
SE(2)-Equivariant Pushing Dynamics Models
for Tabletop Object Manipulations

Seungyeon Kim1 Byeongdo Lim1 Yonghyeon Lee1 Frank Chongwoo Park1,2

1Seoul National University, 2Saige Research
{ksy, bdlim, yhlee}@robotics.snu.ac.kr, fcp@snu.ac.kr

Abstract: For tabletop object manipulation tasks, learning an accurate pushing
dynamics model, which predicts the objects’ motions when a robot pushes an
object, is very important. In this work, we claim that an ideal pushing dynam-
ics model should have the SE(2)-equivariance property, i.e., if tabletop objects’
poses and pushing action are transformed by some same planar rigid-body trans-
formation, then the resulting motion should also be the result of the same transfor-
mation. Existing state-of-the-art data-driven approaches do not have this equiv-
ariance property, resulting in less-than-desirable learning performances. In this
paper, we propose a new neural network architecture that by construction has the
above equivariance property. Through extensive empirical validations, we show
that the proposed model shows significantly improved learning performances over
the existing methods. Also, we verify that our pushing dynamics model can be
used for various downstream pushing manipulation tasks such as the object mov-
ing, singulation, and grasping in both simulation and real robot experiments. Code
is available at https://github.com/seungyeon-k/SQPDNet-public.

Keywords: Pushing dynamics learning, Pushing manipulation, Symmetry and
Equivariance

1 Introduction

Robotic visual pushing manipulation – by visual manipulation, we mean that only visual obser-
vations (e.g., depth camera) are available – in cluttered environments including unseen objects is
an important yet challenging manipulation skill that allows a robot to interact with and change its
environment to be suitable for performing downstream tasks. For example, pushing manipulation
techniques have been used to move tabletop objects graspable [1, 2, 3, 4], rearrange multiple objects
for sorting [5, 6, 7, 8], and find a target object occluded by the other objects [9, 10].

Figure 1: The box object and pushing vector in
Scene 1 are transformed by some same planar
rigid-body transformation as those in Scene 2. An
ideal pushing dynamics model should be SE(2)-
equivariant, i.e., the resulting motion in Scene 2 is
a transformation of that in Scene 1.

We consider model-based approaches for the
pushing manipulations that consist of the fol-
lowing two components: (i) to construct a push-
ing dynamics model which predicts the motions
of the objects after a robot performs a push-
ing action to the environment and (ii) to find
an optimal sequence of pushing actions that
achieves the goal given a predesigned task cri-
teria [11, 12]. Our primary focus is the first step
which is to develop an accurate visual pushing
dynamics model that takes a visual observation
as an input. Analytic approaches that precisely
model the physical interactions [13, 14, 15, 16]
cannot be used since we are given unseen ob-
jects with only vision data.

Recently, there has been considerable interest in data-driven methods for learning pushing dynam-
ics models [17, 18, 19, 20, 21, 22], but their generalization performances are still far-less-than-
satisfying. We claim that one of the important reasons behind this is that neural network models

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://github.com/seungyeon-k/SQPDNet-public


used in existing approaches lack considering the symmetry of the physical systems, and more pre-
cisely, equivariance. For example, suppose a model is trained with an experience where a robot
pushes a box object into a red arrow direction as shown in Figure 1 (Scene 1). And consider a new
situation where the same box object is located at a different pose and the robot pushes the object
in the same relative direction as shown in Figure 1 (Scene 2). At an intuitive level, a good model
should be able to easily generalize to this type of new situation, where tabletop objects are only
translated or rotated along the z-axis. In more technical terms, the pushing dynamics model needs
to be equivariant to the SE(2) transformation.

In this paper, we define the SE(2)-equivariant pushing dynamics model and deliberately design a
neural network architecture that by construction has the equivariance property. The core idea to
make the model equivariant is to properly transform the coordinates of the pushing action and the
objects’ poses as needed; details are elaborated in Section 2. This construction naturally captures
the symmetry of the physical systems and significantly improves the generalization performances.

