

000 001 002 003 004 005 DLM-ONE: DIFFUSION LANGUAGE MODELS 006 FOR ONE-STEP SEQUENCE GENERATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

This paper introduces *DLM-One*, a score-distillation-based framework for one-step sequence generation with continuous diffusion language models (DLMs). DLM-One eliminates the need for iterative refinement by aligning the scores of a student model’s outputs in the continuous token embedding space with the score function of a pretrained teacher DLM. We investigate whether DLM-One can achieve substantial gains in sampling efficiency for language modeling. Through comprehensive experiments on DiffuSeq, a representative continuous DLM, we show that DLM-One achieves up to $\sim 500 \times$ speedup in inference time while maintaining competitive performance on benchmark text generation tasks used to evaluate the teacher models. We further analyze the method’s empirical behavior across multiple datasets, providing initial insights into its generality and practical applicability. Our findings position one-step diffusion as a promising direction for efficient, high-quality language generation and broader adoption of continuous diffusion models operating in embedding space for natural language processing.

1 INTRODUCTION

Recent progress in large language models (LLMs) has been primarily driven by autoregressive (AR) modeling, where sequences are generated token by token in a left-to-right fashion (Vaswani et al., 2017; Radford et al., 2018; Brown et al., 2020; Achiam et al., 2023; Chowdhery et al., 2022; Team et al., 2023; Touvron et al., 2023; Bai et al., 2023; Grattafiori et al., 2024). While AR models have demonstrated remarkable performance across a wide range of natural language processing (NLP) tasks, they suffer from several well-known limitations: exposure bias, error accumulation, lack of bidirectional context during generation, limited controllability in non-left-to-right scenarios, and inability to revise previously generated text (Keskar et al., 2019; Dathathri et al., 2020; Li et al., 2022a; Reid et al., 2022; Kaddour et al., 2023; Zhang et al., 2023; Bachmann & Nagarajan, 2024; Berglund et al., 2024). Moreover, certain data distributions may be inherently challenging to capture with AR models but can be modeled more effectively by alternative non-AR approaches, such as energy-based models (Lin et al., 2021). The sequential nature of token generation also imposes a fundamental bottleneck on inference speed, motivating the development of various acceleration techniques to reduce computational overhead (Khoshnoodi et al., 2024). These limitations have spurred growing interest in non-AR paradigms—particularly diffusion language models (DLMs)—which offer a fundamentally different approach by enabling parallel decoding of entire sequences instead of generating them one token at a time.

In contrast to AR LMs, which rely on causal attention and require one function evaluation (NFE) per token, DLMs often apply bidirectional attention and can generate sequences of predefined length in parallel (Li et al., 2022a; Strudel et al., 2022; Dieleman et al., 2022; Gong et al., 2022). Existing DLMs perform generation via iterative refinement, enabling all tokens in a sequence to interact with each other and allowing for holistic reasoning over the full sequence. The per-token computational cost of DLMs depends on both the NFEs used during the iterative refinement process and the length of the target sequence. By adjusting the sequence length during pretraining and the number of NFEs at inference time, DLMs offer flexible configurations to trade off generation quality and speed (Li et al., 2022a; He et al., 2023; Li et al., 2023b; Lin et al., 2023; Zheng et al., 2024b; Gao et al., 2024). However, despite this flexibility, there is currently no conclusive evidence that DLMs can either generate faster while matching the performance of AR models, or achieve better performance at a comparable model size (Gulrajani & Hashimoto, 2024; Han et al., 2023; Mahabadi et al., 2024; Nie et al., 2025a;b; Gong et al., 2024). Nevertheless, there is substantial potential to accelerate DLMs

054 by significantly reducing the number of required NFEs—without sacrificing performance—through
 055 diffusion distillation techniques. Such techniques have recently shown notable success in speeding up
 056 continuous diffusion models for vision tasks (Sauer et al., 2024; Yin et al., 2024; Zhou et al., 2024b).
 057 DLMs can be broadly categorized into two types: **discrete** and **continuous**. Discrete DLMs operate
 058 directly on categorical token spaces (Hoogeboom et al., 2021; Austin et al., 2021; He et al., 2023;
 059 Lou et al., 2024), aligning naturally with the symbolic nature of language. These models have
 060 demonstrated promising performance, *e.g.*, on unconditional text generation tasks. However, they
 061 still suffer from prohibitively slow sampling—often requiring hundreds to thousands of steps—due to
 062 the lack of effective acceleration techniques tailored to discrete diffusion. In contrast, this issue is less
 063 prominent in the vision domain, where continuous diffusion models and corresponding acceleration
 064 methods predominate.

065 Unlike discrete diffusion, continuous DLMs model the diffusion process in the embedding space,
 066 treating token representations as continuous vectors (Li et al., 2022a; Gong et al., 2022; Ye et al.,
 067 2023; Yuan et al., 2022; Gao et al., 2024; Gulrajani & Hashimoto, 2024). Their sampling process
 068 naturally supports controllability via auxiliary guidance (Dhariwal & Nichol, 2021; Ho & Salimans,
 069 2022), and can be further accelerated while maintaining competitive performance (Song et al., 2021;
 070 Lu et al., 2022; Salimans & Ho, 2022). These properties make DLMs particularly appealing for
 071 real-world applications. Although they are arguably less aligned with the inherently discrete nature
 072 of language—which may explain their relatively limited adoption compared to discrete DLMs—they
 073 offer a key advantage: compatibility with a wide range of acceleration strategies developed in the
 074 vision domain, such as consistency distillation (Song et al., 2023; Song & Dhariwal, 2023; Geng
 075 et al., 2024) and score distillation (Poole et al., 2023; Wang et al., 2023; Luo et al., 2023; Yin et al.,
 076 2023; Zhou et al., 2024c). These methods enable one- or few-step generation with minimal quality
 077 degradation and, when enhanced with real data during distillation, can even surpass the teacher
 078 model (Zhou et al., 2025b).

079 This prompts a key question: *Can similar substantial gains in sampling efficiency be realized in*
 080 *language generation?* More specifically, can we generate a sequence of, *e.g.*, 100 tokens through a
 081 single forward pass of the diffusion backbone network? This would correspond to 100 NFEs for AR
 082 LMs, and potentially even more for existing DLMs, where the exact count depends on the number of
 083 iterative refinement steps but often reaches into the hundreds.

084 If so, it opens a promising research direction: how to pretrain stronger continuous DLMs that are
 085 naturally amenable to distillation. Potential approaches include improving the word embedding space
 086 or jointly optimizing it during pretraining. In this work, we focus on distilling existing continuous
 087 DLMs pretrained in the word embedding space, using publicly available checkpoints or open-source
 088 implementations, while leaving the design and pretraining of improved, larger models for future
 089 exploration. Specifically, we choose continuous DLMs pretrained with DiffuSeq (Gong et al., 2022)
 090 as our teacher models.

091 We consider continuous diffusion for language modeling and investigate whether vision-inspired
 092 distillation techniques can enable drastically more efficient, high-quality sequence generation. Specif-
 093 ically, we propose a score distillation-based framework for training *DLMs for one-step sequence*
 094 *generation* (DLM-One). Our method distills the knowledge of a pretrained teacher DLM into a
 095 student model of the same size that generates sequences in a single forward pass. Unlike prior work
 096 that often relies on hundreds of iterative refinement steps to produce a single sequence, DLM-One
 097 eliminates the need for iterative sampling altogether. It does so by aligning the scores of the student’s
 098 outputs with the teacher’s score function in the forward-diffused noisy space. To stabilize training
 099 and prevent degenerate solutions, we introduce an auxiliary adversarial loss and adopt a two-stage
 100 optimization scheme that progressively refines the student.

101 Under the same model size, DLM-One achieves up to $L \times$ speedup compared to AR LMs, where L
 102 is the target sequence length. It also achieves up to $\text{NFEs} \times$ speedup over the teacher DLM, where
 103 NFEs denotes the number of iterative refinement steps used during teacher sampling. For example,
 104 in terms of wall-clock time, DLM-One delivers approximately $500 \times$ speedup over DiffuSeq, while
 105 achieving comparable generation quality. These results redefine what is possible along the Pareto
 106 front between generation quality and sampling efficiency.

107 Our contributions are summarized as follows:

- 108 • We introduce **DLM-One**, a practical score distillation framework for continuous DLMs that
 109 enables one-step sequence generation without iterative denoising.

Figure 1: **Overview of the adversarial score distillation process.** **Left:** During score estimator ψ updates, both real and generated data-condition pairs are used. The generator θ produces e_{fake}^{clean} from c_{fake} , while real pairs are sampled from the dataset. The shared score estimator ψ is trained for both score prediction and GAN discrimination. **Right:** During generator θ updates, the pretrained teacher model ϕ provides target scores, and ψ produces both student scores and fake logits. These two scores are used to compute the score matching loss together with the clean data. Additionally, the generator is optimized to encourage the generation of more realistic samples under the feedback (i.e., logits) from ψ , via the adversarial loss. Modules marked with a \blacksquare are frozen during the respective updates.

