308 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Scalable Fuzzy Keyword Ranked Search Over
Encrypted Data on Hybrid Clouds

Hua Zhang

, Member, IEEE, Shaohua Zhao ™, Ziging Guo™, Qiaoyan Wen

, Wenmin Li*”, and Fei Gao

Abstract—Searchable encryption (SE) is a powerful technology that enables keyword-based search over encrypted data becomes
possible. However, most SE schemes focus on exact keyword search which can not tolerate misspellings and typos. Existing fuzzy
keyword search schemes only support fuzzy search within a limited similarity threshold d, the storage cost will grow exponentially or the
precision of search results will greatly decrease as d increases. Moreover, the current fuzzy keyword ranked search schemes consider
only the keyword weight, and disregard the influence of keyword morphology similarity on the ranking. In this article, we propose a
scalable fuzzy keyword ranked search scheme over encrypted data under hybrid clouds architecture. We use the edit distance to
measure the similarity of keywords and design an edit distance algorithm over encrypted data, in which our scheme achieves fuzzy
keyword search for any similarity threshold d with a constant storage size and accurate search results. Furthermore, we design a two-
factor ranking function combining keyword weight with keyword morphology similarity, which is utilized to rank the search results and
enhance system usability. Extensive experiments are performed to demonstrate the trade-off of efficiency and security of the proposed

scheme.

Index Terms—Searchable encryption, fuzzy keyword search, edit distance, data security, cloud computing

1 INTRODUCTION

HEN both enterprises and individuals outsource their

data to the cloud, the data owners will encrypt their data
to protect the privacy of sensitive data. It makes the effective
keyword search over encrypted data become a pressing prob-
lem. Various searchable encryption (SE) schemes are proposed
to resolve this problem. However, most researchers focus on
exact keyword search, and the incorrect or empty search
results are returned when the user inputs a misspelled query
keyword. From this, fuzzy keyword search over encrypted
database has been investigated and developed, which can tol-
erate misspells or format inconsistencies within a given simi-
larity threshold d.

Some existing solutions have achieved accurate or efficient
fuzzy keyword search over encrypted data [1], [2], [3]. How-
ever, some performances of these schemes are influenced by
the similarity threshold d, such as the storage cost [1] and
accuracy [2], [3]. Li et al. [1] adopted a wild-card approach
to enumerate all similarity keywords within a predefined
threshold d, and it is not scalable as the storage complexity
increases exponentially with the increase of the error tolerance
threshold d [2]. Subsequently, Wang et al. [2] and Fu et al. [3]

o Hua Zhang is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing
100876, China. E-mail: zhanghua_288@bupt.edu.cn.

o Shaohua Zhao, Ziging Guo, Qiaoyan Wen, Wenmin Li, and Fei Gao are
with the State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876,
China. E-mail: {zhaoshaohua, guoziging, wqy, gaof)@bupt.edu.cn,
liwenmin02@outlook.com.

Manuscript received 9 Mar. 2020; revised 14 June 2021; accepted 21 June 2021.
Date of publication 25 June 2021; date of current version 8 Mar. 2023.
(Corresponding authors: Shaohua Zhao and Qiaoyan Wen.)

Recommended for acceptance by H. Xu.

Digital Object Identifier no. 10.1109/TCC.2021.3092358

enabled efficient multi-keyword fuzzy search over encrypted
data with a constant size index. Their schemes both used the
tool of Locality-Sensitive Hashing (LSH) for transforming the
metric space on edit distance to the euclidean space, and build
a pre-file index based on Bloom Filters. However, false posi-
tive and false negative exist in their schemes which influence
the accuracy of the search results. All of the above schemes
predefine a similarity threshold d in the setup phase, and
effectual for at most two letter mistakes. For the real-world
search, the similarity threshold d should be changeable
according to the user’s query requirement. If the length of the
query keyword is shorter, the corresponding threshold d may
be smaller. But, for the vocabularies used in the professional
fields, keyword length is usually longer, such as medical
vocabularies (pneumonoultramicroscopicsilicovolcanoconio-
sis, arteriosclerosis, abdominocentesis), and the gene sequen-
ces in biology. A larger threshold d is desired to tolerate more
letter mistakes.

To make the user obtain the desired files quickly, it is
usually necessary to rank the search results. Fu et al. and
Ding et al. [3], [4] ranked the results based on keyword
weight score, ie., the value of TF x IDF. This ranking
method ignores the influence of keyword similarity on the
ranking. The deviations between keywords and keywords
will be introduced into the ranking results, and thus affects
the accuracy of ranking. For example, there are three files
fi, fo, and f3, the keywords they contain and their corre-
sponding weight scores are: f; = {cat,0.5}, fo = {hat, 0.6},
fs = {bat,0.7} respectively. When the user inputs a fuzzy
query request Q = {keyword='cat’,d =1}, the cloud
returns the ranked search results are {f;, fo, fi} in Fu’'s
scheme. Apparently the expected ranked results for the
user should be {fi, fs, fo}. For easy of illustration, we
assume here that one file only contains one keyword. In
practice, in our SFRSE scheme, one file can contain many

2168-7161 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0532-9783
https://orcid.org/0000-0002-0532-9783
https://orcid.org/0000-0002-0532-9783
https://orcid.org/0000-0002-0532-9783
https://orcid.org/0000-0002-0532-9783
https://orcid.org/0000-0002-6555-7112
https://orcid.org/0000-0002-6555-7112
https://orcid.org/0000-0002-6555-7112
https://orcid.org/0000-0002-6555-7112
https://orcid.org/0000-0002-6555-7112
https://orcid.org/0000-0002-5940-6473
https://orcid.org/0000-0002-5940-6473
https://orcid.org/0000-0002-5940-6473
https://orcid.org/0000-0002-5940-6473
https://orcid.org/0000-0002-5940-6473
https://orcid.org/0000-0001-7142-9726
https://orcid.org/0000-0001-7142-9726
https://orcid.org/0000-0001-7142-9726
https://orcid.org/0000-0001-7142-9726
https://orcid.org/0000-0001-7142-9726
https://orcid.org/0000-0002-1278-1735
https://orcid.org/0000-0002-1278-1735
https://orcid.org/0000-0002-1278-1735
https://orcid.org/0000-0002-1278-1735
https://orcid.org/0000-0002-1278-1735
https://orcid.org/0000-0002-1546-4364
https://orcid.org/0000-0002-1546-4364
https://orcid.org/0000-0002-1546-4364
https://orcid.org/0000-0002-1546-4364
https://orcid.org/0000-0002-1546-4364
mailto:zhanghua_288@bupt.edu.cn
mailto:zhaoshaohua@bupt.edu.cn
mailto:guoziqing@bupt.edu.cn
mailto:wqy@bupt.edu.cn
mailto:gaof@bupt.edu.cn
mailto:liwenmin02@outlook.com

ZHANG ETAL.: SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 309

keywords, the same keyword can appear in multiple files, the
maximum length of the keyword is unrestricted, and the
phrase can be viewed as several separate single keywords. In
this paper, we introduce the keywords morphology similarity
score and design a two-factor ranking function combining
with keyword weight score to make the rank criterion more
reasonable.

Edit distance is one of the commonly used methods to
measure the keywords similarity[5]. The keywords mor-
phology similarity score can be obtained based on the edit
distance. Some existing works embedded the edit distance
to Hamming distance [6] or euclidean distance [2], [3] to
achieve fuzzy keyword search. However, it is proven that
existing embedding approaches cannot provide sufficient
distance preservation after space transformation, and will
lead to false positive or false negative [7].

Edit distance calculation over encrypted data was initially
implemented by secure multi-party computation and garbled
circuit [5]. To decrease the computation cost, Huang et al. [8]
optimized the garbled circuit. Cheon ef al. [9] calculated edit
distance over encrypted data with homomorphic encryption
and garbled circuit, because homomorphic encryption allows
for more flexible scenarios and functionality, and requires less
interaction. However, Cheon’s algorithm is not scalable for
larger parameter due to large memory requirement. The
above schemes are all based on Yao’s garbled circuit. How-
ever, Yao’s original construction and its variants only provide
one-time security [10], whose scalability is limited.

As the main mode of cloud computing, hybrid clouds have
been deployed by most cloud providers in recent years (e.g.,
Microsoft Azure Stack, Amazon AWS). The hybrid clouds con-
sist of public clouds and private clouds, combining the advan-
tage of security and controllability of the private clouds, the
economy, efficiency and scalability of the public clouds [11],
[12]. The public cloud can store the data owner’s data and exe-
cute lots of computation with its rich storage and computing
resources. The private cloud is trusted by the data owner, so
that it can perform secure computing on sensitive data.

In this paper, we aim to achieve scalable fuzzy keyword
ranked search over encrypted data on hybrid clouds (SFRSE).
We design an edit distance algorithm over encrypted data
(LDE algorithm) to verify the keywords similarity. LDE algo-
rithm is a basic component of our SFRSE scheme, and makes
our scheme implement fuzzy keyword search for any thresh-
old d with a constant size index. The storage cost caused by a
predefined threshold d can be avoided, and the limitation of
threshold d can be eliminated. Thus our SFRSE scheme
achieves good scalability. The clouds can compute the edit
distance between two target keywords in ciphertext based on
the LDE algorithm. Thus our scheme can ensure the accuracy
of search results, and eliminate the false negative and false
positive.

To avoid lots of unnecessary edit distance computations,
we employ the idea of “filter-then-verify”, and construct an
index tree to improve the search efficiency. The filtering step
can filter out most of the dissimilar or low similarity keywords
before executing the LDE algorithm. Since we can calculate
the exact edit distance and obtain keywords morphological
similarity score, we combine the scores of morphological simi-
larity with keyword weight to rank the search results. The file
will be ranked ahead with a higher probability, if it contains

TABLE 1
Comparison of Several Typical Fuzzy Keyword
SE Schemes and Our SFRSE Scheme

[21 I3l SFRSE
Scalability X X X v
False positive & false negative ~ x v v X
Ranking criterion x KN KW KW &MS
Multi-keyword X v v X

KN, KW and MS denote keyword number, keyword weight and morphological
similarity respectively.

the keywords that have higher weight score or higher mor-
phological similarity score. The comparison among several
typical fuzzy keyword SE schemes and our SFRSE scheme is
shown in Table 1.

Our contributions can be summarized as follows.

e We design a scalable fuzzy keyword ranked search
scheme over encrypted data. Our scheme can sup-
port fuzzy keyword search for any similarity thresh-
old d and long string query, and the index size is a
constant that not be influenced by the increase of the
threshold d.

e We realize the LDE algorithm under hybrid clouds
model. With the LDE algorithm, the clouds can com-
pute the edit distance in ciphertext and find similar
keywords accurately. We construct a balanced binary
tree as the index to improve search efficiency.

e We design a two-factor trade-off ranking function
to rank the search results, which combines the
keyword weight with morphological similarity. It
makes the ranked results more in line with user
expectations.

