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ABSTRACT

This paper introduces DLM-One, a score-distillation-based framework for one-
step sequence generation with continuous diffusion language models (DLMs).
DLM-One eliminates the need for iterative refinement by aligning the scores of a
student model’s outputs in the continuous token embedding space with the score
function of a pretrained teacher DLM. We investigate whether DLM-One can
achieve substantial gains in sampling efficiency for language modeling. Through
comprehensive experiments on DiffuSeq, a representative continuous DLM, we
show that DLM-One achieves up to ∼500× speedup in inference time while
maintaining competitive performance on benchmark text generation tasks used to
evaluate the teacher models. We further analyze the method’s empirical behavior
across multiple datasets, providing initial insights into its generality and practical
applicability. Our findings position one-step diffusion as a promising direction
for efficient, high-quality language generation and broader adoption of continuous
diffusion models operating in embedding space for natural language processing.

1 INTRODUCTION

Recent progress in large language models (LLMs) has been primarily driven by autoregressive (AR)
modeling, where sequences are generated token by token in a left-to-right fashion (Vaswani et al.,
2017; Radford et al., 2018; Brown et al., 2020; Achiam et al., 2023; Chowdhery et al., 2022; Team
et al., 2023; Touvron et al., 2023; Bai et al., 2023; Grattafiori et al., 2024). While AR models have
demonstrated remarkable performance across a wide range of natural language processing (NLP)
tasks, they suffer from several well-known limitations: exposure bias, error accumulation, lack of
bidirectional context during generation, limited controllability in non-left-to-right scenarios, and
inability to revise previously generated text (Keskar et al., 2019; Dathathri et al., 2020; Li et al., 2022a;
Reid et al., 2022; Kaddour et al., 2023; Zhang et al., 2023; Bachmann & Nagarajan, 2024; Berglund
et al., 2024). Moreover, certain data distributions may be inherently challenging to capture with AR
models but can be modeled more effectively by alternative non-AR approaches, such as energy-based
models (Lin et al., 2021). The sequential nature of token generation also imposes a fundamental
bottleneck on inference speed, motivating the development of various acceleration techniques to
reduce computational overhead (Khoshnoodi et al., 2024). These limitations have spurred growing
interest in non-AR paradigms—particularly diffusion language models (DLMs)—which offer a
fundamentally different approach by enabling parallel decoding of entire sequences instead of
generating them one token at a time.
In contrast to AR LMs, which rely on causal attention and require one function evaluation (NFE) per
token, DLMs often apply bidirectional attention and can generate sequences of predefined length
in parallel (Li et al., 2022a; Strudel et al., 2022; Dieleman et al., 2022; Gong et al., 2022). Existing
DLMs perform generation via iterative refinement, enabling all tokens in a sequence to interact with
each other and allowing for holistic reasoning over the full sequence. The per-token computational
cost of DLMs depends on both the NFEs used during the iterative refinement process and the length
of the target sequence. By adjusting the sequence length during pretraining and the number of NFEs
at inference time, DLMs offer flexible configurations to trade off generation quality and speed (Li
et al., 2022a; He et al., 2023; Li et al., 2023b; Lin et al., 2023; Zheng et al., 2024b; Gao et al., 2024).
However, despite this flexibility, there is currently no conclusive evidence that DLMs can either
generate faster while matching the performance of AR models, or achieve better performance at a
comparable model size (Gulrajani & Hashimoto, 2024; Han et al., 2023; Mahabadi et al., 2024; Nie
et al., 2025a;b; Gong et al., 2024). Nevertheless, there is substantial potential to accelerate DLMs
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by significantly reducing the number of required NFEs—without sacrificing performance—through
diffusion distillation techniques. Such techniques have recently shown notable success in speeding up
continuous diffusion models for vision tasks (Sauer et al., 2024; Yin et al., 2024; Zhou et al., 2024b).
DLMs can be broadly categorized into two types: discrete and continuous. Discrete DLMs operate
directly on categorical token spaces (Hoogeboom et al., 2021; Austin et al., 2021; He et al., 2023;
Lou et al., 2024), aligning naturally with the symbolic nature of language. These models have
demonstrated promising performance, e.g., on unconditional text generation tasks. However, they
still suffer from prohibitively slow sampling—often requiring hundreds to thousands of steps—due to
the lack of effective acceleration techniques tailored to discrete diffusion. In contrast, this issue is less
prominent in the vision domain, where continuous diffusion models and corresponding acceleration
methods predominate.
Unlike discrete diffusion, continuous DLMs model the diffusion process in the embedding space,
treating token representations as continuous vectors (Li et al., 2022a; Gong et al., 2022; Ye et al.,
2023; Yuan et al., 2022; Gao et al., 2024; Gulrajani & Hashimoto, 2024). Their sampling process
naturally supports controllability via auxiliary guidance (Dhariwal & Nichol, 2021; Ho & Salimans,
2022), and can be further accelerated while maintaining competitive performance (Song et al., 2021;
Lu et al., 2022; Salimans & Ho, 2022). These properties make DLMs particularly appealing for
real-world applications. Although they are arguably less aligned with the inherently discrete nature
of language—which may explain their relatively limited adoption compared to discrete DLMs—they
offer a key advantage: compatibility with a wide range of acceleration strategies developed in the
vision domain, such as consistency distillation (Song et al., 2023; Song & Dhariwal, 2023; Geng
et al., 2024) and score distillation (Poole et al., 2023; Wang et al., 2023; Luo et al., 2023; Yin et al.,
2023; Zhou et al., 2024c). These methods enable one- or few-step generation with minimal quality
degradation and, when enhanced with real data during distillation, can even surpass the teacher
model (Zhou et al., 2025b).
This prompts a key question: Can similar substantial gains in sampling efficiency be realized in
language generation? More specifically, can we generate a sequence of, e.g., 100 tokens through a
single forward pass of the diffusion backbone network? This would correspond to 100 NFEs for AR
LMs, and potentially even more for existing DLMs, where the exact count depends on the number of
iterative refinement steps but often reaches into the hundreds.
If so, it opens a promising research direction: how to pretrain stronger continuous DLMs that are
naturally amenable to distillation. Potential approaches include improving the word embedding space
or jointly optimizing it during pretraining. In this work, we focus on distilling existing continuous
DLMs pretrained in the word embedding space, using publicly available checkpoints or open-source
implementations, while leaving the design and pretraining of improved, larger models for future
exploration. Specifically, we choose continuous DLMs pretrained with DiffuSeq (Gong et al., 2022)
as our teacher models.
We consider continuous diffusion for language modeling and investigate whether vision-inspired
distillation techniques can enable drastically more efficient, high-quality sequence generation. Specif-
ically, we propose a score distillation-based framework for training DLMs for one-step sequence
generation (DLM-One). Our method distills the knowledge of a pretrained teacher DLM into a
student model of the same size that generates sequences in a single forward pass. Unlike prior work
that often relies on hundreds of iterative refinement steps to produce a single sequence, DLM-One
eliminates the need for iterative sampling altogether. It does so by aligning the scores of the student’s
outputs with the teacher’s score function in the forward-diffused noisy space. To stabilize training
and prevent degenerate solutions, we introduce an auxiliary adversarial loss and adopt a two-stage
optimization scheme that progressively refines the student.
Under the same model size, DLM-One achieves up to L× speedup compared to AR LMs, where L
is the target sequence length. It also achieves up to NFEs× speedup over the teacher DLM, where
NFEs denotes the number of iterative refinement steps used during teacher sampling. For example,
in terms of wall-clock time, DLM-One delivers approximately 500× speedup over DiffuSeq, while
achieving comparable generation quality. These results redefine what is possible along the Pareto
front between generation quality and sampling efficiency.
Our contributions are summarized as follows:

