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ABSTRACT

When trained on large-scale object classification datasets, certain artificial neural
network models begin to approximate core object recognition (COR) behaviors
and neural response patterns in the primate visual ventral stream (VVS). While
recent machine learning advances suggest that scaling model size, dataset size,
and compute resources improve task performance, the impact of scaling on brain
alignment remains unclear. In this study, we explore scaling laws for modeling
the primate VVS by systematically evaluating over 600 models trained under con-
trolled conditions on benchmarks spanning V1, V2, V4, IT and COR behaviors.
We observe that while behavioral alignment continues to scale with larger models,
neural alignment saturates. This observation remains true across model architec-
tures and training datasets, even though models with stronger inductive bias and
datasets with higher-quality images are more compute-efficient. Increased scaling
is especially beneficial for higher-level visual areas, where small models trained
on few samples exhibit only poor alignment. Finally, we develop a scaling recipe,
indicating that a greater proportion of compute should be allocated to data sam-
ples over model size. Our results suggest that while scaling alone might suffice for
alignment with human core object recognition behavior, it will not yield improved
models of the brain’s visual ventral stream with current architectures and datasets,
highlighting the need for novel strategies in building brain-like models. 1

1 INTRODUCTION

The advent of neural networks has revolutionized our understanding and modeling of complex neural
processes. A particularly active area of study is the ventral visual stream in primates, a key pathway
in the brain responsible for processing visual information Goodale & Milner (1992); Grill-Spector
et al. (2001); Malach et al. (2002); Kriegeskorte et al. (2008). Neural networks, when trained on
extensive datasets, have emerged as the most accurate quantitative tools for simulating the response
patterns of neurons within this stream Yamins et al. (2014); Schrimpf et al. (2018). These advanced
models offer a precise computational account of how neural mechanisms in the brain give rise to
visual perception.

Recent developments in machine learning have emphasized the significance of both the volume of
training data and the complexity of model architectures Kaplan et al. (2020); Hoffmann et al. (2022);
Zhai et al. (2022); Bahri et al. (2022); Antonello et al. (2023); Muennighoff et al. (2023); Aghajanyan
et al. (2023); Isik et al. (2024). These findings raise the question: Can we build better models of
the brain by scaling up model architectures and dataset sizes? Recent studies have found that in
pre-trained models, the number of parameters and dataset samples respectively seem to improve
predictions of fMRI and behavioral measurements (Antonello et al., 2023; Muttenthaler et al., 2023).
With the numerous differences between pre-trained models however, the relative contributions of
model parameters and dataset size to brain and behavioral alignment are not clear.

In this paper, we examine how scaling – of model parameters and training dataset size – impacts
the alignment of artificial neural networks with the primate ventral visual stream. We systematically
train models from a variety of architectural families on image classification datasets which allows us
to independently control and observe the effects of model complexity and data volume. To capture

1We open-source all code, as well as checkpoints for our model zoo.
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a)

b)

Figure 1: a) For a given compute budget (C), we determine the scaling laws for maximal neural
and behavioral alignment to the primate visual ventral stream. b) We find consistent scaling laws
for brain and behavioral alignment across over 600 models. While we predict models to approach
perfect behavioral alignment of 1 at large scales, the effect of scaling on brain alignment is already
saturating at 0.48.

the observed trends, we introduce parametric power-law trends that describe the impact of scale
on alignment with behavior and brain regions along the visual ventral stream. We summarize the
contributions of this work as follows:

• While scale initially improves alignment, brain alignment saturates whereas behavioral
alignment continues to improve.

• Increasing both parameter count and training dataset size improves alignment, with data
providing more gains over model scaling.

• Architectures with stronger inductive bias (such as convolutions) and datasets with higher-
quality images are more sample- and compute-efficient.

• Fitting parametric power-law curves, we find that model alignment with higher-level brain
regions and especially behavior benefits the most from scaling.

• We publicly release our training code, evaluation pipeline, and over 600 checkpoints for
models trained in a controlled manner to enable future research.

2 RELATED WORK

Primate Visual Ventral Stream. The ventral visual stream, a critical pathway in the primate
brain, including humans, plays a key role in visual perception, extending from the occipital to the
temporal lobes and serving as the ”what pathway” for object recognition and form representation
Goodale & Milner (1992); Grill-Spector et al. (2001); Malach et al. (2002); Kriegeskorte et al.
(2008). Beginning in the primary visual cortex (V1), where basic visual information from retinal
ganglion cells is processed, the ventral stream proceeds through areas such as V2, V3, V4, and the
inferotemporal cortex (IT), each responsible for increasingly complex features of visual perception
Kandel et al. (2000). Despite decades of research and a wealth of brain data, the precise neural
mechanisms underlying visual perception are not well understood.