2 PRELIMINARY

Levenshtein Edit Distance (LD) was proposed by Levenshtein in
1996 [13]. It refers to the minimum number of edit operations
between two strings, which can switch one string to another.
Edit distance is generally used to quantify the similarity of
keywords, and is widely used in the fields of approximate
string match and fuzzy keyword search. The smaller the edit
distance is, the more similar the two keywords are.

The edit distance formula is presented in Equation (1),
where w and ¢ are two keywords. ed[k][t] represents the edit
distance of w’s pre-k substring and ¢’s pre-t substring

t, k=0t >0
ok k>0t=0
cdlMIt =3 ninfedlk — 1] + 1, ed[k]t — 1] + 1,

edlk —1)[t — 1]+ f(k,t)}, k > 0,t > 0
D

[0 wl = qf
0= L 7 o

Morphology Similarity Score. For any two keywords w and
g, ed(w,q) denotes their edit distance. Their morphology
similarity score is computed by Equation (2)

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

310 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

KSyq=1—ed(w,q)/maz{len(w),len(q)}. (2)

TF-IDF rule is used to measure the relevance of a key-
word in a file [14]. TF (keyword frequency) denotes the
number of times a keyword appears in a file. IDF
(inverse file frequency) denotes the importance of a key-
word in the entire file set. There are several mathemati-
cal formulas for calculating the TF x IDF value. In this
paper, we use the Equation (3) to calculate the TF x IDF
value, i.e., the keyword weight score WS, s of a keyword
w in the file f

TF = Ny, IDF =n/N,

WSys = (14+InNsy) *In(1+n/Ny).)
Here, Ny, denotes the keyword frequency of w; in file f, n
denotes the size of file set, INV,, is the number of files contain-
ing w.

MRSE algorithm was proposed by Wang et al. [15], which
can preserve the inner product of two vectors in ciphertext.
MRSE algorithm is an enhanced algorithm of ASPE algo-
rithm (asymmetric scalar-product-preserving encryption).
The original ASPE method is vulnerable to linear analysis
attack [16], and MRSE algorithm mitigates those attacks.
Now, we give the main steps of MRSE scheme combining
with our SFRSE scheme.

MRSE .KeyGen (1°) — Kprse- This step is performed by
the data owner. The input is a security parameter o. The
output is the key Kypsp = {G, My, M,}, stored by the data
owner locally. The data owner randomly generates a
o-dimension binary vector G € {0,1}” and two o X o invert-
ible matrices M; and Mo.

MRSE.EncIndex (U,, Kyrse) — U, This step is per-
formed by the data owner. The inputs are u dimension
uni-gram vector U, and the key Kypsr, provided by the
data owner. The output is the ciphertext U}, forwarded
to the public cloud. First, the data owner extends the
binary vector U, to two o-dimension non-binary
vectors Ul, and U2, Ul,=(-U,, len(w),1,¢e1,...),
U2y = (=Uy,1,1,61,...), where g, k€[l, 0 —u—2] are
series of random numbers. Second, the data owner
extends each vector Uj, to two random vectors Uj, and
Ujt,j=1,2 according to the director vector G. If G[i| =
1, Uj, i) = Ujsli) = Ujufi)- 1 Glil = 0, Ul + U7fi) = U
[i],7=1,2. Finally, the data owner encrypts the vector
Uw as U;I, = {(Ml_lUliw M2_1U11:7)7 (]\/II_IUQLH MQ_IUQZJ)}

MRSE.EncQuery (Uy, Kyrse) — U, This step is performed
by the user. The inputs are the v dimension query uni-gram
vector U, and the key Kyrsg, provided by the user. The out-
put is the ciphertext Uy, forwarded to the public cloud. First,
the user extends U, to two o-dimension vectors U1, and U2,.
Ul, = (U, 1,t,64,...), U2, = (Uy,len(q),t,01,...), wheretisa
random number and 6y, k € [1,0 — v — 2] are 0 or 1. By ran-
domly selects V' elements from o — u — 2, the corresponding
0y,v € V are set to 1. Second, the user extends each vector Ui,
to two random vectors Uy, and Ujy,j = 1,2 according to the
director vector G. If G[i] = 1, U7, [i] + Ujl [i] = Ujy,[i]. If G[i] =
0, U7, li] = Ujlli] = Ujyli], j = 1, 2. Finally, the user encrypts
the vector U, as U; = {(M1U1;, MoU1Y), (M U2, MyU27)}.

MRSE.Match (U;,Uy;) — ip(U,,U,). This step is per-
formed by the public cloud. The inputs are two encrypted

uni-gram vectors Uy and Uj;. The output is the inner product
ip(U,,, Uy) = {ipl,ip2}

ipl = —Uy - Uy + len(w;) +t +» _&"

4
ip2 =-U, U, +len(q) +t+ ZE“. @

Paillier Homomorphic Encryption algorithm is a kind of
homomorphic encryption technique. It is secure against
chosen plaintext attack (CPA) under the assumption
that the decisional composite residuosity problem is
hard [17].

In the Paillier cryptosystem, the public key is PK =
(n,g), and the private key is SK = (A,). n =pg, A =lem
(p—1,q—1), p=A"'modn, g€ Z, and ged((g* mod n? —
1)/n,n) = 1. p and q are two independent large prime num-
bers chosen randomly. ged denotes the greatest common
divisor and lem denotes the least common multiple. We use
PHE.Enc(-) and PHE.Dec(-) to denote the encryption and
decryption algorithm of Paillier cryptosystem respectively.
For a plaintext m and its ciphertext ¢, the encryption and
decryption process are shown as Equations (5) and (6),
where r is a random number

PHE.Enc(m,r) = g™ - " modn?r € R (5)

Amodn?) — 1
PHE.Dec(c) = (w
n

) - wmod n. (6)

Paillier cryptosystem has the properties of probability,
additive and one-time multiplicative homomorphic.
For my,my € Z,, 71,79,k € Z),my1 # ma, 71 # 79

PHE.Enc(my,r1) # PHE.Enc(ma,r2)
PHE.Enc(m,r)" = PHE.Enc(km,r)
PHE.Enc(my) - PHE.Enc(my) = PHE.Enc(my + my),

where 7,71, 79, k are random numbers.

Pseudo-Random Permutation (PRP). 7 :{0,1}" x {0,1}° —
{0,1}" is a PRP, if & can be computed in polynomial-time
and cannot be distinguished from random function by any
polynomial-time adversary [18].

3 PROBLEM FORMULATION

3.1 Design Goals

To achieve scalable fuzzy keyword ranked search over
encrypted data, our scheme has the following design
goals.

Exactly Search Results. The proposed scheme should find
out all the fuzzy keywords for a fuzzy query @ = {¢,d}
exactly. The false positive and false negative are eliminated.

Similarity Threshold Scalability. In this paper, we define
the “scalability” from the perspective of similarity threshold
d instead of the database size. The threshold d should be
scalable and should be not limited to the predefined value.
The proposed scheme should achieve fuzzy keyword search
for any similarity threshold d with a constant size index. The
size of the index is constant regardless of the similarity
threshold d, and the accuracy of search results will not be
affected by the increase of d.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 311

Two-Factor Ranking Function. To make the search results
more in line with the user’s expectations, the returned
results should be ranked according to both keyword weight
score and keyword similarity score.

Privacy-Preserving. The public cloud and the private
cloud should learn no extra information except the neces-
sary messages that appear in the entire interaction protocol.
The details are described in Section 3.2.

3.2 Security Definitions
We consider two kinds of adversaries: external adversaries
and internal adversaries. An external adversary can eaves-
drop on information in interaction protocol, and attempt to
infer privacy information as much as possible from the mes-
sage he eavesdropped on. An internal adversary intends to
obtain more sensitive information on the data owner’s files
and the user’s query. In our scheme, we assume that the
data owner and the user are both trusted. We assume that
the public cloud and the private cloud are both “honest-but-
curious”. They will honestly execute the designed protocol,
but they are curious about the files and query contents, and
attempt to infer the privacy information by analyzing the
information obtained during the protocol [2], [3], [13]. We
assume that the user’s input keywords are allowed to be
known by the private cloud. Obviously, the internal adver-
sary is more powerful than external adversary. In our
scheme, the internal adversary may be the public cloud or
the private cloud. We only discuss how to defend such an
internal adversary in our scheme under the assumption that
the private cloud and the public cloud are non-colluding.
SFRSE scheme should provide the following security
guarantees. 1) An adversary cannot learn any extra informa-
tion about the files f; and the index keywords w; from the
encrypted file set F* and the index tree 7. 2) The search
trapdoors cannot reveal any information of the user’s query
keywords beyond what is implied by the search results. 3)
At any time, the public cloud and the private cloud can
learn only what are allowed to be leaked by the user, i.e.,
the search pattern and the access pattern. The search pattern
and the access pattern are any information that can be
derived from the search process and the access process
respectively [19], and the formal definitions are as follows.

Definition 1 (Search pattern sp(Q)). Given a sequence of ¢
queries, the query history is Query = {Q1,Qa,...,Q:}, the
information that the cloud can see is Trace = {(Tg,, Match
(To,,T9)), ..., (Ty,, Match(Tg,, T"))}. For a query Q, the
search pattern sp(Q) for Q is defined as

sp(Q) = {Q;| Ty, = Ty or Match(Ty,, T*)
= Match(Tp,T"),Q; € Query}.

Ty, and Ty are the trapdoors of query Q; and Q respectively.
T is the encrypted index tree. Match(Tg,;,T") is the match-
list which contains the keywords that are match with query
request Q;. The search pattern indicates that the query Q is the
same as the past query Q;.

Definition 2 (Access pattern ap(Q)). Given a fuzzy query
Q ={q,d} at time t+1, the access pattern is defined as
ap(Q) = id(Q). id(Q) is the identifier set of files containing
the keyword w; which satisfies ed(w;, q) < d.

Now we use the widely-accepted simulation-based
framework [19], [20], [21] to formally define the semantic
security of our SFRSE scheme against adaptive attacks. The
definition uses two models, real model Real 44,(k) and ideal
model Ideal 44,,5(k). In the Real 44,(k), the challenger has the
key and runs a set of prescribed algorithms to respond to
the adversary’s challenge. In the Ideal 4, s(k), a simulator is
defined to simulate the view of an adversary Adv during an
attack. We parameterize the definition for the ideal world
simulator S with a set of leakage functions. The leakage
function captures precisely what is being leaked to the
adversary during each operation [20], [21], [22]. Because our
SFRSE scheme is divided into two phases: SFRSE.Setup and
SFRSE.Search, we use (£ , £y to denote the leakage
functions in Setup and Search phases respectively.