• We introduce DLM-One, a practical score distillation framework for continuous DLMs that
enables one-step sequence generation without iterative denoising.
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Figure 1: Overview of the adversarial score distillation process. Left: During score estimator ψ updates,
both real and generated data-condition pairs are used. The generator θ produces eclean

fake from cfake, while real
pairs are sampled from the dataset. The shared score estimator ψ is trained for both score prediction and GAN
discrimination. Right: During generator θ updates, the pretrained teacher model ϕ provides target scores, and ψ
produces both student scores and fake logits. These two scores are used to compute the score matching loss
together with the clean data. Additionally, the generator is optimized to encourage the generation of more
realistic samples under the feedback (i.e., logits) from ψ, via the adversarial loss. Modules marked with a are
frozen during the respective updates.

• We propose a two-stage training strategy with adversarial stabilization to enhance student
quality and address common failure modes in distilling DLMs in a data-free setting.

• Our empirical evaluation on benchmark text generation tasks used by the teacher models
demonstrates that our method achieves competitive performance while reducing sampling
cost by up to ∼500× over DiffuSeq.

2 RELATED WORK

2.1 DIFFUSION LANGUAGE MODELS

Unlike AR LMs, DLMs typically use a denoising score matching loss for training and predict entire
sequences or multiple tokens at once. This eliminates the need for left-to-right, token-by-token
sampling and enables faster decoding. Inspired by continuous diffusion models (Ho et al., 2020;
Nichol & Dhariwal, 2021), Li et al. (2022b) propose an end-to-end language modeling approach that
jointly learns word embeddings and a diffusion model in the embedding space, combining a diffusion
loss with a rounding loss. Gong et al. (2022) adopt a similar strategy for sequence-to-sequence tasks
by concatenating conditioning inputs with target sequences and modifying the forward diffusion
process to apply noise only to the target. In contrast to the decoder-only architecture used in DiffuSeq,
Yuan et al. (2022) introduce a dedicated encoder to process the conditioning input.
Viewing the additional rounding loss as a regularization term, Gao et al. (2024) propose an anchor loss
to improve training stability and prevent embedding collapse. To bridge the likelihood gap, Gulrajani
& Hashimoto (2024) introduce Plaid, the first DLM shown to achieve likelihood performance
comparable to that of AR models on standard language modeling benchmarks. While these models
all operate in the embedding space, we note that DLMs have also been trained in the vocabulary
logit space (Han et al., 2023; Mahabadi et al., 2024) and the latent space of an encoder-decoder
LM (Lovelace et al., 2023; Zhang et al., 2023; Zhou et al., 2024a; Shabalin et al., 2025). Extending
DLM-One to such models represents a promising direction for future work.
In addition to continuous diffusion models, discrete diffusion models have also been studied for
text generation. Hoogeboom et al. (2021) introduce a multinomial diffusion process for modeling
categorical data. Austin et al. (2021) further explore various discrete state transition matrices,
adding flexibility to the discrete diffusion process. By vector quantizing images into sequences of
visual tokens (Oord et al., 2017; Esser et al., 2021), discrete diffusion models have been applied
to generate visual token sequences that can be decoded back into images (Gu et al., 2022; Hu
et al., 2022). Lou et al. (2024) extend score matching (Hyvärinen & Dayan, 2005) losses from
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continuous to discrete spaces. Ou et al. (2025) reformulate the concrete score (Meng et al., 2022) as a
product of time-independent conditional probabilities and a time-dependent scalar, enabling more
efficient sampling. Rather than working on the general forward process, Sahoo et al. (2024) improve
the practical performance of discrete DLMs by focusing on the masking strategy and introducing
tight Rao-Blackwellized objectives. Shi et al. (2024) derive a simplified variational objective for
continuous-time masked DLMs and generalize the masking schedule to support state dependency.
Recognizing the connection between masked DLMs and AR models, Gong et al. (2024) propose a
continual pretraining approach to adapt pretrained AR models into discrete DLMs. Nie et al. (2025b)
introduces LLaDA that pretrains a large discrete DLM from scratch and further improves it with
supervised fine-tuning.