Modeling the Primate Visual Ventral Stream. Particular artificial neural networks (ANNs) are
the most accurate models of brain responses in the visual ventral stream and associated core ob-
ject recognition behaviors Schrimpf et al. (2018; 2020). Models optimized for ecologically viable
tasks (Yamins & DiCarlo, 2016) in particular have demonstrated strong brain and behavioral align-
ment (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Cadena et al., 2019; Schrimpf
et al., 2018; Nayebi et al., 2018; Kietzmann et al., 2019; Rajalingham et al., 2018; Zhuang et al.,
2021; Geiger et al., 2022) – notably these models are trained purely on image classification datasets,
without fitting to brain data.

Scaling Laws. Recent advancements in artificial intelligence are driven by scaling the model size
and training data. Empirical evidence suggests a power-law relationship between model perfor-
mance and both model parameters and dataset size, indicating that continued scaling will further

2
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improve performance Kaplan et al. (2020); Cherti et al. (2023); Zhai et al. (2022); Hoffmann et al.
(2022); Dehghani et al. (2023); Henighan et al. (2020); Brown et al. (2020); Bahri et al. (2022);
Hestness et al. (2017). The power-law exponents enable the optimal allocation of compute between
model parameters and dataset samples, such that performance is maximized Kaplan et al. (2020);
Hoffmann et al. (2022).

While scaling laws for machine learning performance has been extensively studied, the scaling laws
for brain alignment remain unclear. Recent studies indeed suggest an involvement of both model
size and data volume in the functional alignment with brain data Azabou et al. (2023); Benchetrit
et al. (2023); Caro et al. (2024); Antonello et al. (2023). Conversely, Muttenthaler et al. Muttenthaler
et al. (2023) indicate that sample size is critical for behavioral alignment. We here unify these results,
in the realm of the primate visual ventral stream, into quantitative scaling laws for how model and
dataset sizes relate to alignment with the brain and behavior.

3 METHODS

Neural & Behavioral Alignment. To evaluate the alignment of our model with brain function, we
utilize a range of benchmarks from Brain-Score Schrimpf et al. (2018; 2020). These benchmarks
assess model performance by comparing model activations or behavior with primate neural data
using the same images. Specifically, the V1 and V2 benchmarks compare model outputs to primate
single-unit recordings from Freeman et al. (2013), using 315 texture images and data from 102
V1 and 103 V2 neurons. For the V4 and IT benchmarks, 2,560 images are used to match model
activations to primate Utah array recordings from Majaj et al. (2015), based on data from 88 V4
and 168 IT electrodes. A linear regression is trained on 90% of the images to correlate model and
neural data, with prediction accuracy for the remaining 10% evaluated using Pearson correlation,
repeated ten times for cross-validation. The behavioral benchmark assesses model predictions for
240 images against primate behavioral data from Rajalingham et al. (2018) using a logistic classifier
trained on 2,160 labeled images. Pearson correlation is used to measure the similarity in confusion
patterns between model predictions and primate responses. All benchmark scores are normalized to
their respective maximum possible values.

We define the model’s alignment score S (and an inverse Misalignment Score L = 1 − S) as the
average across the V1, V2, V4, IT, and behavioral benchmark scores. Layers are committed to brain
regions based on models trained on a full dataset, and applied to all variants trained with subsampled
datasets. As we reused the same neural and behavioral data both to select the optimal model layer
for readout and to assess the model’s alignment, we validated the benchmark results on a private
split of each dataset on Brain-Score. We observed an almost perfect correlation between the results
on the private and public splits (Appendix C).

Scaling Models and Data. We trained an array of standard models from several architecture
families. Specifically, we used ResNet18, 34, 50, 101, 152 from He et al. (2016); EfficientNet-
B0, 1, 2 from Tan & Le (2019); Vision Transformer ViTT,S,B,L from Dosovitskiy et al. (2021);
ConvNeXtT,S,B,L from Liu et al. (2022b); CORnet-S from Kubilius et al. (2019); and AlexNet
from Krizhevsky et al. (2012). We also trained 33 modified versions of ResNet18: 22 models ob-
tained by scaling the network width from 1/16 to 4 times the original size, and 11 models derived
by adjusting the depth. Similarly, we trained four additional ConvNeXt and ViT models by scaling
the width of the ConvNeXt-T and ViT-S architectures.