Since any adversary can only know the allowing limited
leakage information but not the other information in the
ideal model, we prove that the security of our SFRSE
scheme by proving that the real model and the ideal model
are indistinguishable for any PPT adversary. Specifically,
the challenger flips a coin coin at the beginning of the exper-
iment. If coin=0, the challenger interacts with the adversary
in the real model; otherwise interacts with the adversary in
the ideal model. At the end of the experiment, the adversary
outputs a bit b (0 or 1) to assert that it is in the real model or
in the ideal model. Definition 3 gives the formal security
definition. Equation (7) implies that the probabilities of the
adversary outputs 1 are approximately equal at the two
models, so the outputs of Realyq, (k) and Idealsq,s(k) are
indistinguishable for any adversary. D(Realsq,(k)) and
D(Ideal gy 5(k)) denote the adversary’s outputs in the real
model and the ideal model, respectively. k is the security
parameter, negl(k) is a negligible function with .

Definition 3 (L-adaptively Security for SFRSE). A
SFRSE scheme is (L5, £5¢"")-adaptively secure, if for all
PPT adversaries, there exists a PPT simulator S such that
[Pr{D(Real ago(k)) = 1]] — [Pr

[D(Ideal gy s(k)) = 1]] < negl(k).

(7

e Realyy(k): Challenger runs KeyGen(-) to generate
the key K. Adv inputs F and receives (F*,7") «
Setup.Enc(-) from the challenger. Adv makes a poly-
nomial number of adaptive queries Query = {Q;| i =

.,t}. For each query @Q € Query, the challenger
runs SFRSE.Search algorithm and returns the search
results to Adv. Finally, Adv returns a bit b as the out-
put of the experiment.

o Idealyy,s(k): Adv inputs F. Given L5P(F), S gener-
ates and sends (F*,7") to Adv. Adv makes a polyno-
mial number of adaptive queries Query = {Q;| i =1,

.,t}. For each query @ € Query, S simulates the
Search algorithm and returns the results to Adv based
on £%"(F, Q). Finally, Adv returns a bit b as the out-
put of the experiment.

4 SFRSE SCHEME

Notations. Common notations and their meanings.

e [-The outsourced file set, F = { fi, .

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore Restrictions apply.

312 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

F* - The encryption form of F.

W - The keyword set extracted from F, W =
{wb cee 7wm}

W* - The encryption form of W.

n - the number of files in the dataset F.

m - the number of keywords in the keyword set W.
T - The unencrypted index tree.

T - The encrypted index tree.

N - The tree node.

N.x - The element z stored in node N.

U - The uni-gram element set

2 - The character element set.

Uy; - The 290 dimension uni-gram vector trans-
formed from the keyword w;.

Cy, - The L dimension character vector transformed
from the keyword w;.

U - The uni-gram vector set.

C - The character vector set.

ed(w, q) - The edit distance between w and q.

M*(w;, q) - The L x L encrypted edit distance matrix
of w; and ¢.

len(q) - The dimension or length of g.

VS - The validation set containing the keywords which
need to further verify in the verification phase.

e 1 - Using in a protocol, denotes the input or output
is nothing.

PPT - Probabilistic polynomial time.

Z", - Finite cyclic group of order n?.

ged - The abbreviation of greatest common divisor.
lem - The abbreviation of lowest common multiple.
8;; - The jth element in the vector §;

4.1 SFRSE Definition

As shown in Fig. 1, a SFRSE scheme consists of four entities:
data owner, private cloud, public cloud and data user. The
data owner is an individual or a group organization (e.g.,
members of a research institution), who outsource his/her
encrypted dataset F* = {ff,..., f*} and searchable index
tree 7™ to the public cloud for data sharing. The data user is
the person authorized by the data owner, who wants to
access and search the dataset F*. The public cloud is a com-
mon commercial cloud with massive storage and comput-
ing resources, which is responsible for storing the data
owner’s data and processing the user’s queries. The private
cloud is deployed within the institution and has a partial
decryption key, which is responsible for decrypting and
ranking operations.

The “search control” and “access control” are performed
when the data user wants to obtain authority from the data
owner. The data user obtains the private key that is used to
generate the query trapdoor through search control mecha-
nisms. After executing the search protocol, the user receives
the search results which are a series of ciphertext files. The
data user obtains the files decryption key to decrypt and
access the files through access control mechanisms. These
search control and access control mechanisms can be achieved
by secure channel or broadcast encryption [23], [24], which are
beyond the discussion scope of this paper.

Next, we give the formal syntax of our SFRSE scheme in
Definition 4. P(z;y) — (u;v) represents a protocol P that

MRSEEnc [€= APHEEne—— G}, U}, MRSE Enc

€,

u, Iy S P L, u,
7 = * Index, Files
Exacting

o
o keyword

Extending | | Extending—
[=% 1 §— Wiy 1
q @ Wy

9 | Query=(q.a]| % L

Trapdoor generation

A

4 Data user

[wis
Search control (trapdoors)
access control (files decryption kevs)

i

Data owner

| |%
gz Z ’ }
2| |[E P
g |E s B
= iF £ o =
v _. =
'h i E \\ '. " y
ol = §-°0 00
@ oy 2
=)
~ @) matrices ((M*(C3,,C2)Iw, € VS)ded)
_ ; ~
/ k | (3) ranked sequences /\ J
e I3)
St JJg
'P\uh"c ‘IW \‘Prinlc rlnu:l}_/
E Ferdh gk

Verify search
Decrypting and
computing edit distance

M(€3,C3)

Mig My 0]
‘-'2.(o) ed(C,.05) (: N
\Mig o Miy \ 7

{1 JECED 0,

Filter search; |\\\‘-I:_!Llnr
search dex tree —— ranking

M€, C3)

Validation set V'S

Fig. 1. The system model of SFRSE scheme, where red, blue and black
lines represent the authority, Setup and Search phases respectively.

runs between two parties A and B, where X, y are the
inputs, and u, v are the outputs of A and B, respectively.

Definition 4 (SFRSE scheme). A scalable fuzzy keyword
ranked searchable encryption scheme consists of the following
algorithms:

SFRSE.Setup (F, 1#,1°,1¥) — (K, F*, T*): This step runs
by the data owner. The inputs are a dataset F and three secu-
rity parameters p, o and «, provided by the data owner. The
outputs are the key K = (Ksym, Kurse, Kpae = (SK, PK)),
the encrypted dataset ¥ = {ff,..., fi} and the encrypted
index tree T*. SK is forwarded to the private cloud. F* and T~
are forwarded to the public cloud. The data owner publishes
PK.

SFRSE.Search (K, Q;F*,T"; Kpup) — (L;Fy; L):This
step runs among the data user, the public cloud and the private
cloud. The inputs are the key K and Kpyg, the fuzzy query
Q ={q,d}, F* and T*. K and Q are provided by the user. F*
and T* are provided by the public cloud. K pyp is provided by
the private cloud. The output is a ranked ciphertext file set Fy,,
forwarded to the user.

4.2 SFRSE Construction

SFRSE.Setup. The setup phase is performed by the data
owner, and contains three steps: index generation IndexGen,
key generation KeyGen and encryption Enc.

Step-1 Setup.IndexGen (F) — 7. The input is the dataset F.
The output is the searchable index tree 7.

Step-1.1 Extracting keywords and weight vectors (F) —
(W, WS). The input is the dataset F. The outputs are a
keyword set W and a keyword weight vector set WS =
{WSy, |lw; € W}, where the dimension of WS, is n. The data
owner extracts the keywords from F by stemming algo-
rithm. The ith element in weight vector WS, is the weight
score WS, r, computed by Equation (3).

i

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 313

Step-1.2 Transforming keyword to its uni-gram vector (w;) —
Uy;. The input is a keyword w;. The output is a u-dimension
uni-gram vector U,,. Uy, is used in filtering search step. The
data owner transforms w; to U,, based on a preset uni-gram
element set /. The set U/ is adjustable according to the specific
scheme and the target dataset. In our SFRSE scheme, we
choose a 290-dimension uni-gram element set/ = {al,a2, ...,
al0,b1, ...} according to our experimental dataset. The set I/
contains 26 x 10 letters, 30 numbers and commonly used
symbols.

The data owner first transforms the keyword to its uni-
gram set. For example, the uni-gram set of keyword 'lecture’
is {l1,el,cl,t1,ul,rl,e2}, where 'e2’ indicates 'e’ second
appearance in this keyword. The data owner matches key-
word to a u-dimension uni-gram vector. The element is set to
1 if the corresponding uni-gram character exists in the set I
for the %iven keyword, otherwise 0. An uni-gram vector U,,, =
{0,1}*" is generated for the keyword w;. This transform
method is proposed in reference [3].

Step-1.3 Transforming keyword to its character vector (w;) —
Cly,. The input is a keyword w;. The output is a L—dimension
character vector C,,. Cy, is used in verification search step.
The data owner generates the character sets %, and 3., based
on keyword set W, and 3; N3 = ¢. The data owner ran-
domly chooses a dummy edit distance d' and a dummy vector
8,, where d’ < min{len(w;)}. Then the data owner generates a
dummy character vector set A = {8;]8;; € 32, ed(8;,8,) = d'}.
The data owner chooses a padding character * and a fixed
length L, that satisfy L > maz{len(w;)} + maz{len(s;)} and
* & 31 U 2.

The data owner first transforms keyword w; € W to a
len(w;)-dimension intermediate vector I,,. For example, the
intermediate vector of keyword ’secure’ is I, = (s,e,c,u,
r,¢). Then the data owner extends I, to a L—dimension char-
acter vector C,,. The details of this operation is described in
Section 5.2.1 paragraph 3-5

Iu:i = (wilvwi27 o 7wilen(w,'))a Wij S 21

Cm,' = (* sk ||57||Iul)7 87 S A7wi € W7l€n(cw,j) =0L.

Step-1.4 Building index (U,,, Cy,, F\v;) — 7. The inputs are
the tuple (Uy,, Cw,;, F;) for each w; € W. The output is a bal-
anced binary tree 7.

The elements stored in the node N of index tree 7 are

N ={ID,N;,N,,U,C,len, WS}.

e ID - The unique identity for each node, which is gen-
erated by a pseudorandom function denoted as
GenlID().

N - The pointer to the left child of N.

N, - The pointer to the right child of N.

U - The uni-gram vector stored in N. If N is a leaf
node which stores keyword w;, U = U, is the uni-
gram vector of keyword w;. If N is an internal
node, U is determined by it's left and right
children

Uli] = OR{N.N, — U[i], N.N, — Uli]}.

e (C - The character vector stored in N. If N is a leaf
node, C' = C,, is the character vector of keyword w;.
If N is a internal node, C is set to null.

e len - The keyword length stored in N. If N is a leaf
node which stores keyword w;, len = len(w;) is the
length of keyword w;. If NV is an internal node, len is
determined by it’s left and right children

N.len = min{N.len, N,.len}.

e WS - The weight vector stored in N. If N is a leaf
node which stores keyword w;, WS is the weight vec-
tor WS,,. If N is a internal node, WS = null.

