
Under review as a conference paper at ICLR 2023

NORMSOFTMAX: NORMALIZE THE INPUT OF SOFT-
MAX TO ACCELERATE AND STABILIZE TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Softmax is a basic function that normalizes a vector to a probability distribu-
tion and is widely used in machine learning, most notably in cross-entropy loss
function and dot product attention operations. However, optimization of softmax-
based models is sensitive to the input statistics change. We observe that the input
of softmax changes significantly during the initial training stage, causing slow and
unstable convergence when training the model from scratch. To remedy the op-
timization difficulty of softmax, we propose a simple yet effective substitution,
named NormSoftmax, where the input vector is first normalized to unit variance
and then fed to the standard softmax function. Similar to other existing normaliza-
tion layers in machine learning models, NormSoftmax can stabilize and acceler-
ate the training process, and also increase the robustness of the training procedure
against hyperparameters. Experiments on Transformer-based models and convo-
lutional neural networks validate that our proposed NormSoftmax is an effective
plug-and-play module to stabilize and speed up the optimization of neural net-
works with cross-entropy loss or dot-product attention operations.

1 INTRODUCTION

Softmax is a critical and widely used function in machine learning algorithms, which takes a vector
as input and generate a standard simplex. It is usually used to generate a categorical probability
distribution. The most notable applications of softmax are cross-entropy loss function for classi-
fication tasks and attention map generation in dot product attention operations. By importing the
temperature in softmax, we can control the information entropy and sharpness of its output.

However, gradient-based optimization of softmax-based models often suffers from slow and unstable
convergence and is sensitive to optimization hyperparameters. Transformer-based models (Vaswani
et al., 2017) are known to be hard to optimize. A lot of efforts have been devoted to solving this
optimization difficulty (Liu et al., 2020). For instance, Bolya et al. (2022) reports that softmax
attention may crash with too many heads and proposes new attention functions. Chen et al. (2021)
show that the Vision Transformer’s (Dosovitskiy et al., 2021) loss landscape is very sharp, and
it requires advanced optimizers to facilitate its training (Foret et al., 2020). Huang et al. (2020)
propose a better initialization to improve the Transformer optimization. Xiong et al. (2020) show
that the location of layer normalization (LN) has a remarkable impact on the gradients and claim
that the Pre-LN Transformer has better training stability.

Among comprehensive reasons for the optimization difficulty of Transformers, cascaded softmax
functions are one of them that leads to the training instability. However, limited prior work has
discussed the impacts of softmax on optimization. Based on our experimentation, we find that
the training difficulty can be attributed to the rapid change in the variance of the softmax inputs
and the information entropy of its outputs. In dot-product attention, where the softmax is used
to generate weight distribution for key-value pairs, we observe significant statistical fluctuation in
softmax inputs. The rapid and extensive variance change in the initial learning stage can lead to
unstable training. Moreover, for the softmax used in cross-entropy loss for classification problems,
the input of the softmax usually has a lower variance at the initial training stage since the model
has less knowledge of the problem (Wei et al., 2022). The model is likely to stay in the low-
confidence zone, implying that it is difficult to train (Pearce et al., 2021). We need a specially
designed mechanism to push the model out of this low-confidence zone for stable and fast learning.

1



Under review as a conference paper at ICLR 2023

Unstable
Converge slowly
Sensitive

Stable
Converge fast
Robust

Attention/ 
Linear

Linear Cls.

NormSoftmax
Softmax(Scale( ))

Replace
Softmax

Attention/ 
Linear

Linear Cls.

Figure 1: The standard softmax
and proposed NormSoftmax.

In the two cases above, the significant change of the softmax
input variance is one of the reasons for optimization difficulty.
In this paper, we propose NormSoftmax to stabilize and accel-
erate training by simply re-scaling the softmax inputs, espe-
cially in the early stage optimization.

With NormSoftmax, we dynamically calculate vector-specific
factors to scale the inputs before being fed to the standard soft-
max. Specifically, when the input variance is too small, Soft-
max will generate small gradients that hinder the learning pro-
cess. In contrast, our proposed NormSoftmax can help re-scale
the input distribution such that the information entropy of the
output becomes stable without fluctuation during the training
process, which boosts and stabilizes the early stage training.

NormSoftmax shares similar properties with the existing normalization techniques in machine learn-
ing. We summarize its advantages below.

• NormSoftmax can re-scale gradients to stabilize the training process, making the training robust
to model architectures and optimization recipes (such as optimizers and weight decay schedules).

• NormSoftmax can accelerate the early training stage without hurting the model representability.

• NormSoftmax is an easy-to-use and low-cost module to replace standard softmax. The induced
computation and memory cost overhead is negligible.

• NormSoftmax has a regularization effect since the re-scaling can slightly restrict the representa-
tion space of the input vectors.

In this paper, we focus on two applications of the softmax functions: (1) the activation function
in dot-product attention, and (2) cross-entropy loss of the classification problem. ViT-B with our
NormSoftmax shows significantly higher robustness to different head settings, showing an average
of +4.63% higher test accuracy on CIFAR-10 than its softmax-based counterpart. When training for
100 epochs on ImageNet-1K, ViT with our NormSoftmax can achieve +0.91% higher test accuracy
over its softmax baseline.

2 BACKGROUND

We briefly introduce the softmax function and normalization in machine learning. Then we discuss
the two cases we focus on in this paper: softmax in dot product attention and cross entropy loss.
Throughout this paper, we use µ(a), σ(a) to represent the mean and standard deviation (square root
of the variance) of a vector a.

