
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMERS LEARN BAYESIAN NETWORKS AU-
TOREGRESSIVELY IN-CONTEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have achieved tremendous successes in various fields, notably ex-
celling in tasks involving sequential data like natural language processing. De-
spite their achievements, there is limited understanding of the theoretical capa-
bilities of transformers. In this paper, we theoretically investigate the capability
of transformers to autoregressively learn Bayesian networks in-context. Specifi-
cally, we consider a setting where a set of independent samples generated from
a Bayesian network are observed and form a context. We show that, there exists
a simple transformer model that can (i) estimate the conditional probabilities of
the Bayesian network according to the context, and (ii) autoregressively gener-
ate a new sample according to the Bayesian network with estimated conditional
probabilities. We further demonstrate in extensive experiments that such a trans-
former does not only exist in theory, but can also be effectively obtained through
training. Our analysis showcases the potential of transformers to effectively learn
complicated probabilistic models, and contributes to a better understanding of the
success of large language models.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have achieved tremendous success across various fields. These
models have particularly revolutionized the way we approach problems related to text generation,
translation, and understanding by leveraging their ability to capture long-range dependencies and
contextual information. Despite these achievements, there remains limited understanding of the
theoretical capabilities of transformers.

To theoretically understand the success of transformers, a notable line of recent works (Akyürek
et al., 2022; Zhang et al., 2023; Bai et al., 2023; Huang et al., 2023; Nichani et al., 2024) have studied
the power of transformers in solving in-context learning tasks. Specifically, Akyürek et al. (2022);
Zhang et al. (2023); Bai et al. (2023); Huang et al. (2023) theoretically studied how transformers can
perform in-context linear regression under the setting that the context consists of a training data set
and the query token contains a test data for prediction. More recently, Huang et al. (2023) studied
how transformers can learn causal structures. Specifically, under the assumption that the tokens
consist of multiple sequences of samples generated from a causal network, Huang et al. (2023)
demonstrated that gradient descent can pre-train a transformer to learn the causal network structure.
By doing so, when transformer sees a new context-query pair, it can generate prediction according
to the learned network structure and the context. However, the analysis in Huang et al. (2023) was
mostly limited to the setting where each variable has at most one parent.

In this work, we focus on a specific setting where a set of independent samples generated from a
Bayesian network are observed and form a context, and our goal is to investigate the capability of
transformers to autoregressively learn Bayesian networks in-context. The main contributions of this
paper are two-fold: providing clean and intuitive theoretical proofs, and presenting robust empirical
studies. Specifically, our contributions can be summarized as follows.

• Theoretically, we demonstrate the existence of a transformer model that is capable of: (i) estimat-
ing the conditional probabilities of the Bayesian network given the context, and (ii) autoregres-
sively generating a new sample based on these estimated conditional probabilities. This gives an
intuitive demonstration on the capability of transformers to perform complicated sampling tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Empirically, we perform extensive experiments to validate our theoretical claims. Specifically,
under various settings where the Bayesian network is a (Markov) chain, a tree, or a general graph,
we demonstrate that a transformer can indeed be pre-trained from scratch, so that it can perform
in-context estimations of conditional probabilities, and help sample a new sequence of variables
accordingly.

Notations. We use lowercase letters to denote scalars and boldface lowercase/uppercase letters to
denote vectors/matrices, respectively. For a matrix A, we use ∥A∥2 to denote its spectral norm. For
an integer n, we denote [n] = 1, 2, . . . , n. For a set S, we use |S| to denote its cardinality. We also
use 1[·] to denote an indicator function that equals 1 when the corresponding statement is true and
equals 0 otherwise.

2 RELATED WORK

Transformers. Transformers Vaswani et al. (2017) and its variants have demonstrated its success
in various of domains such as language Devlin (2018); Liu (2019); Raffel et al. (2020); Touvron
et al. (2023); Achiam et al. (2023), vision Dosovitskiy (2020); Jia et al. (2022); Liu et al. (2021);
Peebles & Xie (2023), multi-modality Gal et al. (2022); Radford et al. (2021); Li et al. (2023a)
etc. Large language models (LLMs) demonstrate remarkable ability to learn tasks in-context during
inference, bypassing the need to update parameters Brown (2020); Lampinen et al. (2022); Khan-
delwal et al. (2018). However, the understanding of the inner mechanisms of these models, and
how they perform such complex reasoning tasks is largely remain undiscovered (Dong et al., 2022).
Such disadvantage prevents us to interprete why transformers often struggles to generalize well un-
der out-of-distribution scenarios, especially on simple reasoning and logical tasks such as arithmetic
(Magister et al., 2022; Touvron et al., 2023; Ebrahimi et al., 2020; Suzgun et al., 2022). This raise a
doubt on how and when can transformers learn the appropriate algorithms to solve tasks or not.

In-Context Learning. Recently, a line of work studies transformers through the lens of in-context
learning (ICL) (Dong et al., 2022; Zhang et al., 2023), an ability of models to generate predictions
based on a series of examples. Empirically, recent studies find out transformers are capable of
learning a series of functions in-context (Garg et al., 2022; Wei et al., 2023; Zhang et al., 2023;
Zhou et al., 2023; Grazzi et al., 2024; Park et al., 2024; Akyürek et al., 2022), showing transformers
can learn to approximate a wide range of algorithms. Theoretically, several works also analyze the
algorithmic approximation perspective of transformers under various of conditions (Von Oswald
et al., 2023; Nichani et al., 2024; Shen et al., 2023; Ahn et al., 2024; Li et al., 2023b; Wies et al.,
2024). A recent work Von Oswald et al. (2023) shows that linear transformers (Katharopoulos
et al., 2020) are capable of performing gradient descent based on in-context examples. In (Bai
et al., 2023), they not only show ReLU transformers are capable of approximating gradient descent
with small error, but can also capable of implementing more complex ICL processes involving in-
context algorithm selection. To the best of authors’ knowledge there is no existing literature that
theoretically and empirically shows transformers learn Bayesian network in-context.

3 IN-CONTEXT LEARNING OF BAYESIAN NETWORKS

In this section, we briefly review the definitions of Bayesian network models, and formally define
the problem of learning Bayesian networks in-context.