2.2 FASTER DIFFUSION

Diffusion models are known for their strong generative capabilities; however, this comes at the cost
of hundreds to thousands of NFEs during sampling in their original formulation (Ho et al., 2020;
Song et al., 2020). Despite progress with training-free acceleration techniques, such as advanced
samplers (Liu et al., 2022; Lu et al., 2022) and model quantization (Li et al., 2023a), diffusion models
still lag behind traditional generative models like GANs and VAEs in terms of sampling speed.
Several directions have been explored to accelerate diffusion-based generation. Liu et al. (2024) and
Guo et al. (2024) propose Discrete Copula Diffusion, which combines a discrete diffusion model with
a copula-based correction module at inference time to improve the denoising distribution. Masked dif-
fusion models (MDMs) (Zheng et al., 2024a) accelerate generation via a first-hitting sampling strategy.
Progressive distillation (Salimans & Ho, 2022) introduces an iterative distillation scheme, reducing
the number of sampling steps by progressively halving them. Luo et al. (2023) and Yin et al. (2024)
propose minimizing the integral Kullback–Leibler divergence between the generative distributions
of teacher and student models. From a score-distillation perspective, Zhou et al. (2024c) proposes
a Fisher divergence-based distillation objective and an accompanying alternating optimization pro-
cedure that jointly enhance convergence and generation quality. Further improvements in data-free
score distillation have been achieved by incorporating real data and adversarial training (Sauer et al.,
2024; Yin et al., 2024; Zhou et al., 2025b).
In the context of accelerating DLMs, AR-Diffusion (Wu et al., 2023) incorporates autoregressive
characteristics into diffusion models by allocating fewer refinement steps to earlier tokens, thereby
better modeling sequential dependencies. Unlike training-free methods that focus on better utilizing
the frozen teacher for faster inference, diffusion distillation trains a student model from a pretrained
teacher, enabling generation in just one or a few inference steps. Our work—DLM-One—is a diffusion
distillation framework that enables one-step sequence generation while preserving the generation
quality of the teacher, effectively eliminating the need for iterative refinement.

3 ONE-STEP DIFFUSION LANGUAGE MODELS

To train a one-step sequence generation model, we begin with a pretrained teacher DLM that operates
in a continuous embedding space. In this setting, each discrete language token is first mapped to a
real-valued embedding vector via an embedding layer. The diffusion process is then applied to these
continuous embeddings rather than to the discrete tokens themselves. This setup enables us to leverage
well-established acceleration methods from continuous diffusion models in the vision domain, while
focusing on language-model-specific adjustments essential for effective sequence generation.
During pretraining, the embedding matrix is typically optimized end-to-end to improve generation
quality (Li et al., 2022b), as this allows the embeddings to better align with the denoising objective
compared to using a frozen embedding matrix from a pretrained language model. However, without
additional constraints, the embedding space can exhibit pathological behaviors such as collapse or
poor token separation. To address this, recent work has proposed regularization techniques—such
as anchor loss and likelihood-aware training—to preserve meaningful structure in the embedding
space (Gong et al., 2022; Gao et al., 2024; Gulrajani & Hashimoto, 2024).

3.1 EMBEDDING-SPACE SCORE DISTILLATION

Following the practice adopted in latent diffusion (Rombach et al., 2022), we freeze the pretrained
embedding matrix during distillation, leaving end-to-end embedding finetuning as a promising
direction for future work. While various objectives are possible, we build our method upon Score
identity Distillation (SiD; Zhou et al., 2024c) to demonstrate the potential of one-step diffusion models
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in the language domain. SiD is a state-of-the-art one-step diffusion distillation method that operates
in a fully data-free setting and readily supports two key enhancement techniques—classifier-free
guidance (CFG) (Zhou et al., 2024b) and adversarial training (Zhou et al., 2025b)—both of which are
found to be important for distillation in the embedding space of DLMs.
Specifically, we denote the pretrained teacher DLM as ϕ, the student generator as θ, and the score
estimator for the student model as ψ. Let E denote the token embedding layer and e ∈ Rd×L
denote the d-dimensional continuous embeddings of a sequence of length L, which may optionally
be mapped back to discrete tokens via a rounding or decoding mechanism during inference. The
generation process of the student model is given by

e = Gθ(c, z), z ∼ N (0, I),

where c is an optional condition (e.g., a prompt or label), and z is noise input. We apply the forward
diffusion process to obtain noisy embeddings et = αte+ σtϵ, ϵ ∼ N (0, I), where αt and σt follow
a predefined noise schedule that gradually decreases the signal-to-noise ratio αt/σt as t increases.
The pretrained teacher model ϕ provides an estimate of the score function at et given t and c, defined
as sϕ(et, t, c) = ∇et log p(et | t, c). The distillation objective is to train the student generator such
that its score matches that of the teacher in the forward-diffused noisy space. This is achieved by
minimizing the model-based explicit score matching (MESM) loss, a form of Fisher divergence:

Lmesm(θ;ψ
∗) = Ee=Gθ(c,z), t, c, z

[
ωt

∥∥sϕ(et, t, c)− sψ∗(θ)(et, t, c)
∥∥2] , (1)

where ψ∗(θ) denotes the true score function induced by the student generator θ, and ωt is a time-
dependent reweighting coefficient. For unconditional generation, the condition c is set to ∅.
By Tweedie’s formula (Robbins, 1992; Efron, 2011), Equation 1 can be equivalently written as:

Ee,t,c
(
ωt

α2
t

σ4
t
∥êϕ(et, t, c)− êψ∗(θ)(et, t, c)∥2

)
, (2)

where êϕ and êψ∗(θ) denote the expected values of the clean embedding e conditioned on the noisy
observation et, as inferred by the teacher and optimal student score networks, respectively.
While Equation 2 and its gradient are generally intractable to compute, the SiD method (Zhou et al.,
2024c) provides an effective optimization procedure that alternates between estimating ψ∗(θ) and
updating θ. Specifically, we optimize ψ given θ using the denoising score matching (DSM) loss:

Ldsm(ψ) = Ee,t,c
[
γt ∥êψ(et, t, c)− e∥2

]
, (3)

and optimize θ given ψ using the following SiD loss:

Lsid(θ;ψ
∗, µ) = Ee,t,c

[
(1− µ)ωt

α2
t

σ4
t
∥êϕ(et, t, c)− êψ(et, t, c)∥2

+ ωt
α2

t

σ4
t
(êϕ(et, t, c)− êψ(et, t, c))

⊤
(êψ(et, t, c)− e)

]
, (4)

where µ > 0 is a hyperparameter that is often set as 1 or 1.2.