2.1 SOFTMAX

The standard softmax function z = softmax(x), where x, z ∈ Rn is defined by Equation 1.

zi =
exi∑n
j=1 e

xj
, for i = 1, 2, ..., n (1)

The output of softmax can be seen as a categorical probability distribution since 0 < zi < 1 and∑
i zi = 1. Instead of e, we can also use a different base in softmax. A temperature parameter

T > 0 is imported to adjust the base.

softmaxT (x) = softmax
(x
T

)
(2)

Given the same input vector x, the higher temperature smooths the difference of the input vector and
generates a probability distribution with high information entropy H(z) = −

∑
i zi log(zi). On the

contrary, the lower temperature sharpens the output distribution with low entropy. (Agarwala et al.,
2020) claim that the temperature has a crucial impact on the initial learning process.

2



Under review as a conference paper at ICLR 2023

2.2 NORMALIZATION

Normalization layers (Ioffe & Szegedy, 2015; Ba et al., 2016; Ulyanov et al., 2016; Wu & He, 2018)
usually normalize the input tensor such that the result has a zero-mean and unit-variance along
specific dimensions. We can optionally scale and shift the normalized tensor further. Normalization
can accelerate and stabilize the optimization by smoothing the loss landscape (Santurkar et al., 2018;
Xu et al., 2019; Bjorck et al., 2018). Hence, normalization allows for a larger learning rate and
increases the robustness against hyperparameters. Also, normalization helps generalization since
the sharpness of the loss surface is decreased effectively (Lyu et al., 2022). However, we find that
normalization is usually used in the intermediate linear transformation layers, and it is rarely applied
to the input of softmax functions.

2.3 DOT PRODUCT ATTENTION

The scaled dot product attention (Vaswani et al., 2017) is defined by the following equation, where
Q,K,V are query, key, and value matrices and d is the dimension of the key vector.

Attention(Q,K,V ) = softmax
(
QKT

√
d

)
V (3)

For every query vector, the softmax function calculates the weight for all key-value pairs. The
scaling factor of d−1/2 is proposed to attempt the normalize the dot product qTk, whose variance
is d if the components of q,k are independent random variables with a variance of 0. 1 The scaling
factor is applied to address the issue that the variance of dot product qTk will likely increase as
the length of the vector d increases. The large variance makes the gradient of softmax extremely
small, thus making the attention-based model hard to train. Based on self-attention, Transformer has
achieved great success in many areas, especially natural language processing (Devlin et al., 2019)
and computer vision (Khan et al., 2021).

2.4 CROSS-ENTROPY LOSS

Another important application of softmax is in classification problems, where minimizing the cross-
entropy loss is equivalent to maximizing the likelihood. The cross-entropy function takes the esti-
mated probability distribution q = softmax(x) and the true probability distribution p as input and
compute the result by H(p, q) = −

∑
i pi log qi. x is the predicted logits, usually generated by a

classification model. x can be any vector in RK without restrictions, where K is the number of
classes.

3 METHOD

In this section, we first analyze the behavior of the softmax input during the training process. Further,
we define NormSoftmax and discuss its advantage in the two cases.

3.1 UNDERSTANDING THE BEHAVIOR OF SOFTMAX IN DIFFERENT TRAINING STAGES

We split the whole training process into three stages.

• Initial stage. Starting from scratch, we usually need a careful design for initialization and hy-
perparameters. The training may fail due to exploding or vanishing gradients. For example, we
usually apply learning rate warmup during this stage.

• Intermediate stage. Once the parameters are sufficiently warmed up, it is relatively easy and
stable to explore the solution space with a higher learning rate.

• Final stage. The model attempts to converge to a local minimum with a lower learning rate.

The initial stage is the most unstable one among these three stages. If we do not encounter severe
issues in the initial stage, it is likely that we can proceed to the final results.

1Please refer to Footnote 4 of the original paper (Vaswani et al., 2017).

3



Under review as a conference paper at ICLR 2023

Distraction Concentration Distraction

Rapid statistic
change

La
ye

r I
nd

ex

 wrongly
estimates the std.

(a) Softmax in Attention of an 8-layer ViT

Stuck in low-confidence region

Rapid variance change

Learning slowly in the early stage

(b) Softmax for the cross entropy loss in ResNet1202

Figure 2: The standard deviation of softmax input has significant change during the training process.
Note that the vertical axes are in the logarithmic scale.

Figure 2 illustrates two cases where we observe a significant change in the softmax input variance
throughout the training process. We discuss the behavior of the softmax function in these two cases.

Softmax in dot product attention. The input variance of softmax is related to the attended region
of this attention layer. With a high variance on the input, the output of softmax has a low information
entropy, meaning that only few keys are attended. On the contrary, the smaller input variance implies
that much more keys are attended. Figure 2a demonstrates that the standard deviation of softmax
input (before scaled with

√
d) increases rapidly at the initial stage and then decreases gradually

during the intermediate and final stages. In the beginning, the vision Transformer (Dosovitskiy
et al., 2021) attempts to attend to almost all the keys since the initialized model has not learned how
to extract features and is still in the exploration stage. During training, different keys are learned
at different paces. Keys with smaller semantic distances from nearby queries are much easier to
learn. This imbalanced learning pace among keys drives the model to shrink its receptive field and
focus on a small region. That is why the variance of softmax input increases rapidly at the initial
stage. Afterwards, as training proceeds, Transformer will explore the query-key pairs with longer
semantic distance, implied by a gradual reduction in the variance of softmax input. We name the
effect ”distraction-concentration-distraction”.