Bayesian networks. A Bayesian network is a probabilistic graphical model which specifies the con-
ditional dependencies among the variables by a directed acyclic graph. Each node of the Bayesian
network represents for a random variable, and the edges connected to a node indicates the “par-
ent(s)” and “child(ren)” of the node. Furthermore, Bayesian networks modeling discrete random
variables can be parameterized by parameters that form conditional probability tables, which define
the conditional distribution of each random variable given its parent(s).

Learning of Bayesian networks autoregressively in-context. Consider M discrete random vari-
ables X1,XM . Then there exists a Bayesian network B modeling the joint distribution of
X1, . . . , XM , which satisfies that X1 is a root variable with no parents, and that for any i ∈ [M], the
parents of Xi are with indices smaller than i. For a given Bayesian network B, and for any m ∈ [M],

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

we denote by P(m) the index set of all parents of Xm. Then the maximum in-degree of B can be
defined as maxm∈[M] |P(m)|.
In this work, we consider the problem of learning the conditional probability tables of such a
Bayesian network B in-context. Specifically, suppose that we are given N groups of context ob-
servations X1i,XMi, i = 1, . . . , N that are independently generated according to B. Then, we
study the capability of transformers to autoregressively sample a new sequence X1q,XMq based
on conditional probability tables estimated from the context.

Suppose that the discrete random variables X1,XM takes d possible values, and for i ∈ [N]
and m ∈ [M], denote by xmi the one-hot vector of the observation Xmi. Moreover, suppose that
at a certain step during the autoregressive generation process, some variables among X1, . . . , XM

have been generated, and the goal is to generate the next variable. We define the query sequence
x1q, . . . ,xMq as follows:

• If Xmq is already sampled, then xmq is the one-hot vector representing the obtained value.

• If Xmq is not sampled, then xmq is a zero vector.

Suppose that at the current step, the target is to sample Xm0q . We define additional vectors

p = [0⊤
d(m0−1),1

⊤
d ,0

⊤
d(M−m0+1)]

⊤, pq = [0⊤
d(m0−1),1

⊤
d ,0

⊤
d(M−m0)

,1d]
⊤ ∈ R(M+1)d. (3.1)

The definition of p and pq serves two purposes. First of all, they can teach an autoregressive
model the current variable-of-interest. Moreover, the difference bewteen p and pq also serves as an
indicator of the “query” variable in the input. Based on these definitions, we define

X =


x11 x12 · · · x1N x1q

x21 x22 · · · x2N x2q

...
...

...
...

xM1 xM2 · · · xMN xMq

p p · · · p pq

 , (3.2)

The matrix X can then be directly fed into a transformer model whose output aims to give the
estimated distribution of Xm0q as a d-dimensional vector that sums to one. If such a transformer
model exists, then the autoregressive sampling process can be achieved according to Algorithm 1.
The major goal of this paper is to investigate whether transformers can handle such tasks well.

Algorithm 1 Autoregressive Sampling

1: input: Observations {xmi : m ∈ [M], i ∈ [N]}, model f : R(2M+1)d×(N+1) → Rd.
2: Initialize xmq = 0d for m ∈ [M].
3: for m0 = 1 to M do
4: Set p and pq according to equation 3.1, and define X according to equation 3.2.
5: Sample Xm0q according to f(X), and update xm0q as the corresponding one-hot vector.
6: end for

Optimal maximum likelihood estimation of conditional probabilities. To measure the perfor-
mance of transformers, we consider comparing the output of the transformer with the optimal con-
ditional distribution estimation given by maximizing the likelihood. For discrete random variables,
it is will-known that the maximum likelihood estimation is obtained by frequency counting. Specif-
ically, suppose that at a certain step in the autoregressive sampling procedure, the model is aiming
to sample the m0-th variable. Then, the optimal sampling probability vector popt

m0
∈ Rd is given by

[popt
m0

]j =
|{i ∈ [N] : Xm0i = j, and Xmi = Xmq for all m ∈ P(m0)}|

|{i ∈ [N] : Xmi = Xmq for all m ∈ P(m0)}|
.

Further by the fact that xmi’s and xmq’s are one-hot vectors, we can also write

popt
m0

=
∑
i∈[N]

1[xmi = xmq for all m ∈ P(m0)]

|{i ∈ [N] : xmi = xmq for all m ∈ P(m0)}|
· xm0i.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To compare a function output f ∈ Rd with the optimal solution above, we consider the total variation
distance between the two corresponding distributions, which is defined as

TV(f ,popt
m0

) :=
1

2

d∑
j=1

|[f]j − [popt
m0

]j |.

4 MAIN THEORY

We consider standard transformer architectures introduced in Vaswani et al. (2017) that consists
of self-attention layers and feed-forward layers with skip connections. Specifically, in our setup,
an attention layer with parameter matrices V ∈ R(2M+1)d×(2M+1)d,K ∈ RMd×(2M+1)d,Q ∈
RMd×(2M+1)d is defined as follows:

AttnV,K,Q(X) = X+VXsoftmax[(KX)⊤(QX)],

where softmax denotes the column-wise softmax function. In addition, an feed-forward layer with
parameter matrices W1,W2 ∈ R(2M+1)d×(2M+1)d is defined as follows:

FFW1,W2(X) = X+W2σ(W1X),

where σ(·) denotes the entry-wise activation function. We consider the ReLU activation function
σ(z) = max{0, z}. Given the above definitions, we follow the convention in Bai et al. (2023) and
call the following mapping a “transformer layer”:

TFθ(X) = FFW1,W2
[AttnV,K,Q(X)],

where θ = (V,K,Q,W1,W2) denotes the collection of all parameters in the self-attention and
feed-forward layer.

The above specifies the definition of a transformer layer, which is a mapping from R(2M+1)d×(N+1)

to R(2M+1)d×(N+1) (for any N ∈ N+). To handle the task of generating d-class categorical vari-
ables, we also need to specific the output of the model, which maps matrices in R(2M+1)d×(N+1) to
vectors in Rd. Here we follow the common practice, and define the following Read(·) function

Read(Z) := ZeN+1 for all Z ∈ R(2M+1)d×(N+1)

to output the last column of the input matrix, and consider a linear mapping LinearA(·) to convert
the output of the Read(·) function to the final distribution vector:

LinearA(z) = Az for all z ∈ R(2M+1)d,

where A ∈ Rd×(2M+1)d is the paramter matrix of the linear mapping.