Step-2 Setup.KeyGen (1*,17,1¢) — K. The inputs are three
secure parameters (u,o,k), provided by the data owner.
The output is the key K = {Kgym, Knvrse, Kpup}. Keym is a
symmetric key. Kypsp = {S, M1, M} is the key of MRSE
algorithm. Kpyp = {PK,SK} is the key of Paillier crypto-
system. The data owner stores K locally, sends SK to the
private cloud and publishes PK.

Step-3 Setup.Enc(K,F,T) — (F*,T7"). The inputs are the
dataset set I, index tree 7 and the key K, provided by the
data owner. The outputs are the encrypted dataset set F*
and index tree 7~, forwarded to the public cloud. The data
owner encrypts F to F* using the key Kg,,, and encrypts 7
to 7" using the key Krsp and Kpyp.

When encrypting the index tree 7, the data owner
encrypts each tree nodes N as N*. The element len is
embedded into the vector U* when the data owner uses the
MRSE algorithm to encrypt the vector U

N* = {ID,N,,N,,U*,C*,WS*}, C* = PHE.Enc(C),
U* = MRSE.EncIndex(U), ~ WS* = PHE.Enc(WS).

SFRSE.Search. The search phase is an interactive process,
and runs among the user, the public cloud and the private
cloud, including: trapdoor generation (TrapGen), filtering
search (Filter), verification search (Veri fy) and rank (Rank).
The inputs are the fuzzy query @ = {¢,d} and the key K,
provided by the user, where ¢ is a query keyword and d is
the similarity threshold. The output is the ranked file set),
forwarded to the user.

Step-1 Search.TrapGen(K,Q) — Ty. This step is per-
formed locally by the user. The inputs are the fuzzy query
Q@ = {q,d} and the key K, provided by the user. The output
is the query trapdoor T, = {U;, C;,dy,d + d'}, forwarded to
the public cloud. dy is the filter threshold described in detail
in Section 5.1. The user transforms query keyword ¢ to two
vectors U, and C;, and encrypts them as U; and C;. The
method of generating U, is the same as the method of trans-
forming index keyword w; to U,,. When generating C,, the
user adds §, to intermediate vector I, instead of §;

U; = MRSE.EncQuery(U,),
C, = PHE.Enc(C,) = PHE.Enc(x - 8] I,)-

Step-2 Search.Filter(T(; T*) — (L; VS). This step is per-
formed between the user and the public cloud. The inputs
are the query trapdoor Ty and the encrypted index tree 77,

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

314 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

provided by the user and the public cloud respectively. The
output is a validation set VS, forwarded to the public cloud.
The public cloud searches the index tree 7™ by the “Greedy
Depth-First Search” algorithm as described in Algorithm 1,
which is a recursive procedure. The specific filtering rules
and search example are presented in Section 5.1.

Algorithm 1. Search.Filter(Tp; T7°) — (L; VS)

Inputs: 7" and T, The encrypted index tree and trapdoor,
T ={U,;,C;,ds, d+ d'}.
Outputs: VS \\ The validation set
Procedure
: VS =null Initialize VS to null
: root = root node of 7"
t = root a variable node, t = {ID,t;,t,,U*, C*, WS*}
: Procedure Search(Tg,t) — (L;VS)
: while @.U"[1] - U;[1] < dy) AND (t.U"[2] -
if (¢, = null) AND (¢; = null) then
VS.append(t.C*) tis aleaf node
else
Search(Ty,t.l) — (VS)
10: Search(Ty,t.r) — (VS)
11: end if
12: end while
13: returnVs.

U;[2] < dp) do

o

Step-3 Search.Verify (d+ d',VS; SK) — (J—§Nc;d+d’)- This
step runs between the public cloud and the private cloud.
The inputs are the validation set VS, the threshold d+ d’
and the private SK of Kpyg. VS and d + d' are provided by
the public cloud. SK are provided by the private cloud. The
output is a set NC;JHd/ which contains the sequence num-
bers of the desired fuzzy keywords, forwarded to the public
cloud. In Section 5.2, we design an LDE algorithm to achieve
the verification operation. In the following description, we
use LDE.x to denote the x algorithm invoked from the LDE
algorithm.

The public cloud constructs an L x L encrypted edit dis-
tance matrix M, g* o= LDE.ConEDMatriz(Cy, ,Cy) for

each C}, €VS, and obtains the matrix set M. The public
cloud generates a PRP (Pseudo-random permutation) 7 and
sends TM* = {M** ,C, | j = mi} to the private cloud.

The private cloud decrypts each matrix M¢. c and obtains

the edit distance ed(C*] C,) = LDE. ComED(Mg* C*) The
private cloud stores the sequence number j =77 to a set
Nes g which satisfies ed(C’*] Cr)<d+d. Ne: gra = {jled
(C* cx) <d+d, C,; € VS}

Step 4 Search. Rank (T*,F*, Nc;,d+d/) — (FZ;;RSC;,dm')-
This step runs between the public cloud and the private
cloud. The inputs provided by the public cloud are 7" and
F*. The input provided by the private cloud is the set
NC;;,der’- The private cloud outputs the ranked file id set
RSCM 1, and sends it to the public cloud. The public cloud
outputs a ranked ciphertext file set F), and sends it to the
user.

__Step-4.1 Obtaining weight score (WS"; Nz arar) — (L
WSC e). This step runs between the public cloud and the
prlvate cloud. The inputs are the encrypted weight vector
set WS” and the set N¢: 4,4, provided by the public cloud
and the private cloud respectively. The output is the

keyword weight vector set Y\/’\V\SC;% , forwarded to the pri-
: J

vate cloud.

The public cloud receives set NC;,dJFd/, and recovers the
original sequence number i = j of similarity keyword w;
using the PRP 7. The public cloud obtains the correspond-
1ng encrypted weight vector WS , further encrypts it to

WS* for each j € Nez avd s and sends the set WSC* c;, tothe
prlvate cloud. This operatlon is to protect the Welght score
from the private cloud and do not impact the rank results.
The private cloud decrypts each WS, as WS, ; using SK,
and obtains the keyword weight vector WS

WSc;, = = (WS, ;| 7€ Negava}
WSW (WSH o WSUJ)
WSZJJ_ (WS* - PHE.Enc(r))"
= PHE.Enc((WSw],fj r)-h) r,h € R,

where 7 and h are random numbers.
Step-4.2 Computing morphology similarity score (NC* dtd
ED) — (KScy ¢y,). This step is performed by the private cloud.
The inputs are tﬁe set N¢r 44 and the corresponding edit dis-
tance set ED, provided by the private cloud. The output is the
morphology similarity score set KSe; ¢, foreach j € Ney ava

ED = {ed(C;, C,.) | j € Negara'}
KSc; ¢, = {KSc;0p,| 7 € Negarar}
KSC;,C;U] =1-ed(C},C;,)/maﬂc{len(C’:;),len(C’;j)}.

wy

Step-4.3 Computing relevance score and ranking (WSC* e
KSc, ci, ;F*) — (RS¢y ara; Fp). This step runs between the
prlvate "cloud and the public cloud. The inputs are set
WSC i KSez c, and F*, where WSC* ci, and KScy ¢y, are
prov1ded by the private cloud. F* is prov1ded by the pubhc
cloud. The outputs are the ranked file id set RSer arars and
the ranked file set Fy,. RScr ara is forwarded to the public
cloud, and IF& is forwarded to the user.

The private cloud computes the relevance score RSy, for
each wj, j € Ne: 4.0 as Equation (8), obtains and sends the
set RSz gia to the public cloud.

RS = Y KSccy WS, ®)

€N ara
RSc; d+ar = {id; | if i > j,then RSfid,, > Rszd,}'

The public cloud finds out the corresponding encrypted
file set I, based on RSc: aras and sends it to the user

FZ} = {fiag,| id; € RSC;,:Hd’}'

5 THE FILTERING ALGORITHM AND LDE
ALGORITHM
5.1 Filtering Algorithm

Filtering Rules. W is a index keyword set and Q = {q,d} is
the user’s fuzzy query. The public cloud can filter out most

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 315

dissimilarity or low similarity keywords based on these val-
ues: k, d, len(w;) and len(q). k is the number of matching
characters between w; and ¢, k= U,, - Uy, w; € W. len(w;)
and len(q) are the lengths of keywords w; and ¢ respectively.
If ed(wj, ¢) < d, the number of mismatched characters in any
two keywords will not exceed d. When len(q) —k > d or
len(w;) —k > d, it needs at least d + 1 edit operations to
switch w; to ¢. If two keywords w; and ¢ are similar within
d, they should satisfy Equation (9)

—-k<d 9)

len(w;) —k <d and len(q)

In our SFRSE scheme, the uni-gram vector is encrypted
by the MRSE algorithm. As described in MRSE scheme of
Section 2, for two uni-gram vectors U, and U, their corre-
sponding ciphertexts are U;, and U;. The inner products of
the two encrypted vectors are

ipl = U, - U, + len(w;) +t+26”

(10)
—U, - U, +len(q —}—t—l—Ze“

p2 =

If the inner products of vector Uy, and U, satisfy the fil-
tering rules, i.e., the Equation (9), the correspondlng inner
products of the encrypted vectors should satisfy

pl<d+Y e+t and ip2<d+y W+t (11)

Since ¢ and t are randomly chosen by the data owner
and the user respectively, we set 3" ¢(¥) < 1. To make the
public cloud filter out the dissimilarity keywords, the user
submits an filtering threshold dy = d+ 1+t to the public
cloud.

Search Index Tree. The public cloud receives the user’s
query @ = {U,,d;}, and searches the index tree using the
”Greedy Depth-First Search” algorithm. The public cloud
calculates the inner product of Uy, and Uy, and returns the
leaf nodes whose inner product i is less than filtering thresh-
old dy. An example of building and searching index tree in
plaintext is shown in Fig. 2.

Example: Assuming that the keyword set is W = {w; '
eat’,we I let’, wy ! cate’ ,wy i chat',ws Y teach’, we ! tache'}.
We generate a 6-dimension uni-gram set U = {a,c, e, h,[,t}
based on the characters that appear in W. The keywords are
transformed into corresponding uni-gram vectors U,, =
(1,0,1,0,0,1), Uy, =(0,0,1,0,1,1), U, =(1,1,1,0,0,1),
Uuq :(1717071a0 1) Uu (1,1,1,1,0 1) Uub :(17171717

,1). Next, we build the balanced binary index tree based
on the post-order traversal method of the tree. First, we gen-
erate the leaf nodes which store the keyword uni-gram vec-
tor and keyword length. Second, we generate the parent
nodes. The uni-gram vector in internal node is obtained by
doing OR operation for the two uni-gram vectors stored in
its child nodes, where N.U[i] = OR{N,.U[i], N,.U[i]}. The
length stored in internal node is the minimum value of
lengths stored in its two child nodes. The corresponding fil-
tering rules in plaintext are ip'l = len(w;) — k < dand ip'2 =
len(q) — k < d, and the corresponding filtering threshold is
df =d.

query=[1[o[[o[1] d=]

ip'l=len(guery) -k =d?

ip2=len(w)k =d 7

ECECCERCCECEE 11|1|1I0]°|1| Illll"lllﬂlil

=3 /=3

Fig. 2. An instance of building and searching index tree. k denotes the
number of same characters between two vectors, [represents the key-
word length, green (or gray) nodes represents the searched nodes, blue
(or black) nodes represents the returned nodes, white nodes represents
the unsearched nodes.