Further, different layers have different input variance. Except for the first layer (L1), the lower layer
has a high variance than the deeper layers. In the early layers, only a small region is attended to.
As depth grows, the model attends to a larger region, which is similar to the trend of receptive fields
in convolutional neural networks. We also draw the line of

√
d as a reference in Figure 2a, which

is the scaling factor used to normalize the softmax input. Since the input variance has a significant
change across different layers and training steps, this constant scaling factor of

√
d might not be the

most suitable value to normalize the softmax input (Lee et al., 2021).

Softmax in cross-entropy loss function. For classification model training, the softmax may only
appear in the cross-entropy loss function, e.g., ResNet. However, the gradients through softmax can
have a large impact on the model training. To verify this claim, we train a deep ResNet1202 (He
et al., 2016) on CIFAR10 dataset (Krizhevsky et al., 2009) and plot the standard deviation of the
softmax input in Figure 2b. At the initial stage, the standard deviation is relatively low since the
model is less confident, and the predicted distribution is similar to a uniform distribution. There
is a leap at the 15-th epoch, where the standard deviation increases from 0.14 to 1.31. Afterward,
the standard deviation of the softmax input gradually increases, and the information entropy of the
softmax output becomes smaller since the model becomes more confident in predictions as training
continues. Hence, we conclude that the variance of softmax input experiences rapid and huge change
during training, especially in the initial stage, which explains why training from scratch is difficult.

Moreover, the observed trend in Figure 2 is averaged on all the data points. Actually, different data
points or training examples are in different learning stages. For instance, in the image classification
problem, a clear image can easily escape the less-confident zone quickly and stably, while a vague

4



Under review as a conference paper at ICLR 2023

image may be stuck in this zone where the softmax output has a high information entropy. Therefore,
this training difficulty needs to be tackled in a data-specific fashion.

3.2 THE PROPOSED NORMSOFTMAX

We propose NormSoftmax as a substitution for softmax, as defined below,

NormSoftmax(x, γ) = softmax
(

x− µ(x)1

min(σ(x), γ)

)
(4)

= softmax
(

x

min(σ(x), γ)

)
(5)

= softmax
(

x/γ

min(σ(x/γ), 1)

)
(6)

where γ > 0 is a pre-defined scalar. Namely, we define the temperature T = min(σ(x), γ) in
NormSoftmax. Since softmax is invariant under translation by the same value, Equations 4 and 5
are equivalent. We do not need to shift the input vector to zero-mean. If the standard derivation is
smaller than the threshold σ(x) ≤ γ, NormSoftmax will normalize the input vector to obtain a unit-
variance vector before applying the standard softmax function. If σ(x) > γ, we use the temperature
T = γ. If γ = +∞, then we will always normalize the input vector. The temperature is dynamically
calculated per vector. For a batch of vectors, each one has its individual temperature.

Lemma 1 Given y = x
σ(x) , z = softmax(y), ∂l

∂z ∈ Rn, we have

µ

(
∂l

∂x

)
= µ

(
∂l

∂y

)
= 0, σ

(
∂l

∂x

)
≤

σ
(

∂l
∂y

)
σ(x)

,

∥∥∥∥ ∂l

∂x

∥∥∥∥
2

≤

∥∥∥ ∂l
∂y

∥∥∥
2

σ(x)
(7)

Lemma 2 Given x2 = kx1, z1 = softmax(x1/σ(x1)), z2 = softmax(x2/σ(x2)),
∂l
∂z1

= ∂l
∂z2

∈
Rn, we have z1 = z2,

∂l
∂z1

= ∂l
∂z2

, ∂l
∂x2

= 1
k

∂l
∂x1

.

Similar to the theorem in Xu et al. (2019), we refer to gradient re-centering and re-scaling as gradient
normalization. Similar to Theorem 4.1 in Santurkar et al. (2018), we demonstrate that the normal-
ization improves the Lipschitz continuity, indicated by the gradient magnitudes. Specifically,

∥∥ ∂l
∂x

∥∥
2

and
∥∥∥ ∂l
∂y

∥∥∥
2

can be treated as the continuity of the loss function Given two input vectors x1,x2 and

σ(x1) < σ(x2) < γ, NormSoftmax apply a different temperature on them, paying much attention
to the low-variance vector x1. In Lemma 2, if σ(x1) = 1, then k = σ(x2), it is clear that the
gradients are rescaled by its variance ∂l

∂x2
= 1

σ(x2)
∂l
∂x1

.

Logit Normalization (LogitNorm) (Kornblith et al., 2021; Wei et al., 2022) uses the ℓ2 norm to
normalize the input vector, as shown in the equation below, where τ is the temperature parameter
modulating the magnitude of the logits.

LogitNorm(x, τ) = softmax
(

x

τ∥x∥2

)
(8)

LogitNorm is proposed to mitigate overconfidence when cross entropy loss is used. It is questionable
that LogitNorm does not shift the input vector to zero-mean, since the mean has an impact on
the ℓ2 norm. Unlike the standard softmax function, LogitNorm is not invariant under translation
LogitNorm(x, τ) ̸= LogitNorm(x+ c1, τ), where c is a constant.

We demonstrate the relationship between LogitNorm and NormSoftmax in the following equation.

NormSoftmax(x, γ = +∞) = softmax
(√

n
x− µ(x)1

∥x− µ(x)1∥2

)
= LogitNorm(x− µ(x)1, τ = n−1/2) (9)

NormSoftmax first shifts the input vector to zero-mean and normalizes the shifted vector by its ℓ2
norm. Hence, NormSoftmax keeps the invariance under translation and can be reduced to Logit-
Norm with input shifting.