Given the above definitions, we are ready to introduce our main theoretical results, which are sum-
marized in the following theorem.
Theorem 4.1. For any ϵ > 0, and any Bayesian network B with maximum in-degree D, there exists
a two-layer transformer model

f(X) = LinearA[Read(TFθ(2)(TFθ(1)(X)))]

with parameters satisfying

∥V(1)∥2, ∥K(1)∥2, ∥Q(1)∥2, ∥W(1)
2 ∥2, ∥V(2)∥2, ∥W(2)

1 ∥2, ∥W(2)
2 ∥2, ∥A∥2 ≤ 1,

∥W(1)
1 ∥2 ≤ 2

√
D + 1, ∥K(2)∥2, ∥Q(2)∥2 ≤ 3 log(MdN/ϵ),

such that for any m0 ∈ [M] and p, pq defined according to m0, it holds that

TV{f(X),popt
m0

} ≤ ϵ.

Theorem 4.1 shows that there exists a two-layer transformer with an appropriate linear prediction
layer such that, for any variable of interest Xm0 , the transformer can always output a distribution
vector that is close to the optimal maximum likelihood estimation popt

m0
in total variation distance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Illustrations of graph structures in the experiments. Left to right: general graph, tree
and chain. The curriculum follows the number order of variables. The arrow indicates the causal
relationships between variables. Note that for general graph, variable 2, 3 both have 2 parents.
However, modeling variable 0, 1, 2 is identical for naive Bayes and Bayesian inference, and is NOT
for variable 3. For tree, modeling root and level-1 variables is identical for naive Bayes and Bayesian
inference. For chain, modeling variable 0, 1 is identical for naive Bayes and Bayesian inference.

Importantly, for Bayesian networks with bounded maximum in-degrees, the transformer we demon-
strate has weight matrices with bounded (up to logarithmic factors) spectral norms. This provides
strong evidence of the efficiency (Bai et al., 2023) of transformers in learning Bayesian networks
in-context.

A notable pattern of the result in Theorem 4.1 is that it demonstrates the capability of transformers to
generate a sequence of variables in an autoregressive manner – the parameters of the transformer do
not depend on the index of the variable of interest m0, and the same transformer model works for all
m0 ∈ [M] as long as the vectors p, pq appropriately defined according to m0. This means that, the
transformer model f(X) can be utilized in the autoregressive sampling procedure in Algorithm 1,
such that at each step, the transformer always sample the corresponding variable with close-to-
optimal distributions.

5 EXPERIMENTS

The main paper contains three parts of the experiments. First, we verify our theoretical results by
studying the capabilities of transformers learning Bayesian networks. Second, we analyze whether
trained transformers are capable of generalizing to different value of N . Last, we perform a case
study on whether our theoretical construction is optimal. In the appendix, we show the impact of
different parameters on model performance.

5.1 TRANSFORMERS LEARN BAYESIAN INFERENCE

Here we conduct the experiment of training transformers to perform Bayesian inference. We also
visualize their convergence result with loss and accuracy curves.

Datasets. We consider training transformers to learn Bayesian networks of three structures: chain,
tree and general graph, see Figure 1 for illustration. All variables in our dataset are with binary
values (2 possible outcomes). For each structure, we generate 50k graphs with randomly initialized
probability distributions, and sample all training data from them. To reduce noise during training, the
probability distributions of those graphs are sampled from one of the following uniform distributions
{U(0.15, 0.3), U(0.7, 0.85)}. Specifically, we try to avoid two scenarios: (i) variables are indepen-
dent to each other (probability close to 0.5) and (2) deterministic relationship between variables
(probability close to 0 or 1), as these scenarios either lose the graph structure or the probabilistic
nature of networks. Empirically, we also find out models converge better under this approach.

Metrics. We denote the number of examples during training as Ntrain, and Ntest as the number of
examples during evaluation. For evaluations, we randomly generate 1 graph for each graph structure
as testset. We report the accuracy of transformers, Naive Bayes, Bayesian inference and the optimal
accuracy on testset and vary the number of examples in each prediction. Note that the optimal
accuracy is not 1 due to the probabilistic nature of networks. For each number of examples Ntest ∈

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

[5, 100], we randomly sample a set of 1500 observations, with each observation contains Ntest ICL
examples and 1 test token. We separate the evaluation of each variables in the graph as they have
different optimal accuracy. The reported accuracy are the average over 10 runs with different random
seeds. Due to space limit, we select 3 variables for each graph structure to present. Experimental
details are in Appendix C.2.

Model. We follow most settings in Bai et al. (2023) by using a transformer with 8 heads and 256 hid-
den dimension for all experiments, the only difference is we use 6 instead of 12 layer transformers.
A small difference is we set p ∈ RM as zero vectors, and pq ∈ RM a one-hot vector, indicating the
variable to predict. Note that we remove the positional embedding/encoding from the transformer
to highlight the utility of p. The input dimension is always 3 times of the number of variables in the
graph as our construction in Equation 3.2.

Setup. We set Ntrain = 100 during training, and evaluate models on different size of Ntest. Similar
to Bai et al. (2023), we train the transformer with carefully designed curriculum discussed in the
following paragraph. After the training loss reach to a threshold, we then advance the curriculum
by revealing one extra variable. We find out this approach helps models to learn the graph structure
better. We explain details the in following paragraph.

Curriculum Design. We take the data-level curriculum approach to train the transformers on
Bayesian Inference. The goal of the curriculum is to lead transformers to learn the whole graph
structure well. We determine the difficulty of the curriculum by the number of variables in the
graph. Therefore, we design the curriculum from easy to hard by revealing more and more variables
throughout training. By doing so, the graph structure “grows” during training. We start by revealing
only the first two variables in the graph, meaning the transformer will only learn to predict the first
2 variables. After training loss reaches to a threshold, we then advance the curriculum by revealing
one extra variable. Note that after revealing one extra variable, the training data now contains the
observation of all revealed variables.