To employ the proposed equivariant pushing dynamics model in environments with only vision data
and unseen objects, we need an additional module that can recognize the objects’ shapes and poses.
In this work, we represent 3d objects’ shapes by using the shape class called the superquadrics,
which can express diverse shapes ranging from boxes, cylinders, and ellipsoids to other complex
symmetric shapes. We train the recognition network that predicts the objects’ shapes with su-
perquadrics by adopting an idea from [23]. We call our superquadric object representation-based
pushing dynamics model a SuperQuadric Pushing Dynamics Network (SQPD-Net).

Experiments and benchmark comparisons against the existing state-of-the-art methods confirm that
our dynamics model achieves the highest performance in predicting objects’ motions after pushing
action. In addition, we validate the effectiveness of our model by using it for model-based optimal
controls for various pushing manipulation tasks in both simulation and real-world experiments.

2 SE(2)-Equivariant Pushing Dynamics Models

In this section, we develop a neural network architecture specialized to learn a SE(2)-equivariant
pushing dynamics model. We assume that multiple rigid-body objects are placed on the table whose
surface is assumed to be flat and orthogonal to the gravity direction, and the robot interacts with the
objects by pushing manipulations. Each object is represented by a pose parameter T ∈ SE(3) (4×4
matrix representation) and shape parameter q, where the pose parameter is described with respect
to some global fixed frame and the shape parameter is a vector. And the pushing action is defined as
a tuple (p,v) where the tip of the end-effector moves from the position p ∈ R3 to p+ v ∈ R3. As
the tip of the end-effector moves, the robot can have contact with environments, pushes objects, and
changes the poses of the objects.

Further, we assume there are maximally M rigid-body objects on the table that have the parameters
{(Ti,qi)}Ni=1 for N ≤ M . We consider a discrete-time pushing dynamics model f that outputs
the object’s transformed poses {T′i}Ni=1 when a pushing action (p,v) is applied, i.e., {T′i}Ni=1 =
f({(Ti,qi)}Ni=1, (p,v)), where N can vary as long as N ≤ M . Assuming the gravity direction is
the z-axis, we first give a precise definition of the SE(2)-equivariant pushing dynamics model:

Definition 1 A pushing dynamics model f is SE(2)-equivariant if

{CT′i}Ni=1 = f({(CTi,qi)}Ni=1, (Rot(ẑ, θ)p+ txy,Rot(ẑ, θ)v)) (1)

for all object numbers N ≤M and rigid-body transformations C that have the following form

C =

[
Rot(ẑ, θ) txy

0 1

]
, (2)

where Rot(ẑ, θ) is a 3× 3 rotation matrix for rotations around z-axis and txy = (tx, ty, 0) ∈ R3.

To build a SE(2)-equivariant neural network architecture, we first introduce an object pose de-
composition method that decomposes an object pose Ti ∈ SE(3) to a pose projected to the table
surface denoted by Ci ∈ SE(3) and the relative rigid-body transformation Ui ∈ SE(3) such that
Ti = CiUi.

2



Figure 2: SE(2)-equivariant pushing dynamics neural network architecture for an i-th object, fi.

Object Pose Decomposition. Given an object pose T ∈ SE(3), we decompose it to two 4 × 4
matrices C,U ∈ SE(3) as visualized in Figure 3. First, C is defined by projecting T to the table
surface, which has the form in equation (2). And secondly, U is defined as C−1T. More details are
in Appendix B.

Figure 3: Object Pose Decomposition.