- We propose a two-stage training strategy with adversarial stabilization to enhance student quality and address common failure modes in distilling DLMs in a data-free setting.
- Our empirical evaluation on benchmark text generation tasks used by the teacher models demonstrates that our method achieves competitive performance while reducing sampling cost by up to $\sim 500\times$ over DiffuSeq and up to $\sim 256\times$ over Plaid.

2 RELATED WORK

2.1 DIFFUSION LANGUAGE MODELS

Unlike AR LMs, DLMs typically use a denoising score matching loss for training and predict entire sequences or multiple tokens at once. This eliminates the need for left-to-right, token-by-token sampling and enables faster decoding. Inspired by continuous diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021), Li et al. (2022b) propose an end-to-end language modeling approach that jointly learns word embeddings and a diffusion model in the embedding space, combining a diffusion loss with a rounding loss. Gong et al. (2022) adopt a similar strategy for sequence-to-sequence tasks by concatenating conditioning inputs with target sequences and modifying the forward diffusion process to apply noise only to the target. In contrast to the decoder-only architecture used in DiffuSeq, Yuan et al. (2022) introduce a dedicated encoder to process the conditioning input.

Viewing the additional rounding loss as a regularization term, Gao et al. (2024) propose an anchor loss to improve training stability and prevent embedding collapse. To bridge the likelihood gap, Gulrajani & Hashimoto (2024) introduce Plaid, the first DLM shown to achieve likelihood performance comparable to that of AR models on standard language modeling benchmarks. While these models all operate in the embedding space, we note that DLMs have also been trained in the vocabulary logit space (Han et al., 2023; Mahabadi et al., 2024) and the latent space of an encoder-decoder LM (Lovelace et al., 2023; Zhang et al., 2023; Zhou et al., 2024a; Shabalin et al., 2025). Extending DLM-One to such models represents a promising direction for future work.

In addition to continuous diffusion models, discrete diffusion models have also been studied for text generation. Hoogeboom et al. (2021) introduce a multinomial diffusion process for modeling categorical data. Austin et al. (2021) further explore various discrete state transition matrices, adding flexibility to the discrete diffusion process. By vector quantizing images into sequences of visual tokens (Oord et al., 2017; Esser et al., 2021), discrete diffusion models have been applied to generate visual token sequences that can be decoded back into images (Gu et al., 2022; Hu et al., 2022). Lou et al. (2024) extend score matching (Hyvärinen & Dayan, 2005) losses from

continuous to discrete spaces. Ou et al. (2025) reformulate the concrete score (Meng et al., 2022) as a product of time-independent conditional probabilities and a time-dependent scalar, enabling more efficient sampling. Rather than working on the general forward process, Sahoo et al. (2024) improve the practical performance of discrete DLMs by focusing on the masking strategy and introducing tight Rao-Blackwellized objectives. Shi et al. (2024) derive a simplified variational objective for continuous-time masked DLMs and generalize the masking schedule to support state dependency. Recognizing the connection between masked DLMs and AR models, Gong et al. (2024) propose a continual pretraining approach to adapt pretrained AR models into discrete DLMs. Nie et al. (2025b) introduces LLaDA that pretrains a large discrete DLM from scratch and further improves it with supervised fine-tuning.

2.2 FASTER DIFFUSION

Diffusion models are known for their strong generative capabilities; however, this comes at the cost of hundreds to thousands of NFEs during sampling in their original formulation (Ho et al., 2020; Song et al., 2020). Despite progress with training-free acceleration techniques, such as advanced samplers (Liu et al., 2022; Lu et al., 2022) and model quantization (Li et al., 2023a), diffusion models still lag behind traditional generative models like GANs and VAEs in terms of sampling speed.

Several directions have been explored to accelerate diffusion-based generation. Liu et al. (2024) and Guo et al. (2024) propose Discrete Copula Diffusion, which combines a discrete diffusion model with a copula-based correction module at inference time to improve the denoising distribution. Masked diffusion models (MDMs) (Zheng et al., 2024a) accelerate generation via a first-hitting sampling strategy. Progressive distillation (Salimans & Ho, 2022) introduces an iterative distillation scheme, reducing the number of sampling steps by progressively halving them. Luo et al. (2023) and Yin et al. (2024) propose minimizing the integral Kullback–Leibler divergence between the generative distributions of teacher and student models. From a score-distillation perspective, Zhou et al. (2024c) proposes a Fisher divergence-based distillation objective and an accompanying alternating optimization procedure that jointly enhance convergence and generation quality. Further improvements in data-free score distillation have been achieved by incorporating real data and adversarial training (Sauer et al., 2024; Yin et al., 2024; Zhou et al., 2025b).

In the context of accelerating DLMs, AR-Diffusion (Wu et al., 2023) incorporates autoregressive characteristics into diffusion models by allocating fewer refinement steps to earlier tokens, thereby better modeling sequential dependencies. Unlike training-free methods that focus on better utilizing the frozen teacher for faster inference, diffusion distillation trains a student model from a pretrained teacher, enabling generation in just one or a few inference steps. Our work—*DLM-One*—is a diffusion distillation framework that enables one-step sequence generation while preserving the generation quality of the teacher, effectively eliminating the need for iterative refinement.

3 ONE-STEP DIFFUSION LANGUAGE MODELS

To train a one-step sequence generation model, we begin with a pretrained teacher DLM that operates in a continuous embedding space. In this setting, each discrete language token is first mapped to a real-valued embedding vector via an embedding layer. The diffusion process is then applied to these continuous embeddings rather than to the discrete tokens themselves. This setup enables us to leverage well-established acceleration methods from continuous diffusion models in the vision domain, while focusing on language-model-specific adjustments essential for effective sequence generation.

During pretraining, the embedding matrix is typically optimized end-to-end to improve generation quality (Li et al., 2022b), as this allows the embeddings to better align with the denoising objective compared to using a frozen embedding matrix from a pretrained language model. However, without additional constraints, the embedding space can exhibit pathological behaviors such as collapse or poor token separation. To address this, recent work has proposed regularization techniques—such as anchor loss and likelihood-aware training—to preserve meaningful structure in the embedding space (Gong et al., 2022; Gao et al., 2024; Gulrajani & Hashimoto, 2024).

3.1 EMBEDDING-SPACE SCORE DISTILLATION

Following the practice adopted in latent diffusion (Rombach et al., 2022), we freeze the pretrained embedding matrix during distillation, leaving end-to-end embedding finetuning as a promising direction for future work. While various objectives are possible, we build our method upon Score identity Distillation (SiD; Zhou et al., 2024c) to demonstrate the potential of one-step diffusion models

216 in the language domain. SiD is a state-of-the-art one-step diffusion distillation method that operates
 217 in a fully data-free setting and readily supports two key enhancement techniques—classifier-free
 218 guidance (CFG) (Zhou et al., 2024b) and adversarial training (Zhou et al., 2025b)—both of which are
 219 found to be important for distillation in the embedding space of DLMs.

220 Specifically, we denote the pretrained teacher DLM as ϕ , the student generator as θ , and the score
 221 estimator for the student model as ψ . Let E denote the token embedding layer and $e \in \mathbb{R}^{d \times L}$
 222 denote the d -dimensional continuous embeddings of a sequence of length L , which may optionally
 223 be mapped back to discrete tokens via a rounding or decoding mechanism during inference. The
 224 generation process of the student model is given by

$$225 \quad e = G_\theta(c, z), \quad z \sim \mathcal{N}(0, \mathbf{I}),$$

226 where c is an optional condition (e.g., a prompt or label), and z is noise input. We apply the forward
 227 diffusion process to obtain noisy embeddings $e_t = \alpha_t e + \sigma_t \epsilon$, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, where α_t and σ_t follow
 228 a predefined noise schedule that gradually decreases the signal-to-noise ratio α_t/σ_t as t increases.
 229 The pretrained teacher model ϕ provides an estimate of the score function at e_t given t and c , defined
 230 as $s_\phi(e_t, t, c) = \nabla_{e_t} \log p(e_t | t, c)$. The distillation objective is to train the student generator such
 231 that its score matches that of the teacher in the forward-diffused noisy space. This is achieved by
 232 minimizing the model-based explicit score matching (MESM) loss, a form of Fisher divergence:

$$233 \quad \mathcal{L}_{\text{mesm}}(\theta; \psi^*) = \mathbb{E}_{e=G_\theta(c, z), t, c, z} \left[\omega_t \|s_\phi(e_t, t, c) - s_{\psi^*(\theta)}(e_t, t, c)\|^2 \right], \quad (1)$$

234 where $\psi^*(\theta)$ denotes the true score function induced by the student generator θ , and ω_t is a time-
 235 dependent reweighting coefficient. For unconditional generation, the condition c is set to \emptyset .

