , where
L̃E = −

∑
vc
i∈BU log qϕ(ŷi|x̃i)− β

∑
vc
i∈BL log qϕ(yi|x̃i) with ŷi sampled by ŷi ∼ pθ(yi|X̃) for

unlabeled cells and γg is the learning rate.
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3.4 M-step

In the M-step, the gene-level GNN (i.e., qϕ) is fixed and the cell-level GNN (i.e., pθ) is updated to
maximize LELBO(θ, ϕ;Y

L, X̃). Also, before we introduce the optimization of pθ, we present the
detailed workflow of our cell-level GNN.

Structure of Cell-level GNN. Existing cell-level GNNs predetermine the cell-cell graph based on
X̃ [13]. By contrast, we construct the cell-cell graph by performing k-nearest neighbors analysis
on the cell representations {hi}Ni=1 generated by the gene-level GNN in each EM iteration, i.e.,
Ac = kNN-graph({hi}Ni=1), since {hi}Ni=1 should have better clustering characteristics than X̃ for
identifying cell types and its quality is enhanced during the optimization of qϕ.

Given the gene expression data x̃i and the cell representation hi, the input feature for each cell
vc
i is defined as zi = Concat(hi,MLP(x̃i)) ∈ Rdc , where Concat(·) denotes the concatenation

operation for the input vectors. By stacking the input features of all the cells, we have the input
feature matrix Z ∈ RN×dc . And the structure of GNNc(·) can be modeled as:

R(l) (Ac) = D−1Ac, D = diag (Ac1N ) ,

Z(l) = MLP(l)
c

(
R(l) (Ac)Z(l−1)W(l)

c

)
, (8)

where 1N is the all-ones vector of length N , diag(·) returns a diagonal matrix with the input vector
as the diagonal, W(l)

c is a learnable weight matrix, MLP(l)
c (·) is an MLP, Z(l) is the output feature

matrix of the l-th layer, and Z(0) = Z. As for h′
i that is fed to an MLP classifier in Eq. (2), we find that

setting h′
i = Concat(z

(0)
i , . . . , z

(L)
i ) with z

(l)
i being the i-th row of Z(l) practically achieves better

classification performance for pθ(yi|X̃), which is similar to the jumping knowledge networks [29].

Optimization of Cell-level GNN. Maximizing LELBO(θ, ϕ;Y
L, X̃) in the M-step is equivalent to

minimizing the following loss function:

LM = −Eqϕ(YU |X̃)

[
log pθ(Y

L,YU |X̃)
]

= −
∑

vc
i∈VU

Eqϕ(yi|x̃i)

[
log pθ(yi|X̃)

]
−
∑

vc
i∈VL

log pθ(yi|X̃). (9)

Here, the first term is the loss for unlabeled cells, which trains pθ using the pseudo-labels generated
by the gene-level GNN in the previous E-step. The second term is the loss for labeled cells, which is
the standard supervised learning with ground-truth labels. Minimizing Eq. (9) w.r.t. pθ can also be
solved via SGD. Concretely, in each update step of SGD, we sample ŷi ∼ qϕ(yi|x̃i) for unlabeled
cells and perform gradient descent θ ← θ − γc∇θL̃M , in which L̃M = −

∑
vc
i∈VU log pθ(ŷi|X̃)−∑

vc
i∈VL log pθ(yi|X̃) and γc is the learning rate.

3.5 Overall Optimization

To optimize the overall scBiGNN framework, we first pre-train the gene-level GNN with labeled cells
to obtain the initial qϕ. Then, the EM algorithm alternately optimizes pθ (i.e., the cell-level GNN) and
qϕ (i.e., the gene-level GNN) to reinforce each other. In the M-step, the cell representations generated
by the gene-level GNN are used to construct the cell-cell graph, and the pseudo-labels predicted
by qϕ together with the given cell labels are utilized to train the cell-level GNN. In the E-step, the
pseudo-labels produced by pθ and the ground-truth cell labels are used to train the gene-level GNN, in
which the gene-gene interactions are adaptively learned. After several EM iterations, the performance
of both cell- and gene-level GNNs is enhanced in cell type classification.

4 Experiments

4.1 Benchmark Datasets

In this work, we conduct cell type classification experiments on five benchmark datasets to evaluate
the performance of our scBiGNN, i.e., Zheng68K, Zhengsorted, BaronHuman, BaronMouse and
AMB, which are widely used in many published papers for single-cell classification. These datasets
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Table 1: Statistics of the five scRNA-seq benchmark datasets.

Dataset Description Protocol Species #Genes #Cells #Cell types

Zheng68K PBMC 10X Chromium Homo sapiens 20387 65943 11
Zhengsorted FACS-sorted PBMC 10X Chromium Homo sapiens 21952 20000 10
BaronHuman Human pancreas inDrop Homo sapiens 17499 8569 14
BaronMouse Mouse pancreas inDrop Mus musculus 14861 1886 13
AMB Primary mouse visual cortex SMART-Seq v4 Mus musculus 42625 12832 22

Table 2: Classification accuracy of all the methods on the five datasets.