Now, we explain our network architecture for
the pushing dynamics model f ; overall archi-
tecture is described in Figure 2. The model
f is defined as {fi}Ni=1 where each fi outputs
the i-th object’s transformed pose, i.e., T′i =
fi({(Tj ,qj)}Nj=1, (p,v)). For fi, we first de-
compose the i-th object pose Ti = CiUi and
transform the other objects’ poses (including it-
self) and pushing action as follows: (i) Tj 7→
C−1i Tj for j = 1, · · · , N and (ii) (p,v) 7→
C−1i (p,v) := (RT

i p−RT
i ti,R

T
i v) where Ri

and ti are rotation matrix and translation vector
parts of Ci. Then, three different multi-layer
perceptron (MLP) networks are used to extract SE(2)-invariant feature vectors: (i) the MLP1 takes
the transformed action C−1i (p,v) and outputs a feature vector ai, (ii) the MLP2 takes the i-th ob-
ject’s parameter (Ui,qi) and outputs a feature vector bi, and (iii) the MLP3 takes the transformed
object’s parameters (C−1i Tj ,qj) and outputs a feature vector cji for all j = 1, · · · , N and then these
output vectors pass through some permutation invariant function h as ci = h(c1i , · · · , cNi ) such as
the element-wise max pooling. These feature vectors are concatenated as yi = (ai,bi, ci), and we
have the last layer MLP4 that takes yi and outputs δTi ∈ SE(3). We note that these MLP layers
are shared across all i = 1, · · · , N . Then, the transformed poses are defined as T′i = TiδTi for all
i = 1, · · · , N . As a result, this dynamics model is SE(2)-equivariant by construction; the proof is
in Appendix B.

Training. Denote by s = {(Ti,qi)}Ni=1 for some N ≤ M and a = (p,v). In this paper, we train
the pushing dynamics model given a set of 3-tuples {(s,a, {T′i}Ni=1)k}Kk=1 where T′i is the next
pose of the i-th object. The loss function L is defined by comparing the ground-truth next poses
{T′i}Ni=1 and the predicted poses {T̂′i}Ni=1 = f(s,a) as follows:

L(f) =
N∑
i=1

(
‖t′i − t̂′i‖22 + α · d2SO(3)(I3,R

′−1
i R̂′i)

)
, (3)

where dSO(3) is a distance measure between two rotation matrices, I3 is 3 × 3 identity matrix,
R′i, R̂

′
i and t′i, t̂

′
i are rotation matrices and translation vectors parts of T′i, T̂

′
i, respectively, and α

is a weighting parameter (for our later experiments we set α to 0.1). The details about the used
distance measure are in Appendix C.

3



3 Object Recognition-based Pushing Manipulations

If we have known objects and can easily estimate the poses of the objects, then it is straightforward
to use the learned pushing dynamics model for pushing manipulations. However, for unseen objects,
we first need to recognize the objects’ shapes and poses. Therefore, our overall framework consists
of the following two steps: (i) to recognize objects’ shapes and poses and (ii) to push objects by using
the learned pushing dynamics model and pre-designed task criteria, of which details are explained
in the following subsections.

3.1 Object Shape and Pose Recognition via Superquadrics

We propose to use implicit functions to represent 3d objects’ shapes. In general, an implicit object
surface representation is defined by a level set of a function S(x, y, z;q,T) = 0, where q is a
shape parameter and T ∈ SE(3) is a pose parameter. In our framework, any implicit function
approximation model S(x, y, z;q,T) can be used.

Figure 4: Examples of superquadrics.

In this work, we employ the shape class called
the superquadrics, a family of geometric shapes
that resemble ellipsoids and other quadrics,
which can be used to represent diverse shapes
ranging from boxes, cylinders, and ellipsoids
to bi-cones, octahedra, and other complex sym-
metric shapes. The implicit equation for a su-
perquadric surface at T = I4 (I4 is 4× 4 iden-
tity matrix) has the following form:

S(x, y, z;q, I4) =

(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣ 2
e1

− 1 = 0, (4)

where q = (a1, a2, a3, e1, e2) ∈ R5 is the shape parameter. In particular, a1, a2, a3 controls the
sizes and e1, e2 controls the geometric shapes. Some examples are shown in Figure 4. At T 6= I4,
the equation S(x, y, z;q,T) can be written with the passive coordinate transformation of (x, y, z)
by T, i.e., S(x, y, z;q,T) = S(T−1(x, y, z);q, I4); see Appendix C for details.

