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Abstract—Deep Convolutional Neural Networks based object 
detection has made significant progress recent years. However, 
detecting small scale objects is still a challenging task. This 
paper addresses the problem and proposes a unified deep 
neural network building upon the prominent Faster R-CNN 
framework. This paper has two main contributions. Firstly, an 
Atrous Region Proposal Network (ARPN) is proposed to 
explore object contexts at multiple scales by sliding a set of 
atrous filters with increasing dilation rates over the last 
convolutional feature map. Secondly, to enrich the 
representations of small scale image regions, this paper 
incorporates atrous convolution into Fast R-CNN and 
proposes a Dense Fast R-CNN (DFRCN), that improves the 
resolution of the ROI-pooled convolutional feature maps 
without increasing the number of parameters. In combination 
of the two, this paper proposes a unified network termed as 
Atrous Faster R-CNN. On PASCAL object detection challenge 
dataset, our method achieves superior performance to the 
state of the arts, especially for small scale objects.  

Keywords-component; deep learnng; object detection; small 
scale; atrous convolution 

I. INTRODUCTION 

The variations of object location, scale and appearance, 
together with background clutter, make it challenging to 
detect objects in images efficiently. Typically, the object 
detection task generally consists of three stages, select 
candidate regions, based on which extract features, and 
then classify using pre-trained models. Traditional methods 
usually employ the sliding window scheme to select 
candidate regions and then classify the manually engineered 
features using SVM, AdaBoost, etc. [1][2][3]. 

Recently, many detection methods build upon Deep 
Convolutional Neural Networks (DCNNs), which have 
significantly boosted the detection performance. One of the 
most prominent work is the Region-based Convolutional 
Neural Networks (R-CNN) [4]. R-CNN selects around 
2,000 region proposals using selective search [5], and warps 
each of them into 227 × 227 image patch to fit neural 
networks. R-CNN then performs a forward pass on every 
single warped image patch independently. In spite of its 
striking success, R-CNN suffers from low efficiency for 
both training and deployment. In order to reduce 
computational load, SPP-NET [6] and Fast R-CNN (FRCN) 
[7] are proposed. Both of them perform a single forward 
pass on the entire image before fully-connected (fc) layers 
and then pool features for each candidate proposal from the 

last convolutional (conv) feature map. The pooled features 
are finally fed to a classifier, consisting of fc layers, to 
predict class-specific probabilities and bounding box 
regressions. As the result, FRCN achieves hundreds of 
times speedup. The candidate proposal selection process is 
the efficiency bottle- neck of FRCN. Then Faster R-CNN [8] 
is proposed using DCNN for the region proposal generation 
and runs at 7 fps on a Nvidia K40 GPU. Other than the R-
CNN framework, some works formulate the object 
detection as a regression task defined on a set of pre-
determined bounding boxes, such as YOLO [9] and SSD 
[10], and have achieved competitive performance in real 
time.  

Although object detection has made breakthrough 
progress in recent years, detecting small scale objects 
remains an open problem. In particular, we consider two 
challenging issues in the detection of small scale objects. 
Firstly, existing object proposal mechanisms, based on low-
level cues or DCNNs, suffer a low recall on small scale 
objects [11]. The standard approach to handle this is to 
present rescaled versions of the same image to the object 
proposal generator. But the trivial trick is usually 
computationally prohibitive. The second problem is the 
resolution loss in deep conv feature maps caused by 
repeated down sampling of DCNNs. High-level features in 
deep conv feature maps are important for classification. 
However, in both Fast R-CNN and Faster R-CNN, the 
projected regions of small objects on deep conv feature 
maps usually would be too small to contain enough 
information for a reliable classification. To deal with this 
issue, Yang et al. [12] propose a scale dependent pooling 
(SDP) technique, in which small proposals pool features 
from the shallow conv feature maps (with high resolution) 
and large proposals pool features from the deep ones (with 
low resolution). The pooled features from different conv 
layers are then classified by corresponding classifiers. This 
technique indeed improves the small-scale object detection 
precision at the cost of introducing large amount of network 
parameters. This issue is far from being perfectly solved.  