236 By Tweedie's formula (Robbins, 1992; Efron, 2011), Equation 1 can be equivalently written as:

$$237 \quad \mathbb{E}_{e, t, c} \left(\omega_t \frac{\alpha_t^2}{\sigma_t^4} \|\hat{e}_\phi(e_t, t, c) - \hat{e}_{\psi^*(\theta)}(e_t, t, c)\|^2 \right), \quad (2)$$

238 where \hat{e}_ϕ and $\hat{e}_{\psi^*(\theta)}$ denote the expected values of the clean embedding e conditioned on the noisy
 239 observation e_t , as inferred by the teacher and optimal student score networks, respectively.

240 While Equation 2 and its gradient are generally intractable to compute, the SiD method (Zhou et al.,
 241 2024c) provides an effective optimization procedure that alternates between estimating $\psi^*(\theta)$ and
 242 updating θ . Specifically, we optimize ψ given θ using the denoising score matching (DSM) loss:

$$243 \quad \mathcal{L}_{\text{dsm}}(\psi) = \mathbb{E}_{e, t, c} \left[\gamma_t \|\hat{e}_\psi(e_t, t, c) - e\|^2 \right], \quad (3)$$

244 and optimize θ given ψ using the following SiD loss:

$$245 \quad \mathcal{L}_{\text{sid}}(\theta; \psi^*, \mu) = \mathbb{E}_{e, t, c} \left[(1 - \mu) \omega_t \frac{\alpha_t^2}{\sigma_t^4} \|\hat{e}_\phi(e_t, t, c) - \hat{e}_\psi(e_t, t, c)\|^2 \right. \\ 246 \quad \left. + \omega_t \frac{\alpha_t^2}{\sigma_t^4} (\hat{e}_\phi(e_t, t, c) - \hat{e}_\psi(e_t, t, c))^\top (\hat{e}_\psi(e_t, t, c) - e) \right], \quad (4)$$

247 where $\mu > 0$ is a hyperparameter that is often set as 1 or 1.2.

248 3.2 ADVERSARIAL REGULARIZATION

249 While data-free distillation of pretrained diffusion models is appealing—requiring access only to the
 250 teacher model rather than real data—and has achieved highly competitive performance in the vision
 251 domain (Zhou et al., 2024c;b), its application to DLMs presents a major challenge: degeneration in the
 252 student model. In the absence of explicit constraints (e.g., on sentence length) or implicit supervision
 253 from real data, distilled models tend to degenerate after a certain number of training iterations, such
 254 as (1) generating repetitive tokens, or (2) producing empty sequences filled with [PAD] tokens. To
 255 mitigate this, we combine standard score distillation with adversarial regularization.

256 Specifically, when updating the fake score estimator ψ , we first sample a condition c^{fake} and generate
 257 an embedding sequence e_θ^{fake} using the student generator θ . We then compute the DSM loss of ψ along
 258 with part of the adversarial loss—namely, the binary cross-entropy (BCE) loss using pseudo-labels
 259 set to all negatives. Additionally, we sample a pair consisting of a real data sequence x^{real} and its
 260 corresponding condition c^{real} , and compute the remaining part of the adversarial loss using pseudo-
 261 labels set to all positives. Following Diffusion GAN (Wang et al., 2022) to perform discrimination on
 262 noised embeddings, the adversarial loss for ψ is given by:

$$263 \quad \mathcal{L}_{\text{adv}}^{\text{sg}}(\psi) = \frac{1}{2} \mathbb{E} \left[\log \sigma(D_\psi(e_t^{\text{real}}, t, c^{\text{real}})) + \log(1 - \sigma(D_\psi(e_{\theta, t}^{\text{fake}}, t, c^{\text{fake}}))) \right], \quad (5)$$

270 **Algorithm 1** DLM-One Adversarial Score Distillation

271 **Input:** Pre-trained teacher DLM ϕ , student model θ , score estimator ψ , embedding layer E , score distillation
 272 loss coefficient μ , real dataset $\mathcal{D}_{X,C}$, time range $[t_{\min}, t_{\max}]$, diffusion weight function $\lambda(t)$, loss term
 273 coefficients $a_{\text{dsm}}^{\text{sg}}, b_{\text{adv}}^{\text{sg}}, a_{\text{sd}}^g, b_{\text{adv}}^g$.
 274 **Initialization** $\theta \leftarrow \phi, \psi \leftarrow \phi$
 275 **repeat**
 276 Sample $c^{\text{fake}} \sim \mathcal{D}_{*,Y}$, $(x^{\text{real}}, c^{\text{real}}) \sim \mathcal{D}_{X,C}$, $t \in [t_{\min}, t_{\max}]$
 277 Sample $z \sim \mathcal{N}(0, \mathbf{I})$, let $e^{\text{fake}} = G_\theta(c^{\text{fake}}, z)$ and $e^{\text{real}} = E(x^{\text{real}})$
 278 Sample noises $\epsilon^{\text{fake}}, \epsilon^{\text{real}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 279 $e_t^{\text{fake}} \leftarrow \alpha_t e^{\text{fake}} + \sigma_t \epsilon^{\text{fake}}, e_t^{\text{real}} \leftarrow \alpha_t e^{\text{real}} + \sigma_t \epsilon^{\text{real}}$
 280 Compute $\hat{\mathcal{L}}_{\text{dsm}}$ according to Eq. 3 and $\hat{\mathcal{L}}_{\text{adv}}^{\text{sg}}$ according to Eq. 5
 281 Update ψ via SGD on the combined loss $a_{\text{dsm}}^{\text{sg}} \hat{\mathcal{L}}_{\text{dsm}} + b_{\text{adv}}^{\text{sg}} \hat{\mathcal{L}}_{\text{adv}}^{\text{sg}}$
 282 Sample $c^{\text{fake}} \sim \mathcal{D}_{*,C}$, $t \in [t_{\min}, t_{\max}]$
 283 Sample $z \sim \mathcal{N}(0, \mathbf{I})$, let $e^{\text{fake}} = G_\theta(c^{\text{fake}}, z)$
 284 Sample noises $\epsilon^{\text{fake}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 285 $e_t^{\text{fake}} \leftarrow \alpha_t e^{\text{fake}} + \sigma_t \epsilon^{\text{fake}}$
 286 Compute $\hat{\mathcal{L}}_{\text{sd}}$ according to Eq. 4 and $\hat{\mathcal{L}}_{\text{adv}}^g$ according to Eq. 6
 287 Update θ via SGD on the combined loss $a_{\text{sd}}^g \hat{\mathcal{L}}_{\text{sd}} + b_{\text{adv}}^g \hat{\mathcal{L}}_{\text{adv}}^g$
 288 **until** the maximum number training steps is reached
 289 **Output:** θ

290 where e_t^{real} is the noisy embedding obtained by forward diffusing the embedding of x^{real} . For the
 291 update steps of the student model θ , we compute both the SiD loss and the all-positive BCE loss on
 292 generated sequences conditioned on c . We denote each generated $\langle \text{data}, \text{condition} \rangle$ pair as (x_θ, c)
 293 and $e_{\theta,t}$ as the noised version of e_θ . The corresponding adversarial loss is:
 294

$$\mathcal{L}_{\text{adv}}^g(\theta) = \mathbb{E} [\log \sigma(D_\psi(e_{\theta,t}, t, c))]. \quad (6)$$

295 We provide an overview and pseudo-code of our adversarial score distillation training process in
 296 Figure 1 and Algorithm 1, respectively. For efficiency, we utilize the same model (*i.e.*, the score
 297 estimator ψ) for both score prediction and GAN discrimination. At a high level, the additional
 298 adversarial losses provide implicit supervision and help stabilize training, preventing mode collapse
 299 and encouraging more realistic sequence generation.
 300

302

3.3 TWO-STAGE TRAINING

303 Due to the alternating update scheme, the score estimator ψ may fail to provide an accurate approx-
 304 imation of the true score corresponding to the student model θ . To address this issue, we propose
 305 a two-stage training procedure. In the first stage (Stage 1), our primary goal is to obtain a “good
 306 enough” student model whose generative distribution is reasonably close to that of the teacher. This
 307 can be assessed using standard performance metrics such as BLEU. In practice, we train the student
 308 model for a fixed number of steps and select the best checkpoint based on BLEU score evaluated on
 309 the validation set.

310 In the second stage (Stage 2), we resume training the student model θ from the selected checkpoint
 311 but reinitialize the score estimator ψ with the parameters of the teacher model ϕ . The intuition
 312 behind this is to mitigate the potential lag of ψ , which arises because it is updated alternately with
 313 the student and may fall behind the true score of the evolving student model. This issue becomes
 314 more pronounced as the student’s generative distribution grows increasingly close to the teacher’s,
 315 diverging significantly from its earlier state. In such cases, the feedback provided by ψ may become
 316 insufficient to guide further improvement. Reinitializing ψ with the teacher model helps realign it
 317 with the updated student and provides more meaningful learning signals for continued distillation.
 318 The Stage 2 training procedure largely mirrors that of Algorithm 1, with the key distinction that it
 319 requires a student model checkpoint from the end of Stage 1 for initialization.