The object recognition problem that we address in this paper can then be posed as follows: given
a visual input obtained from a depth camera that typically contains partial views of the objects,
we need to predict the superquadric parameters (q,T) for each object. To bridge the gap between
synthetic and real-world vision sensor data, we add noise to the visual input as done in [24, 25]. The
predicted object represented by (q,T) should fit the full object, although only a partial view of the
object is given as input. This problem has been recently tackled by [23], where two neural network
models that take point cloud data as inputs are employed: (i) object segmentation network [26] and
(ii) object full shape and pose recognition network [23]. We include details about the visual input
noise, the network architectures, and the training methods of these networks in Appendix C.

We call our SE(2)-equivariant pushing dynamics model that uses the superquadric representation a
SuperQuadric Pushing Dynamics Network (SQPD-Net).

3.2 Model-based Pushing Manipulations

Given a visual observation of tabletop objects as a point cloud which we denote by o, our goal is
to find a sequence of robot pushing actions (a1,a2, · · · ,aT ) that changes the environment for some
given task. In this section, we assume that we are given (i) a recognition module R that outputs the
objects’ poses and shapes, i.e. R(ot) = st (throughout, we denote by st = {(Tt,i,qt,i)}Ni=1), and
(ii) a pushing dynamics model st+1 = f(st,at). Given a task-specific objective function J , we
solve the following optimal control problem:

min
a1,··· ,aT

J (o1,a1, · · · ,aT ) =
T∑

t=1

r(st,at) + q(sT+1) s.t. s1 = R(o1), st+1 = f(st,at). (5)

For tasks we focus in this paper, we set r(st,at) = 0 and only use a terminal cost function q(sT+1).
We use the sampling-based MPCs [12] (implementation details are in Appendix D). Below, we

4



introduce three terminal cost functions for the following pushing manipulation tasks: (i) moving,
(ii) singulation, and (iii) grasping. We denote the translation vector and rotation matrix parts of the
transformation matrix T(·) as t(·),R(·), respectively.

Moving is a task to move objects to their desired poses. The desired poses are given as {Td,i}Ni=1,
then we define a terminal cost function as

q(sT+1) =

N∑
i=1

(
‖tT+1,i − td,i‖22 + β · dSO(3)(I3,R

−1
d,iRT+1,i)

)
. (6)

Singulation is a task to separate objects by more than a certain distance τ . We define a terminal cost
function as

q(sT+1) = − min
{(i,j)∈{1,··· ,N}|i>j}

(
min(‖tT+1,i − tT+1,j‖ − τ, 0)

)
. (7)

Figure 5: Sampling-based grasping criteria.

Grasping is a task to make a target object
graspable. Given a target object index i, we
generate candidate grasp poses for the recog-
nized target object as shown in Figure 5 and
check collisions with the environment and the
other recognized objects; green grasp poses are
collision-free and red poses are not. The ter-
minal cost q(sT+1) is defined to be 0 if at least
one collision-free grasp pose exists and 1 other-
wise. Further details are provided in Appendix
C.

4 Experiments

In this section, we empirically show that (i) our proposed pushing dynamics model, the SQPD-
Net, outperforms the existing state-of-the-art data-driven pushing dynamics models, and (ii) our
SQPD-Net can be used for various downstream pushing manipulation tasks, e.g., object moving,
singulation, and grasping.

Environment. We use the 7-dof Franka Emika Panda robot with a parallel-jaw gripper and an Azure
Kinect DK camera sensor mounted on the gripper. The raw input visual observation is a depth image,
which is then pre-processed to other 3d representations (e.g., point cloud) as needed.

Figure 6: Execution of a pushing
action.

Pushing Manipulation Dataset. To train pushing dynamics
models, we generate a pushing manipulation dataset in simula-
tion (Pybullet). Throughout our experiments, we use cylinder-
shaped and cube-shaped objects of various sizes, and one scene
contains less than 5 objects. To execute an action (p,v) ∈ R6,
(i) the robot first moves so that the gripper’s tip is placed at p
and its orientation is set as visualized in Figure 6, and then (ii)
the robot moves in a way that the gripper’s tip moves to p+ v
with a fixed orientation. We generate the pushing manipula-
tion dataset as follows: (i) we place random objects at random
poses in the workspace, (ii) we sample an action (p,v) ∈ R6,
where p is sampled near one randomly selected object and v
directs the center of the object, and (iii) we execute the robot
pushing action. In this process, we note that the gripper’s other parts than the tip can also make
contact with the environment. More details are included in Appendix D.