The search process is as follows. The user submits the
query Q ={U,=(1,0,1,0,0,1),df =d =1} to the public
cloud for the query keyword ‘eat’. The public cloud
employs the depth-first search algorithm to search the index
tree. The public cloud computes the inner product k = N.U -
U, from the root node, and judges whether the inner prod-
uct satisfies the filtering rules. If so, the public cloud contin-
ues to search its child nodes, otherwise breaks. As shown in
Fig. 2, the final similarity keywords are w;, wy and ws.

5.2 LDE Algorithm

In this section, we present the design ideas and specific con-
struction of the LDE algorithm, i.e., the verification algo-
rithm in our SFRSE scheme.

5.2.1 Design Ideas

Transforming Keyword to its Character Vector. Edit distance
algorithm is a recursive algorithm, and the ith iteration
takes ith character of keywords as input to compute the sub-
strings edit distance recursively. To make that the clouds
can calculate the edit distance, we need to transform a key-
word into a character vector.

Achieve LDE Algorithm Under Hybrid Clouds Architecture. As
shown in Equation (1), the edit distance algorithm includes
equality test and comparison test. The, former is to estimate
the equality of two characters (w;[k] = ¢[t]). The latter is to
find the minimum edit distance currently. In our LDE algo-
rithm, the public cloud is responsible for constructing the
encrypted edit distance matrices M. o for each pair of tar-
get keywords (C;, ,C}),w; € VS. The private cloud is respon-
sible for executing the secure computation: equality test and
comparison test. These test operations will somewhat reveal
the character distribution of keywords. In LDE algorithm, the
public cloud sends the randomized matrix M. o to the pri-
vate cloud instead of the encrypted target keywords C,, and
C, directly. This randomization operation is to prevent the
private cloud from decrypting and obtaining the plaintext of
query keyword and partial index keywords directly. In this
way, the public cloud has the index but can not know the char-
acters’ relationship in the index keywords. The private cloud
knows only the characters’ equality relation of the group of
similar keywords but can not know the overall character dis-
tribution information.

Authoriéed licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

316 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

Adding Dummy to Protect Keyword Privacy. To avoid the key-
word length and the character statistical information leaked to
the clouds, we generate an intermediate vector I,, and add
dummy characters to extending I,,, to a L-dimension charac-
ter vector C,, for each keyword w;. On the one hand, the
dimension of the intermediate vector is equal to its keyword
length, and the keyword length is exposed to the two clouds.
On the other hand, the private cloud executes the equality test
and comparison test during search, and then it knows the co-
occurrence frequency of characters and its distribution infor-
mation for the keywords in the validation set. The character
statistical information is disclosed to the private cloud. If the
clouds have the potential adversary knowledge of the plain-
texts domain (e.g., English words), they can deduce the actual
plaintext keyword according to the keyword length and key-
word frequency. From the view of security and privacy, such
information should not be revealed to the clouds.

Due to the ordering of the edit distance algorithm, the
edit distance will be affected if adding the dummy to any
position of original keyword character vector randomly.
The ordering refers to the element ed[k][t] is determined by
its previous three states ed[k — 1][t — 1], ed[k — 1][¢], ed[k][t —
1]. In the LDE algorithm, we generate a dummy character
vector §, and dummy character vector set A = {§;]6;; €
35, ed(8;,8,) = d'}. We randomly choose a pair (8;,8,) and
add them to the beginning of each character vector C,, and
the query character vector C; respectively. In order to
ensure the accuracy of fuzzy search, the operation of adding
dummy should be not change the keywords similarity, i.e.,
this additional operation should satisfy: if ed(w;,q) =d,
then ed(8;||w;, 8,|lg) = d+ d.

Next, we choose a padding character * and further
extend the vectors Cy, ., to a fixed length L by adding I,
character *, where [, = L — len(8;) — len(w;). This step is to
prevent the public cloud from learning the relative keyword
lengths and deducing the exact length. Because the key-
word lengths are different, the numbers of padding charac-
ter to be added are different. To ensure that the addition
operation does not affect the final edit distance value, we
redefine the edit distance formula as Equation (12), where
equation ed((x -~ [|8illwi), (x- - * [18]l) = ed(3i]|wi, &/lq)
holds. The correctness analysis is described in Section 6.1

07 kZO,tZO
S £(0, h), k=0,t > 0
edk[t] = { Sh_y F(h,0), kE>0,t=0

min{ed[k — 1][t] + 1, ed[k][t — 1]

+1,edlk — 1}t — 1] + f(k,8)}, k> 0,t > 0.
12)
2y 10 wilk] =[]
flkt) = { L wlk # gl

Encryption and Decryption Algorithm. To achieve character
unlinkability, the encryption algorithm should be probabi-
listic. The edit distance algorithm involves arithmetic opera-
tions, so the LDE algorithm requires the public cloud to do
some arithmetic operations in ciphertext. The encryption
algorithm should be homomorphic. We choose the Paillier
cryptosystem to encrypt the keyword character vectors.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloa

5.2.2 LDE Algorithm Design

LDE.preprocess(W, k) — (21,32, d’, 84, A, %, L, Kpyp). The pre-
process phase is performed by the data owner. The inputs are
the keyword set W and security parameter «. The output is
the tuple (21, 22, d’, Sq, A, *, L7 KPHE)/ where KPHE = {PK,
SK}. The data owner sends SK to the private cloud and pub-
lishes PK.

LDE.EnclIndex (w;) — C,, . This step is performed by the
data owner. The input is the keyword w;, provided by the
data owner. The output is the encrypted character vector

, forwarded to the public cloud.

LDE EncQuery (g,d) — (C;,d+d'). This step is per-
formed by the user. The input is a query @ = {¢,d}, pro-
vided by the user. The outputs are the ciphertext C; and the
similarity threshold d + d', forwarded to the public cloud.

The above three steps are described in Section 4.2, and
we will not go into details here.

LDE.ConEDMatrix (Cy, , C7) — wM¢. o This step is per-
formed by the public cloud. The mputs are two encrypted
character vectors ;. and Cj. The output is an encrypted
edit distance matrix M. et forwarded to the private
cloud, where 7 is a PRP.

The elements in matrix M. c; are calculated by Equa-
tion (13), where ry; is a random humber

M (K]t = (C K/ ClE)™, kit € [0, L), ri € R. (13)

LDE.ComED (M}* 0*) — ed(CjL, ,)- This step is per-
formed by the prlvate cloud. The mput is the matrix
M. o The output is the edit distance. The private cloud
decrypts the elements in matrix M. c and obtains the
plaintext matrix Mc; c:. The private cloud calculates the
edit distance ed(ot as Equatlon (12).

Because Mc; c: [k:} [t] = i (w;lk] — ¢[t]) is the randomized
difference between w(k] and ¢[t], we have

if Mey, c;[K][t] = O, then w;[k] = qt],

it Mey, c; [K][t] # O, then w;[k] # q[t].

6 CORRECTNESS AND SECURITY ANALYSIS

6.1 Correctness Analysis

Our scheme involves inner product calculation appears on
Search.Filter step, and edit distance calculation appears on
Search.Verify step. The correctness of the filtering algorithm
relies on the correctness of the MRSE algorithm. In this sec-
tion, we give the correctness analysis of our LDE algorithm.

The Correctness of Edit Distance Calculation. To prevent
the private cloud from decrypting and obtaining the plain
characters directly, the public cloud sends the encrypted edit
distance matrix M. o to the private cloud in LDE.ConEnc-
Matrix(-). We illustrate that this operation cannot prevent the
private cloud from computing the correct edit distance in
LDE.ComED(-).

The element (C;, [k]/C;[t])™ is the result of two corre-
sponding position "characters’ arithmetic operations: two
characters subtract and then multiply a random number ry;.
If the two characters are equal, the difference is 0, and multi-
ply a number st111 is 0, so f(k,t) = 0. If the private cloud
decr (}/pts M*[K][t] # 0, it means that the two characters are

e

d on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 317

not equal, so_f (k t) = 1. Thus this operation does not affect
the value of f(k,t) and the final edit distance.

The purpose of multiplying a random number is to keep
the subtraction value secret for the private cloud. For exam-
ple, if the private cloud knows the character w;[1] =o'
beforehand, and then it obtains M][2][2] = 5. Obviously it
can further conclude ¢[1] =" f.

The Correctness of Adding Dummy. We prove that the oper-
ation of adding dummy to extend character vectors to a
fixed length L will not impact the final fuzzy keyword
search results. A visual example is shown in Fig. 3.

The data owner adds dummy character vector to key-
word intermediate vector I,,, in LDE.Enclndex(-). This addi-
tion operation can be divided into two steps: 1) data owner
adds §; € A to I,,,; 2) data owner adds L — len(C,,) — len(é;)
padding character * to I,,. The operation of extending the
query keyword character vector C, in LDE.EncQuery(-) is
similar. As shown in Figs. 3a and 3b, the way of adding
dummy §; and §, satisfies

if o ed(ly, 1) =do, ed(s:,8,) =d
then : ed(8;|| L, 84||1,) = do + d'.

As shown in Fig. 3c, the edit distance is changed after
adding * to two target vectors, which is computed by the
original edit distance Equation (1). To obtain the correct edit
distance, we redesign the edit distance algorithm shown as
Equation (12). As shown intuitively in Fig. 3d, the operation
of adding padding character * to two character vectors do
not change the edit distance computed by Equation (12)

if o ed(8]| Ly, 8,]|1,) = do + d'
ed(Cy,, Cy) = ed(-+ ||8;]| L, % -
=dy+ d.

then :

= 1184114)

If w; is simAilar to ¢ within threshold d, and satisfies ed(w;, q)
< d, then ed(Cy,, Cy) < d+ d must hold.

Theorem 1. The LDE algorithm satisfies the completeness. Spe-
cially, for the user’s fuzzy query request Q = {q,d}, all of the
keywords w; are returned if ed(w;, q) < d.

Theorem 1 indicates that our SFRSE scheme can find out
all desired fuzzy keywords without false positive and false
negative.

The proof of Theorem 1 is shown in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCC.2021.3092358.