5



Under review as a conference paper at ICLR 2023

3.3 EFFECTS OF NORMSOFTMAX IN THREE STAGES

NormSoftmax can accelerate and stabilize training in the initial stage. With NormSoftmax, the
standard deviation of the softmax input is at least 1 since σ

(
x

min(σ(x),γ)

)
≥ 1. If the softmax input

has low variance, which is common in the initial stage for both two applications, we use a self-
adapted low temperature to magnify the slight difference. The normalization can help the model
escape the zone with high information entropy quickly and stably since we normalize the gradients
as demonstrated in Theorem 1. Specifically, for attention layers, NormSoftmax can accelerate the
transition from distraction to concentration.

NormSoftmax can regularize training in the intermediate and final stages. For cross entropy
loss, NormSoftmax increases the temperature of the softmax in the training process since the vari-
ance of the softmax input will increase gradually. The high temperature can regularize the training.
For attention layers, NormSoftmax regularizes the softmax input, thus restricting the attentive areas.
NormSoftmax encourages the attention to have a slight change on the attended regions, which can
be treated as an inductive bias we add.

However, we find that by simply normalizing inputs to unit-variance vectors, i.e., x/σ(x), the train-
ing process can be impeded due to overly restricted representation space. Our variance clipping
technique can effectively solve this issue with a pre-defined threshold γ.

4 EXPERIMENTS

Detailed experiment settings can be found in Appendix. Since we primarily use the cosine annealing
learning rate scheduler, we train from scratch when the total number of epochs is different. Namely,
the learning rate schedule is updated according to the number of epochs.

4.1 DOT-PRODUCT ATTENTION

Settings. We train the vision transformer (ViT) on the CIFAR10 dataset from scratch with AdamW
(Loshchilov & Hutter, 2019) optimizer for 100 epochs (50,000 iterations with 100 mini-batch size).
The resolution of an input image is 3 × 32 × 32, and the patch size is 4. The hidden size, MLP
size, number of heads, and the dimension of heads are 256, 1024, 8, and 32, respectively. We
discard the original scaling factor

√
d and replace the standard softmax with NormSoftmax, setting

γ =
√
d or γ = +∞. The learning rate is linearly increased with 5 warmup epochs and then decays

with the cosine annealing scheduler (Loshchilov & Hutter, 2017). Following the original ViT paper
(Dosovitskiy et al., 2021), the learning rate is 1e−3, and a strong weight decay 1e−1 is applied. We
also enable label smoothing (Szegedy et al., 2016) and strong data augmentation (random erasing
(Zhong et al., 2020), mixup (Zhang et al., 2018), cutmix (Yun et al., 2019), and TrivialAugment
(Müller & Hutter, 2021)). Figure 3 shows the detailed results.

Acceleration. Figure 3a demonstrates the result with different training epochs. When the number of
epochs is small, NormSoftmax can achieve a better test accuracy than the standard softmax function.
When we train with more iterations, NormSoftmax performs similarly to the baseline. The larger
pre-defined threshold γ may translate into a higher acceleration, which pushes the model to escape
the initial distraction stage more quickly. That is why NSM-inf performs better than NSM-sqrtd
when the number of epochs is small. However, the normalization has a strict regularization effect
on the softmax input, which impedes the training in the intermediate and final stages. Hence, the
NSM-inf is exceeded by NSM-sqrtd when the number of training iterations is large. In short,
NormSoftmax can accelerate the training process without sacrificing the representation ability, sim-
ilar to curriculum learning (Wu et al., 2020).

Stabilization. We investigate the role of each component in the training recipe, with results listed
in Figure 3b. We conduct ablation studies by removing (1) learning rate warmup, (2) weight de-
cay, (3) label smoothing, and (4) strong data augmentation (random erasing, mixup, cutmix, and
TrivialAugment) separately. We also replace the default AdamW optimizer with stochastic gradi-
ent descent with momentum (SGDM). The results indicate that the techniques above are critical to
Transformer no matter what softmax function we use. However, Transformer with standard softmax
and scaling factor d−1/2 is more sensitive to the training techniques that are related to optimization.

6



Under review as a conference paper at ICLR 2023

epoch

te
st

 a
cc

ur
ac

y 
(%

)

60
65
70
75
80
85
90
95

10 50 100 500

sm nsm-sqrtd nsm-inf

(a) Results with different training epochs

te
st

 a
cc

ur
ac

y 
(%

)

80

82

84

86

88

90

baseline

w/o warmup

w/o weight decay

w/o label sm
oothing

w/o data augmentation
SGDM

sm nsm-sqrtd nsm-inf

(b) Results with different training recipes

# layers

te
st

 a
cc

ur
ac

y 
(%

)

78

80

82

84

86

88

90

2 4 6 8 10 20

sm nsm-sqrtd nsm-inf

(c) Results on ViT with different depths

te
st

 a
cc

ur
ac

y 
(%

)
65

70

75

80

85

90

128, 
4, 32

128, 
8, 16

128, 
16, 8

256, 
4, 64

256, 
8, 32

256, 
16, 16

512, 
4, 128

512, 
8, 64

512, 
16, 32

sm nsm-sqrtd nsm-inf

hidden size, # heads, head dimension

(d) ViT with different dimensions and heads

Figure 3: The test accuracy of a ViT on CIFAR10 dataset with different settings. sm and nsm are
short for softmax and NormSoftmax. sqrtd and inf are the value of γ in NormSoftmax.