For our experiments, we selected two image classification datasets: ImageNet Deng et al. (2009) and
EcoSet Mehrer et al. (2021). ImageNet, with millions of labeled images across 1,000 categories, has
long been a benchmark in computer vision, designed to challenge and evaluate automated visual
object recognition systems. On the other hand, EcoSet is a more recent dataset, designed to provide
an ecologically valid representation of human-relevant objects. It contains over 1.5 million images
spanning 565 basic-level categories, curated to better reflect the natural distribution of objects in the
real world, aligning with human perceptual and cognitive experiences.

To create subsets of ImageNet and EcoSet, we sampled d ∈ 1, 3, 10, 30, 100, 300 images per cate-
gory. For d ∈ 1, 10, 100, we repeated the runs with three random seeds to ensure robustness. For
ConvNeXts (Liu et al., 2022b) and ViTs (Touvron et al., 2022), we used the training recipes de-
veloped by the original model authors. The remaining models were trained for 100 epochs using a
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minibatch size of 512. We employed a stochastic gradient descent (SGD) optimizer with a cosine
decaying learning rate schedule, starting with a peak learning rate of 0.1 and incorporating a linear
warm-up phase spanning five epochs. We maintained the momentum at 0.9 and applied a weight
decay of 10−4. Cross-entropy loss was used as the minimization objective. We utilized standard
ImageNet data augmentations, specifically random resized cropping and horizontal flipping.

Scaling Power-Law Curves. Following previous work on scaling laws Zhai et al. (2022); Hoff-
mann et al. (2022); Besiroglu et al. (2024), we fit power law functions in the form

L = E +AX−α (1)

on the data where L is the misalignment score, and X is an independent variable, such as the number
of samples seen (D), number of parameters (N ), and the total training floating point operations
(FLOPs) (C). Coefficients E, A, and α are found by minimizing

min
a,e,α

∑
i∈[#Runs]

Huberδ (LSE(a− α logXi, e)− logLi) (2)

where E = exp(e), A = exp(a) and LSE is the log-sum-exp operator. We solve Eq. 1 using BFGS
minimizer with δ = 1e − 3, and use a grid of initialiations as follows: e ∈ {−1,−0.5, . . . , 1},
a ∈ {0, 5, . . . , 25}, α ∈ {0, 0.5, . . . , 2}.

To capture the slow initial increase in benchmark scores of modern architectures like ConvNeXt and
ViT models in the low-data regime, we introduce an additional parameter λ to Eq. 2. This parameter
allows the fitted curve to saturate at lower scales, better reflecting the observed performance of these
models under limited data conditions:

L = E +A
(
X + 10λ

)−α
(3)

We minimize the modified equation as before, using λ ∈ 0, 0.5, 1.0, 1.5, 2.0. To fit the curve de-
scribed by Eq. 3, we utilize all data points from the ConvNeXt and ViT models. For fitting the
remaining curves, we select ConvNeXt and ViT runs that were trained on datasets with either 300
samples per class or the full dataset. This approach ensures that the fitted curves accurately represent
the scaling behavior of these architectures across different data regimes.

Furthermore, we would like to describe the misalignment (L) as a function of both the model and
data size (N , D) and predict optimal allocations N∗ and D∗ by solving

(N∗, D∗) = argmin
N, D

L(N, D) s.t FLOPs(N, D) = C (4)

In that regard, following Hoffmann et al. (2022); Besiroglu et al. (2024) we fit a parametric function
of the form

L̂(N,D) = E +
A

Nα
+

B

Dβ
(5)

where the loss (L̂) is a function of parameter count (N ) and number of samples seen (D). In Eq.
5, the first term represents the loss in an ideal data generation scenario (entropy), the second and
the third terms reflect the under-performance of a model due to limitations in parameter and data
size Hoffmann et al. (2022); Muennighoff et al. (2023). Following the example of Hoffmann et al.
(2022), we learn variables {E, A, α, B, β} that characterizes misalignment by solving

argmin
e, a, α, b, β

∑
i∈[#Runs]

Huberδ (LSE(a− α logNi, b− β logDi, e)− logLi) (6)

with δ = 10−3 and E = exp(e), A = exp(a) B = exp(b). Initialiations of b and β follow a and α,
respectively.