320

4 EXPERIMENTS

321 In our experiments, we conduct a comprehensive evaluation on the benchmark tasks originally
 322 used to assess the performance of the teacher DLMs pretrained with DiffuSeq and **Plaid**. The
 323 results convincingly demonstrate the potential of significantly accelerating the sampling efficiency of

324 **Table 1: Performance comparison between teacher and student models across Seq2Seq tasks.** \uparrow indicates
 325 higher is better, \downarrow indicates lower is better. * denotes that the student’s performance is within 5% of the teacher’s,
 326 and ** indicates that it is within 1%.

Task	Model	BLEU(\uparrow)	ROUGE-L(\uparrow)	BERT(\uparrow)	Dist-1(\uparrow)	SelfBLEU(\downarrow) / Div-4(\uparrow)	NFEs(\downarrow)
PP	DiffuSeq	0.1829	0.5299	0.7932	0.9747	0.2732 / 0.8641	2000
	DLM-One	0.1788*	0.5265**	0.7851*	0.9671**	0.3418 / 0.6256	1
QG	DiffuSeq	0.1512	0.3468	0.5871	0.9141	0.2789 / 0.8103	2000
	DLM-One	0.1512**	0.3257	0.5683*	0.9053**	0.6166 / 0.3798	1
TS	DiffuSeq	0.2929	0.5313	0.7781	0.9272	0.4642 / 0.6604	2000
	DLM-One	0.2927**	0.5299**	0.7565*	0.8924*	0.5456 / 0.4098	1

335 continuous DLMs via score distillation, enabling one-step token sequence generation that rivals the
 336 performance of teacher models requiring hundreds of times more computation. This redefines the
 337 Pareto frontier between computational efficiency and generation quality in continuous diffusion-based
 338 language modeling, and has profound implications for the future development of LLMs.
 339

340 4.1 TASKS AND DATASETS

341 We consider three sequence-to-sequence (Seq2Seq) tasks, including: question generation (QG),
 342 text simplification (TS), and paraphrase (PP). Specifically, we used preprocessed data from
 343 Quasar-T (Dhingra et al., 2017) for QG, Wiki-Auto (Jiang et al., 2020) for TS, and Quora question
 344 pairs (QQP) for PP. For each dataset, we use the standard splits of training, validation, and test sets.
 345 The data derived from Quasar-T contain approximately 129k \langle document, question \rangle pairs, including
 346 117k training pairs, 2k validation pairs, and 10k test pairs. The Wiki-Auto preprocessed dataset
 347 consists of a total of \sim 685k \langle complex, simple \rangle sentence pairs, with approximately 678k training pairs,
 348 2k validation pairs, and 5k test pairs. QQP dataset contains about 150k paraphrase sentence pairs,
 349 including 145k training, 2k validation, and 2k test. In addition to Seq2Seq tasks, we also conduct
 350 experiments on unconditional text generation. For this setting, we follow the setup introduced by
 351 Gulrajani & Hashimoto (2023) and use the OpenWebText2 (Gao et al., 2020) dataset, which consists
 352 of high-quality English web content filtered to resemble the pretraining corpus of GPT-2. The dataset
 353 contains approximately 10 million documents, and we use a 1B-token subset for training, consistent
 354 with prior work.

355 4.2 EVALUATION

356 For evaluation of the Seq2Seq tasks, we mainly consider five factors: BLEU (Papineni et al., 2002),
 357 ROUGE-L (Lin, 2004), BERT Score (Zhang et al., 2020), Dist-1, and sequence diversity. BLEU,
 358 ROUGE-L, and BERTScore are standard metrics for evaluating sequence-to-sequence tasks, as
 359 they capture sentence-level similarity between the generated sequences and the references. BLEU
 360 emphasizes n-gram precision, ROUGE-L focuses on recall based on the longest common subsequence,
 361 and BERTScore leverages contextual embeddings to assess semantic similarity. Dist-1 measures
 362 lexical diversity by computing the average ratio of distinct unigrams in a single sentence over all
 363 generated samples. Sequence-level diversity is further assessed using two metrics: self-BLEU
 364 (Zhu et al., 2018) and Div-4. Following the implementation of DiffuSeq (Gong et al., 2022), we
 365 compute self-BLEU by averaging inter-sentence BLEU scores across generated samples, while Div-4
 366 quantifies the proportion of distinct 4-grams among them. For the unconditional generation task, we
 367 assess the model performance mainly through the generative perplexity. Specifically, we generate
 368 250 samples and calculate the average perplexity evaluated under GPT-2 (Radford et al., 2019).

375 Figure 2: Evaluation metrics using MBR decoding across 1 to 10 candidate(s) on the Wiki dataset.
 376

Figure 3: **BLEU score vs. sampling steps on different datasets.** The teacher model (DiffuSeq) requires hundreds to thousands of denoising steps to reach optimal performance, while our DLM-One achieves competitive BLEU in a single step—offering over **100x faster** generation without significant quality degradation.

Table 2a: Average generation time per sample across different sampling steps of DiffuSeq. Each entry reflects the mean time (in seconds), averaged over 100 runs. Time does not scale strictly linearly with NFEs, due to fixed overhead such as embedding rounding and tokenizer-based decoding.

Steps	1	65	286	667	1000	2000
Time (s)	0.03	0.51	2.25	5.20	7.70	14.94

Table 2b: **Mean perplexity of the generated samples output by DLM-One (Student) and Plaid (Teacher) using different inference steps.** The results correspond to the unconditional text generation task evaluated under GPT-2.

Model	Student	Teacher			
# Inf. Steps	1	16	64	256	4096
Perplexity	93.99	298.92	122.41	94.28	83.37

4.3 SEQUENCE-TO-SEQUENCE (SEQ2SEQ) TASKS

For sequence-to-sequence tasks, we mainly consider DiffuSeq (Gong et al., 2022) as our major baseline to showcase the effectiveness of the proposed score distillation framework for LMs. We list results of all five performance metrics in Table 1, which shows that our distilled models can achieve close-to-teacher performance consistently across all three tasks while taking far less number of functional evaluations (NFEs). The actual acceleration is further demonstrated in Figure 3, where we consider the BLEU score against number of sampling steps on QQP, Quasar-T, and Wiki-Auto datasets. In Table 2a, we provide the conversion from the sampling steps to the inference time, which is measured on an NVIDIA RTX A5000 GPU. Our one-step model achieves up to an approximately **500**× speedup compared to the 2000-step baseline with no notable performance degradation.

The results of our approach on PP and QG are obtained from the final-stage (i.e., Stage 2) DLM-One models, while those on TS are reported from Stage 1, as the student model already closely matches the teacher’s performance. As shown in Figure 2, minimum Bayes risk (MBR) decoding offers a more comprehensive evaluation of generation quality and diversity by leveraging multiple candidate samples. As the number of candidates increases, MBR decoding typically leads to improved performance. The observation that our student model consistently matches the teacher across 1 to 10 candidates under MBR decoding further suggests that a single-stage distillation is sufficient for the TS task on the Wiki dataset.

4.4 UNCONDITIONAL TEXT GENERATION

To assess the generality and scalability of DLM-One, we further conduct experiments on a more complex text generation task and a larger scale dataset. Specifically, we select Plaid (Gulrajani & Hashimoto, 2024) as our baseline for unconditional text generation on the OpenWebText2 dataset. We configure the teacher Plaid model to use a 16-block transformer backbone with 384 hidden dimensions and 6 attention heads. As shown in Table 2b, our DLM-One model achieves competitive performance compared to multistep Plaid teacher model up to 256 inference steps, which is effectively a $256 \times$ speedup.

5 DISCUSSION

Analysis of Model Degeneration. When directly applying data-free diffusion distillation methods for vision models to DLMs, we noticed that the student model will inevitably suffer from inferior

432 **Table 3: Effect of two-stage training on the QQP dataset.** The second row shows raw scores; the third row
 433 shows relative changes from Stage 1. Percentages in **green** and **red** indicate improvements and degradations,
 434 respectively. Arrows \uparrow/\downarrow denote preferred directions.