Without weight decay, the test accuracy of the baseline degrades from 87.96% to 84.15%, while the
NSM-inf has a small drop from 88.01% to 87.46%. They share the same robustness against the
training recipe for data augmentation.

We also alter the hyperparameters of the ViT and list the results in Figures 3c and 3d. The three
methods share similar results when the depth or the hidden dimension is small. However, large
depth and hidden dimension impose a challenge for training. NSM-inf is more robust and provides
much better results than the standard softmax.

epoch

en
tro

py
 o

f s
of

tm
ax

 o
ut

pu
t

1.5

2.5

3.5

4.5

0 20 40 60 80

(a) Baseline with standard softmax

epoch

1.5

2.5

3.5

4.5

0 20 40 60 80

L1 L2 L3 L4 L5
L6 L7 L8

(b) NormSoftmax with γ =
√
d

epoch

1.5

2.5

3.5

4.5

0 20 40 60 80

(c) NormSoftmax with γ = +∞

Figure 4: NormSoftmax reduces the information entropy of softmax output in the 8-layer ViT.

We plot the information entropy of softmax output in this ViT in Figure 4. In baseline, the large
standard deviation of softmax input induces small information entropy in the softmax output. The
”distraction-concentration-distraction” effect is visualized in Figure 4a. The attended areas of Trans-
former undergo significant change during the training process. On the other extreme, NSM-inf

7



Under review as a conference paper at ICLR 2023

generates the output, whose information entropy only slightly fluctuates since the input variance is
always 1. The small change in the entropy of the output contributes to the acceleration and stability
of the initial training process. The NSM-sqrtd is an interpolation between these two extremes.

Variants of NormSoftmax. We define several variants of NormSoftmax. (1) Adding learnable
parameters for affine transformation defined by f1(x) = softmax (wx/σ(x)), where w ∈ R is a
learnable parameter. (2) Inverting the NormSoftmax defined by f2(x, γ) = softmax

(
x

max(σ(x),γ)

)
(3) NormSoftmax with different γ values, (4) Logit Normalization.

baseline f1 f2, γ =
√
d nsm-1 nsm-

√
d/2 nsm-

√
d nsm-2

√
d nsm-∞ logitnorm

87.96 87.97 86.99 81.04 87.16 88.13 88.21 88.01 87.72

Table 1: Train a ViT on CIFAR10 with different NormSoftmax variants.

For the first variant f1, we find that the learnable parameter is not necessary. Indicated by (Xu
et al., 2019), the learnable weight may induce the risk of overfitting. The second variant f2 has
an inverse clipping and is worse than our proposed NormSoftmax. It cannot accelerate the training
since it encourages distraction in the Vision Transformer. In the third variant, the γ is a critical
hyperparameter. γ = 1,

√
d/2 is too small, and the input vector is not effectively scaled. γ =√

d, 2
√
d obtains similar result. For Logit Normalizaiton, we sweep the parameter of temperature τ ,

and find that τ = n−1/2 is almost the best one. With this temperature, the only difference between
LogitNorm and NormSoftmax is whether the input is shifted to zero-mean, as shown in Equation
equation 9. The accuracy with this temperature is 87.72%, which is even worse than the baseline,
demonstrating the importance of shifting.

Other benchmarks. We follow the reference implementation provided by PyTorch (Paszke et al.,
2019) to train different ViTs on ImageNet (Deng et al., 2009) from scratch. Strong data augmenta-
tions and many techniques are adopted. 2 Results are listed in Table 3. NormSoftmax can achieve
better performance with a small number of epochs and similar performance with 300-epoch training.

100 epochs 300 epochs

sm nsm-sqrtd nsm-inf sm nsm-sqrtd nsm-inf

ViT-B-32 71.40 72.01 72.64 75.91 75.92 75.95
ViT-L-32 72.54 73.49 73.46 76.97 77.01 76.92

ViT-B-16 76.52 77.01 77.10 81.07 81.05 81.09
Swin-T 76.91 77.50 77.42 81.41 81.52 81.45

Table 2: Test accuracy of three ViT variants trained on ImageNet-1K from scratch.

We conduct experiments on machine translation with Transformers following the settings in (Xu
et al., 2019). The benchmarks are WMT English-German Translation (en-de), IWSLT 2014
German-English Translation (de-en), and IWSLT 2015 English-Vietmanese Translation (en-vi) (Cet-
tolo et al., 2015). We replace the standard softmax function in both encoder and decoder with our
proposed NormSoftmax. The evaluation metric is BLEU (Papineni et al., 2002). Similar to the re-
sults in computer vision, NormSoftmax can also accelerate the learning process in natural language
processing.

4.2 CROSS ENTROPY LOSS OF THE CLASSIFICATION PROBLEM.

We follow the example in the JAX framework (Bradbury et al., 2018) to train ResNets (He et al.,
2016) on ImageNet, which has 1,000 classes and about 1.3 million training images. 3 We use
SGDM with linear warmup and cosine annealing learning rate scheduler, accompanied by a large

2The implementation is at this link.
3The implementation is available at this link.