Both Kaplan et al. (2020); Hoffmann et al. (2022) assume that compute follows the relationship
C(N,D) ≈ 6ND to predict the optimal allocation of compute (C) to N and D using a set of
equations with the learned variables mentioned above:

N∗(C) = G(C/6)a, D∗(C) = G−1(C/6)b

where a′ =
β

α+ β
, b′ =

α

α+ β
, G =

(
αA

βB

) 1
α+β (7)

4
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a) b)

c)

Figure 2: Scaling Model Size. a) Neural and behavioral alignments of four architecture fami-
lies. Models with inductive biases (ResNet, EfficientNet) are more compute-efficient than less
constrained models (ConvNeXt, ViT). b) Average alignment per model architecture. All models
converge to similar alignments. c) Increasing parameters improves alignment (models trained on
full datasets), but the effects saturate.

However, we observe that C(N,D) ≈ 6ND does not hold with different architectures, and various
CNN families have a slightly different relationship of C, N , and D. As such, we assume a power-law
relationship of the form

C(N, D) = m(ND)n (8)

where we fit m and n via linear regression of C and ND in log-log scale. Then, the updated
equations governing the optimal allocation becomes

N∗(C) = G(C/m)a
′/n, D∗(C) = G−1(C/m)b

′/n (9)

where a′, b′, and G are calculated as before.

To evaluate the uncertainty of our model fits, we performed bootstrapping with 1,000 resamples.
We compute 95% confidence intervals for each point along the fitted curves based on the variability
observed across the bootstrapped estimates.

Finally, to avoid large constants during curve fitting, we rescale the variables C, N , and D by setting
C̃ = C/1013, Ñ = N/105, and D̃ = D/104.

4 RESULTS

4.1 SCALING DRIVES BEHAVIORAL ALIGNMENT, BUT SATURATES FOR NEURAL ALIGNMENT

Our experiments show a clear and consistent improvement in behavioral alignment as both model
size and training dataset size increase. Fig 1.b illustrates this trend across different architectures and
scaling axes. The curve S = 1− 1.4C̃−0.06 converges to perfect alignment score of 1 in the limit of
C.

In contrast to behavioral alignment, neural alignment with specific brain regions demonstrated
saturation as training compute scaled up in size. The curve represented by the formula S =
0.48 − 0.55C̃−0.16 represents a saturation at 0.48. The diminishing returns in neural alignment
imply that merely scaling up models and data is insufficient to achieve better alignment with higher-
level neural representations.

5
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b)a)

Figure 3: Scaling Dataset Size. a) Training on larger datasets enhances brain alignment. The align-
ment scaling curves derived from ImageNet and EcoSet closely estimate the alignment achieved
when using ImageNet21k. In contrast, datasets with specialized image distributions—such as
Places365—fall below the alignment scaling laws established by these generalist datasets. b) Model
families with weaker inductive bias start at a lower alignment and require more data to improve.

4.2 ARCHITECTURAL INDUCTIVE BIAS INFLUENCES ALIGNMENT AND SCALING BEHAVIOR

Experimental results indicate that modern architectures, such as ConvNeXt and Vision Transformers
(ViTs), exhibit poorer neural alignment compared to models like ResNets and EfficientNets in low
data regime. ResNets and EfficientNets, which have stronger inductive biases due to their fully con-
volutional structures, demonstrate high neural alignment even at initialization. In Fig. 2, alignment
score of ResNets and EfficientNets increase steadily with additional compute in the form of training
samples, however ConvNeXt and ViT requires more compute in order to start rising.

This difference in initial alignment also affects how the scaling laws evolve for each architecture.
Models with weaker inductive biases require more extensive scaling—specifcally in terms of train-
ing data—to achieve levels of neural alignment comparable to those with stronger inductive biases.
Consequently, the scaling curves for ConvNeXt and ViT models develop differently, highlighting
that architectural choices not only impact baseline alignment but also influence the efficiency of
scaling strategies.

4.3 MORE DATA IS BETTER THAN MORE PARAMETERS

Our analysis reveals that increasing the size of the training dataset has a more significant impact
on improving brain alignment than simply enlarging the number of model parameters. While both
strategies lead to performance enhancements, the benefits from data scaling exhibit less severe di-
minishing returns compared to model scaling. Specifically, models trained on larger datasets consis-
tently demonstrate superior neural and behavioral alignment with the primate ventral visual stream,
following a predictable power-law relationship.

In contrast, expanding the model size without proportionally increasing the training data results in
steeper diminishing returns in alignment performance. Larger models rapidly reach a point where
additional parameters do not translate into meaningful improvements. Fig. 2c estimates a saturation
level of 0.44 by scaling model sizes with all samples of training data whereas Fig. 3a predicts
maximum alignment of 0.48 and 0.50 for ImageNet and Ecoset respectively. This indicates that
scaling training datasets overall improves brain alignment better than models scaling. Furthermore,
Fig. 4b demonstrates that larger models of the same architecture family require much more samples
to achieve the same level of alignment.