Inference Results. The test accuracy results are in Figure 2. Note that naive Bayes is able to model
the first few variables in the selected graphs well as shown in the first column of Figure 2. However,
as the order of the variable goes further, transformers outperforms naive Bayes on both sample
efficiency and test accuracy. This indicates transformers are able to utilize the graph structure to
generate prediction instead of treating all variables as independent observations. Notably, while our
transformers are only trained on samples with Ntrain = 100, they are able to generalized to different
values of Ntest, and their test accuracy approaches to Bayesian inference when Ntest increases. This
again verifies the capability of transformers to learn Bayesian inference and model graph structure
well. Another thing to highlight is that both naive Bayes and Bayesian inference are not capable of
handling unseen observations, leading to assigning 0 probability on every outcome under this case.
However, transformers are able to utilize its learned prior from training data to perform prediction.
This explains why transformers outperforms Bayesian inference sometimes when Ntest is small.

Convergence Results. We now discuss the convergence result of transformers training on gen-
eral graph and tree in Figure 3. We show the loss and accuracy curve on training and test dataset
throughout the optimization process. We also want to observe the generalization performance on N
of transformers. Specifically, we train models on N = 100, and evaluate them on both N = 100
and N = 50 cases. We observe that the loss curve presents a decreasing trend, and the accuracy is
able to reach near optimal (∼ 0.75)1 . Further, the generalization performance matches the results in
Figure 2, as we see transformers are capable of performing Bayesian inference under different Ntest.

5.2 GENERALIZATION ANALYSIS

Here we analyze when transformers trained on a fixed number of examples, which we denote Ntrain,
whether it can generalize to different number of Ntest. We evaluate 2 cases: (1) Ntrain >> Ntest, (2)
Ntrain << Ntest. Note that in our construction, N does not affect transformers ability to perform
Bayesian inference. However, during training, small Ntrain can produce large noise, whereas larger
Ntrain, while being more stable, can be easily modeled by naive Bayes. This raises a doubt that
whether transformers trained under larger Ntrain learn naive Bayes or Bayesian inference. Therefore,
we train transformers with Ntrain ∈ {5, 10, 200, 400}, and evaluate them with different Ntest. We also

1This is a rouge estimation based on our design of probability distributions of training data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Top to Bottom: The Accuracy Comparison on Tree, Chain and General Graphs. We
select 3 variables in each graph. For tree, we select one variable for each level from root to leaf. For
chain, we select three variables that are close to the beginning, middle and the end of the chain. For
graph, we select variables that are (1) no parents, (2) 2 parents, but the two parents have no prece-
dents, and (3) 2 parents, and parents have other precedents. This setting makes (2) identical for naive
Bayes and Bayesian inference, and (3) will present the difference. We observe transformers present
similar performance with Bayesian inference and show better sample efficiency comparing to naive
Bayes, indicating transformers are capable to model relationships between variables according to
graph structure. Moreover, Bayesian inference and naive Bayes fail to generate prediction when the
test token was never observed in the provided examples. However, transformers are able to generate
predictions based on its learned prior, showing its superior performance under few examples.
report the loss and accuracy curve during training and use Ntest ∈ {20, 50} as testset. The choice
of these numbers is based on the fact that these numbers are effective to show the gap between
Bayesian inference and naive Bayes. We present the results on general graph in the main paper, the
generalization analysis on tree can be found in Appendix B.3.

Results. The convergence and inference results are in Figure 4 and Figure 5, respectively. For the
convergence result, we observe that models trained on large Ntrain is able to generalize well on both
Ntest = 20, 50 (accuracy above 0.7). However, for models trained under small Ntrain, they do not
converge well and also do not generalize well on testset (accuracy below 0.7). For the inference
result, we see that models trained on large Ntrain is capable of performing Bayesian inference. But
models trained under small Ntrain struggle to utilize the network structure to predict. A potential
reason is smaller Ntrain is not sufficient to approximate the ground truth probability distribution
well. Also, while models trained on Ntrain = 400 is almost equivalent to learning on independent
variables, modeling are still able to learn the network structure, potentially show the positive effect
of curriculum. The result indicates that a sufficient large Ntrain is critical for transformers to learn
Bayesian inference in-context, providing practical insights on real-world scenarios and downstream
tasks.

5.3 IS OUR CONSTRUCTION OPTIMAL?

We empirically evaluate whether our construction is optimal for transformers to learn Bayesian
Inference. In our construction, a transformer needs at least 1 layer to perform Bayesian inference.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Top: Convergence result on general graph. Bottom: Convergence result on tree.
We track the convergence result of transformers trained on general graph. Overall, we observe a
decreasing trend of loss and increasing trend of accuracy on both training and test data. Note that
all training and test samples are sampled from Bayesian networks. Therefore, the optimal loss and
accuracy are not 0 and 1, respectively. We also see that transformers are able to generalize well on
the Ntest = 50 case even when its trained with Ntest = 100. This shows transformers are capable of
doing Bayesian inference instead of learning inductive bias of data. Note that during the beginning
of training, transformers perform better on trainset than testset. This is due to the curriculum design
that the model is initially exposed to only 2 variables, while evaluated on the whole graph.

Figure 4: Left to right: Transformer’s performance on general graph variable 0, 2, 3. For
variable 0, 2, all models are able to model the variable distributions well. Interestingly, for variable
3, transformers trained under Ntrain = [5, 10] are not capable of predicting it well. Moreover, its
performance is even worse than naive Bayes for large Ntest. The result indicates that a sufficient size
of Ntrain is necessary for transformers to learn the network structure.

To evaluate whether this requirement is necessary, we test transformers with different number of
attention heads and different layers, to see if 1 layer are truly necessary for transformers to learn
Bayesian inference.

Results. The results are in Figure 6. In general, transformers are capable of Bayesian inference
empirically with either 1 layer, 1 head, or both. The performance difference between these variants
are minimal. An intermediate conclusion is that even with 1-layer, 1-head, transformers are still
capable of performing Bayesian inference on simple network structures. We interpret this result by
making 2 assumptions: (1) The limitation of 1-layer or 1-head transformers on Bayesian inference
is not presented by our general graph; (2) Our theoretical construction can be improved. For (1), it
is possible that 1-layer, 1-head transformers are only capable of doing Bayesian inference on simple

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Left: Convergence result on general graph for Ntrain ∈ {5, 10, 200, 400}. Right:
Convergence result on tree for Ntrain ∈ {5, 10, 200, 400}. Here we observe an obvious contrast
between models trained on large and small Ntrain. For smaller Ntrain, model performance on training
dataset is lower than testset. For larger Ntrain, we observe the opposite. We believe this is due to the
fact that smaller Ntrain does not provide sufficient sample size to recover the probability distribution
well.