3.2 ADVERSARIAL REGULARIZATION

While data-free distillation of pretrained diffusion models is appealing—requiring access only to the
teacher model rather than real data—and has achieved highly competitive performance in the vision
domain (Zhou et al., 2024c;b), its application to DLMs presents a major challenge: degeneration in the
student model. In the absence of explicit constraints (e.g., on sentence length) or implicit supervision
from real data, distilled models tend to degenerate after a certain number of training iterations, such
as (1) generating repetitive tokens, or (2) producing empty sequences filled with [PAD] tokens. To
mitigate this, we combine standard score distillation with adversarial regularization.
Specifically, when updating the fake score estimator ψ, we first sample a condition cfake and generate
an embedding sequence efake

θ using the student generator θ. We then compute the DSM loss of ψ along
with part of the adversarial loss—namely, the binary cross-entropy (BCE) loss using pseudo-labels
set to all negatives. Additionally, we sample a pair consisting of a real data sequence xreal and its
corresponding condition creal, and compute the remaining part of the adversarial loss using pseudo-
labels set to all positives. Following Diffusion GAN (Wang et al., 2022) to perform discrimination on
noised embeddings, the adversarial loss for ψ is given by:

Lsg
adv(ψ) =

1

2
E
[
log σ(Dψ(e

real
t , t, creal)) + log(1− σ(Dψ(e

fake
θ,t , t, c

fake))
]
, (5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 DLM-One Adversarial Score Distillation
Input: Pre-trained teacher DLM ϕ, student model θ, score estimator ψ, embedding layer E, score distillation
loss coefficient µ, real dataset DX,C , time range [tmin, tmax], diffusion weight function λ(t), loss term
coefficients asgdsm, b

sg
adv, a

g
sd, b

g
adv .

Initialization θ ← ϕ, ψ ← ϕ
repeat

Sample cfake ∼ D∗,Y , (x
real, creal) ∼ DX,C , t ∈ [tmin, tmax]

Sample z ∼ N (0, I), let efake = Gθ(c
fake, z) and ereal = E(xreal)

Sample noises ϵfake, ϵreal ∼ N (0, I)
efake
t ← αte

fake + σtϵ
fake, ereal

t ← αte
real + σtϵ

real

Compute L̂dsm according to Eq. 3 and L̂sg
adv according to Eq. 5

Update ψ via SGD on the combined loss asg
dsmL̂dsm + bsg

advL̂
sg
adv

Sample cfake ∼ D∗,C , t ∈ [tmin, tmax]
Sample z ∼ N (0, I), let efake = Gθ(c

fake, z)
Sample noises ϵfake ∼ N (0, I)
efake
t ← αte

fake + σtϵ
fake

Compute L̂sd according to Eq. 4 and L̂g
adv according to Eq. 6

Update θ via SGD on the combined loss ag
sdL̂sd + bg

advL̂
g
adv

until the maximum number training steps is reached
Output: θ

where ereal
t is the noisy embedding obtained by forward diffusing the embedding of xreal. For the

update steps of the student model θ, we compute both the SiD loss and the all-positive BCE loss on
generated sequences conditioned on c. We denote each generated ⟨data, condition⟩ pair as (xθ, c)
and eθ,t as the noised version of of eθ. The corresponding adversarial loss is:

Lg
adv(θ) = E [log σ(Dψ(eθ,t, t, c))] . (6)

We provide an overview and pseudo-code of our adversarial score distillation training process in
Figure 1 and Algorithm 1, respectively. For efficiency, we utilize the same model (i.e., the score
estimator ψ) for both score prediction and GAN discrimination. At a high level, the additional
adversarial losses provide implicit supervision and help stabilize training, preventing mode collapse
and encouraging more realistic sequence generation.

3.3 TWO-STAGE TRAINING

Due to the alternating update scheme, the score estimator ψ may fail to provide an accurate approx-
imation of the true score corresponding to the student model θ. To address this issue, we propose
a two-stage training procedure. In the first stage (Stage 1), our primary goal is to obtain a “good
enough” student model whose generative distribution is reasonably close to that of the teacher. This
can be assessed using standard performance metrics such as BLEU. In practice, we train the student
model for a fixed number of steps and select the best checkpoint based on BLEU score evaluated on
the validation set.
In the second stage (Stage 2), we resume training the student model θ from the selected checkpoint
but reinitialize the score estimator ψ with the parameters of the teacher model ϕ. The intuition
behind this is to mitigate the potential lag of ψ, which arises because it is updated alternately with
the student and may fall behind the true score of the evolving student model. This issue becomes
more pronounced as the student’s generative distribution grows increasingly close to the teacher’s,
diverging significantly from its earlier state. In such cases, the feedback provided by ψ may become
insufficient to guide further improvement. Reinitializing ψ with the teacher model helps realign it
with the updated student and provides more meaningful learning signals for continued distillation.
The Stage 2 training procedure largely mirrors that of Algorithm 1, with the key distinction that it
requires a student model checkpoint from the end of Stage 1 for initialization.

4 EXPERIMENTS

In our experiments, we conduct a comprehensive evaluation on the benchmark tasks originally used
to assess the performance of the teacher DLMs pretrained with DiffuSeq. The results convincingly
demonstrate the potential of significantly accelerating the sampling efficiency of continuous DLMs
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Table 1: Performance comparison between teacher and student models across Seq2Seq tasks. ↑ indicates
higher is better, ↓ indicates lower is better. * denotes that the student’s performance is within 5% of the teacher’s,
and ** indicates that it is within 1%.

Task Model BLEU(↑) ROUGE-L(↑) BERT(↑) Dist-1(↑) SelfBLEU(↓) / Div-4(↑) NFEs(↓)

PP DiffuSeq 0.1829 0.5299 0.7932 0.9747 0.2732 / 0.8641 2000
DLM-One 0.1788∗ 0.5265∗∗ 0.7851∗ 0.9671∗∗ 0.3418 / 0.6256 1

QG DiffuSeq 0.1512 0.3468 0.5871 0.9141 0.2789 / 0.8103 2000
DLM-One 0.1512∗∗ 0.3257 0.5683∗ 0.9053∗∗ 0.6166 / 0.3798 1

TS DiffuSeq 0.2929 0.5313 0.7781 0.9272 0.4642 / 0.6604 2000
DLM-One 0.2927∗∗ 0.5299∗∗ 0.7565∗ 0.8924∗ 0.5456 / 0.4098 1

via score distillation, enabling one-step token sequence generation that rivals the performance of
teacher models requiring hundreds of times more computation. This redefines the Pareto frontier
between computational efficiency and generation quality in continuous diffusion-based language
modeling, and has profound implications for the future development of LLMs.