To quantitatively capture the joint interaction between data and model scaling, we fitted a parametric
curve based on Eq.5, as shown in Fig.4a. This curve effectively models how compute (C), dataset
size (D), and model size (N ) collectively influence brain alignment. Utilizing the parametric rela-
tionships described in Eq. 9, we estimate that additional compute should be allocated following the
scaling laws D ≈ C0.7 and N ≈ C0.3. These exponents indicate that, for optimal brain alignment,
computational resources should be predominantly invested in increasing the dataset size rather than
the model size.

6
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b)a)

Figure 4: Optimal Compute Allocation. a) Alignment as a function of both model and training
dataset sizes. Marker size is log-proportional to model size. Compute should be spent 0.3/0.7 on
model/dataset size respectively. b) Models start out at different alignments but converge to the same
saturating point.

4.4 ORDERED EFFECT OF SCALE ON ALIGNMENT

Our study reveals a graded effect of scaling on alignment across the cortical hierarchy of the primate
visual system. Specifically, we observe that the benefits of increased training compute—achieved
through larger datasets and more complex models—vary systematically among different brain re-
gions, reflecting their position in the visual processing pathway. Fig. 5.a illustrates the alignment
as a function of training compute across various brain regions. We categorized the models into two
groups based on their architectural inductive biases. Group 1 includes most models with strong in-
ductive biases, such as ResNets and EfficientNets. These models start with higher neural alignment
scores even at initialization due to their fully convolutional architectures. Group 2 consists of mod-
els with weaker inductive biases, specifically ConvNeXt and Vision Transformers (ViTs). These
models exhibit lower neural alignment in the low-data regime and require more compute to achieve
similar alignment levels.

To quantify the impact of scaling on each brain region, we define the alignment gain per region as
A10α where A and α are parameters of Eq. 2. Our findings indicate that higher regions in the cortical
hierarchy show greater benefits from increased compute. Fig. 5b illustrates the alignment gain per
region, highlighting how higher cortical areas benefit more from scaling efforts. This ordered effect
suggests that regions higher up in the visual hierarchy, such as the Inferior Temporal (IT) cortex and
behavioral outputs, gain more substantially from additional data and increased model complexity. In
contrast, early visual areas like V1 and V2 exhibit smaller alignment gains with increased compute,
indicating a potential saturation effect.

5 DISCUSSION

We establish scaling laws governing the effect of model and dataset scale on behavioral and brain
alignment with the primate visual ventral stream. While scale is a necessary component for all brain-
like models, model architectures with priors such as convolutions, and datasets with high-quality
images are more sample efficient, leading to alignment with smaller compute requirements. Scale
especially improves alignment with higher-level visual regions, but brain alignment saturates across
all conditions tested here whereas behavioral alignment continuously improves with increased scale.

Platonic representations. Our results are consistent with the view that representations in deep
neural network models are converging. This observation has been likened to Plato’s concept of
an ideal reality (Huh et al., 2024). Our findings support this view in that neural network models
at scale tend to converge toward similar brain and behavioral alignment, regardless of their initial
architectural differences. However, we find that the representational convergence in current models
is distinct from representations in the brain’s visual ventral stream. Intriguingly, behavioral choices
on the other hand seem to converge to human-like core object recognition, suggesting that there
is no unique solution to human-like behavior. Even models with differing inductive biases, such
as ConvNeXt and ViT (which start with poorer neural alignment), eventually converge to the same

7
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a)

b)

Figure 5: Graded Effect of Scale across Cortical Hierarchy. a) Alignment as a function of train-
ing compute across different brain regions. Group 1 contains most models except those with low
inductive bias (Group 2; ConvNeXt, ViT). b) Alignment gain per region, defined as A10α. Regions
higher in the cortical hierarchy show greater benefits from increased compute (Behavior > IT > V4
> V2 > V1).

.

behavioral, and, saturating brain alignment as models like ResNet and EfficientNet. Building models
with representations that are consistent with the brain might thus require substantial changes to
current architectures and training approaches.

Dissociation of behavioral and neural alignment. Our findings reveal a dissociation between be-
havioral and neural alignment as models are scaled with more parameters and larger datasets. While
behavioral alignment continues to improve consistently with increased model parameters and train-
ing data – exhibiting a strong power-law relationship – neural alignment reaches a saturation point
beyond which additional scaling yields minimal gains. This divergence suggests that behavioral
alignment benefits more substantially from scaling efforts, whereas neural alignment may require
alternative approaches beyond merely increasing model size and data volume to achieve further
improvements.