Figure 6: Accuracy comparison on general graph between transformers with different hyper-
parameters. Left to right: evaluation on variable 0, 2, 3. In general, we found out that with low
number of layers or attention heads, transformers still perform similarly with the 6-layer counter-
part. Especially with the 1-layer 1-head version, it is still capable of performing Bayesian inference
and presents only slight performance drop.

network structures but not on networks with complex structure such as large number of parents,
sparse connection etc. A possibility is that such a network structure bottleneck for 1-layer, 1-head
exists but not presented in our general graph. For (2), we also hypothesize that our construction
might not utilize the full potential of attention layers or the feed-forward layers. For the further
analysis of these assumptions, we leave for future work.

6 PROOF SKETCH

In this section, we give a proof sketch of Theorem 4.1. Te proof is based on relatively intuitive
constructions of the two transformer layers. The result for the first transformer layer is summarized
into the following lemma.
Lemma 6.1. For any Bayesian network B with maximum in-degree D, there exists a one-layer
transformer TFθ(1)(·) with parameter matrices satisfying ∥V(1)∥2, ∥K(1)∥2, ∥Q(1)∥2, ∥W(1)

2 ∥2 ≤
1 and ∥W(1)

1 ∥2 ≤ 2
√
D + 1, such that for any the variable-of-interest index m0, it holds that

TFθ(1)(X) = X̃ :=


x̃11 x̃12 · · · x̃1N x̃1q

x̃21 x̃22 · · · x̃2N x̃2q

...
...

...
...

x̃M1 x̃M2 · · · x̃MN x̃Mq

p p · · · p pq

 ,

where

x̃mi =

{
xmi, if m ∈ {m0} ∪ P(m0);

0, otherwise.
, x̃mq =

{
xmq, if m ∈ {m0} ∪ P(m0);

0, otherwise.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

for all i ∈ [N].

Lemma 6.1 above shows that, there exists a transformer layer with bounded weight matrices that
can serves as a “parents selector” – for any m0 ∈ [M], as long as the “positional embeddings” p
and pq are defined accordingly, the output of the transformer layer will retain only the values of
the observed variables that are direct parents of the m0-th variable. This operation, which trims all
non-essential observation values, effectively prepares for the in-context estimation of the conditional
probabilities in the second layer.

The following lemma gives the result for the second transformer layer, which takes the output X̃ of
the first layer given in Lemma 6.1 as input.
Lemma 6.2. For any ϵ > 0 and any Bayesian network B with maximum in-degree D, there exists a
one-layer transformer TFθ(2)(·) with parameter matrices satisfying ∥V(2)∥2, ∥W(2)

1 ∥2, ∥W(2)
2 ∥2 ≤

1 and ∥K(2)∥2, ∥Q(2)∥2 ≤ 3 log(MdN/ϵ), such that for any index of the variable-of-interest m0

and the corresponding X̃ defined in Lemma 6.1, it holds that

Read
[
TFθ(2)(X̃)

]
= x̂q + s,

where x̂q = [0⊤
(m0−1)d,−x̂⊤

m0q,0
⊤
(2M−m0)d

,1⊤
d]

⊤ with x̂m0q = popt
m0

and ∥s∥∞ ≤ ϵ/[(2M + 1)d].

Lemma 6.2 shows that, there exists a transformer layer which takes the output of X̃ defined in
Lemma 6.1 as input, and outputs a matrix whose last column is directly related to the target optimal
maximum likelihood estimation popt

m0
.

Given the two lemmas above, the proof of Theorem 4.1 is straightforward. The proof is as follows.

Proof of Theorem 4.1. Let TFθ(1)(·) and TFθ(2)(·) be defined in Lemmas 6.1 and 6.2 respectively.
Then we directly have

Read
[
TFθ(2)(TFθ(1)(X))

]
= x̂q + s,

where x̂q = [0⊤
(m0−1)d,−x̂⊤

m0q,0
⊤
(2M−m0)d

,1⊤
d]

⊤ with x̂m0q = popt
m0

and ∥s∥∞ ≤ ϵ/[(2M + 1)d].
Therefore, setting A = [0d×(m0−1)d,−Id×d,0d×(2M−m0+1)d], we obtain

ARead
[
TFθ(2)(TFθ(1)(X))

]
= Ax̂q +As = popt

m0
+As.

By definition, it is clear that ∥As∥∞ ≤ ϵ/d. This finishes the proof.

7 CONCLUSION

In this paper, we theoretically analyze transformer’s capability to learn Bayesian networks in-context
in an autoregressive fashion. We show that there exists a simple construction of transformer such that
it can (1) estimate the conditional probabilities of the Bayesian network in-context, and (2) autore-
gressively generate a new sample based on the estimated conditional probabilities. This sheds light
on the potential of transformers in probabilistic reasoning and their applicability in various machine
learning tasks involving structured data. Empirically, we provide extensive experiments to show that
transformers are indeed capable of learning Bayesian networks and generalize well on unseen prob-
ability distributions, verifying our theoretical construction. Our theoretical and experimental results
provide not only greater insights on the understanding of transformers, but also practical guidance
in training transformers on Bayesian networks.