8

https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/google/flax/tree/main/examples/imagenet


Under review as a conference paper at ICLR 2023

45k steps 90k steps

sm nsm-sqrtd nsm-inf sm nsm-sqrtd nsm-inf

en-de 24.2 25.6 25.5 28.3 28.3 28.2

de-en 30.1 30.9 31.5 35.4 35.5 35.4

en-vi 26.7 27.1 27.2 31.2 31.3 31.4

Table 3: The BLEU on three machine translation benchmarks with Transformers.

mini-batch size of 8,192 and a large learning rate of 3.2. We only enable the horizontal flip and
input normalization as data augmentation techniques. We set γ as 1 and +∞ in NormSoftmax for
the cross entropy loss since 1 is the temperature in the baseline. We also apply Logit Normalization
and compare it with our proposed method. For Logit Normalization, we conduct a grid search to
find the optimal hyperparameter of temperature.

epoch

te
st

 a
cc

ur
ac

y 
(%

)

68

70

72

74

76

78

25 50 75 100 125 150 175

sm nsm-1 nsm-inf logit-norm

Figure 5: Test accuracy of ResNet50
ImageNet-1K with different training epochs

# epochs 20 45 90 180

R50
sm 69.18 74.71 76.26 76.88

nsm-1 70.18 74.83 76.41 76.91
nsm-inf 71.42 75.32 76.64 77.17
lognorm 69.70 74.79 76.42 76.92

R101
sm 72.44 76.21 77.79 77.99

nsm-1 72.48 76.18 77.80 78.08
nsm-inf 72.69 76.56 78.00 78.13
lognorm 72.50 76.19 77.82 78.01

R152
sm 72.79 76.78 78.18 78.51

nsm-1 72.80 76.85 78.32 78.50
nsm-inf 72.60 76.73 78.17 78.44
lognorm 72.75 76.81 78.15 78.40

Table 4: Test accuracy on ImageNet with ResNets.
lognorm is short for Logit Normalization.

Figure 5 and Table 4 show that the NormSoftmax can boost the initial training. With 20 epochs,
NSM-inf can achieve the test accuracy of 71.42% while the baseline with standard softmax obtains
69.18%. With sufficiently long epochs, SM and NSM achieve similar test accuracy, implying that NSM
does not impede the representation learning ability of the models. With larger pre-defined threshold
γ, NSM-inf is faster than NSM-1. NormSoftmax achieves better results than Logit Normalization,
demonstrating that it is necessary to shift the input vector before applying Logit Normalization.

5 CONCLUSION

We deeply investigate the behavior of softmax in neural network training and discuss its impacts on
training stability and convergence. We find that one of the reasons for the optimization difficulty is
the significant change in the variance of softmax input during the early training process. To rem-
edy the optimization difficulty of softmax, we propose a simple yet effective substitution, named
NormSoftmax, where the input vectors are first re-scaled by dynamically calculated vector-specific
factors and then fed to the standard softmax function. Similar to other existing normalization layers
in machine learning models, NormSoftmax can stabilize and accelerate the training process and also
increase the robustness of the training procedure to hyperparameters. Experiments on Transformers
in computer vision and natural language processing benchmarks validate that our proposed Norm-
Softmax is an effective plug-and-play module to stabilize and speed up the optimization of neural
networks with cross-entropy loss or dot-product attention operations.

Limitations. Transformer-based models are data hungry and its performance is limited given small
or intermediate training data. Their representation ability can be unleashed with larger datasets. In
this work, we only present the results on small- or mid- size datasets. The training behavior on larger
datasets may be different from what we observe on smaller ones.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Atish Agarwala, Jeffrey Pennington, Yann Dauphin, and Sam Schoenholz. Temperature check:
theory and practice for training models with softmax-cross-entropy losses. arXiv preprint
arXiv:2010.07344, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. Advances in neural information processing systems, 31, 2018.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, and Judy Hoffman. Hydra attention:
Efficient attention with many heads. arXiv preprint arXiv:2209.07484, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, Roldano Cattoni, and Marcello
Federico. The IWSLT 2015 evaluation campaign. In Proceedings of the 12th International Work-
shop on Spoken Language Translation: Evaluation Campaign, pp. 2–14, Da Nang, Vietnam, De-
cember 3-4 2015. URL https://aclanthology.org/2015.iwslt-evaluation.1.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. International Conference
on Learning Representations (ICLR), 2021.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 4475–4483. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/huang20f.html.

10

http://github.com/google/jax
http://github.com/google/jax
https://aclanthology.org/2015.iwslt-evaluation.1
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.mlr.press/v119/huang20f.html
https://proceedings.mlr.press/v119/huang20f.html


Under review as a conference paper at ICLR 2023

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/ioffe15.html.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys (CSUR), 2021.

Simon Kornblith, Ting Chen, Honglak Lee, and Mohammad Norouzi. Why do better loss functions
lead to less transferable features? Advances in Neural Information Processing Systems, 34:
28648–28662, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size
datasets. arXiv preprint arXiv:2112.13492, 2021.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the dif-
ficulty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 5747–5763, Online, November 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.463. URL https:
//aclanthology.org/2020.emnlp-main.463.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. Interna-
tional Conference on Learning Representations (ICLR), 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. International Conference
on Learning Representations (ICLR), 2019.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
ization layers: Sharpness reduction. arXiv preprint arXiv:2206.07085, 2022.

Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmen-
tation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 774–
782, 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, ACL ’02, pp. 311–318, USA, 2002. Association for Computa-
tional Linguistics. doi: 10.3115/1073083.1073135. URL https://doi.org/10.3115/
1073083.1073135.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding softmax confidence and uncertainty.
arXiv preprint arXiv:2106.04972, 2021.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in neural information processing systems, 31, 2018.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2826, 2016. doi: 10.1109/CVPR.2016.308.

11

https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://aclanthology.org/2020.emnlp-main.463
https://aclanthology.org/2020.emnlp-main.463
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Under review as a conference paper at ICLR 2023

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural
network overconfidence with logit normalization. International Conference on Machine Learning
(ICML), 2022.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? arXiv preprint
arXiv:2012.03107, 2020.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 10524–10533.
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/xiong20b.
html.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. Advances in Neural Information Processing Systems, 32, 2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. International Conference on Learning Representations (ICLR), 2018.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–
13008, 2020.