435

Stage	BLEU(\uparrow)	ROUGE-L(\uparrow)	BERT(\uparrow)	Dist-1(\uparrow)	SelfBLEU(\downarrow)	Div-4(\uparrow)
Stage 1	0.1468	0.4829	0.7402	0.9370	0.2195	0.7764
Stage 2	0.1788	0.5265	0.7851	0.9671	0.3418	0.6256
Δ Stage	+21.8%	+9.0%	+6.1%	+3.2%	+55.7%	-19.4%

436

437

438

439

440

441

442

443

444

445

446

447

448 Figure 4: Evolution of evaluation metrics during Stage 3 training on the QQP dataset.

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

450 generation quality and even degeneration. After thoroughly reviewing the failure patterns and
 451 inspecting the deeper causes, we identify two major issues specific to DLM distillation:

1. **Poor Initial Predictions.** Unlike in the vision domain, where diffusion model’s predictions at a large timestep can be blurry but still recognizable, a DLM’s initial predictions are often incoherent (*e.g.*, gibberish and making little sense), exacerbating the inaccurate score estimation problem of the fake score network and restricting the student’s final performance (see also Section 3.3). Therefore, in DLM-One, we propose a two-stage training approach to mitigate this initial score mismatch issue in the second stage.
2. **Variable Output Length.** Unlike multistep models, one-step DLMs must determine the final output length upfront, which makes training unstable and prone to degeneration. One specific issue is related to the use of trailing `[PAD]` tokens. Without supervision from data, the student generator can easily fail by simply learning to output a target sequence full of `[PAD]` tokens, because it can trick the teacher model as a "valid" data pattern and lead to very small discrepancy between the teacher model and the fake score model. This issue is also noted in Section 3.2, where we introduce an adversarial loss term to provide regularization on the generation sequence length.

466

467

468

469

470

471

472

473

474

475

476

477

466 **Effect of Two-stage Training.** We find the two-stage training strategy is crucial for improving
 467 the model’s overall fidelity across key metrics such as BLEU, ROUGE-L, and BERTScore, at the
 468 cost of reduced diversity. For practical applications of DLM-One, we argue this is a favorable
 469 trade-off, as higher fidelity often corresponds to greater model utility for end-users. The trade-off is
 470 further quantified in Table 3, which compares the performance of the QQP checkpoints from the two
 471 stages. Furthermore, we demonstrate that this loss in diversity can be mitigated with inference-time
 472 augmentation, and we also discuss the possibility of generalizing DLM-One to a few-step model, as
 473 detailed in Appendix C.

474

475

476

477

474 **Limited Gain from Additional Stages.** A natural question arises: *Will more stages continue to*
improve performance? Based on our experiments, the answer appears to be no. As illustrated in
 475 Figure 4, model performance essentially plateaus at the beginning of a third stage, and while minor
 476 fluctuations are observed thereafter, the metrics do not exhibit new upward trends. Further training
 477 does not yield additional gains, likely due to diminishing learning signals.

478

479

480

481

482

483

484

485

478 **Effect of Additional Steps at Inference Time.** Although DLM-One is optimized for single-step
 479 generation, we explore whether introducing additional steps at inference time can further enhance
 480 generation quality. Specifically, we implement a simple iterative scheme in which the model alternates
 481 between re-noising and denoising its own output multiple times. As shown in Table 4, increasing
 482 the number of steps from 1 to 4 consistently improves fidelity metrics (*e.g.*, BLEU, ROUGE-L) at
 483 a modest cost to diversity (*e.g.*, Div-4, self-BLEU). This demonstrates that even without explicit
 484 multi-step training, the number of sampling steps can serve as a practical lever to navigate the
 485 quality-diversity trade-off. However, since the model was not optimized for this regime, these results
 should not be interpreted as an upper bound. Training distilled generators specifically for few-step

486
487
488 Table 4: Performance of DLM-One under increased inference steps on the QQP dataset.
489
490
491
492

Steps	BLEU(\uparrow)	ROUGE-L(\uparrow)	BERT(\uparrow)	Dist-1(\uparrow)	SelfBLEU(\downarrow)	Div-4(\uparrow)
1	0.1788	0.5265	0.7851	0.9671	0.3418	0.6256
2	0.1800	0.5287	0.7895	0.9676	0.3455	0.6228
4	0.1829	0.5329	0.7959	0.9693	0.3549	0.6095

493 inference, a promising direction inspired by recent vision models (Yin et al., 2024; Zhou et al., 2025a),
494 remains a key avenue for future work.
495

496 **Comparison with AR Models.** A key advantage of our approach is that DLM-One maintains
497 competitive generation quality compared to similar-sized AR LMs while offering a substantial
498 improvement in inference speed. Our results align with prior work, which shows that teacher DLMs
499 (*e.g.*, DiffuSeq, 91M parameters) can already achieve on-par or superior performance to much larger,
500 fine-tuned AR models like GPT-2 Large (774M parameters) across tasks such as paraphrase, question
501 generation, and text simplification. By distilling the teacher into a one-step generator, DLM-One
502 preserves this high fidelity while being orders of magnitude faster than both its multi-step teacher
503 and the token-by-token sampling of AR models. We provide a detailed comparison of performance
504 metrics, model sizes, and inference speeds in Appendix D.

505 6 CONCLUSION

506 In this work, we propose a practical distillation framework for training continuous diffusion language
507 models for one-step sequence generation (DLM-One), eliminating the need for iterative refinement
508 during generation. Our method is broadly applicable to continuous diffusion-based language models
509 and enables fast, one-step generation via score distillation from pretrained teacher models. To
510 further stabilize training and improve student quality, we introduce a two-stage training scheme
511 with adversarial regularization. Through detailed experiments on conditional text generation tasks,
512 we demonstrate that DLM-One achieves competitive performance against the teacher DLMs while
513 reducing sampling cost by up to $\sim 500\times$. This redefines the Pareto frontier between computational
514 efficiency and generation quality in continuous diffusion-based language modeling, and has profound
515 implications for the future development of LLMs.

516 Nevertheless, our work opens up several promising directions for future investigation. First, while
517 hyperparameters like the score distillation loss coefficient μ currently require per-task tuning, future
518 work could explore more principled and adaptive training schemes. Second, we find that the trade-off
519 between fidelity and diversity in DLM-One is a controllable aspect that can be adjusted based on the
520 needs of downstream applications. We identify the extension of DLM-One to a few-step generator
521 could be a key avenue for future research, with the potential to improve the overall model performance
522 in both fidelity and diversity.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our work, we provide detailed implementation and training protocols
543 in Appendix B. This includes all distillation-related hyperparameters for each dataset (Table 5) and a
544 description of the conditioning mechanism. Our work is based on the publicly available DiffuSeq
545 codebase, which we have linked in the appendix. We will release our full source code, including
546 scripts to reproduce all experiments and a link to our final model checkpoints, upon publication.

547 ETHICS STATEMENT
548

549 This work introduces one-step sequence generation framework, DLM-One, to significantly improve
550 the inference speed of DLMs. The primary goal is to reduce the high computational cost and energy
551 consumption associated with large generative models, thereby making this technology more accessible
552 and sustainable, as discussed in our broader impacts statement in Appendix A. We used publicly
553 available, standard benchmark datasets (QQP, Quasar-T, Wiki-Auto) for our experiments. While
554 our work makes generation more efficient, it does not introduce new risks beyond those inherent in
555 existing language models, such as the potential for generating biased or harmful content. We believe
556 the net impact of this research is positive, as it contributes to more computationally efficient and
557 environmentally friendly AI.

558 REFERENCES
559

560 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
561 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
562 report. *arXiv preprint arXiv:2303.08774*, 2023.

563 Jacob Austin, Daniel Johnson, Jonathan Ho, Danny Tarlow, and Rianne van den Berg. Structured
564 denoising diffusion models in discrete state-spaces. *arXiv preprint arXiv:2107.03006*, 2021.

566 Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In *International
567 Conference on Machine Learning*, pp. 2296–2318. PMLR, 2024.

568 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenhong Ge,
569 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao
570 Liu, Chengqiang Lu, K. Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
571 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
572 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
573 Yu Bowen, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xing Zhang, Yichang Zhang, Zhenru
574 Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report.
575 *ArXiv*, abs/2309.16609, 2023. URL <https://api.semanticscholar.org/CorpusID:263134555>.

577 Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
578 Korbak, and Owain Evans. The reversal curse: LLMs trained on “a is b” fail to learn “b is
579 a”. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GPKTIktA0k>.

581 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
582 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
583 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

585 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
586 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
587 Scaling language modeling with pathways. *arXiv preprint arXiv:2204.02311*, 2022.

588 Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
589 Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled
590 text generation. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=H1edEyBKDS>.

593 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
in neural information processing systems*, 34:8780–8794, 2021.

594 Bhuwan Dhingra, Kathryn Mazaitis, and William W Cohen. Quasar: Datasets for question answering
 595 by search and reading. *arXiv preprint arXiv:1707.03904*, 2017.

596

597 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
 598 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
 599 for categorical data. *arXiv preprint arXiv:2211.15089*, 2022.

600 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Association*,
 601 106(496):1602–1614, 2011.

602

603 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 604 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 605 pp. 12873–12883, 2021.

606 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
 607 Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
 608 language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

609

610 Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and Linli Xu. Empow-
 611 ering diffusion models on the embedding space for text generation. In *Proceedings of the 2024*
 612 *Conference of the North American Chapter of the Association for Computational Linguistics: Human*
 613 *Language Technologies (Volume 1: Long Papers)*, pp. 4664–4683, 2024.