There are still multiple important aspects which this paper does not cover. First of all, our current
theoretical result only demonstrates the expressive power of transformers in the sense that a good
transformer model with reasonable weights exist. Our result does not directly cover whether such a
transformer can indeed be obtained through training. Our experiments indicate a positive answer to
this question, making theoretical demonstrations a promising future work direction. Moreover, our
current analysis does not take the number of heads into consideration. As is discussed in Nichani
et al. (2024), multi-head attention may play an important role when learning Bayesian networks with
complicated network structures. Studying the impact of multi-head attention is another important
future work direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-
able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize dyck-n
languages? arXiv preprint arXiv:2010.04303, 2020.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion. arXiv preprint arXiv:2208.01618, 2022.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is mamba capable
of in-context learning? arXiv preprint arXiv:2402.03170, 2024.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp nearby, fuzzy far away: How neural
language models use context. arXiv preprint arXiv:1805.04623, 2018.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY Chan, Kory Matthewson, Michael Henry
Tessler, Antonia Creswell, James L McClelland, Jane X Wang, and Felix Hill. Can language
models learn from explanations in context? arXiv preprint arXiv:2204.02329, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023b.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
Teaching small language models to reason. arXiv preprint arXiv:2212.08410, 2022.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn in-
context by gradient descent? arXiv preprint arXiv:2310.08540, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances
in Neural Information Processing Systems, 36, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A Proofs 13

A.1 Proof of Lemma 6.1 . 13

A.2 Proof of Lemma 6.2 . 14

B Additional Experiments 16

B.1 The Effect of Layers. 16

B.2 The Effect of Heads. 16

B.3 The Effect of N during Training. 16

B.4 Additional Experiment for Categorical Distributions 17

C Experimental Details 17

C.1 Data Details . 17

C.2 Training Details . 18

C.3 Baselines . 19

A PROOFS

In this section, we give the proofs of Lemmas 6.1 nad 6.2.

A.1 PROOF OF LEMMA 6.1

The proof of Lemma 6.1 is given as follows.

Proof of Lemma 6.1. Let V(1) = 0(2M+1)d×(2M+1)d, K(1) = Q(1) = 0Md×(2M+1). Then clearly
we have

AttnV(1),K(1),Q(1)(X) = X.

Moreover, let A = [Aij]M×(M+2) ∈ RMd×(M+1)d be a M × (M + 1) block matrix where

Aij =

{
Id×d, if j ≤ M and i ∈ {j} ∪ P(j);

0d×d, otherwise.

Then, let W(1)
2 = −I(2M+1)d×(2M+1)d, and

W
(1)
1 =

[
IMd×Md −2A

0(M+1)d×Md 0(M+1)d×(M+1)d

]
.

We note that the above definintion does not rely on any specific value of m0. By definition, we can
directly verify that

W
(1)
1 X =


x̌11 x̌12 · · · x̌1N x̌1q

x̌21 x̌22 · · · x̌2N x̌2q

...
...

...
...

x̌M1 x̌M2 · · · x̌MN x̌Mq

0(M+1)d 0(M+1)d · · · 0(M+1)d 0(M+1)d

 ,

where x̌mi = xmi−21 ·1[m ∈ {m0}∪P(m0)]. Now since xmi, m ∈ [M], i ∈ [N] are all one-hot
vectors (and therefore have non-negative entries between zero and one), we see that the entries of
x̌mi are strictly negative if and only if m ∈ {m0} ∪ P(m0). Therefore, by the definition of the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

ReLU activation function, we have

σ(W
(1)
1 X) =


x11 x12 · · · x1N x1q

x21 x22 · · · x2N x2q

...
...

...
...

xM1 xM2 · · · xMN xMq

0(M+1)d 0(M+1)d · · · 0(M+1)d 0(M+1)d

 ,

where xmi = xmi · 1[m /∈ {m0} ∪ P(m0)]. Therefore, by W
(1)
2 = −I2Md×2Md, we have

TFθ(1)(X) = FF
W

(1)
1 ,W

(1)
2
[AttnV(1),K(1),Q(1)(X)] = FF

W
(1)
1 ,W

(1)
2
(X)

= X+W
(1)
2 σ(W

(1)
1 X) = X− σ(W

(1)
1 X)

=


x̃11 x̃12 · · · x̃1N x̃1q

x̃21 x̃22 · · · x̃2N x̃2q

...
...

...
...

x̃M1 x̃M2 · · · x̃MN x̃Mq

p p · · · p pq

 ,

where

x̃mi =

{
xmi, if m ∈ {m0} ∪ P(m0);

0, otherwise.
, x̃mq =

{
xmq, if m ∈ {m0} ∪ P(m0);

0, otherwise.

for all i ∈ [N]. This finishes the proof.

A.2 PROOF OF LEMMA 6.2

We present the proof of Lemma 6.2 as follows.

Proof of Lemma 6.2. Clearly, by the definition of the Read(·) function, only the last column of
the output of TFθ(2) matters. Since the last column of the output of TFθ(2) only relies on the
last column of AttnV(2),K(2),Q(2)(X̃), we focus on the last column of softmax[(KX)⊤(QX)],
which is softmax[(KX̃)⊤(Qx̃q)], where x̃q = [x̃⊤

1q, . . . , x̃
⊤
Mq,p

⊤
q]

⊤. Denote c = log(d/ϵ). Let

W
(2)
1 = W

(2)
2 = 0(2M+1)d×(2M+1)d, V(2) = −I(2M+1)d×(2M+1)d, and

K(2) =
√
c ·

[
IMd×Md 0Md×Md 0Md×d

0d×Md 0d×Md Id×d

]
, Q(2) =

√
c ·

[
IMd×Md 0Md×Md 0Md×d

0d×Md 0d×Md −Id×d

]
.

Then we have

K(2)X̃ =
√
c ·


x̃11 x̃12 · · · x̃1N x̃1q

x̃21 x̃22 · · · x̃2N x̃2q

...
...

...
...

x̃M1 x̃M2 · · · x̃MN x̃Mq

0d 0d · · · 0d 1d

 , Q(2)x̃q =
√
c ·


x̃1q

x̃2q

...
x̃Mq

−1d

 .

Recall the definition that

x̃mi =

{
xmi, if m ∈ {m0} ∪ P(m0);

0, otherwise.
, x̃mq =

{
xmq, if m ∈ {m0} ∪ P(m0);

0, otherwise.

for all i ∈ [N]. Therefore, for i ∈ [N], we have

(Kx̃i)
⊤(Qx̃q) = c ·

M∑
m=1

⟨x̃mi, x̃mq⟩

= c ·
M∑

m=1

⟨xmi,xmq⟩1[m ∈ {m0} ∪ P(m0)]

= c · |{m ∈ {m0} ∪ P(m0) : xmi = xmq}|
= c · |{m ∈ P(m0) : xmi = xmq}|,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where the last equation is due to the fact that xm0q = 0, as it has not been sampled. Similarly, we
also have

(Kx̃q)
⊤(Qx̃q) = c ·

M∑
m=1

⟨x̃mq, x̃mq⟩ − cd = c · |P(m0)| − cd.