Baseline Methods. We compare our SQPD-Net with the following baseline methods: 2DFlow and
SE3-Net adopted from [17], SE3Pose-Net adopted from [18], and 3DFlow and DSR-Net adopted
from [20]. The 2DFlow, SE3-Net, and SE3Pose-Net take an organized point cloud as a visual input
and predict the flow vectors of the points. The 3DFlow and DSR-Net take a voxelized truncated
signed distance field (TSDF) as a visual input and predict the voxel flow. Our SQPD-Net takes the
estimated objects’ poses and superquadric shape parameters as input and predicts the objects’ next

5



poses. While, in the existing approaches, the models directly predict motions from the pre-processed
raw visual observations, our model consists of two modules: (i) a pre-trained recognition network
R that predicts objects’ poses and shape parameters and (ii) the SQPD-Net that predicts the objects’
next poses. We denote these two networks together by R-SQPD-Net. For the comparison purpose,
we also test the case where the ground-truth objects’ poses and shape parameters are used as an
input for the SQPD-Net and denote it by GT-SQPD-Net.

Evaluation Metrics. Throughout, we use two types of evaluation metrics for the learned pushing
dynamics models: (i) flow error (the lower the better) and (ii) mask intersection over union (mask
IoU, the higher the better). First of all, we consider the visible and full flow errors. The visible flow
error is the root mean squared error (RMSE) between the ground-truth flows and predicted flows
of the points on the visible surface of the objects, while the full flow error is the RMSE computed
with all points from the objects’ volumes. Second, we consider the 2D and 3D mask IoUs. The
2D mask IoU is computed by using the depth images and thus only visible surfaces are taken into
consideration. On the other hand, the 3D mask IoU is computed with the complete 3D occupancy
grid. The full flow error and mask IoU cannot be computed in 2DFlow, SE3-Net, and SE3Pose-Net,
because they do not estimate the complete objects’ shapes as an intermediate step of the prediction
of the pushing dynamics.

4.1 Pushing Dynamics Learning

In this section, we first empirically verify the equivariance property of our method and show the
performance advantages of ours over the existing methods.

METHOD visible flow (↓)
2DFlow [17] 4.73
SE3-Net [17] 4.73
SE3Pose-Net [18] 4.72
R-SQPD-Net (ours) 0.73
GT-SQPD-Net (ours) 0.02

Table 1: Test visible flow error (cm).

Equivariance Study. For the purpose of testing the equiv-
ariance of the models, we design the following experi-
ment: we train the models with only one pushing manip-
ulation data – a 3-tuple {o,a,o′} where o and o′ are cur-
rent and next observations respectively and a is pushing
action – so that the models overfit the given data. Then,
we compare the models’ generalization capabilities with
test data that are generated by applying random SE(2)-
transformation to the data. An ideal equivariant model
should produce almost zero error in the test data.

Figure 7: Depth images of prediction results. For
SE3Pose-Net, after the point cloud moves, the
space occupied before is colored black.

Table 1 shows average visible flow errors of the
baseline methods and SQPD-Nets, obtained by
running the above experiment multiple times
with different training data (details are in Ap-
pendix D). The 3DFlow and DSR-Net are omit-
ted in this experiment because they cannot
make estimations if the transformed actions
do not belong to the pre-defined discrete set
of actions. The GT-SQPD-Net produces al-
most zero error as expected while the R-SQPD-
Net produces a little error originating from the
recognition error. Our SQPD-Nets are much
more SE(2)-equivariant compared to the exist-
ing works. Figure 7 shows an example pre-
diction result from the SE3Pose-Net and R-
SQPD-Net; the blue bounding box represents
the ground-truth next pose of the object. For the test data, the SE3Pose-Net predicts a completely
wrong motion. More example figures of experimental results are provided in Appendix D.