4.1 TASKS AND DATASETS

We consider three sequence-to-sequence (Seq2Seq) tasks, including: question generation (QG),
text simplification (TS), and paraphrase (PP). Specifically, we used preprocessed data from
Quasar-T (Dhingra et al., 2017) for QG, Wiki-Auto (Jiang et al., 2020) for TS, and Quora question
pairs (QQP) for PP. For each dataset, we use the standard splits of training, validation, and test sets.
The data derived from Quasar-T contain approximately 129k ⟨document, question⟩ pairs, including
117k training pairs, 2k validation pairs, and 10k test pairs. The Wiki-Auto preprocessed dataset
consists of a total of ∼685k ⟨complex, simple⟩ sentence pairs, with approximately 678k training
pairs, 2k validation pairs, and 5k test pairs. QQP dataset contains about 150k paraphrase sentence
pairs, including 145k training, 2k validation, and 2k test.

4.2 EVALUATION

For evaluation of the Seq2Seq tasks, we mainly consider five factors: BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), BERT Score (Zhang et al., 2020), Dist-1, and sequence diversity. BLEU,
ROUGE-L, and BERTScore are standard metrics for evaluating sequence-to-sequence tasks, as
they capture sentence-level similarity between the generated sequences and the references. BLEU
emphasizes n-gram precision, ROUGE-L focuses on recall based on the longest common subsequence,
and BERTScore leverages contextual embeddings to assess semantic similarity. Dist-1 measures
lexical diversity by computing the average ratio of distinct unigrams in a single sentence over all
generated samples. Sequence-level diversity is further assessed using two metrics: self-BLEU
(Zhu et al., 2018) and Div-4. Following the implementation of DiffuSeq (Gong et al., 2022), we
compute self-BLEU by averaging inter-sentence BLEU scores across generated samples, while Div-4
quantifies the proportion of distinct 4-grams among them.

(a) BLEU (b) ROUGE-L (c) BERTScore (d) Dist-1

Figure 2: Evaluation metrics using MBR decoding across 1 to 10 candidate(s) on the Wiki dataset.

4.3 SEQUENCE-TO-SEQUENCE (SEQ2SEQ) TASKS

For sequence-to-sequence tasks, we mainly consider DiffuSeq (Gong et al., 2022) as our major
baseline to showcase the effectiveness of the proposed score distillation framework for LMs. We
list results of all five performance metrics in Table 1, which shows that our distilled models can
achieve close-to-teacher performance consistently across all three tasks while taking far less number
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(a) QQP (b) Quasar-T (c) Wiki-Auto

Figure 3: BLEU score vs. sampling steps on different datasets. The teacher model (DiffuSeq) requires
hundreds to thousands of denoising steps to reach optimal performance, while our DLM-One achieves competitive
BLEU in a single step—offering over 100× faster generation without significant quality degradation.

Table 2: Average generation time per sample across different sampling steps. Each entry reflects the mean
time (in seconds), averaged over 100 runs. Time does not scale strictly linearly with NFEs, due to fixed overhead
such as embedding rounding and tokenizer-based decoding.

Steps 1 65 286 667 1000 2000

Time (s) 0.03 0.51 2.25 5.20 7.70 14.94

of functional evaluations (NFEs). The actual acceleration is further demonstrated in Figure 3, where
we consider the BLEU score against number of sampling steps on QQP, Quasar-T, and Wiki-Auto
datasets. In Table 2, we provide the conversion from the sampling steps to the inference time, which
is measured on an NVIDIA RTX A5000 GPU. Our one-step model achieves up to an approximately
500× speedup compared to the 2000-step baseline with no notable performance degradation.
The results of our approach on PP and QG are obtained from the final-stage (i.e., Stage 2) DLM-
One models, while those on TS are reported from Stage 1, as the student model already closely
matches the teacher’s performance. As shown in Figure 2, minimum Bayes risk (MBR) decoding
offers a more comprehensive evaluation of generation quality and diversity by leveraging multiple
candidate samples. As the number of candidates increases, MBR decoding typically leads to improved
performance. The observation that our student model consistently matches the teacher across 1 to 10
candidates under MBR decoding further suggests that a single-stage distillation is sufficient for the
TS task on the Wiki dataset.

5 DISCUSSION

Effect of Two-stage Training. We find the two-stage training strategy is crucial for improving
the model’s overall fidelity across key metrics such as BLEU, ROUGE-L, and BERTScore, at the
cost of reduced diversity. For practical applications of DLM-One, we argue this is a favorable
trade-off, as higher fidelity often corresponds to greater model utility for end-users. The trade-off is
further quantified in Table 3, which compares the performance of the QQP checkpoints from the two
stages. Furthermore, we demonstrate that this loss in diversity can be mitigated with inference-time
augmentation, and we also discuss the possibility of generalizing DLM-One to a few-step model, as
detailed in Appendix C.
Limited Gain from Additional Stages. A natural question arises: Will more stages continue to
improve performance? Based on our experiments, the answer appears to be no. As illustrated in
Figure 4, model performance essentially plateaus at the beginning of a third stage, and while minor
fluctuations are observed thereafter, the metrics do not exhibit new upward trends. Further training
does not yield additional gains, likely due to diminishing learning signals.
Effect of Additional Steps at Inference Time. Although DLM-One is optimized for single-step
generation, we explore whether introducing additional steps at inference time can further enhance
generation quality. Specifically, we implement a simple iterative scheme in which the model alternates
between re-noising and denoising its own output multiple times. As shown in Table 4, increasing
the number of steps from 1 to 4 consistently improves fidelity metrics (e.g., BLEU, ROUGE-L) at
a modest cost to diversity (e.g., Div-4, self-BLEU). This demonstrates that even without explicit
multi-step training, the number of sampling steps can serve as a practical lever to navigate the
quality-diversity trade-off. However, since the model was not optimized for this regime, these results
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Table 3: Effect of two-stage training on the QQP dataset. The second row shows raw scores; the third row
shows relative changes from Stage 1. Percentages in green and red indicate improvements and degradations,
respectively. Arrows ↑/↓ denote preferred directions.