This disparity is further highlighted by the correlation between task performance and alignment de-
picted in Figure 6. Behavioral alignment closely tracks validation accuracy, improving hand-in-hand
as models become more accurate. Consistent with prior work(Schrimpf et al., 2018; Linsley et al.,
2023), neural alignment eventually saturates, indicating that factors other than task performance
influence neural alignment.

Generalization Beyond Supervised Training. We assessed whether alternative training
paradigms can overcome the limitations observed in neural alignment under supervised learning.
Figure 7a illustrates the scaling of alignment as a function of compute spent during self-supervised
training of ResNet models using SimCLR Chen et al. (2020) on ImageNet. The results confirm the
trends observed in supervised training: behavioral alignment continues to improve with increased
compute, following a strong power-law relationship, while neural alignment approaches a saturation
point. This consistency suggests that the saturation in neural alignment is not exclusive to supervised
learning but may be inherent to the models or datasets employed.

The region-specific breakdown (as illustrated in Figure 13 of the appendix) further reinforces this
observation. Even in a self-supervised learning context, higher-level visual areas like IT and be-
havioral outputs demonstrate more pronounced improvements with increased compute, while early
visual areas like V1 and V2 show minimal gains. This suggests that the hierarchical nature of neural
alignment is a fundamental characteristic that transcends specific training methodologies.

8
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a) b) c)

Figure 6: Correlation between Task Performance and Alignment. a,b) Correlation between
validation accuracy (ImageNet & EcoSet) and brain (a) and behavioral (b) alignment. Behavioral
alignment strongly correlates with task performance, whereas neural alignment shows a non-linear
trend, reaching saturation. c) Pearson’s correlation coefficient per region, with all p-values less than
10−40.

Additionally, we explored the impact of adversarial fine-tuning on alignment performance. In Fig-
ure 7b, ResNet models trained on subsets of ImageNet were fine-tuned adversarially for 10 epochs
using the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015; Wong et al., 2020). Impor-
tantly, the scaling curves were estimated solely from the non-adversarial runs, yet the adversarially
fine-tuned models exhibited improvements along these existing scaling curves. This indicates that
adversarial training can enhance alignment without deviating from the established scaling behavior.

Impact of Architectural Inductive Biases on Alignment Dynamics. Our evaluation of align-
ment during training reveals that the alignment behavior varies significantly across different model
architectures. Figure 7.c shows that while various models eventually converge to similar alignment
levels with sufficient training, fully convolutional architectures—such as ResNets and Efficient-
Nets—exhibit substantially higher alignment scores at the very beginning of training. This early
advantage suggests that these architectures possess inherent features that align closely with neural
data from the primate ventral visual stream even before learning from data occurs.

Further analysis in Figure 10 of the appendix confirms that this initial high alignment is due to the
strong inductive biases present in fully convolutional networks. These biases enable the models
to start with representations already well-suited for neural alignment. Figure 11 in the appendix
reinforces this finding by demonstrating that models with strong inductive biases achieve higher
initial alignment compared to architectures like ConvNeXt and ViT, which have weaker inductive
biases.

Influence of Learning Signals on Alignment Dynamics. Our investigation reveals that the type
of learning signal plays a crucial role in the dynamics of alignment during training. Figure 7d illus-
trates the alignment trajectories of ResNet50 and ViT-S models trained on ImageNet using super-
vised learning, SimCLR, and DINO (Caron et al., 2021) methods. Notably, the ViT-S model requires
significantly more training steps to achieve the same level of alignment under supervised learning
compared to when trained with self-supervised objectives like DINO and SimCLR. In contrast, the
ResNet50 model, which possesses strong inductive biases due to its convolutional architecture, ex-
hibits relatively consistent alignment dynamics across different learning signals. This robustness
implies that models with strong inductive biases are less affected by the choice of training objective,
whereas architectures like ViT-S benefit more substantially from rich, self-supervised feedback to
achieve optimal alignment.

Limitations and Future Directions. Our study has several limitations. First, the extrapolation
of our scaling functions is constrained by the specific range of model sizes and dataset volumes we
examined. While we observed power-law relationships between scaling factors and brain alignment,
these functions may not generalize beyond the scales tested.