Now denote I(m0) = {i ∈ [N] : xmi = xmq for all m ∈ P(m0)}. Then for any i ∈ I(m0) (by
assumption, this set is not empty), we have

|{m ∈ P(m0) : xmi = xmq}| = |P(m0)|.

Therefore, for any i ∈ I(m0) and any i′ /∈ I(m0), we have

(Kx̃i)
⊤(Qx̃q)− (Kx̃i′)

⊤(Qx̃q) ≥ c · |P(m0)| − c · (|P(m0)| − 1) = c.

Moreover,

(Kx̃i)
⊤(Qx̃q)− (Kx̃q)

⊤(Qx̃q) = c · |P(m0)| − c · |P(m0)|+ cd = cd.

Therefore, by c = 3 log(MdN/ϵ) we have∥∥∥∥∥softmax[(KX̃)⊤(Qx̃q)]−
1

|I(m0)|
∑

i∈I(m0)

ei

∥∥∥∥∥
∞

≤ ϵ

(2M + 1)d
.

Now by the choice that −V(2) = I(2M+1)d×(2M+1)d, we have

Read
[
AttnV(2),K(2),Q(2)(X̃)

]
= x̃q +V(2)X̃softmax[(K(2)X̃)⊤(Q(2)x̃q)]

= x̃q −
1

|I(m0)|
∑

i∈I(m0)

X̃ei + s

where s ∈ R(2M+1)d satisfies ∥s∥∞ ≤ ϵ/[(2M + 1)d]. Now note that (i) x̃mi’s and x̃mq’s are
all zero except for m ∈ {m0} ∪ P(m0), (ii) for all i ∈ I(m0), and m ∈ P(m0), xmi = xmq .
Therefore, on the right-hand side of the equation above, most of the terms are actually canceled
when calculating the difference x̃q − 1

|I(m0)|
∑

i∈I(m0)
X̃ei. We have

Read
[
AttnV(2),K(2),Q(2)(X̃)

]
= x̂q + s,

where x̂q = [0⊤
(m0−1)d,−x̂⊤

m0q,0
⊤
(2M−m0)d

,1⊤
d]

⊤, and

x̂m0q =
1

|I(m0)|
∑

i∈I(m0)

x̃m0i

=
1

|I(m0)|
∑

i∈I(m0)

xm0i

=
∑
i∈[N]

xm0i
1[xmi = xmq for all m ∈ P(m0)]

|{i ∈ [N] : xmi = xmq for all m ∈ P(m0)}|
.

Now by W
(2)
1 = 0(2M+1)d×(2M+1)d, W(2)

2 = 0(2M+1)d×(2M+1)d, we have

Read
[
TFθ(2)(X̃)

]
= Read

[
FF

W
(2)
1 ,W

(2)
2
[AttnV(2),K(2),Q(2)(X̃)]

]
= FF

W
(2)
1 ,W

(2)
2

{
Read

[
AttnV(2),K(2),Q(2)(X̃)

]}
= FF

W
(2)
1 ,W

(2)
2
(x̂q + s)

= x̂q + s.

This finishes the proof.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTS

Here we conduct a hyperparameter analysis to see whether transformers are sensitive on certain
hyperparameters. It is also a more complete result of some experimental sections in main paper. We
analyze three hyperparameters:

• Number of layers
• Number of attention heads
• Ntrain

We perform these analysis on general graph and select variable 0, 2, 3 to evaluate. The reasoning
behind this selection is to demonstrate 3 different properties of these variables. For variable 0, it is
a random variable without any parents, so modeling it is

B.1 THE EFFECT OF LAYERS.

Here we evaluate transformers with {1, 2, 6} layers on general graph. Overall, we want to observe
whether the number of layers affect transformer’s ability to learn Bayesian inference. The result is
in Figure 7.

Figure 7: Evaluation of transformers with different layer on general graph. Left to right:
variable 0, 2, 3. We set the hidden dimension to 256, number of heads to 8 for all transformers.
The result is the average taken over 5 runs. We observe that even the 2-layer transformer performs
worse and presents larger variance, all transformers have similar behavior on this task.

B.2 THE EFFECT OF HEADS.

Here we evaluate transformers with {1, 2, 4, 8} attention heads on general graph. Overall, we want
to observe whether the number of attention heads affect transformer’s ability to learn Bayesian
inference. The result is in Figure 8. Empirically, we do not discover a significant impact of attention
heads on models performance in our case study. As discussed in section 5.3, while we do not observe
such an impact, it might due to the fact that the general graph structure is too simple to reflect such
an architecture bottleneck.

B.3 THE EFFECT OF N DURING TRAINING.

Here we evaluate transformers with values of Ntrain on general graph and tree. We aim to test models
generalization capability and evaluate whether models require certain size of Ntrain to learn Bayesian
inference in-context.

General Graph. The convergence and inference results are in Figure 10 and Figure 9, respectively.
For the convergence result, we observe that models trained on large Ntrain is able to generalize well
on both Ntest = 20, 50 (accuracy above 0.7). However, for models trained under small Ntrain, they do
not converge well and also do not generalize well on testset (accuracy below 0.7). For the inference
result, we see that models trained on large Ntrain is capable of performing Bayesian inference. But
models trained under small Ntrain struggle to utilize the network structure to predict. A potential
reason is smaller Ntrain is not sufficient to approximate the ground truth probability distribution
well. The result indicates that a sufficient large Ntrain is critical for transformers to learn Bayesian
inference in-context, providing practical insights on real-world scenarios and downstream tasks.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Evaluation of transformers with different number of attention heads on general
graph. Left to right: variable 0, 2, 3. We set the hidden dimension to 256, layer to 6 for all
transformers. The result is the average taken over 5 runs. Similar to the above subsection, we also
do not observe significant performance degradation when reducing the number of heads. Especially
for variable 3, which highly requires the network structure to inference prediction, transformer with
1-head still performs similar with its other variants.

Figure 9: Left to right: Transformer’s performance on general graph variable 0, 2, 3. For
variable 0, 2, all models are able to model the variable distributions well. Interestingly, for variable
3, transformers trained under Ntrain = [5, 10] are not capable of predicting it well. Moreover, its
performance even worse than naive Bayes for large Ntest. The result indicates that a sufficient size
of Ntrain is necessary for transformers to learn the network structure.