614 Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
 615 made easy. *arXiv preprint arXiv:2406.14548*, 2024.

616 Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
 617 sequence text generation with diffusion models. *arXiv preprint arXiv:2210.08933*, 2022.

618

619 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 620 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
 621 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

622 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 623 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd of
 624 models. *arXiv preprint arXiv:2407.21783*, 2024.

625

626 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
 627 Guo. Vector quantized diffusion model for text-to-image synthesis. In *CVPR*, 2022.

628

629 Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. *Advances*
 630 *in Neural Information Processing Systems*, 36:16693–16715, 2023.

631

632 Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. *Advances*
 633 *in Neural Information Processing Systems*, 36, 2024.

634

635 Wei Guo, Yuchen Zhu, Molei Tao, and Yongxin Chen. Plug-and-play controllable generation for
 636 discrete masked models. *arXiv preprint arXiv:2410.02143*, 2024.

637

638 Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. SSD-LM: Semi-autoregressive simplex-based
 639 diffusion language model for text generation and modular control. In *Proceedings of the 61st*
 640 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 641 11575–11596, 2023.

642

643 Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuan-Jing Huang, and Xipeng Qiu. Diffu-
 644 sionBERT: Improving generative masked language models with diffusion models. In *Proceedings*
 645 *of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 646 *Papers)*, pp. 4521–4534, 2023.

647

648 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 649 2022.

650

651 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. *Advances in*
 652 *Neural Information Processing Systems*, 33, 2020.

648 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 649 and multinomial diffusion: Learning categorical distributions. *Advances in Neural Information
 650 Processing Systems*, 34:12454–12465, 2021.

651

652 Minghui Hu, Yujie Wang, Tat-Jen Cham, Jianfei Yang, and Ponnuthurai N Suganthan. Global context
 653 with discrete diffusion in vector quantised modelling for image generation. In *Proceedings of the
 654 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11502–11511, 2022.

655

656 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
 657 *Journal of Machine Learning Research*, 6(4), 2005.

658

659 Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu. Neural crf model for sentence
 660 alignment in text simplification. *arXiv preprint arXiv:2005.02324*, 2020.

660

661 Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
 662 McHardy. Challenges and applications of large language models. *arXiv preprint arXiv:2307.10169*,
 2023.

663

664 Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
 665 Ctrl: A conditional transformer language model for controllable generation. *arXiv preprint
 666 arXiv:1909.05858*, 2019.

667

668 Mahsa Khoshnoodi, Vinija Jain, Mingye Gao, Malavika Srikanth, and Aman Chadha. A compre-
 669 hensive survey of accelerated generation techniques in large language models. *arXiv preprint
 670 arXiv:2405.13019*, 2024.

670

671 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
 672 LM improves controllable text generation. *Advances in Neural Information Processing Systems*,
 35:4328–4343, 2022a.

673

674 Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
 675 LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 676 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022b. URL
 677 <https://openreview.net/forum?id=3s9IrEsjLyk>.

678

679 Xiyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
 680 and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In *Proceedings of the IEEE/CVF
 681 International Conference on Computer Vision*, pp. 17535–17545, 2023a.

682

683 Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-autoregressive
 684 text generation: a survey. In *Proceedings of the Thirty-Second International Joint Conference on
 Artificial Intelligence*, pp. 6692–6701, 2023b.

685

686 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
 687 URL <https://aclanthology.org/W04-1013/>.

688

689 Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R Gormley, and Jason Eisner. Limitations of
 690 autoregressive models and their alternatives. In *Proceedings of the 2021 Conference of the
 691 North American Chapter of the Association for Computational Linguistics: Human Language
 692 Technologies*, pp. 5147–5173, 2021.

693

694 Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
 695 Chen. Text generation with diffusion language models: A pre-training approach with continuous
 696 paragraph denoise. In *International Conference on Machine Learning*, pp. 21051–21064. PMLR,
 2023.

697

698 Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula diffusion.
 699 *arXiv preprint arXiv:2410.01949*, 2024.

700

701 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
 on manifolds. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=P1KWVd2yBkY>.

702 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

703

704

705 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
706 of the data distribution. In *Proceedings of the 41st International Conference on Machine Learning*,
707 pp. 32819–32848, 2024.

708

709 Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
710 diffusion for language generation. *Advances in Neural Information Processing Systems*, 36:
711 56998–57025, 2023.

712

713 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
714 fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Alice H. Oh,
715 Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information
716 Processing Systems*, 2022. URL https://openreview.net/forum?id=2uAAGw1P_V.

717

718 Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
719 Instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
720 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=MLIs5iRq4w>.

721

722 Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew E
723 Peters, and Arman Cohan. TESS: Text-to-text self-conditioned simplex diffusion. In *Proceedings
724 of the 18th Conference of the European Chapter of the Association for Computational Linguistics
(Volume 1: Long Papers)*, pp. 2347–2361, 2024.

725

726 Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized
727 score matching for discrete data. *Advances in Neural Information Processing Systems*, 35:34532–
728 34545, 2022.

729

730 Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. *arXiv
731 preprint arXiv:2102.09672*, 2021.

732

733 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan Li.
734 Scaling up masked diffusion models on text. In *The Thirteenth International Conference on Learn-
735 ing Representations*, 2025a. URL <https://openreview.net/forum?id=WNvvwK0tut>.

736

737 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
738 Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*,
739 2025b.

740

741 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
742 *arXiv preprint arXiv:1711.00937*, 2017.

743

744 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
745 Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean
746 data. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
747 <https://openreview.net/forum?id=sMyXP8Tnm>.

748

749 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
750 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting on Association for
751 Computational Linguistics, ACL '02*, pp. 311–318, USA, 2002. Association for Computational
752 Linguistics. doi: 10.3115/1073083.1073135. URL [https://doi.org/10.3115/1073083.
753 1073135](https://doi.org/10.3115/1073083.1073135).

754

755 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion: Text-to-3D using 2D
756 diffusion. In *The Eleventh International Conference on Learning Representations*, 2023. URL
757 <https://openreview.net/forum?id=FjNys5c7VY>.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
758 understanding by generative pre-training. 2018.

756 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 757 models are unsupervised multitask learners. 2019.

758

759 Machel Reid, Vincent J Hellendoorn, and Graham Neubig. Diffuser: Discrete diffusion via edit-based
 760 reconstruction. *arXiv preprint arXiv:2210.16886*, 2022.

761

762 Herbert E Robbins. An empirical Bayes approach to statistics. In *Breakthroughs in Statistics: Foundations and basic theory*, pp. 388–394. Springer, 1992.

763

764 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 765 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.

766

767 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 768 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 769 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

770

771 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 772 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=TIdIXIpzhoI>.

773

774 Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
 775 diffusion models via moment matching. *Advances in Neural Information Processing Systems*, 37:
 776 36046–36070, 2024.

777

778 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
 779 distillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024.

780

781 Alexander Shabalin, Viacheslav Meshchaninov, Egor Chimbulatov, Vladislav Lapikov, Roman Kim,
 782 Grigory Bartosh, Dmitry Molchanov, Sergey Markov, and Dmitry Vetrov. TEncDM: Understanding
 783 the properties of the diffusion model in the space of language model encodings. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 25110–25118, 2025.

784

785 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
 786 masked diffusion for discrete data. *Advances in neural information processing systems*, 37:
 787 103131–103167, 2024.

788

789 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=St1giarCHLP>.

790

791 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv preprint arXiv:2310.14189*, 2023.

792

793 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 2020.

794

795 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International Conference on Machine Learning*, pp. 32211–32252. PMLR, 2023.

796

797 Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-conditioned embedding diffusion for text generation. *arXiv preprint arXiv:2211.04236*, 2022.

798

799 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 800 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 801 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

802

803 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 804 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 805 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

806

810 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 811 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information*
 812 *processing systems*, pp. 5998–6008, 2017.

813

814 Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
 815 GAN: Training GANs with diffusion. *International Conference on Learning Representations*
 816 (*ICLR*), 2022.

817 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
 818 lificDreamer: High-fidelity and diverse text-to-3D generation with variational score distillation,
 819 2023.

820

821 Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo, Nan
 822 Duan, Weizhu Chen, et al. AR-diffusion: Auto-regressive diffusion model for text generation.
 823 *Advances in Neural Information Processing Systems*, 36:39957–39974, 2023.

824

825 Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused
 826 conditional sequence learning by manipulating noises. *arXiv preprint arXiv:2302.10025*, 2023.

827

828 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 829 and Taesung Park. One-step diffusion with distribution matching distillation. *arXiv preprint*
 830 *arXiv:2311.18828*, 2023.

831

832 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
 833 William T. Freeman. Improved distribution matching distillation for fast image synthesis. In
 834 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 835 <https://openreview.net/forum?id=tQukGCDaNT>.