6.2 Security Analysis

In this section, we give the specific contents of the leakage
functions in our SFRSE scheme, and prove that our scheme
is secure for any PPT adversary. The leakage function L is
denoted as L(z1,...,z;) = {v1,...,y:}, where (z1,...,x;)
are the inputs, and {y1, ..., y;} are the outputs.

Our SFRSE scheme is divided into two phases: SFRSE.
Setup and SFRSE.Search. There exists two types of adversar-
ies: adversarial public cloud and adversarial private cloud.
We use (£iﬁ§"’ , Loy and (£fff“" L5"") to denote the leak-
age functions in Setup and Search phases for the adversarial
public cloud and the adversarial private cloud respectively.

ED(||1,,9, I|1,)

S L] +])]

(1% PN FS B
afred | o | =

(a) ed(l,.1,)

ED(C, C)=EDC31, 415, !L}/ =3

ed(*:*} .(;_-.) “;((]. ed(*.*) (d)

Fig. 3. Example of adding dummy character vectors to original keywords
character vector do not change the final fuzzy keyword search results.

The Leakage Functions for the Adversarial Public Cloud.

a) Leakage function Eiﬁg“p for setup
Lo (F) = {F* T [, (W]} e {Us, s Co Y -

F is the file set. F* and 7" denote the encrypted file set and
index tree respectively. |F| and |W| denote the number of
files and keywords respectively. |f/| denotes the size of
encrypted file fi. U; and (7, denote the encrypted uni-
gram vector and character vector of keyword w;.

b) Leakage function [52‘;’"}1 for search

L (R, Q} = {To, sp(Q), ap(Q), {ipl, ip2} , cy }-

Q ={g,d+ d'} is the query. Ty = {U;,C;,ds,d + d'} is the
trapdoor. sp(Q) and ap(Q) are the search and access pat-
terns of the query Q. {ipl,ip2} are the inner products for
each pair of U; and U,

The Leakage Functlon for the Adversarial Private Cloud.

a) Leakage function Eset“p for setup

Set
‘Cpfz“p(/’bvav k,F) = {Kpur}.
w,o0, and « are the security parameters. Kpyp is the key of
paillier cryptosystem.
b) Leakage function ngf""" for search

ESF(]TI’h (]F, Q) — Q), {6/C\Z(ML*)7 @, WSL}}

pri

{M*v |M*|,sp(

M* is the encrypted edit distance matrix set. [M*| is the size
of M*. ed (M) is the edit distance of ith matrix in M*. K'S; =
1 KS; + t;, KS; and WS; are the keywords weight score and
morphology similarity score respectively. r; and ¢; are ran-
dom numbers.

Theorem 2. SFRSE scheme is L,;-adaptively secure, assuming
that the decisional composite residuosity problem is hard,
assuming that the MRSE scheme is semantic security with
indistinguishability, and assuming that the Sym is an IND-
CPA secure symmetric encryption scheme. L, is the leakage
function for the adversarial public cloud and are defined above.

The proof is shown in Appendix B, available in the online
supplemental material.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TCC.2021.3092358
http://doi.ieeecomputersociety.org/10.1109/TCC.2021.3092358

318 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023
TABLE 2

Complexity Comparison of Several Typical Fuzzy Keyword Searchable Encryption Schemes With Ours
Scheme Lietal. [1] Wang et al. [2] Fuetal. [3] SFRSE
Entities User Cloud User Cloud User Cloud User Public cloud Private cloud
Storage o) O(mid,) O(1) O(nt) O() O(nr) o(1) O(m(o + L)) o(1)
Computation O(lé) O(mlgwlfj) O(r®*) O(nt) O(?) Ont) O(LE+0c®) O(ologm + |[VS|L2E) O(|VS|L?E)
Communication O(l’;) O(ng) O(t) O(ngr) O(r) O(ngp) O(L + o) O(|VS|L? + ng) O(|Simy|)

o is the dimension of uni-gram set, U is the number of the dummy entries in MRSE algorithm, E denotes the exponential operation, L is a pre-defined length, m
and n is the number of keywords and files, d is the pre-defined threshold, T is the security parameter of EASPE. Where ¢ = 160, L = 30, T = 8000 and d = 2.

Theorem 3. SFRSE shceme is L,,-adaptively secure, assuming
that the PRP functions w = {m;, ..., m} is secure pseudo-ran-
dom permutations. L,,; is the leakage function for the adversar-
ial private cloud and are defined above.

The proof is shown in Appendix C, available in the
online supplemental material.

Theorem 4. SFRSE scheme is L-adaptive secure, if SFRSE
scheme is L,-adaptively secure for the adaptive adversarial
public cloud, and L,,;-adaptively secure for the adaptive adver-
sarial private cloud.

7 PERFORMANCE ANALYSIS

We implement our SFRSE scheme using Python 3.0 on a
Windows 10 PC. The public cloud is a Tencent cloud virtual
machine [25] with an AMD EPYC™ 7551 CPU (2.0GHz)
and 8G memory. The private cloud is a laptop with an Intel
Core i7-8550 1.8GHz CPU and 8G memory. The data owner
and the user both have a desktop with an Intel Core i5-3470
3.2GHz CPU and 12G memory. We use the COVID-19 Open
Research Dataset [26] as our experiment dataset. We choose
the key pairs of the Paillier cryptosystem is 1024-bit secu-
rity, and the security parameter of MRSE algorithm is o =
450. We choose a 290 dimension uni-gram element set If =
{al,a2,...,al0,...}, which contains 26 * 10 letters, 30 num-
bers and commonly used symbols. We set the fixed length
L =25 and the dummy edit distance is d’ = 1. We estimate
the overall performance of our SFRSE scheme, including the
storage cost of encrypted index tree, the efficiency of index
generation, the efficiency of trapdoor generation, the time of
filtering search and verification search, and the rank effect of
two-factor ranking. The communication latency between the
public cloud and the private cloud is around 4 milliseconds
on average, and we omit the latency in our performance anal-
ysis as reference [27]. The complexity comparison of several
typical fuzzy keyword SE schemes with ours is shown in
Table 2, including the storage, computation and communica-
tion cost in the user side and cloud side respectively.

In our SFRSE scheme, the keyword character vectors are
extended to a fixed length L to protect the keywords length
and characters statistical information. The security of our
scheme grows with the increase of L, but the time cost also
increases meanwhile. The value of L can be determined by
the maximum length of the keywords in the keyword set. In
our experiment dataset, the maximum keyword length is
21, so we set L = 25. To present the trade-off for privacy
and efficiency in our SFRSE scheme, we construct a baseline
scheme as the experimental comparison. The design of the

baseline scheme is the same as the SFRSE scheme except
that there are no dummies to be added to the keyword char-
acter vectors throughout the protocol process.

7.1 Index Generation

The process of generating an encrypted index tree 7~
includes two stages: building an index tree 7, and encrypt-
ing the index tree. We build the index tree based on the
post-order traversal method of a tree. m leaf nodes are gen-
erated based on the index keyword set W, where m is the
size of keyword set. The elements stored in each tree nodes
are {U, C, WS}, whose dimension are o, L and n, where n is
the size of file set.

The process of encrypting the index tree includes two types
of encryption. 1) MRSE algorithm to encrypt the uni-gram
vector U. It refers to expanding vector which takes O(o) time,
and two multiplications of two o-dimensional vectors which
takes O(o?) time. 2) Paillier cryptographic algorithm to
encrypt the character vector C' and weight vector F'. It needs
an exponentiation operation £ for each element in the vector.
The whole time cost is O(m(o? + (L + n)E)). Although itis a
time-consuming process, this is a one-time operation. Once
the index has been generated, the user can use it all the time
until it is updated. Moreover, parallel processing technique
can be used to speed up the time.

The variables that affect the time of index generation are
the size of keyword set m and the size of file set n. As shown
in Fig. 4, the time of index generation is linear increase with
the size of keyword set m and the size of file set n. Because
the time consumption of index generation is similar in the
baseline scheme and the SFRSE scheme, the two time curves
almost overlap. We only give the time cost of index genera-
tion for the SFRSE scheme in Fig. 4.

The space cost of storing the encrypted index tree 7™ is
O(m(o + L +n)). The balanced binary tree 7 has space
complexity O(m) and each node stores two o-dimensional
vectors U*, one L-dimensional vector C* and one n-dimen-
sional vector WS*. As listed in Table 3, when the file set is
fixed at n = 5000, the storage cost of 7" is determined by the
size of keyword set m.

7.2 Trapdoor Generation

For a query request Q = {q, d}, the corresponding trapdoor
is Ty = {U,,C;,dy,d + d'}. The process of trapdoor genera-
tion includes two steps. 1) Encrypting U, with the MRSE
algorithm, which takes O(¢?) time. 2) Encrypting C, with
the Paillier encryption algorithm, which takes O(LE) time.
The time cost of trapdoor generation is O(o? + LE) in the

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.:

sratian (h)

0 00 50 a0 T] 200 00 500 5000

S of keyword st Size oF file set

(a) (b)

Fig. 4. Index tree generation time. a) with the size of keyword set, files
number n=5000; b) with the size of file set, keywords number m =6000.

SFRSE scheme and O(o? + len(q)E) in the baseline scheme,
where len(q) represents the length of keyword ¢.

As shown in Fig. 5a, the time cost of trapdoor generation
is almost constant with the increase of len(q) in SFRSE
scheme. The reason is that the values of o and L are fixed in
SFRSE scheme. In the baseline scheme, the length of C} is
len(q) instead of a constant L, so the time consumption
grows linearly with the increase of len(g). As shown in
Fig. 5b, the time of trapdoor generation is almost unaffected
by the query similarity threshold d both in SFRSE scheme
and baseline scheme.

7.3 Filtering Search

The public cloud receives the trapdoor, searches the
encrypted index tree 7" and obtains the validation set VS.
This process only involves inner product computation. The
time cost of computing the inner product of two o dimen-
sion vectors U* and U; is O(0®). The height of 7" is logym.
In the best case, the search time cost is O(02logam). In the
worst case, the search time cost is O(a?m), the public cloud
needs to search all leaf nodes to obtain the results.

The time cost of searching the index tree is related to the
size of keyword set m and validation set VS. On one hand,
m affects the height of the index tree. On the other hand, the
public cloud at least needs to search all leaf nodes in VS and
their parent nodes. The size of VS depends on the specific
query keyword and similarity threshold d. We estimate the
time cost of searching the index tree according to a specific
query task ”query = trans fect”. As shown in Fig. 6, the time
of searching the index tree is almost sub-linear growth with
the size of keyword set. The search time in the SFRSE
scheme and the baseline scheme are approximately equal,
because the dimension of U* and U, are the same in two
schemes. The size of VS for different thresholds d and dif-
ferent keyword set size m are shown in Table 4.