Tree. The results are demonstrated in Figure 11 and Figure 12. Overall, we observe that trans-
formers fail to perform Bayesian inference when Ntrain = 5. However, different from our results on
general graph, Ntrain = 10 seems to be sufficient for transformers to learn Bayesian inference. This
result can be explained by the fact that modeling variable 4 only requires to focus on its single par-
ent. However, in general graphs, some variables have multiple parents, which prevents Ntrain = 10
to recover the conditional probability distribution well.

B.4 ADDITIONAL EXPERIMENT FOR CATEGORICAL DISTRIBUTIONS

Here we conduct experiments on networks with categorical distributions, i.e. the number of possible
outcome for each variable is more than 2. We select the binary tree structure as example, and set the
number of possible outcome for each variable as 3. We report both the test accuracy and test F1 are
evaluation metrics, the results are in Figure 13 and Figure 14. As a result, the input dimension of
the transformer is 28. For all other hyperparameters, we following Table 1.

C EXPERIMENTAL DETAILS

C.1 DATA DETAILS

Here we provide visualizations of graphs structures we select in our experiments. Arrows indicates
the causal relationship between variables. Specifically, the ”general graph” contains variables with
more than 1 parents, representing a more generalized case. An interesting design of the general graph
is its variable 2 and 3 are both governed by 2 parents. However, modeling variable 2 can be done
via naive Bayes while modeling variable 3 requires Bayesian inference, giving us an opportunity to
discover such property.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 10: Left: Convergence result on general graph for Ntrain ∈ {5, 10, 200, 400}. Right:
Convergence result on tree for Ntrain ∈ {5, 10, 200, 400}. Here we observe an obvious contrast
between models trained on different Ntrain. For smaller Ntrain, model performance on training dataset
is lower than testset. For larger Ntrain, we observe the opposite. We believe this is due to the fact that
smaller Ntrain does not provide sufficient sample size to recover the probability distribution well.

Figure 11: Generalization Analysis: Inference results on tree. Similar to our results on graph,
transformers trained on large Ntrain generalize better than trained on smaller Ntrain. Especially with
Ntrain = 5, transformers fail to even predict well

C.2 TRAINING DETAILS

The hyperparameter table is in Table 1. We ran all experiments on RTX 2080 ti GPUs. We use
PyTorch 1.11 for all models, training and evaluation. We use AdamW optimizer for training. For
curriculum design, we follow the graph causal relationship to reveal variables. For example, no
future variables will be revealed until all of its precedents are revealed during training. For tree
structures, we use BFS to determine the curriculum. We do not use any learning decay techniques as
we find learned transformers perform better without it. For each training step, we generate sampled
Ntrain + 1 examples randomly from 1 of our 50k candidate graphs to, to ensure models do not see
repetitive data during training. We log training and test loss every 50 steps, and save the checkpoint
with lowest training loss. For data generation, we use the Python package pomegranate for both
constructing networks and sampling.

Figure 12: Generalization Analysis: Convergence result on tree. Top: Ntrain ∈ {5, 10}, Bottom:
Ntrain ∈ {200, 400} Similar to our results on graph, transformers trained on large Ntrain generalize
better than trained on smaller Ntrain. The gap between training and testset gets larger close to the
end of training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 13: Accuracy Comparison for the Tree Network with Categorical distribution. In the
figures, we are able to observe the test accuracy follows the same pattern comparing to the ones
with binary distribution (Figure 2). The result shows that transformers are capable of learning the
network structure and perform Bayesian inference.

Figure 14: F1 Score Comparison for the Tree Network with Categorical distribution. Since we
are handling the multi-class prediction, we also report the F1 score for all the baselines. Similar
to what we observe in the accuracy result, we are also able to observe the test F1 follows the same
pattern comparing to the ones with binary distribution (Figure 2). The result again confirms that
transformers are capable of learning the network structure and perform Bayesian inference.

C.3 BASELINES

Here we explain the baselines used in our experiments. We use an example for predicting a M -
variable chain to explain the two baselines. Note that the two baselines are not capable of handling
unseen features or labels. Such a case will lead directly to assigning probability 0 to all categories.

Naive Bayes. For the naive Bayes baseline, we assume the graph structure is unknown. For in-
stance, assuming N in-context examples: [xi]

N
i=1, where xi = (x1i, . . . ,xMi). To predict the m-th

variable of the test token xmq , we consider the following conditional probability.

P [xmq = 0] := P [xmi = 0 |xµi = xµq for all µ ∈ [m− 1], i ∈ [N]] . (C.1)

Bayesian Inference. For Bayesian inference, we assume the graph structure is known. Therefore,
following the above example, to estimate the m-th variable of a chain, we only consider the marginal
probability conditioned on the observation of (m− 1)-th variable (parent).

P [xmq = 0] := P
[
xmi = 0 |x(m−1)i = x(m−1)q for all i ∈ [N]

]
. (C.2)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 15: Illustrations of graph structures in the experiments. Left to right: general graph,
tree and chain. The curriculum follows the number order of variables. Note that for general graph,
variable 2, 3 both have 2 parents. However, for variable 2, the modeling process is identical for naive
Bayes and Bayesian inference. For variable 3, modeling it is different for naive Bayes and Bayesian
inference.

Table 1: Hyperparameters.
parameter Chain Tree General

optimizer AdamW AdamW AdamW
steps 10k 3k 2k
learning rate 1e-4 5e-4 5e-4
weight decay 1e-2 5e-2 5e-2
batch size 64 64 64
number of layers 6 6 6
loss function Cross Entropy Cross Entropy Cross Entropy
hidden dimension 256 256 256
number of heads 8 8 8
number of examples (Train) N 100 100 100

20

	Introduction
	Related Work
	In-context learning of Bayesian networks
	Main theory
	Experiments
	Transformers Learn Bayesian Inference
	Generalization Analysis
	Is Our Construction Optimal?

	Proof sketch
	Conclusion
	Proofs
	Proof of Lemma 6.1
	Proof of Lemma 6.2

	Additional Experiments
	The Effect of Layers.
	The Effect of Heads.
	The Effect of N during Training.
	Additional Experiment for Categorical Distributions

	Experimental Details
	Data Details
	Training Details
	Baselines