Stage BLEU(↑) ROUGE-L(↑) BERT(↑) Dist-1(↑) SelfBLEU(↓) Div-4(↑)

Stage 1 0.1468 0.4829 0.7402 0.9370 0.2195 0.7764
Stage 2 0.1788 0.5265 0.7851 0.9671 0.3418 0.6256

∆Stage +21.8% +9.0% +6.1% +3.2% +55.7% −19.4%

(a) BLEU (b) ROUGE-L (c) BERTScore (d) Dist-1

Figure 4: Evolution of evaluation metrics during Stage 3 training on the QQP dataset.

Table 4: Performance of DLM-One under increased inference steps on the QQP dataset.

Steps BLEU(↑) ROUGE-L(↑) BERT(↑) Dist-1(↑) SelfBLEU(↓) Div-4(↑)

1 0.1788 0.5265 0.7851 0.9671 0.3418 0.6256
2 0.1800 0.5287 0.7895 0.9676 0.3455 0.6228
4 0.1829 0.5329 0.7959 0.9693 0.3549 0.6095

should not be interpreted as an upper bound. Training distilled generators specifically for few-step
inference, a promising direction inspired by recent vision models (Yin et al., 2024; Zhou et al., 2025a),
remains a key avenue for future work.
Comparison with AR Models. A key advantage of our approach is that DLM-One maintains
competitive generation quality compared to similar-sized AR LMs while offering a substantial
improvement in inference speed. Our results align with prior work, which shows that teacher DLMs
(e.g., DiffuSeq, 91M parameters) can already achieve on-par or superior performance to much larger,
fine-tuned AR models like GPT-2 Large (774M parameters) across tasks such as paraphrase, question
generation, and text simplification. By distilling the teacher into a one-step generator, DLM-One
preserves this high fidelity while being orders of magnitude faster than both its multi-step teacher
and the token-by-token sampling of AR models. We provide a detailed comparison of performance
metrics, model sizes, and inference speeds in Appendix D.

6 CONCLUSION

In this work, we propose a practical distillation framework for training continuous diffusion language
models for one-step sequence generation (DLM-One), eliminating the need for iterative refinement
during generation. Our method is broadly applicable to continuous diffusion-based language models
and enables fast, one-step generation via score distillation from pretrained teacher models. To
further stabilize training and improve student quality, we introduce a two-stage training scheme
with adversarial regularization. Through detailed experiments on conditional text generation tasks,
we demonstrate that DLM-One achieves competitive performance against the teacher DLMs while
reducing sampling cost by up to ∼500×. This redefines the Pareto frontier between computational
efficiency and generation quality in continuous diffusion-based language modeling, and has profound
implications for the future development of LLMs.
Nevertheless, our work opens up several promising directions for future investigation. First, while
hyperparameters like the score distillation loss coefficient µ currently require per-task tuning tuning,
future work could explore more principled and adaptive training schemes. Second, we find that the
trade-off between fidelity and diversity in DLM-One is a controllable aspect that can be adjusted
based on the needs of downstream applications. We identify the extension of DLM-One to a few-step
generator could be a key avenue for future research, with the potential to improve the overall model
performance in both fidelity and diversity.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed implementation and training protocols
in Appendix B. This includes all distillation-related hyperparameters for each dataset (Table 5) and a
description of the conditioning mechanism. Our work is based on the publicly available DiffuSeq
codebase, which we have linked in the appendix. We will release our full source code, including
scripts to reproduce all experiments and a link to our final model checkpoints, upon publication.

ETHICS STATEMENT

This work introduces one-step sequence generation framework, DLM-One, to significantly improve
the inference speed of DLMs. The primary goal is to reduce the high computational cost and energy
consumption associated with large generative models, thereby making this technology more accessible
and sustainable, as discussed in our broader impacts statement in Appendix A. We used publicly
available, standard benchmark datasets (QQP, Quasar-T, Wiki-Auto) for our experiments. While
our work makes generation more efficient, it does not introduce new risks beyond those inherent in
existing language models, such as the potential for generating biased or harmful content. We believe
the net impact of this research is positive, as it contributes to more computationally efficient and
environmentally friendly AI.
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Appendix for DLM-One

A BROADER IMPACTS

The high computational cost of large-scale language models poses challenges for accessibility,
especially for users with limited resources. DLM-One addresses this by enabling one-step diffusion-
based language generation, offering a significantly more efficient alternative to traditional iterative
methods. By reducing the number of function evaluations required at inference time, DLM-One
lowers energy consumption and makes diffusion language models more practical and sustainable for
real-world deployment.

B IMPLEMENTATION DETAILS

In this section, we provide detailed documentation of the implementation, including aspects not fully
covered in the main text, for experiments on DiffuSeq. We outline the specific adaptations required
for distilling these baselines into one-step sequence generators.

B.1 DIFFUSEQ

We adopt the official codebase of DiffuSeq1 and all three released checkpoints to conduct our Seq2Seq
experiments in Section 4.

B.1.1 TRAINING PROTOCOL

For the training of our DLM-One student models, we set a fixed training budgets of 50,000 steps for
all datasets. We use AdamW (Loshchilov & Hutter, 2019) optimizer with β1 = 0.0, β2 = 0.999,
and zero weight decay for both the student and the score estimator. The learning rate is fixed across
tasks at 10−5. During Stage 1, we monitor the performance metrics on the validation set, such
as BLEU, every 200 steps. Once the training is completed, we select the best-performing student
checkpoint on the validation set as our new starting point for Stage 2. We provide a detailed table of
distillation-related hyperparameter for both stages of each dataset in Table 5.

Table 5: Distillation-related hyperparameters used in Stage 1 and Stage 2 across different datasets.