Pushing Dynamics Learning. We compare the learning performances of the SQPD-Nets and the
baseline methods with a large-scale pushing dataset where the training/validation/test data consist of
12000, 1200, and 1200 numbers of 3-tuples ({o,a,o′}), respectively. Figure 8 shows the predicted
depth images and 3D masks for an example pushing data in the test dataset. As shown in the
ground-truth motions (left of Figure 8), the red, green, and gray objects are in contact with each
other and these three objects move together when the red object is pushed. In this case, our R-
SQPD-Net only successfully predicts the complex interactive motions of the objects. Table 2 shows

6



Figure 8: Depth images and 3D masks of the ground-truth next scene and predicted scenes. Upper:
Depth images where the blue bounding boxes represent the ground-truth next poses of the green
and gray objects. Lower: (i) (incomplete) 3D masks converted from the depth images for 2DFlow,
SE3-Net, and SE3Pose-Net and (ii) predicted complete 3D masks for 3DFlow, DSR-Net, and R-
SQPD-Net.

Known Unknown
Flow error (↓) Mask IoU (↑) Flow error (↓) Mask IoU (↑)

METHOD visible full 2D 3D visible full 2D 3D
2DFlow [17] 2.179 - - - 2.180 - - -
SE3-Net [17] 1.631 - - - 1.701 - - -
SE3Pose-Net [18] 1.639 - - - 1.712 - - -
3DFlow [20] 1.818 1.859 0.747 0.699 1.697 1.719 0.755 0.698
DSR-Net [20] 1.325 1.331 0.720 0.705 1.531 1.524 0.665 0.632
R-SQPD-Net (ours) 0.575 0.610 0.844 0.798 0.710 0.726 0.834 0.781
GT-SQPD-Net (ours) 0.519 0.379 0.903 0.888 0.638 0.485 0.888 0.868

Table 2: Evaluation metrics computed within test dataset (the unit of flow error is cm).

the evaluation metrics computed within the test data and shows that our SQPD-Nets outperform
the other baseline methods by significant margins. Further experimental results with more example
figures are provided in Appendix D.

4.2 Pushing Manipulation using R-SQPD-Net

Figure 9: Real-world experimental setting.

In this section, we use the R-SQPD-Net trained
in Section 4.1 and conduct the pushing manipu-
lation tasks introduced in Section 3.2 (moving,
singulation, and grasping) in both simulation
and real-world. For the real-world experimen-
tal setup, we use various box- or cylinder-like
objects as shown in Figure 9; the same objects
are used in simulation experiments. Since we
directly apply the R-SQPD-Net trained in sim-
ulation to the real physical environment, it is
reasonable to ask about the sim-to-real transfer
issue. In our experiments, we use slow pushing
motions to generate quasi-static movements of the objects and thus minimize the sim-to-real gap
(for quasi-static object movements, the dynamical properties of the objects and environment, e.g.,
mass, friction coefficient, become less affective [27]).

Figure 10 shows some real-world manipulation results for various tasks. For the moving task (first
row), we set the desired positions td,i as (0.3, t0,i,y, t0,i,z) and β = 0 in equation (6). For the
singulation task (second row), we set τ = 20 (cm) in equation (7). For the grasping tasks (third
and fourth row), we sample about 15 to 30 candidate grasp poses for the target recognized objects.
For all three examples, our approach can find a series of pushing actions that successfully perform
the desired tasks. Notably, for the grasping tasks, without using ad hoc objective functions, the
robot realizes how to re-configure the objects so that feasible grasp poses can be found for the target
objects: (i) the robot pushes the large and flat object to the edge of the table and (ii) the robot pushes
the surrounding objects to make the surrounded target object graspable.

7



Figure 10: Real-world manipulation results using R-SQPD-Net for moving, singulation, and grasp-
ing tasks (for the fourth row case, the target object is the cylinder surrounded by the three cubes).
The red arrow at each recognition step means the optimal pushing action.