Method Zheng68K Zhengsorted BaronHuman BaronMouse AMB

SVM 0.701 0.829 0.978 0.973 0.992
LDA 0.662 0.692 0.978 0.952 0.901
NMC 0.597 0.724 0.912 0.919 0.976
RF 0.674 0.796 0.962 0.968 0.985
scID 0.525 0.743 0.535 0.338 0.906
CHETAH 0.298 0.645 0.925 0.895 0.939
SingleR 0.673 0.718 0.968 0.908 0.962
ACTINN 0.724 0.825 0.977 0.978 0.992
GCN-C 0.710 0.831 0.978 0.977 0.992
scGraph 0.729 0.835 0.983 0.976 0.991
sigGCN 0.733 0.844 0.979 0.978 0.992
HNNVAT 0.734 0.846 0.982 0.979 0.992

scBiGNN (qϕ) 0.757 0.860 0.981 0.979 0.993
scBiGNN (pθ) 0.760 0.867 0.983 0.983 0.994

can be directly downloaded from Zenodo (https://doi.org/10.5281/zenodo.3357167), and
the detailed information is depicted in Table 1.

4.2 Implementations

Figure 1: The convergence curves of qϕ and pθ
on the Zhengsorted dataset.

As for the gene-level GNN module, we use a
one-layer model with four attention heads for the
BaronMouse dataset, while a two-layer model
with a single head in each layer is employed for
the other datasets. Additionally, for Zheng68K
and Zhengsorted datasets, the read-out function is
set as the simple average pooling operation, while
for the others we find that using learnable αj in
Eq. (5) performs better. As for the cell-level GNN
module, a three-layer model is employed for cell
graph representation learning. The feature dimen-
sion of each layer’s output is set as 32 for both
GNN modules. All the MLPs used in scBiGNN
have one hidden layer with 32 neurons and ReLU
activation. The maximum number of EM iterations is set as 3, which is commonly enough for
scBiGNN to converge, as shown in Figure 1.

4.3 Comparison Methods

We compare with a variety of baseline models to demonstrate the superior performance of scBiGNN.
Specifically, following the previous study [32], eight methods are considered: support vector machine
(SVM), linear discriminant analysis (LDA), nearest mean classifier (NMC), random forest (RF),
scID [4], CHETAH [7], SingleR [3] and ACTINN [15]. In addition, three recent works that use
gene-level GNNs are included: scGraph [32], sigGCN [28] and HNNVAT [26]. We also compare
with the cell-level GNN, termed GCN-C, in which the cell-cell graph is constructed by principal
component analysis and k-nearest neighbors analysis on the raw gene expression data [13].
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Figure 2: Network analysis of gene-gene and cell-cell graphs. (A) Venn plot of five important gene
lists extracted from gene-gene interactions with five-fold cross validation on the BaronMouse dataset.
(B) Ablation study on k of cell-cell kNN graphs. (C) Homophily analysis on the cell-cell graphs.

4.4 Classification Results

We benchmark scBiGNN against all the baselines by performing five-fold cross validation on each
dataset. The results of cell type classification accuracy are summarized in Table 2, in which the
best performance in each column is highlighted in bold. As can be seen, among all the baselines,
graph-based deep learning methods are the most accurate classifiers, verifying that the biological
structural information is beneficial to identifying cell types from scRNA-seq data. Out of all the
graph-based models, our scBiGNN consistently achieves the highest accuracy on all the benchmark
datasets. Noticeably, it outperforms all the baselines with more than 2.5% accuracy improvement on
the largest scRNA-seq dataset (i.e., Zheng68K). Moreover, from Table 2 and Figure 1 we can observe
that pθ always performs better than qϕ. The reason is that pθ explicitly integrates the bilevel graph
representations of hi that summarizes gene-level structural information and Ac that contains cell-level
structural information. Overall, these results validate that the gene- and cell-level relationships are
effectively mined by pθ of scBiGNN to facilitate scRNA-seq classification.

4.5 Network Analysis

Gene-gene Graph. Our scBiGNN adaptively learns gene-gene interactions by the self-attention
function R(l) (Ag) in Eq. (4). We integrate all the attention matrices into a gene-gene interaction
matrix Ã by taking the average across all the corresponding elements in all attention matrices for
every gene-gene pair, where each element Ãij measures the attention of gene vg

i paid to gene vg
j .

Then, we can obtain the importance score sj for each gene vg
j , which is defined as sj =

∑
i Ãij . We

sort the importance scores and get five lists of top 50 important genes from five-fold cross validation.
Figure 2(A) shows that most genes appear more than once in the five lists, indicating that scBiGNN is
trustworthy and effective in learning consistent important genes across different training procedures.

Cell-cell Graph. The cell-cell graph in scBiGNN is constructed as the k-nearest neighbor (kNN)
graph based on the cell representations learned from qϕ. In Figure 2(B), we can observe that our model
is insensitive to k. A small value of k (e.g., k = 5) is enough for pθ to achieve good performance,
verifying the high quality of cell representations generated by qϕ in finding close neighborhoods.
In Figure 2(C), we measure the homophily ratio (i.e., the proportion of intra-class edges in all the
edges) of cell-cell graphs constructed by scBiGNN and the raw data X̃ [13] respectively. As can be
seen, cell-cell graphs built by scBiGNN link more cells of the same type, which is critical to learning
separable cell representations across different classes to ease GNN-based node classification [31].

5 Conclusion

In this paper, we propose a novel bilevel graph representation learning framework termed scBiGNN
to improve GNN-based cell type classification in scRNA-seq analysis. scBiGNN consists of two
GNN modules, namely gene- and cell-level GNNs, to adaptively extract structural information at both
biological levels. The EM algorithm is employed to optimize the two GNN modules by alternating
between the E-step and M-step. In each step, the pseudo-labels predicted by one module are used to
train the other, making them gradually reinforce each other. Experiments on five scRNA-seq datasets
verify the effectiveness of scBiGNN compared to competing cell type classification methods.
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