Dataset Stage µ [tmin, tmax] tinit asgdsm, bsgadv agsd, bgadv lrψ lrθ

QQP Stage 1 1.2 [0, 1976] 1490 0.5, 0.5 0.5, 0.5 3e-5 1e-5
Stage 2 0.5 [0, 1976] 1490 0.5, 0.5 0.9, 0.1 1e-5 1e-5

Q-T Stage 1 1.2 [0, 1976] 1490 0.5, 0.5 0.5, 0.5 1e-5 1e-5
Stage 2 1.2 [0, 1976] 1490 0.5, 0.5 0.5, 0.5 1e-5 1e-5

Wiki Stage 1 1.0 [0, 1976] 1490 0.5, 0.5 0.5, 0.5 1e-5 1e-5

B.1.2 CONDITIONING

During the pretraining of DiffuSeq models, the injection of conditions is achieved via concatenation,
i.e., the condition sequence is directly concatenated with the data sequence as a whole before
entering the network. However, the positions corresponding to the condition sequence do not
participate in the diffusion forward process and are output as-is by the models. To align with the
teacher pretraining process, we adjust the output by the student model accordingly. Denote the
condition embedding sequence as econd and the initial noise for the student model θ as z. Let
ẽθ,t = Gθ(e

cond, z) = econd
θ ⊕ edata

θ . To inject the true condition, we modify the direct output by the
student model (i.e., ẽθ,t) as eθ,t = econd ⊕ edata

θ . The rationale behind this operation is that the teacher
model has been trained on the true conditions from the real dataset only, using part of the generated
sequence would introduce a discrepancy between teacher pretraining and distillation. Therefore, we
replace the generated condition part, i.e., econd

θ with the true condition sequence econd. In our early
experiments, we found that this adjustment helps stabilize training and preventing degeneration when
used together with adversarial training.

1https://github.com/Shark-NLP/DiffuSeq
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C ON THE FIDELITY-DIVERSITY TRADE-OFF

The empirical results of DLM-One model reflect a trade-off between generation fidelity and diversity.
The proposed two-stage training process tends to prefer high-fidelity outputs over high-diversity
outputs, which we argue is a not necessarily a limitation for practical applications. In this section, we
provide a detailed analysis of this trade-off and suggest how one can manage the trade-off in practice:
1) inference-time text augmentation to boost diversity, and 2) few-step generalization to increase
DLM-One’s overall performance.

C.1 MITIGATING DIVERSITY LOSS WITH TEXT AUGMENTATION

High fidelity is often preferable in practice, as many users want to call a model once and receive
a high-quality, relevant answer. Our model is optimized for this single-call scenario, where higher
fidelity metrics (e.g., BLEU, BERTScore) indicate stronger utility. While the resulting decrease in
diversity might seem like a limitation, we demonstrate that it can be compensated for at inference
time with a simple rule-based text augmentation.
Specifically, by randomly inserting a pad token ([PAD]) into the condition text with a given proba-
bility, we can directly boost the diversity of the generated sentences. Table 6 presents the results of
this experiment on PP, QG, and TS tasks. As the insertion probability increases, diversity metrics like
Div-4 consistently rise across all tasks, accompanied by a predictable, modest decrease in fidelity
scores. This shows that diversity in DLM-One is not a fixed limitation but rather a controllable
parameter that can be tuned according to the needs of a specific application. We anticipate that with
more advanced techniques, such as model-based augmentation, generation diversity could be further
enhanced with even less impact on fidelity.

Table 6: The effect of random [PAD] token insertion on the fidelity-diversity trade-off across three
tasks. As insertion probability increases, diversity (SelfBLEU and Div-4) consistently improves at
the cost of fidelity.

Task Dataset Ins. Prob. BLEU(↑) R-L(↑) BERT(↑) Dist-1(↑) SelfB(↓) / Div-4(↑)

PP QQP
0.0 0.1788 0.5265 0.7851 0.9671 0.3418 / 0.6256
0.5 0.1746 0.5204 0.7798 0.9663 0.3224 / 0.6507
0.7 0.1712 0.5177 0.7771 0.9654 0.3134 / 0.6608

QG Q-T
0.0 0.1512 0.3257 0.5683 0.9053 0.6166 / 0.3798
0.5 0.1485 0.3175 0.5632 0.9065 0.5820 / 0.4167
0.7 0.1473 0.3144 0.5624 0.9064 0.5692 / 0.4294

TS Wiki
0.0 0.2927 0.5299 0.7565 0.8924 0.5456 / 0.4098
0.5 0.2769 0.5196 0.7486 0.8897 0.5015 / 0.4532
0.7 0.2715 0.5166 0.7464 0.8890 0.4866 / 0.4665

C.2 IMPROVING DIVERSITY WITH MULTI-STEP TRAINING

A more fundamental approach to improving both fidelity and diversity is to train the model for
few-step generation. This would involve training the generator to perform denoising at different
noise levels (i.e., step-aware training), significantly improving the model’s ability to produce diverse
results. Such strategies have proven highly effective for enhancing distilled student models in the
vision domain (Salimans et al., 2024; Zhou et al., 2025a) and represent a promising direction for
future work on continuous DLMs.

D COMPARISON WITH AUTOREGRESSIVE (AR) MODELS

To evaluate the performance and efficiency of DLM-One against standard baselines, we compare it
to its teacher model (DiffuSeq) and two fine-tuned autoregressive models (GPT-2 Base and GPT-
2 Large). For inference speed, we report the average time in seconds over 100 runs on the text
simplification task, with a maximum output length of 128 tokens for a fair comparison.
The results, shown in Table 7, demonstrate a clear trade-off between model type, performance, and
speed. Both DiffuSeq and our distilled DLM-One are competitive with or outperform the GPT-
2 models on key fidelity metrics (BLEU, ROUGE-L, BERT), despite having significantly fewer
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parameters than GPT-2 Large. Most notably, DLM-One’s single-step generation makes it by far the
fastest model, achieving a speedup of approximately 27× over GPT-2 Base and 500× over its teacher,
DiffuSeq.

Table 7: Comparison of DLMs and AR models on the text simplification task. DLM-One
maintains competitive performance while being orders of magnitude faster. All results are reported
using MBR-10 decoding for a fair comparison.