A PROOF OF LEMMAS

A.1 LEMMA 1

Let y = x
σ(x) , z = softmax(y). Following the chain rules, we have

∂l

∂y
= (diag(z)− zzT )

∂l

∂z
(10)

∂l

∂x
=

1

σ(x)

(
I − xxT − µ(x)1xT

nσ2(x)

)
∂l

∂y
=

1

σ(x)

(
I − yyT − µ(y)1yT

n

)
∂l

∂y
(11)

With 1Tz = 1, we can verify that

1T ∂l

∂y
= (1T diag(z)− 1TzzT )

∂l

∂z
(12)

= (zT − zT )
∂l

∂z
(13)

= 0 (14)

12

https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html


Under review as a conference paper at ICLR 2023

With nµ(x) = 1Tx, we can prove that

1T ∂l

∂x
=

1

σ(x)

(
1T I − 1TxxT − µ(x)1T1xT

nσ2(x)

)
∂l

∂y
(15)

=
1

σ(x)

(
1T − nµ(x)xT − nµ(x)xT

nσ2(x)

)
∂l

∂y
(16)

=
1

σ(x)
1T ∂l

∂y
(17)

= 0 (18)

Hence, we prove that µ
(

∂l
∂x

)
= µ

(
∂l
∂y

)
= 0. We then prove the scaling for L2 norm by leveraging

the definition of variance σ2(a) = ∥a∥22/n− µ2(a).∥∥∥∥ ∂l

∂x

∥∥∥∥2
2

=

(
∂l

∂x

)T
∂l

∂x
(19)

=
1

σ2(x)

(
∂l

∂y

)T (
I − xxT − µ(x)x1T

nσ2(x)

)(
I − xxT − µ(x)1xT

nσ2(x)

)
∂l

∂y
(20)

=
1

σ2(x)

(
∂l

∂y

)T (
I − xxT

nσ2(x)
+

µ(x)1xT + µ(x)x1T

nσ2(x)

)
∂l

∂y
(21)

=
1

σ2(x)

∥∥∥∥ ∂l

∂y

∥∥∥∥2
2

−
(

∂l

∂y

)T
xxT

nσ2(x)

∂l

∂y
+

µ(x)
(

∂l
∂y

)T
1xT ∂l

∂y + µ(x)
(

∂l
∂y

)T
x1T ∂l

∂y

nσ2(x)


(22)

=
1

σ2(x)

(∥∥∥∥ ∂l

∂y

∥∥∥∥2
2

−
(

∂l

∂y

)T
xxT

nσ2(x)

∂l

∂y

)
(23)

=
1

σ2(x)

∥∥∥∥ ∂l

∂y

∥∥∥∥2
2

− 1

nσ4(x)

(
xT ∂l

∂y

)2

(24)

≤ 1

σ2(x)

∥∥∥∥ ∂l

∂y

∥∥∥∥2
2

(25)

From the definition of variance, we obtain that

σ2

(
∂l

∂x

)
=

∥∥∥∥ ∂l

∂x

∥∥∥∥2
2

/n ≤ 1

σ2(x)

∥∥∥∥ ∂l

∂y

∥∥∥∥2
2

/n =
1

σ2(x)
σ2

(
∂l

∂y

)
(26)

Above all, we prove that ∥∥∥∥ ∂l

∂x

∥∥∥∥
2

≤

∥∥∥ ∂l
∂y

∥∥∥
2

σ(x)
, σ

(
∂l

∂x

)
≤

σ
(

∂l
∂y

)
σ(x)

(27)

A.2 LEMMA 2

Given x2 = kx1, we have x1/σ(x1) = x2/σ(x2). Thus, we obtain that z1 =
softmax(x1/σ(x1)) = z2 = softmax(x2/σ(x2)). Now that z1 = z2, we can obtain the same
loss f(z1) = f(z2) and generate the same gradient ∂l

∂z1
= ∂l

∂z2
. Based on Equation equation 11, we

conclude that ∂l
∂x2

= 1
k

∂l
∂x1

.

B EXPERIMENTAL DETAILS.

B.1 VISION TRANSFORMERS ON CIFAR10.

We train from scratch with AdamW optimizer for 100 epochs (50,000 iterations with 100 mini-batch
size) in mixed precision. The resolution of an input image is 3 × 32 × 32, and the patch size is 4.

13



Under review as a conference paper at ICLR 2023

epoch

te
st

 a
cc

ur
ac

y

0

25

50

75

100

0 20 40 60 80

sm nsm-1 nsm-inf

Figure 6: Test accuracy of a ResNet1202 on CIFAR-10

The hidden size, MLP size, number of heads, dimension of heads, and number of layers are 256,
1024, 8, 32, and 8, respectively. We use the following attention function,

Attention(Q,K,V ) = softmax
(

QKT

min(σ(QKT ), γ)

)
V (28)

where the softmax and the standard deviation are calculated along the same axes. We set γ =
√
d

and +∞. The learning rate is 1e-3, and a strong weight decay 1e-1 is applied. The learning rate
linearly increases from 2e-4 with 5 warmup epochs and then decays to 0 with the cosine annealing
scheduler. We also enable label smoothing (0.1), random erasing with the probability of 0.1, mixup
with α = 0.2, cutmix with α = 1.0, and TrivialAugment. The code is attached in the supplementary
material.

B.2 VISION TRANSFORMERS ON IMAGENET.