7.4 Verification Search
The verification stage contains two steps. 1) Constructing
the encrypted edit distance matrix. 2) Decrypting the matrix

TABLE 3
Storage Cost of Encrypted Index Tree

size of keyword set 2000 3000 4000 5000 6000

Baseline scheme(MB) 307.79 460.71 614.25 767.81 921.41
SFRSE scheme(MB) 316.79 47425 631.65 789.53 948.38

SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 319

=] == Baseling scheme l: T = Baseline scheme

2 | = SFRSE scheme 9 == SFRSE scheme

= 0B+ {1

% ¥ = gty ¥ 3

3 §

8 1

S / :

FY i ; i F! i i i
Length of query keyword query similarity threshold d

(a) (b)

Fig. 5. Trapdoor generation time. a) with the query keyword length for a
single query keyword when d = 0; b) with the query similarity threshold d
for a specific query task “query = transfect”.

and calculating the edit distance. These two steps are com-
pleted by the public cloud and the private cloud separately,
so we analyze their time cost respectively.

1) ConEDmatrix. The public cloud constructs the encrypted
edit distance matrix M} o G for each w; € VS. For each ele-

ment in the matrix, the pubhc cloud needs to perform a homo-
morphic addition and a multiplication operations, and we use
AM to denote these operations. The dimension of matrix
MC* c: 18 Lx Land len(ave) x len(q), and the time costs of
Constructmg |VS| matrices are O(L2AM|VS|) and O(len(ave)
len(q) AM|VS|) in the SFRSE scheme and the baseline scheme,
respectively. len(ave) denotes the average keyword length in
VS, and |VS| denotes the size of VS.

Since the values |VS|,len(ave), and len(q) depend on
the specific query task, we estimate the time cost accord-
ing to a specific query task "query = transfect”. Fig. 7a
shows that the time of ConEDmatrix is linear growth
with the increase of the |VS|. As shown in Fig. 7b, in the
case of the query threshold d =0, the time cost of Con-
EDmatrix is approximately the same for different sizes
of keyword set. When d = 0, it can be viewed as an exact
keyword search task, and the |VS| is small and almost
the same for different size of keyword set, which only
contains exactly query keyword and its anagram key-
words (e.g., ‘atom’ and ‘moat’ are anagram keywords).
Figs. 7c and 7d show that the time of ConEDmatrix
increases with the increase of the threshold d.

2) ComED. The private cloud decrypts each element in the
matrix M. cir and computes the edit distance. It needs L*
and len(ave) % len(q) decryption operations for each matrix,
and the time costs are O(L2DE|VS|) and O(len(ave)len

0

search index tree (ms)

Time of =

- Sue:fke,ncrcssnt) Su:e-nfké,‘f;crussel

(a) (b)

Fig. 6. Time of searching index tree with the keyword set size for different
similarity threshold d, query task is “query = transfect”. a) for d = 0, 1; b)
ford =2,3.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

320 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

TABLE 4
The Size of Validation Set VS and Similarity Keyword Set Sim,
for Different Thresholds d and Different Keyword Set Size m, for
the Query Task "query = "trans fect”

Size of keyword set 2000 3000 4000 5000 6000

(m)

d=0 size of VS 1 1 1 1 1
size of Simy 1 1 1 1 1

d=1 size of VS 1 1 3 5 8
size of Simy 1 1 1 1 1

d=2 size of VS 6 7 7 9 12
size of Simy 2 3 3 3 4

d=3 size of VS 48 54 59 80 101
size of Sim, 8 9 11 12 15

(¢)DE|VS|) in the SFRSE scheme and the baseline scheme
respectively. DE denotes the operation of homomorphic
decryption.

We also estimate the total time cost according to the spe-
cific query task "query = trans fect”. Fig. 8a shows that the
time of ComED is linear growth with the increase of the
|VS|. As shown in Fig. 8b, when query threshold d = 0, the
time consumption of ComED is approximately the same for
different sizes of keyword set. The reason has been
explained in the description of Fig. 7b. Figs. 8c and 8d show
that the time of ComED is increasing with the increase of
threshold d.

Summary. Figs. 7 and 8 both show that our SFRSE scheme
consumes about six times as much time as the baseline
scheme. The gap between these two schemes is larger because
the fixed length L is larger than the average keyword length.
This shows a trade-off in efficiency and security. The time cost
in Fig. 8 is much larger than Fig. 7, because the decryption
operation consumes more time than homomorphic addition
and multiplication operations. When d = 0, the search time is
in seconds, so our scheme can achieve exact keyword search
efficiently. When d = 1, the search time is always less than 10
seconds. For the two clouds, the time consumption is larger
with the increase of d, and the two clouds can use parallel
processing to improve the search efficiency. For the user, our
scheme can ensure that the cost of the user’s computation and
communication is constant for any threshold d (as shown in
Fig. 5b).

LH’- =¥ Baseline scheme
20 e GERSE scheme

g

Time of ConEDMatrix (s} _

Size of vaidation set Size of keywords set
(a) (b)

7.5 Misspelled Type and Ranking Effect

Our scheme ranks the results based on keyword similarity
score and keyword weight score. The experiments indicate
the most relevant files will be on the top in returned results.
Although the time cost of computing edit distance over
encrypted data is relatively larger, it ensures that the accuracy
of search results without false positives and false negatives
(the proof is presented in Appendix A of Theorem 1, available
in the online supplemental material). Our scheme can achieve
fuzzy keyword search for any similarity threshold d, and sup-
port any misspelled types, while Fu ef al.’s scheme cannot dis-
tinguish the anagram keywords and Wang et al.’s scheme
cannot represent the same bi-gram [3]. The comparison of
search and rank effects with several typical fuzzy keyword
ranked SE schemes [2], [3] is represented in Table 5. It shows
that our ranking results are more in line with the user’s
expectations and our scheme has good scalability.

8 RELATED WORK

Song et al. [28] first proposed a practical SSE scheme. Goh et al.
[29] proposed a formal security definition of SSE and con-
structed an index to improve the search efficiency. Curtmola
et al. [19] gave an improved security definition under the
adaptive adversary model. Subsequently, Cao et al. [15]
achieved ranked multi-keyword search by the method of
”coordinate matching”. Xu et al. [30] added the keyword
access frequency to rank the results and supported the index
update. Sun et al. [47] ranked the results with the cosine simi-
larity. Guo et al. [31] proposed a ranked SE scheme for multi-
ple data owners. To enrich the search functions, Xia ef al. [32]
proposed a SSE scheme that supports dynamic update. Zhang
et al. [33] proposed a dynamic cloud storage auditing services.
Ning et al. [34] proposed a flexible access control scheme
which could audit the correctness of outsourced decryption
results. Li et al. [35] and Wang et al. [36] proposed a fine-
grained SE scheme. Zhang et al. [37] designed a linear region
search service. Recently, a series of dynamic searchable sym-
metric encryption schemes (DSSE) [38], [39], [40], [41] were
proposed to achieve forward security against file-injection
attacks [42].

Li et al. [1] first proposed the conception of fuzzy key-
word search and employed a wildcard-based method to
design their scheme, but the storage cost is growing expo-
nentially with the increase of threshold d. Liu et al. [43] and
Chuah et al. [44] improved it by limiting the fuzzy key-
word’s numbers or constructing a bedtree as the index, but

Bacely

-
&
®
)

&

RS

sREDMatrix (5)

Ce

Time of ConEDMatrix (s)

------]
=" R g
5] Ei 1100 500 il % 30 500 00 o
Size of keywords set Size of keywords set
(c) @

Fig. 7. Time of constructing encrypted edit distance matrix, for a specific query task “q = transfect”. a) with size of validation set; b) with size of key-
word set for d = 0; ¢) with size of keyword set for d = 1 and d = 2; d)with size of keyword set for d = 3.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 321

'?-5.'- 4= Baseline scheme
W0 g GPRSE scheme

++
-]
-]

{

Time of CoamED (s)

Time of ComED (s)

e
v,
Ei:
y

3 00 E
Size of keywords set

(a) (b) (c) (d)

] £ 1] i i) 5300
Size of validation set Size of keywords st

Fig. 8. Time of calculate edit distance, for a specific query task “q = transfect”. a) with size of validation set; b) with size of keyword set for d = 0; c)
with size of keyword set for d = 1 and d = 2; d)with size of keyword set for d = 3.

TABLE 5
Comparison of Search and Rank Effects With Several Typical Fuzzy Keyword Ranked SE Schemes

W = {hat, cat, atom, moat, dessert, desert, radiobroadcast, microminiaturization}
f1=1{0.3,0.2,0.4,0,0.2,0.6,0,0.8} f» ={0.2,0.2,0,0.6,0.4,0.3,0.2, 0.3}
f3 ={0.5,0.1,0.2,0.1,0,0.5,0,0} f1=1{0.3,0.7,0.1,0.3,0,0,0.6,0.2}
Our SFRSE scheme Fu’s scheme [3] Wang's scheme [2]
query(keyword,d) similar keyword ranking similar keyword ranking similar keyword ranking
{(atom,0)} {atom} f1,f3 {atom,moat} fo, f1s fa, f3 {atom,moat} disordered
dessert,desert, dessert,desert,
{(desert,0),(atom,0)} {desert,atom} Fis fa, Fa, f3 itoril,moat}s f2, f1, f3, fa itor::,moat}b f1, f2. f3, fa
. . {dessert,desert, e . . . {dessert,desert, - . . .
{(desert,1),(atom,1)} {dessert,desertatom} | fi, f2, fs, fa atom,moat} f2, f1, f3, fa atom,moat} f1,f2, f3, fa
(detsurt,2) {dessert,desert} fi, fo, f3 {desert} f1, fa, f2 {desert} fisf2, fs
(ratiobrodacast,3) radiobroadcast f1, f2, fa Null Null Null Null
(micromniastsraization,4) | microminiaturization fa, f2 Null Null Null Null

the storage cost is still huge. Bringer et al. [6] achieved the
fuzzy search by embedding the edit distance to Hamming
distance and using the bloom filter to store index, it has a
small distance distorted and false positive and false nega-
tive appears. Kuzu et al. [45] and Yu ef al. [46] used a bloom
filter combined with LSH to process and store all keywords
extracted from files. Their schemes achieve multi-keyword
search easily, but there exist false positive and false negative
in their schemes. All the above schemes used the edit dis-
tance to measure the keyword similarity.

Wang et al. [2] and Fu et al. [3] used the euclidean dis-
tance as the similarity measure to achieve fuzzy multi-key-
word search. Wang et al. transformed the keyword to big-
gram as the input of LSH, but is only effective for one letter
mistake in a keyword. Fu et al. transformed keywords to
uni-gram to improve the accuracy, but their scheme only
support at least two letter mistakes. Fu ef al. also enabled
the ranking function by adding keyword weight to the
index vector. Besides, Wang et al. [18] designed a similarity
search scheme over feature-rich multimedia data support-
ing dynamic update and forward security.