836

837 Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Seqdiffuseq: Text
 838 diffusion with encoder-decoder transformers. *arXiv preprint arXiv:2212.10325*, 2022.

839

840 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
 841 text generation with bert. In *International Conference on Learning Representations*, 2020. URL
 842 <https://openreview.net/forum?id=SkeHuCVFDr>.

843

844 Yizhe Zhang, Jitao Gu, Zhuofeng Wu, Shuangfei Zhai, Joshua Susskind, and Navdeep Jaitly.
 845 Planner: Generating diversified paragraph via latent language diffusion model. *Advances in Neural*
 846 *Information Processing Systems*, 36:80178–80190, 2023.

847

848 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
 849 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
 850 sampling. *arXiv preprint arXiv:2409.02908*, 2024a.

851

852 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
 853 for text generation. In *First Conference on Language Modeling*, 2024b. URL <https://openreview.net/forum?id=PEQFHRUFca>.

854

855 Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion-NAT: Self-prompting discrete
 856 diffusion for non-autoregressive text generation. In *Proceedings of the 18th Conference of the*
 857 *European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 858 1438–1451, 2024a.

859

860 Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, and Hai Huang. Long and short guidance in
 861 score identity distillation for one-step text-to-image generation. *arXiv preprint arXiv:2406.01561*,
 862 2024b.

863

864 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score
 865 identity distillation: Exponentially fast distillation of pretrained diffusion models for one-
 866 step generation. In *Forty-first International Conference on Machine Learning*, 2024c. URL
 867 <https://openreview.net/forum?id=QhqQJqe0Wq>.

868

869 Mingyuan Zhou, Yi Gu, and Zhendong Wang. Few-step diffusion via score identity distillation. *arXiv*
 870 *preprint arXiv:2505.12674*, 2025a.

864 Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score identity
865 distillation: Rapidly surpassing the teacher in one step. In *International Conference on Learning*
866 *Representations*, 2025b.

867
868 Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texxygen:
869 A benchmarking platform for text generation models. In *The 41st international ACM SIGIR*
870 *conference on research & development in information retrieval*, pp. 1097–1100, 2018.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 Appendix for DLM-One

919 A BROADER IMPACTS

920 The high computational cost of large-scale language models poses challenges for accessibility,
 921 especially for users with limited resources. DLM-One addresses this by enabling one-step diffusion-
 922 based language generation, offering a significantly more efficient alternative to traditional iterative
 923 methods. By reducing the number of function evaluations required at inference time, DLM-One
 924 lowers energy consumption and makes diffusion language models more practical and sustainable for
 925 real-world deployment.

926 B IMPLEMENTATION DETAILS

927 In this section, we provide detailed documentation of the implementation, including aspects not fully
 928 covered in the main text, for experiments on DiffuSeq. We outline the specific adaptations required
 929 for distilling these baselines into one-step sequence generators.

930 B.1 DIFFUSEQ

931 We adopt the official codebase of DiffuSeq¹ and all three released checkpoints to conduct our Seq2Seq
 932 experiments in Section 4.

933 B.1.1 TRAINING PROTOCOL

934 For the training of our DLM-One student models, we set a fixed training budgets of 50,000 steps for
 935 all datasets. We use AdamW (Loshchilov & Hutter, 2019) optimizer with $\beta_1 = 0.0$, $\beta_2 = 0.999$,
 936 and zero weight decay for both the student and the score estimator. The learning rate is fixed across
 937 tasks at 10^{-5} . During Stage 1, we monitor the performance metrics on the validation set, such
 938 as BLEU, every 200 steps. Once the training is completed, we select the best-performing student
 939 checkpoint on the validation set as our new starting point for Stage 2. We provide a detailed table of
 940 distillation-related hyperparameter for both stages of each dataset in Table 5.

941 Table 5: Distillation-related hyperparameters used in Stage 1 and Stage 2 across different datasets.

942 Dataset	943 Stage	944 μ	945 $[t_{\min}, t_{\max}]$	946 t_{init}	947 $a_{dsm}^{sg}, b_{adv}^{sg}$	948 a_{sd}^g, b_{adv}^g	949 lr_{ψ}	950 lr_{θ}
951 QQP	952 Stage 1	953 1.2	954 $[0, 1976]$	955 1490	956 0.5, 0.5	957 0.5, 0.5	958 3e-5	959 1e-5
	960 Stage 2	961 0.5	962 $[0, 1976]$	963 1490	964 0.5, 0.5	965 0.9, 0.1	966 1e-5	967 1e-5
968 Q-T	969 Stage 1	970 1.2	971 $[0, 1976]$	972 1490	973 0.5, 0.5	974 0.5, 0.5	975 1e-5	976 1e-5
	977 Stage 2	978 1.2	979 $[0, 1976]$	980 1490	981 0.5, 0.5	982 0.5, 0.5	983 1e-5	984 1e-5
985 Wiki	986 Stage 1	987 1.0	988 $[0, 1976]$	989 1490	990 0.5, 0.5	991 0.5, 0.5	992 1e-5	993 1e-5

994 B.1.2 CONDITIONING

995 During the pretraining of DiffuSeq models, the injection of conditions is achieved via concatenation,
 996 *i.e.*, the condition sequence is directly concatenated with the data sequence as a whole before
 997 entering the network. However, the positions corresponding to the condition sequence do not
 998 participate in the diffusion forward process and are output as-is by the models. To align with the
 999 teacher pretraining process, we adjust the output by the student model accordingly. Denote the
 1000 condition embedding sequence as e^{cond} and the initial noise for the student model θ as z . Let
 1001 $\tilde{e}_{\theta, t} = G_{\theta}(e^{\text{cond}}, z) = e_{\theta}^{\text{cond}} \oplus e_{\theta}^{\text{data}}$. To inject the true condition, we modify the direct output by the
 1002 student model (*i.e.*, $\tilde{e}_{\theta, t}$) as $e_{\theta, t} = e^{\text{cond}} \oplus e_{\theta}^{\text{data}}$. The rationale behind this operation is that the teacher
 1003 model has been trained on the true conditions from the real dataset only, using part of the generated
 1004 sequence would introduce a discrepancy between teacher pretraining and distillation. Therefore, we
 1005 replace the generated condition part, *i.e.*, e_{θ}^{cond} with the true condition sequence e^{cond} . In our early
 1006 experiments, we found that this adjustment helps stabilize training and preventing degeneration when
 1007 used together with adversarial training.

971 ¹<https://github.com/Shark-NLP/DiffuSeq>

972 C ON THE FIDELITY-DIVERSITY TRADE-OFF 973

974 The empirical results of DLM-One model reflect a trade-off between generation fidelity and diversity.
975 The proposed two-stage training process tends to prefer high-fidelity outputs over high-diversity
976 outputs, which we argue is a not necessarily a limitation for practical applications. In this section, we
977 provide a detailed analysis of this trade-off and suggest how one can manage the trade-off in practice:
978 1) inference-time text augmentation to boost diversity, and 2) few-step generalization to increase
979 DLM-One’s overall performance.

980 C.1 MITIGATING DIVERSITY LOSS WITH TEXT AUGMENTATION 981

982 High fidelity is often preferable in practice, as many users want to call a model once and receive
983 a high-quality, relevant answer. Our model is optimized for this single-call scenario, where higher
984 fidelity metrics (*e.g.*, BLEU, BERTScore) indicate stronger utility. While the resulting decrease in
985 diversity might seem like a limitation, we demonstrate that it can be compensated for at inference
986 time with a simple rule-based text augmentation.

987 Specifically, by randomly inserting a pad token ([PAD]) into the condition text with a given proba-
988 bility, we can directly boost the diversity of the generated sentences. Table 6 presents the results of
989 this experiment on PP, QG, and TS tasks. As the insertion probability increases, diversity metrics like
990 Div-4 consistently rise across all tasks, accompanied by a predictable, modest decrease in fidelity
991 scores. This shows that diversity in DLM-One is not a fixed limitation but rather a controllable
992 parameter that can be tuned according to the needs of a specific application. We anticipate that with
993 more advanced techniques, such as model-based augmentation, generation diversity could be further
994 enhanced with even less impact on fidelity.

995 Table 6: The effect of random [PAD] token insertion on the fidelity-diversity trade-off across three
996 tasks. As insertion probability increases, diversity (SelfBLEU and Div-4) consistently improves at
997 the cost of fidelity.