TASK Simulation Real
Moving 9/10 8/10

Singulation 9/10 8/10
Grasping clutter 4/5 4/5
Grasping large 4/5 3/5

Table 3: Simulation and real-world manip-
ulation results.

Failure Cases. Table 3 shows the manipulation suc-
cess rates in simulation and real-world experiments.
We design 10 test scenarios for each task, of which
object configurations are in Appendix D. A few failure
cases occur, whose underlying reasons we observe can
be roughly categorized as (i) a failure of shape recog-
nition (simulation, real) and (ii) a sim-to-real transfer
issue (real). Details can be found in Appendix D.

4.3 Limitations and Future Directions

First, since SQPD-Net considers single superquadric-shaped objects, it is not trivial to apply it di-
rectly to more complex or non-convex shapes. As the researches on representing objects in multiple
superquadrics progress [28, 29], extending our approach to multiple superquadric-shaped objects
remains a future work. Second, the dynamics prediction task becomes challenging when pushing an
object with a non-uniform mass distribution since different mass distributions will lead to different
motions. In this case, if we can consistently predict the reference poses of the objects (e.g., pre-
specified poses in CAD models), our SE(2)-equivariant model is applicable regardless of the mass
distribution. Since predicting reference poses is not easy with only depth images, this is a limitation
of our approach. As one possible solution, additional information such as RGB images should be
utilized [30, 31]. Lastly, there could be some situations where the SE(2)-equivariance does not ap-
ply; in this case, our approach can be detrimental. One example is that the friction coefficients are
different in different regions of the table. As a research direction to overcome this, a locally SE(2)-
equivariant model – SE(2) space is divided into several subspaces and the model is equivariant only
within each subspace – can be considered.

5 Conclusion

This paper has proposed a SE(2)-equivariant pushing dynamics model. Using the superquadric
representations of object shapes, we have proposed a SuperQuadric Pushing Dynamics Network
(SQPD-Net). Through extensive empirical validations, we confirm that the SQPD-Net significantly
outperforms the existing state-of-the-art visual pushing dynamics models. Moreover, we have veri-
fied that the SQPD-Net can be used for various pushing manipulation tasks.

8



Acknowledgments

This work was supported in part by SRRC NRF grant 2016R1A5A1938472, IITP-MSIT grant 2021-
0-02068 (SNU AI Innovation Hub), IITP-MSIT grant 2022-0-00480 (Training and Inference Meth-
ods for Goal-Oriented AI Agents), SNU-AIIS, SNU-IAMD, SNU BK21+ Program in Mechanical
Engineering, SNU Institute for Engineering Research, Samsung Research, and Samsung Electronics
Co.,Ltd.

References
[1] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning synergies

between pushing and grasping with self-supervised deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4238–
4245. IEEE, 2018.

[2] M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg. Linear push policies to increase grasp
access for robot bin picking. In 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE), pages 1249–1256. IEEE, 2018.

[3] K. Xu, H. Yu, Q. Lai, Y. Wang, and R. Xiong. Efficient learning of goal-oriented push-grasping
synergy in clutter. IEEE Robotics and Automation Letters, 6(4):6337–6344, 2021.

[4] M. Kiatos and S. Malassiotis. Robust object grasping in clutter via singulation. In 2019
International Conference on Robotics and Automation (ICRA), pages 1596–1600. IEEE, 2019.

[5] W. Yuan, K. Hang, D. Kragic, M. Y. Wang, and J. A. Stork. End-to-end nonprehensile rear-
rangement with deep reinforcement learning and simulation-to-reality transfer. Robotics and
Autonomous Systems, 119:119–134, 2019.

[6] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. Nerp: Neural rearrangement
planning for unknown objects. arXiv preprint arXiv:2106.01352, 2021.

[7] E. Huang, Z. Jia, and M. T. Mason. Large-scale multi-object rearrangement. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pages 211–218. IEEE, 2019.

[8] H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic, and J. A. Stork. Multi-
object rearrangement with monte carlo tree search: A case study on planar nonprehensile sort-
ing. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 9433–9440. IEEE, 2020.