9 CONCLUSION

In this paper, we design a scalable fuzzy keyword ranked
search scheme over encrypted data on hybrid clouds. We
propose a LDE algorithm which makes the clouds calculate
the edit distance in ciphertext, and eliminates the limitation
of query threshold d. Our SFRSE scheme ranks the search
results according to the keyword weight as well as the key-
word similarity score, so the ranked results are more

reasonable. The performance evaluations show that our
SFRSE scheme is a trade-off in efficiency and security. In the
future, we will further study how to improve the search effi-
ciency and achieve multi-keyword fuzzy search.

ACKNOWLEDGMENTS

This work was supported in part by NSFC under Grants
62072051, 61976024, and 61972048, in part by the Fundamental
Research Funds for Central Universities under Grant 2019XD-
AO01, and in part by the Key Project Plan of Blockchain in Min-
istry of Education of China under Grant 2020K]010802.

REFERENCES

[1] J.Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy key-
word search over encrypted data in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1-5.

[2] B.Wang,S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in Proc.
IEEE Conf. Comput. Commun., 2014, pp. 2112-2120.

[3] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data with
accuracy improvement,” IEEE Trans. Inf. Forensics Secur., vol. 11,
no. 12, pp. 2706-2716, Dec. 2016.

[4] S.Ding, Y.Li,]. Zhang, L. Chen, Z. Wang, and Q. Xu, “An efficient
and privacy-preserving ranked fuzzy keywords search over
encrypted cloud data,” in Proc. Int. Conf. Behav. Econ. Socio-Cul-
tural Comput., 2016, pp. 1-6.

[5] M.]. Atallah, F. Kerschbaum, and W. Du, “Secure and private
sequence comparisons,” in Proc. ACM Workshop Privacy Electron.
Soc., 2003, pp. 39—44.

[6]]. Bringer and H. Chabanne, “Embedding edit distance to
allow private keyword search in cloud computing,” in Proc.
FTRA Int. Conf. Secure Trust Comput., Data Manag. Appl., 2011,
pp. 105-113.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

322

[7]

(8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

G. R. Hjaltason and H. Samet, “Properties of embedding methods
for similarity searching in metric spaces,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 25, no. 5, pp. 530-549, May 2003.

Y. Huang, D. Evans,]. Katz, and L. Malka, “Faster secure two-
party computation using garbled circuits,” in Proc. USENIX Secur.
Symp., vol. 201, no. 1, 2011, pp. 331-335.

J. H. Cheon, M. Kim, and K. Lauter, “Homomorphic computation
of edit distance,” in Proc. Int. Conf. Financial Cryptogr. Data Secur.,
2015, pp. 194-212.

D. Boneh et al. “Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptographic Techn., 2014, pp. 533-556.

B. Furht, “Cloud computing fundamentals,” in Handbook of Cloud
Computing. Boston, MA, USA: Springer, 2010.

J. Li, Y. K. Li, X. Chen, P. P. Lee, and W. Lou, “A hybrid cloud
approach for secure authorized deduplication,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 26, no. 5, pp. 1206-1216, May 2014.

V. L. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Phy. Doklady, vol. 10, no. 8,
pp- 707-710, 1966.

C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked key-
word search over encrypted cloud data,” in Proc. IEEE 30th Int.
Conf. Distrib. Comput. Syst., 2010, pp. 253-262.

N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-pre-
serving multi-keyword ranked search over encrypted cloud
data,” IEEE Trans. Parall. Distrib. Syst., vol. 25, no. 1, pp. 222-
233, Jan. 2014.

B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in
Proc. IEEE 29th Int. Conf. Data Eng., 2013, pp. 733-744.

P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Int. Conf. Theory Appl. Cryptographic
Techn., 1999, pp. 223-238.

Q. Wang, M. He, M. Du, S. S. Chow, R. W. Lai, and Q. Zou,
“Searchable encryption over feature-rich data,” IEEE Trans.
Dependable Secure Comput., vol. 15, no. 3, pp. 496-510, May/Jun.
2018.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient con-
structions,” J. Comput. Secur., vol. 19, no. 5, pp. 895-934, 2011.

M. Chase and S. Kamara, “Structured encryption and controlled
disclosure,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.,
2010, pp. 577-594.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. Comput. Commun.
Secur., 2012, pp. 965-976.

M. Du, Q. Wang, M. He, and J. Weng, “Privacy-preserving index-
ing and query processing for secure dynamic cloud storage,”
IEEE Trans. Inf. Forensics Secur., vol. 13, no. 9, pp. 2320-2332, Sep.
2018.

S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1-9.

W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: Verifiable attribute-based keyword search with fine-
grained owner-enforced search authorization in the cloud,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp. 1187-1198,
Apr. 2016.

Tencent cloud virtual machine, cvm. Accessed: Sep. 30, 2020.
[Online]. Available: https:/ /cloud.tencent.com/product/cvm

L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, and S. Kohlmeier,
“Cord-19: The covid-19 open research dataset,” 2020, arXiv:
2004.10706.

K. Xue, S. Li, J. Hong, Y. Xue, N. Yu, and P. Hong, “Two-cloud
secure database for numeric-related SQL range queries with pri-
vacy preserving,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 7,
pp- 1596-1608, Jul. 2017.

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44-55.

E.-]. Goh, “Secure indexes” IACR Cryptol. ePrint Archive, vol. 2003,
p- 216, 2003.

Z.Xu, W. Kang, R. Li, K. Yow, and C.-Z. Xu, “Efficient multi-key-
word ranked query on encrypted data in the cloud,” in Proc. IEEE
18th Int. Conf. Parallel Distrib. Syst., 2012, pp. 244-251.

Z. Guo, H. Zhang, C. Sun, Q. Wen, and W. Li, “Secure multi-key-
word ranked search over encrypted cloud data for multiple data
owners,”]. Syst. Softw., vol. 137, pp. 380-395, 2018.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340-352, Feb. 2016.

L. Rao, H. Zhang, and T. Tu, “Dynamic outsourced auditing serv-
ices for cloud storage based on batch-leaves-authenticated Merkle
hash tree,” IEEE Trans. Serv. Comput., vol. 13, no. 3, pp. 451463,
May /Jun. 2020.

J. Ning, Z. Cao, X. Dong, K. Liang, H. Ma, and L. Wei, “Auditable
o-time outsourced attribute-based encryption for access control in
cloud computing,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 1,
pp- 94-105, Jan. 2018.

H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen,
“Enabling fine-grained multi-keyword search supporting classified
sub-dictionaries over encrypted cloud data,” IEEE Trans. Dependable
Secure Comput., vol. 13, no. 3, pp. 312-325, May /Jun. 2016.

H. Wang, J. Ning, X. Huang, G. Wei, G. S. Poh, and X. Liu, “Secure
fine-grained encrypted keyword search for E-Healthcare cloud,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 3, pp. 1307-1319,
May-Jun. 2021.

H. Zhang, Z. Guo, S. Zhao, and Q. Wen, “Privacy-preserving lin-
ear region search service,” IEEE Trans. Serv. Comput., vol. 14,
no. 1, pp. 207221, Jan./Feb. 2021.

R. Bost, “opog: Forward secure searchable encryption,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1143-1154.
R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proc. ACM SIGSAC Conf. Comput Commun. Secur.,
2017, pp. 1465-1482.

X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private
searchable symmetric encryption with optimized I/O efficiency,” IEEE
Trans. Dependable Comput., vol. 17, no. 5, pp. 912-927, Sep. /Oct. 2018.

J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R.
Jalili, “New constructions for forward and backward private sym-
metric searchable encryption,” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., 2018, pp. 1038-1055.

Y. Zhang,]J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in Proc. 25th Secur. Symp., 2016, pp. 707-720.

C. Liu, L. Zhu, L. Li, and Y. Tan, “Fuzzy keyword search on
encrypted cloud storage data with small index,” in Proc. IEEE Int.
Conf. Cloud Comput. Intell. Syst., 2011, pp. 269-273.

M. Chuah and W. Hu, “Privacy-aware bedtree based solution for
fuzzy multi-keyword search over encrypted data,” in Proc. 31st
Int. Conf. Distrib. Comput. Syst. Workshops, 2011, pp. 273-281.

M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity
search over encrypted data,” in Proc. IEEE 28th Int. Conf. Data
Eng., 2012, pp. 1156-1167.

C.-M. Yu, C.-Y. Chen, and H.-C. Chao, “Privacy-preserving multi-
keyword similarity search over outsourced cloud data,” IEEE
Syst. J., vol. 11, no. 2, pp. 385-394, Jun. 2017.

W. Sun et al. “Privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking,” in Proc. 8th ACM SIG-
SAC Symp. Inf., Comput. Commun. Secur., 2013, pp. 71-82.

Hua Zhang (Member, IEEE) received the BS
degree in telecommunications engineering and the
MS degree in cryptology from Xidian University in
1998 and 2005, respectively, and the the PhD
degree in cryptology from the Beijing University of
Posts and Telecommunications (BUPT) in 2008.
She is currently an associate professor with BUPT.
Her research interests include cryptography, infor-
mation security, and network security.

Shaohua Zhao received the BS degree in math-
ematics and applied mathematics from Henan
Normal University in 2015 and the PhD degree
from the Beijing University of Posts and Telecom-
munications. Her research interests include data
security and information retrieval.

https://cloud.tencent.com/product/cvm

ZHANG ETAL.: SCALABLE FUZZY KEYWORD RANKED SEARCH OVER ENCRYPTED DATA ON HYBRID CLOUDS 323

i

N

Ziging Guo received the BS degree in mathemat-
ics and the PhD degree in computer science and
technology from the Beijing University of Posts and
Telecommunications in 2013 and 2019, respec-
tively. His research interests include cloud comput-
ing security and information retrieval.

Qiaoyan Wen received the BS and MS degrees in
mathematics from Shanxi Normal University, and
the PhD degree in cryptography from Xidian Uni-
versity. She is currently the Leader of Network
Security Center, Beijing University of Posts and Tel-
ecommunications. Her current research interests
include cryptography, information security, and
Internet security. She is a senior member of the Chi-
nese Association for Cryptologic Research.

Wenmin Li received the BS and MS degrees in
mathematics and applied mathematics from
Shanxi Normal University in 2004 and 2007,
respectively, and the Ph.D. degree in Cryptology
from Beijing University of Posts and Telecommu-
nications (BUPT) in 2012. She is currently an
associate professor with BUPT. Her research
interests include cryptography and information
security.

Fei Gao received the PhD degree in cryptogra-
phy from the Beijing University of Posts and Tele-
communications (BUPT) in 2007. He is currently
a professor with the School of network security,
BUPT. His research interests include cryptogra-
phy, information security, and quantum algorithm.
He is a member of the Chinese Association for
Cryptologic Research.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:31:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