Second, we evaluated a subset of models focusing primarily on standard and modern convolutional
neural networks (e.g., ResNets and ConvNeXts), transformer-based architectures (e.g. ViTs) and
recurrent networks (CORnet-S). While these architectures cover a range of inductive biases and
complexities, they do not encompass the full spectrum of possible neural network designs, such

9
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c)

a) b)

d)

Figure 7: Alignment Scaling of Alternative Training Strategies. a) Unsupervised: ResNet models
trained with SimCLR improve behavioral alignment with compute, while neural alignment saturates.
b) Adversarial Robustness: Fine-tuning ResNets with adversarial training (FGSM) enhances align-
ment along the scaling curve. c) Architectural Prior: ResNets and EfficientNets exhibit higher initial
alignment in early phases of training, due to strong inductive biases, unlike ConvNeXt and ViT. d)
Alignment dynamics vary with training objectives, but converge to the same alignment saturation.

as more biologically plausible models. We see scaling laws as an opportunity to extrapolate the
alignment of models at scale, even if their current training is compute-constrained.

Third, our experiments utilized a subset of training datasets primarily from ImageNet and EcoSet.
Although these datasets are extensive and widely used, they may not capture all the nuances of
visual stimuli relevant to the primate ventral visual stream. Therefore, models trained on other
datasets might exhibit improved scaling properties.

Taken together, our results demonstrate that while scaling both model parameters and training data
size enhances behavioral alignment with human visual perception, it leads to saturation in neural
alignment with the primate ventral visual stream. Data scaling proves more effective than model
scaling in improving alignment, emphasizing the critical role of extensive and diverse training
datasets. We also find that architectural choices significantly influence alignment efficiency, with
models possessing strong inductive biases—such as fully convolutional networks—achieving higher
neural alignment even at initialization. Additionally, the impact of scaling varies across different
brain regions, benefiting higher cortical areas more than early visual areas. These findings suggest
that merely increasing scale is insufficient for modeling the intricate neural representations of the
brain’s visual system. Future work should investigate new approaches, including alternative archi-
tectures and training strategies, to develop models that more accurately reflect the complexities of
neural processing in the primate visual cortex.

To push neural alignment beyond current saturation levels, future research should explore adversarial
training methods that encourage models to learn more robust, brain-like representations. Leverag-
ing biologically inspired architectures such as VOneNets (Dapello et al., 2020) may lead to more
compute-efficient models achieving higher neural alignment without extensive scaling. Addition-
ally, investigating co-training with brain data—integrating neural recordings directly into the train-
ing process—could enhance both neural and behavioral alignment, paving the way for more accurate
and efficient brain-like models.

10
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A IMPLEMENTATION DETAILS

Our experiments are conducted using the PyTorch framework (Paszke et al., 2019), with Com-
poser (Team, 2021) employed as the GPU orchestration tool to efficiently manage computational
resources.

For image augmentations, we leverage the Albumentations Buslaev et al., 2020 library due to its rich
set of augmentation techniques, which are crucial for enhancing model robustness and preventing
overfitting. In experiments involving self-supervised learning, we use the Lightly Susmelj et al.
(2020) library to facilitate the implementation of self-supervised losses, augmentations, and model
heads. This library streamlines the process of setting up models for SimCLR and DINO training
methods.

To generate adversarial examples for adversarial fine-tuning, we employ the Torchattacks library
Kim (2020). Specifically, we use the Fast Gradient Sign Method (FGSM) to create perturbations that
challenge the models, aiming to enhance their alignment with neural representations by exposing
them to adversarial inputs.

B ADDITIONAL IMAGE DATASETS

To further validate our findings across diverse image distributions and to estimate scaling curves
across different sample scales, we trained ResNet18 models on subsets of several large-scale image
datasets: ImageNet-21k-P, WebVision-P, iNaturalist, and Places365. Below, we provide detailed
descriptions of each dataset.

B.1 IMAGENET21K-P

ImageNet-21k-P is a processed subset of the full ImageNet-21k dataset (Ridnik et al., 2021), which
originally contains over 14 million images organized into more than 21,000 categories following
the WordNet hierarchy. The ”P” denotes a pruned version where classes with insufficient images or
noisy labels are filtered out to enhance dataset quality. This results in a refined dataset that maintains
the richness of the original ImageNet-21k while improving label accuracy and image relevance. The
resulting dataset contains approximately 11 million training images across 10,450 classes.

B.2 WEBVISION-P

The WebVision dataset (Li et al., 2017) is a large-scale web image dataset designed to provide a
real-world, noisy alternative to ImageNet. It originally contains over 16 million images categorized
into 5,000 classes. The images are collected from the internet using queries from search engines
like Google and Flickr, leading to a dataset that includes label noise, varying image resolutions,
and diverse visual contexts. Due to classes with very few available samples, we processed the
WebVision dataset similarly to ImageNet-21k-P to remove classes with insufficient images. The
resulting dataset, which we denote as WebVision-P, contains approximately 13.5 million training
images across 4,189 categories.