[9] Y. Yang, H. Liang, and C. Choi. A deep learning approach to grasping the invisible. IEEE
Robotics and Automation Letters, 5(2):2232–2239, 2020.

[10] M. Danielczuk, A. Angelova, V. Vanhoucke, and K. Goldberg. X-ray: Mechanical search for an
occluded object by minimizing support of learned occupancy distributions. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 9577–9584. IEEE,
2020.

[11] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning. The international
journal of robotics research, 20(5):378–400, 2001.

[12] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018.

[13] M. T. Mason. Mechanics and planning of manipulator pushing operations. The International
Journal of Robotics Research, 5(3):53–71, 1986.

[14] K. M. Lynch. Estimating the friction parameters of pushed objects. In Proceedings of 1993
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’93), volume 1,
pages 186–193. IEEE, 1993.

[15] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning. The
international journal of robotics research, 15(6):533–556, 1996.

9



[16] J. Zhou, Y. Hou, and M. T. Mason. Pushing revisited: Differential flatness, trajectory plan-
ning, and stabilization. The International Journal of Robotics Research, 38(12-13):1477–1489,
2019.

[17] A. Byravan and D. Fox. Se3-nets: Learning rigid body motion using deep neural networks.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 173–180.
IEEE, 2017.

[18] A. Byravan, F. Leeb, F. Meier, and D. Fox. Se3-pose-nets: Structured deep dynamics models
for visuomotor control. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 3339–3346. IEEE, 2018.

[19] Y. Ye, D. Gandhi, A. Gupta, and S. Tulsiani. Object-centric forward modeling for model
predictive control. In Conference on Robot Learning, pages 100–109. PMLR, 2020.

[20] Z. Xu, Z. He, J. Wu, and S. Song. Learning 3d dynamic scene representations for robot
manipulation. arXiv preprint arXiv:2011.01968, 2020.

[21] J. Wang, C. Hu, Y. Wang, and Y. Zhu. Dynamics learning with object-centric interaction
networks for robot manipulation. IEEE Access, 9:68277–68288, 2021.

[22] B. Huang, S. D. Han, A. Boularias, and J. Yu. Dipn: Deep interaction prediction network
with application to clutter removal. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 4694–4701. IEEE, 2021.

[23] S. Kim, T. Ahn, Y. Lee, J. Kim, M. Y. Wang, and F. C. Park. Dsqnet: A deformable model-
based supervised learning algorithm for grasping unknown occluded objects. IEEE Transac-
tions on Automation Science and Engineering, 2022.

[24] Y. Lee, J. Baek, Y. M. Kim, and F. C. Park. Imat: The iterative medial axis transform. In
Computer Graphics Forum, volume 40, pages 162–181. Wiley Online Library, 2021.

[25] Y. Lee, S. Kim, J. Choi, and F. Park. A statistical manifold framework for point cloud data. In
International Conference on Machine Learning, pages 12378–12402. PMLR, 2022.

[26] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[27] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song. Densephysnet: Learning dense physical
object representations via multi-step dynamic interactions. arXiv preprint arXiv:1906.03853,
2019.

[28] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics revisited: Learning 3d shape
parsing beyond cuboids. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10344–10353, 2019.

[29] W. Liu, Y. Wu, S. Ruan, and G. S. Chirikjian. Robust and accurate superquadric recovery: a
probabilistic approach. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2676–2685, 2022.

[30] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[31] C. Xie, Y. Xiang, A. Mousavian, and D. Fox. Unseen object instance segmentation for robotic
environments. IEEE Transactions on Robotics, 37(5):1343–1359, 2021.

10


	Introduction
	SE(2)-Equivariant Pushing Dynamics Models
	Object Recognition-based Pushing Manipulations
	Object Shape and Pose Recognition via Superquadrics
	Model-based Pushing Manipulations

	Experiments
	Pushing Dynamics Learning
	Pushing Manipulation using R-SQPD-Net
	Limitations and Future Directions

	Conclusion