Model BLEU(↑) R-L(↑) BERT(↑) Dist-1(↑) SelfB(↓) Div-4(↑) # Params Avg. Inf.
Time (s)

GPT-2 Base FT 0.3083 0.5461 0.8021 0.9439 0.5444 0.6047 117M 0.82
GPT-2 Large FT 0.2693 0.5111 0.7882 0.9464 0.6042 0.5876 774M 2.34

DiffuSeq (Teacher) 0.3622 0.5849 0.8126 0.9264 0.4642 0.6604 91M 14.94
DLM-One (Student) 0.3630 0.5839 0.8084 0.9068 0.5456 0.4098 91M 0.03

E ADDITIONAL RESULTS

Due to the page limit of the main text, we defer supplementary experimental results to this section.

E.1 GENERATED SAMPLES FOR SEQ2SEQ TASKS

We present generation results on 5 random examples each from the PP, QG, and TS tasks in Tables 9
to 11.

E.2 DLM-ONE WITH MBR DECODING

To directly compare with the results reported in Gong et al. (2022), we evaluate our student models
using the MBR decoding strategy with a total of 10 generated candidates (denoted as MBR-10).
As shown in Table 8, our distilled models demonstrate comparable performance to their respective
teachers across all three datasets (QQP, QG, Wiki). In particular, the student model on the Wiki
dataset nearly matches the teacher in all quality metrics (BLEU, ROUGE-L, BERTScore), suggesting
that the DLM-One model can retain strong performance even when evaluated using multiple samples.
However, we also observe a decrease in diversity metrics, especially on QG, which indicates that
MBR may favor models with higher inter-sentence diversity.
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Table 8: MBR-10 evaluation results across Seq2Seq tasks. Arrows indicate preferred directions: ↑
higher is better, ↓ lower is better.

Task Dataset Model BLEU(↑) R-L(↑) BERT(↑) Dist-1(↑) SelfB(↓) / Div-4(↑)

PP QQP DiffuSeq 0.2413 0.5880 0.8365 0.9807 0.2732 / 0.8641
DLM-One 0.2213 0.5741 0.8297 0.9773 0.3418 / 0.6256

QG Q-T DiffuSeq 0.1731 0.3665 0.6123 0.9056 0.2789 / 0.8103
DLM-One 0.1522 0.3280 0.5708 0.9026 0.6167 / 0.3798

TS Wiki DiffuSeq 0.3622 0.5849 0.8126 0.9264 0.4642 / 0.6604
DLM-One 0.3630 0.5839 0.8084 0.9068 0.5456 / 0.4098

Table 9: Examples from the Paraphrase (PP) task. Each example consists of a source sentence, a
reference sentence, and outputs generated by DiffuSeq (Teacher) and DLM-One (Student).

Source Reference Recover
DiffuSeq DLM-One

how can i be a good
geologist?

what should i do to
be a great geologist?

how do i really be a
good geologist?

how can i become a
good geologist?

which are the best
engineering fields?

what is the best field
of engineering?

which are the best
engineering field?

what are the best en-
gineering fields?

how do i become an
attractive girl?

how do you become
pretty / attractive?

how can one be-
come a girl?

how can i become
an attractive girl
quickly?

how does a long dis-
tance relationship
work?

do long distance re-
lationships work?

does long distance
relationship work?

how do i have a
long distance rela-
tionship?

what are some inter-
esting things to do
when bored?

what should i do if
i’m badly bored?

what should you do
when you bored?

what are the best
thing to do when
bored?
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Table 10: Examples from the Question Generation (QG) task. Each example consists of a source
sentence, a reference sentence, and outputs generated by DiffuSeq (Teacher) and DLM-One (Student).

Source Reference Recover
DiffuSeq DLM-One

a gaggle is a group
of geese.

what is a group of
geese called

what kind of birds
would you a group
geese geese

what is a group of
geese called?

the ten - mineral
mohs scale of rela-
tive hardness, based
on what scratches
what.

what is measured by
moh’s scale?

in minerology what
does the mohs scale
measure

in minerology what
does the mohs scale
measure

if you mix red and
green lights they
do not magically
change into yellow
light.

what colour do you
get when you mix
blue and yellow to-
gether?

when you mix equal
amounts of blue
and yellow color do
what color?

when you mix equal
amounts of blue and
yellow yellow, what
color do you get?

capable of sustained
hovering, the hum-
mingbird has the
ability to fly deliber-
ately backwards

which is the only
musical bird that
can fly backwards

what is the only
bird that can can fly
backwards

what is the only bird
that can fly back-
wards

alexander graham
bell in 1876, at
the age of 29,
alexander graham
bell invented his
telephone.

what did alexander
graham bell invent

the telephone was
invented in which
year

the telephone was
invented in which
year
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Table 11: Examples from the Text Simplification (TS) task. Each example consists of a source
sentence, a reference sentence, and outputs generated by DiffuSeq (Teacher) and DLM-One (Student).

Source Reference Recover
DiffuSeq DLM-One

she was also the
leader of the party
between 1993 and
1995.

she was also the
leader of the party
between 1993 and
1995.

she was the leader
of the party from
1995 to 1993.

she was the leader
between 1993 and
1995.

thiel - sur - acolin
is a commune in the
allier department in
auvergne - rhone
- alpes in central
france.

thiel - sur - acolin is
a commune.

thiel - sur - acolin is
a commune.

thiel - sur - acolin is
a commune.

vetlanda municipal-
ity ( " vetlanda kom-
mun " ) is a munic-
ipality in jonkoping
county, in southern
sweden where the
town of vetlanda is
the seat.

vetlanda municipal-
ity is a municipality
in jonkoping county
in southern sweden.

vetlanda municipal-
ity is a municipality
in jonkoping county
in southern sweden.

vetlanda municipal-
ity is a municipality
in jonkoping
county.

beaufort is located
in north carolina’s
" inner banks " re-
gion.

beaufort is in north
carolina’s inner
banks region.

beaufort is in north
carolina’s " inner
banks " region.

beaufort is located
in " inner banks " re-
gion.

weaver was born in
pittsburgh, pennsyl-
vania, on january 19,
1926, the son of elsa
w. ( nee stringaro )
weaver and john car-
son weaver.

weaver was born on
january 19, 1926 in
pittsburgh, pennsyl-
vania.

weaver was born in
pittsburgh, pennsyl-
vania, on january 19,
1926.

weaver was born in
pittsburgh, pennsyl-
vania.
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