Towards solving the problems, this paper proposes a 
unified deep neural network building upon Faster R-CNN 
with two main contributions. Firstly, we propose an Atrous 
Region Proposal Network (ARPN) that slides a set of atrous 
filters with increasing dilation rates over the last conv 
feature map. Atrous filters are able to enlarge receptive 
fields without increasing the number of parameters or 
operations, which enables ARPN to efficiently capture 
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object contexts at multiple scales and consequently 
improves performance against scale variation in object 
proposal selection stage. Secondly, this paper proposes a 
Dense Fast R-CNN (DFRCN) method incorporating atrous 
convolution into FRCN. DFRCN has the advantage of being 
able to fine-tune from a pre-trained model comparing to 
SDP, in which parts of the classifiers start training from the 
scratch. We conduct extensive experiments with the 

proposed methods on the PASCAL VOC dataset, showing a 
superior detection precision to Fast R-CNN and Faster R-
CNN, especially for small scale objects.  

The remainder of this paper is organized as follows: We 
present the Atrous Region Proposal Network in Section II. 
The Dense Fast-RCNN is explained in detail in Section III. 
Our experimental evaluation and results are presented in 
Section IV.  

 

TABLE I.  VOC 2007 TEST AVERAGE RECALL (%) OF RPN AND ARPN, AS A FUNCTION OF BOX AREA. WE CONSIDER 2 CASES WHEN 

WE SELECT 2000 OR 300 CANDIDATE PROPOSALS PER IMAGE. BOX AREA: “SMALL”: [0, 322), “MEDIUM”: [322, 962), “96-128”: [962, 1282), 

“128-256”: [1282, 2562), “256-512”: [2562, 5122), “ALL”: [0, 5122). BETTER NUMBERS ARE BOLD-FACES.  

method #proposal small medium 96-128 128-256 256-512 all
RPN 2000 26.9 55.4 60.1 63.1 66.3 59.4

ARPN 2000 33.8 56.8 63.7 65.8 66.8 61.5
RPN 300 25.3 50.6 53.4 61.2 66.2 56.4

ARPN 300 30.4 51.8 59.8 65.1 66.8 59.1
 

TABLE II.  VOC 2007 TEST DETECTION AVERAGE PRECISION (%) OF BASELINES (FRCN AND FASTER R-CNN) AND OUR MODELS 
(DFRCN AND ATROUS FASTER R-CNN, I.E. ARPN + DFRCN). BETTER NUMBERS ARE BOLD-FACED.  

method aer
o 

bik
e 

bir
d 

bo
at 

bott
le 

bu
s 

car cat cha
ir

co
w

tab
le

do
g

hor
se

mbi
ke

per
sn

pla
nt 

she
ep 

sof
a 

trai
n

tv mA
P

FRCN 77.
0 

78.
1 

69.
3 

59.
4 

38.
3 

81.
6 

78.
6 

86.
7

42.
8

78.
8

68.
9

84.
7 

82.
0

76.6 69.
9

31.
8 

70.
1 

74.
8 

80.
4

70.
4

70.
0

DFRCN 77.
9 

79.
9 

69.
3 

62.
0 

43.
9 

83.
8 

82.
3 

87.
1

47.
2

79.
0

70.
1

84.
5

83.
9

77.7 71.
8

34.
3 

72.
4 

73.
8 

81.
8

72.
1

71.
7

Faster R-
CNN 

76.
5 

79.
0 

70.
9 

65.
5 

52.
1 

83.
1 

84.
7 

86.
4

52.
0

81.
9

65.
7

84.
8

84.
6

77.5 76.
7

38.
8 

73.
6 

73.
9 

83.
0

72.
6

73.
2

ARPN+DF
RCN 

79.
4 

84.
1 

75.
9 

68.
5 

63.
5 

85.
4 

88.
0 

88.
8 

60.
8 

83.
5 

70.
9 

85.
8 

85.
9 

78.4 79.
1 

52.
7 

75.
1 

72.
6 

84.
0 

76.
3 

76.
9 

 