We follow the torchvision’s reference implementation. The batch size is 512× 8 = 4096. We train
from scratch with AdamW optimizer in mixed precision. The learning rate is 3e-3, and the weight
decay is 3e-1. The learning rate is linearly increased from 3e−3×0.033 with 30 warmup epochs and
then decays to 0 with the cosine annealing scheduler. We also enable label smoothing (0.1), mixup
with α = 0.2, cutmix with α = 1.0, clipping gradient norm with 1, RandAugment (Cubuk et al.,
2020), repeated augmentation with 3 repetitions, exponential moving average for model parameters.

B.3 RESNET ON IMAGENET.

We follow the example in the JAX framework. We only enable horizontal flip data augmentation.
We use SGDM with a mini-batch size of 8,192, a learning rate of 3.2, a momentum of 0.9, and a
weight decay of 1e-4. The learning rate is warmup in 5 epochs.

B.4 MACHINE TRANSLATION.

We use exactly the same settings as Xu et al. (2019). Please refer to the original paper for reference.

C EXTENDED EXPERIMENTS

C.1 TRAINING PERFORMANCE OF A DEEP RESNET

We train a ResNet1202, which is investigated in the original ResNet paper (He et al., 2016). Figure
6 compares the test accuracy during the training process. NormSoftmax can significantly acceler-
ate the training process and achieve better test accuracy than the standard softmax. With standard
softmax, the model is stuck in the low confidence zone in the initial stage.

14

https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/google/flax/tree/main/examples/imagenet


Under review as a conference paper at ICLR 2023

temperature

te
st

 a
cc

ur
ac

y

78

80

82

84

86

88

90

0.4 0.6 0.8 1 2 4

nsm-sqrtd nsm-inf

Figure 7: Test accuracy of a ViT with different temperatures after normalization.

C.2 SCALING FACTORS IN ATTENTION

The default scaling factor in attention is d−1/2. We sweep the scaling factors for the standard
softmax. We apply the corresponding γ in NormSoftmax. We follow the same experiment settings
as in Section 4.1.

scaling factor for sm 1 2d−1/2 d−1/2 d−1/2/2 d−1

test accuracy for sm 80.98 86.38 87.96 87.97 86.98

γ for nsm 1 d1/2/2 d1/2 2d1/2 d ∞
test accuracy for nsm 81.04 87.16 88.13 88.21 87.1 88.01

Table 5: Results for (1) the standard softmax (sm) with different scaling factors and (2) NormSoft-
max (nsm) with different γ

Table 5 shows that scaling factors of d−1/2/2 and d−1/2 achieve the best performance for the stan-
dard softmax, similar to (Lee et al., 2021). NormSoftmax shares the same trend with the standard
softmax, achieving the best performance with γ of 2d1/2 and d1/2. NormSoftmax achieves better
results than the standard softmax with the corresponding pair of scaling factor and γ.

C.3 TEMPERATURE AFTER NORMALIZATION IN NORMSOFTMAX

We add a temperature parameter τ in NormSoftmax.

NormSoftmax(x, γ, τ) = softmax
(

x

τ min(σ(x), γ)

)
(29)

If γ = +∞, the input of softmax will always have a standard deviation of τ−1. For a finite γ, we
have σ

(
x

τ min(σ(x),γ)

)
≥ τ−1

Figure 7 illustrates the results with different temperature parameters. τ = 1 is the best choice for
both NSM-inf and NSM-sqrtd. When τ < 1, NSM-inf is much more stable than NSM-sqrtd
since the softmax input may have a high variance for NSM-sqrtd. On the contrary, when τ > 1,
NSM-sqrtd is better than NSM-inf. The softmax input of NSM-inf has a low standard deviation,
restricting the performance.

D COST ANALYSIS OF NORMSOFTMAX

Since we import normalization in the softmax, we inevitably introduce the extra computation and
memory cost of NormSoftmax. However, we show that the overhead of the proposed lightweight
NormSoftmax is negligible for large machine learning models.

Memory cost. Equation 6 indicates that we can preprocess the input vector x and pass it to Norm-
Softmax. We can fuse the γ factor with the ascending layer of NormSoftmax if possible during

15



Under review as a conference paper at ICLR 2023

inference. For a linear layer x = Ay+b, we can always fuse the γ with A and b, as we do not need
to save γ during inference. For training, we need to pay the extra memory cost for normalization
since we have to save intermediate results for gradient computation.

Computation cost. For training, we have to pay the cost of calculating the variance and the cor-
responding gradients. For inference, we may discard the normalization if the softmax is in the last
layer. In a classification model with cross entropy loss, we can discard the normalization since the
normalization has no impact on the classification result.

In our experiments on Transformer, NormSoftmax induces 0.2%−1% extra execution time. For the
experiments for cross-entropy loss, the extra execution time is less than 0.05% since we only add
one normalization layer.

16


	Introduction
	Background
	Softmax
	Normalization
	Dot product attention
	Cross-entropy loss

	Method
	Understanding the behavior of softmax in different training stages
	The Proposed NormSoftmax
	Effects of NormSoftmax in three stages

	Experiments
	Dot-product attention
	Cross entropy loss of the classification problem.

	Conclusion
	Proof of Lemmas
	Lemma 1
	Lemma 2

	Experimental details.
	Vision Transformers on CIFAR10.
	Vision Transformers on ImageNet.
	ResNet on ImageNet.
	Machine translation.

	Extended Experiments
	Training performance of a deep ResNet
	Scaling factors in attention
	Temperature after normalization in NormSoftmax

	Cost Analysis of NormSoftmax