998 Task	999 Dataset	1000 Ins. Prob.	1001 BLEU(\uparrow)	1002 R-L(\uparrow)	1003 BERT(\uparrow)	1004 Dist-1(\uparrow)	1005 SelfB(\downarrow) / Div-4(\uparrow)
1000 PP	1001 QQP	0.0	0.1788	0.5265	0.7851	0.9671	0.3418 / 0.6256
		0.5	0.1746	0.5204	0.7798	0.9663	0.3224 / 0.6507
		0.7	0.1712	0.5177	0.7771	0.9654	0.3134 / 0.6608
1003 QG	1004 Q-T	0.0	0.1512	0.3257	0.5683	0.9053	0.6166 / 0.3798
		0.5	0.1485	0.3175	0.5632	0.9065	0.5820 / 0.4167
		0.7	0.1473	0.3144	0.5624	0.9064	0.5692 / 0.4294
1006 TS	1007 Wiki	0.0	0.2927	0.5299	0.7565	0.8924	0.5456 / 0.4098
		0.5	0.2769	0.5196	0.7486	0.8897	0.5015 / 0.4532
		0.7	0.2715	0.5166	0.7464	0.8890	0.4866 / 0.4665

1010 C.2 IMPROVING DIVERSITY WITH MULTI-STEP TRAINING 1011

1012 A more fundamental approach to improving both fidelity and diversity is to train the model for
1013 few-step generation. This would involve training the generator to perform denoising at different
1014 noise levels (*i.e.*, step-aware training), significantly improving the model’s ability to produce diverse
1015 results. Such strategies have proven highly effective for enhancing distilled student models in the
1016 vision domain (Salimans et al., 2024; Zhou et al., 2025a) and represent a promising direction for
1017 future work on continuous DLMs.

1018 D COMPARISON WITH AUTOREGRESSIVE (AR) MODELS 1019

1020 To evaluate the performance and efficiency of DLM-One against standard baselines, we compare it
1021 to its teacher model (DiffuSeq) and two fine-tuned autoregressive models (GPT-2 Base and GPT-
1022 2 Large). For inference speed, we report the average time in seconds over 100 runs on the text
1023 simplification task, with a maximum output length of 128 tokens for a fair comparison.

1024 The results, shown in Table 7, demonstrate a clear trade-off between model type, performance, and
1025 speed. Both DiffuSeq and our distilled DLM-One are competitive with or outperform the GPT-
2 models on key fidelity metrics (BLEU, ROUGE-L, BERT), despite having significantly fewer

parameters than GPT-2 Large. Most notably, DLM-One’s single-step generation makes it by far the fastest model, achieving a speedup of approximately $27\times$ over GPT-2 Base and $500\times$ over its teacher, DiffuSeq.

Table 7: **Comparison of DLMs and AR models on the text simplification task.** DLM-One maintains competitive performance while being orders of magnitude faster. All results are reported using MBR-10 decoding for a fair comparison.

Model	BLEU(\uparrow)	R-L(\uparrow)	BERT(\uparrow)	Dist-1(\uparrow)	SelfB(\downarrow)	Div-4(\uparrow)	# Params	Avg. Inf. Time (s)
GPT-2 Base FT	0.3083	0.5461	0.8021	0.9439	0.5444	0.6047	117M	0.82
GPT-2 Large FT	0.2693	0.5111	0.7882	0.9464	0.6042	0.5876	774M	2.34
DiffuSeq (Teacher)	0.3622	0.5849	0.8126	0.9264	0.4642	0.6604	91M	14.94
DLM-One (Student)	0.3630	0.5839	0.8084	0.9068	0.5456	0.4098	91M	0.03

E ADDITIONAL RESULTS

Due to the page limit of the main text, we defer supplementary experimental results to this section.

E.1 GENERATED SAMPLES FOR SEQ2SEQ TASKS

We present generation results on 5 random examples each from the PP, QG, and TS tasks in Tables 9 to 11.

E.2 DLM-ONE WITH MBR DECODING

To directly compare with the results reported in Gong et al. (2022), we evaluate our student models using the MBR decoding strategy with a total of 10 generated candidates (denoted as MBR-10). As shown in Table 8, our distilled models demonstrate comparable performance to their respective teachers across all three datasets (QQP, QG, Wiki). In particular, the student model on the Wiki dataset nearly matches the teacher in all quality metrics (BLEU, ROUGE-L, BERTScore), suggesting that the DLM-One model can retain strong performance even when evaluated using multiple samples. However, we also observe a decrease in diversity metrics, especially on QG, which indicates that MBR may favor models with higher inter-sentence diversity.

F LLM USAGE STATEMENT

We utilized large language models (*e.g.*, ChatGPT) to assist with proofreading, grammatical corrections, and polishing the text of this manuscript. No new scientific results or text contents were generated by LLMs.

1080
1081
1082
1083
1084
10851086 Table 8: **MBR-10 evaluation results across Seq2Seq tasks.** Arrows indicate preferred directions: \uparrow
1087 higher is better, \downarrow lower is better.1088
1089
1090
1091
1092
1093
1094
1095
1096

Task	Dataset	Model	BLEU(\uparrow)	R-L(\uparrow)	BERT(\uparrow)	Dist-1(\uparrow)	SelfB(\downarrow) / Div-4(\uparrow)
PP	QQP	DiffuSeq	0.2413	0.5880	0.8365	0.9807	0.2732 / 0.8641
		DLM-One	0.2213	0.5741	0.8297	0.9773	0.3418 / 0.6256
QG	Q-T	DiffuSeq	0.1731	0.3665	0.6123	0.9056	0.2789 / 0.8103
		DLM-One	0.1522	0.3280	0.5708	0.9026	0.6167 / 0.3798
TS	Wiki	DiffuSeq	0.3622	0.5849	0.8126	0.9264	0.4642 / 0.6604
		DLM-One	0.3630	0.5839	0.8084	0.9068	0.5456 / 0.4098

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
11081109 Table 9: **Examples from the Paraphrase (PP) task.** Each example consists of a source sentence, a
1110 reference sentence, and outputs generated by DiffuSeq (Teacher) and DLM-One (Student).1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Source	Reference	Recover	
		DiffuSeq	DLM-One
how can i be a good geologist?	what should i do to be a great geologist?	how do i really be a good geologist?	how can i become a good geologist?
which are the best engineering fields?	what is the best field of engineering?	which are the best engineering field?	what are the best engineering fields?
how do i become an attractive girl?	how do you become pretty / attractive?	how can one become a girl?	how can i become an attractive girl quickly?
how does a long distance relationship work?	do long distance relationships work?	does long distance relationship work?	how do i have a long distance relationship?
what are some interesting things to do when bored?	what should i do if i'm badly bored?	what should you do when you bored?	what are the best thing to do when bored?

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146

Table 10: **Examples from the Question Generation (QG) task.** Each example consists of a source sentence, a reference sentence, and outputs generated by DiffuSeq (Teacher) and DLM-One (Student).

1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Source	Reference	Recover	
		DiffuSeq	DLM-One
a gaggle is a group of geese.	what is a group of geese called	what kind of birds would you a group geese geese	what is a group of geese called?
the ten - mineral mohs scale of relative hardness, based on what scratches what.	what is measured by moh's scale?	in mineralogy what does the mohs scale measure	in mineralogy what does the mohs scale measure
if you mix red and green lights they do not magically change into yellow light.	what colour do you get when you mix blue and yellow together?	when you mix equal amounts of blue and yellow color do what color?	when you mix equal amounts of blue and yellow yellow, what color do you get?
capable of sustained hovering, the hummingbird has the ability to fly deliberately backwards	which is the only musical bird that can fly backwards	what is the only bird that can can fly backwards	what is the only bird that can fly backwards
alexander graham bell in 1876, at the age of 29, alexander graham bell invented his telephone.	what did alexander graham bell invent	the telephone was invented in which year	the telephone was invented in which year

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197

1198 Table 11: **Examples from the Text Simplification (TS) task.** Each example consists of a source
 1199 sentence, a reference sentence, and outputs generated by DiffuSeq (Teacher) and DLM-One (Student).

1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Source	Reference	Recover	
		DiffuSeq	DLM-One
she was also the leader of the party between 1993 and 1995.	she was also the leader of the party between 1993 and 1995.	she was the leader of the party from 1995 to 1993.	she was the leader between 1993 and 1995.
thiel - sur - acolin is a commune in the allier department in auvergne - rhone - alpes in central france.	thiel - sur - acolin is a commune.	thiel - sur - acolin is a commune.	thiel - sur - acolin is a commune.
vetlanda municipality (" vetlanda kommun ") is a municipality in jonkoping county, in southern sweden where the town of vetlanda is the seat.	vetlanda municipality is a municipality in jonkoping county in southern sweden.	vetlanda municipality is a municipality in jonkoping county in southern sweden.	vetlanda municipality is a municipality in jonkoping county in southern sweden.
beaufort is located in north carolina's " inner banks " region.	beaufort is in north carolina's inner banks region.	beaufort is in north carolina's " inner banks " region.	beaufort is located in " inner banks " region.
weaver was born in pittsburgh, pennsylvania, on january 19, 1926, the son of elsa w. (nee stringaro) weaver and john carson weaver.	weaver was born on january 19, 1926 in pittsburgh, pennsylvania.	weaver was born in pittsburgh, pennsylvania, on january 19, 1926.	weaver was born in pittsburgh, pennsylvania.