B.3 INATURALIST

iNaturalist Van Horn et al. (2018) contains 2.7 million photographs of organisms in their natural
environments, representing 10000 species. The dataset features highly specialized fine-grained cat-
egories and natural backgrounds, offering insight into how domain-specific visual features influence
alignment scaling.

B.4 PLACES365

Places365 Zhou et al. (2017) is a large-scale scene-centric dataset containing approximately 1.8 mil-
lion training images across 365 scene categories. Unlike object-centric datasets such as ImageNet,
Places365 focuses on the recognition of environmental scenes, including natural landscapes, urban
settings, and indoor environments. Each category includes a wide variety of images to capture the
diversity within scene types.
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B.5 INFIMNIST

The MNIST dataset (LeCun et al., 1998) is a classic benchmark in machine learning, comprising
70,000 grayscale images of handwritten digits (0-9), each sized 28×28 pixels. To expand this dataset
for more extensive experimentation, we utilize the Infinite MNIST (Infimnist) tool Loosli et al.,
2007, which generates additional MNIST-like samples through data augmentation techniques. We
create an extended dataset by modifying the original training dataset 19 additional times, resulting in
a total of 1.2 million images. This enlarged dataset allows for a more thorough evaluation of scaling
effects on the alignment.

C VALIDATION ON PRIVATE DATA

Figure 8: Public benchmarks used in this study correlates highly with private benchmarks on Brain-
Score

As described in Section 3 we test a diverse set of models on private benchmarks on Brain-Score
platform. All R2 values are above 0.95 with p-values less than 10−18.
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D PRETRAINED MODELS

As part of our comprehensive evaluation, we benchmarked a diverse set of pretrained models sourced
from both torchvision (maintainers & contributors, 2016) and the timm (Wightman, 2019)
libraries. We tested a total of 94, including ViT Dosovitskiy et al. (2021), DaViT Ding et al. (2022),
LeViT Graham et al. (2021), ConvNeXt Liu et al. (2022a), MobileViT Mehta & Rastegari (2022),
MaxVit Tu et al. (2022), FastViT Vasu et al. (2023). Each model varies in parameter count, training
sample size, dataset source, and training objective, providing a broad spectrum for analysis.

To verify the generalizability of our findings, we conducted evaluations with these pretrained mod-
els, including larger networks like CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2023),
which are pretrained on richer and more diverse datasets such as LAION Schuhmann et al. (2021;
2022). We also compared variations of these models by examining base pretrained models alongside
their fine-tuned counterparts on ImageNet, aiming to investigate the impact of fine-tuning on scaling
behavior.

Our results indicate that models with extensive pretraining achieve enhanced behavioral alignment,
likely due to their exposure to richer and more varied data. However, similar to models trained
solely on ImageNet or EcoSet, these pretrained models still exhibit a saturation effect in neural
alignment with the primate visual ventral stream (VVS). This suggests that while larger and more
diverse datasets improve behavioral predictability, they do not substantially extend the scaling of
neural alignment beyond the observed plateau.

The curves in Figure 9 closely follow the scaling patterns estimated for our trained models shown
in Figure 2.c, further validating that the observed saturation is consistent across different pretrain-
ing regimes and dataset scales. This reinforces our conclusion that scaling alone is insufficient to
overcome the limitations in neural alignment and highlights the need for alternative approaches to
improve alignment with neural representations.

Figure 9: Alignment of pretrained vision models as a function of model parameters
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E TRAINING EVOLUTION

Figure 10: Evolution of per-region alignment throughout training. Models with stronger pri-
ors—such as ResNet and EfficientNet—exhibit higher neural alignment initially. However, the gap
in representational power diminishes as more generalist models are trained on data.

Figure 11: Some untrained models demonstrate non-zero neural alignment at initialization. Never-
theless, all models start with almost zero behavioral alignment, indicating that initial neural align-
ment arises from architectural biases rather than learned behavior.
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F EFFECT OF TRAINING OBJECTIVE

Figure 12: Effect of training objective on alignment

Figure 13: Scaling of SimCLR training across regions
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G REGION-WISE SCATTER PLOTS

Figure 14: Region vs. Region Comparisons: This figure shows how the alignment scores for each
brain region correlate with those of other regions. The diagonal plots illustrate the relationship
between the alignment score of each region and the validation accuracy on ImageNet and EcoSet
datasets.
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