II. ATROUS REGION PROPOSAL NETWORK 

Object scale variation is a fundamental challenge in 
object detection domain. Image pyramid inputs [13] and 
similar techniques [14] have been applied to deal with this 
problem. These approaches indeed improve the performance 
to some extent, however, at the cost of abundant memory 
and computational resources. Faster R-CNN [8], a state of 
the art object detection framework, uses a region proposal 
network (RPN) to handle the scale variation. RPN shares 
conv feature maps with Fast R-CNN network [7] to avoid 
heavy computational load. In RPN, scale variation is tackled 
through the novel anchor boxes that serve as references at 
multiple scales and aspect ratios. Specially, the RPN 
generator slides a fixed set of 3 × 3 filters over the last 
shared conv feature map (conv5_3 for VGG16), mapping 
each 3 × 3 sliding window on conv5_3 to a lower- 
dimensional location encoding (512-d for VGG16). Then 
the location encoding volume is fed to two sibling 1 × 1 
conv layers, which are used for classification (cls) and 
regression (reg) respectively. The cls and reg results for 
each cell on the location encoding volume are applied to 
corresponding reference anchors to generate multi-scale 
proposals. Each cell on the location encoding volume has a 
receptive field on the conv5_3 feature map and is exploited 
to predict proposals. However, the receptive field is fixed 
while proposals may vary over a wide scale range. It may be 
difficult to learn the location encoding with a fixed 

receptive field covering multi-scale object contexts. This 
contradiction has been experimentally shown its 
powerlessness when processing small scale objects [15].  

In this paper, we investigate an atrous region proposal 
network (ARPN) approach (illustrated in the Fig. 1) to 
effectively and efficiently handle the scale variation in 
region proposal generation. ARPN models the scale 
variation explicitly through network architecture. Motivated 
by the atrous spatial pyramid pooling in [16], our ARPN 
scheme slides pyramid of filters, which have 
complementary receptive fields, over the conv5_3 feature 
map to capture object contexts at multiple scales and obtain 
a group of location encoding volume. These location 
encoding volumes have the same width, height and 
dimension. Rather than aggregating these locations 
encoding volumes into a single multi-scale encoding 
volume, each of them is then laid into a separate branch. In 
each branch, the location encoding volume is followed by 
two sibling 1 × 1 convolutional cls and reg layers to predict 
objectness scores and coordinate regressions with regard to 
the reference anchors at a specified scale. For instance, 
outputs of the top branch (see Fig. 1) are applied on the 
anchors of scale 64, and reference anchors of the bottom 
branch (see Fig. 1) are of scale 512. The reg and cls layers 
attached to each location encoding volume have their own 
set of parameters to learn scale-specific classification and 
regression models. As is the case of RPN, our ARPN is also 
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a kind of fully-convolutional network (FCN) [17] and thus is translation invariant up to the network’s total stride [8].  
 

 
Figure 1.  Filter pyramid of our Atrous Region Proposal Network (ARPN). Atrous filters are plotted with equivalent kernel size (filled with holes) and the 

atrous filter with larger equivalent kernel size produces the location encoding volume responsible for generating proposals of larger scale. 

 
Figure 2.  Convolutional feature maps of Fast R-CNN before and after 
incorporating atrous filters into conv5. The 3 feature maps in each row 
present the output of conv4_3, pool4, and conv5_3 respectively. Bottom 
row: original Fast R-CNN feature maps. Top row: feature maps after 
incorporating atrous filters into Fast R-CNN. The filters are only for 
illustration and do not corresponds to actual values. 

 
The pyramid of filters we use consist of 4 filter volumes 

of which the receptive fields are 3×3, 5×5, 9×9 and 17×17 
respectively (see Fig. 1). Instead of employing regular 
filters with such kernel sizes, we efficiently implement this 
through atrous filters; in other words, we advocate the use 
of atrous convolution to carry out scale-specific location 
encoding. Compared to regular convolution with larger 
filters, atrous convolution allows us to effectively enlarge 
the receptive fields of filters without increasing the number 
of network parameters or the amount of computation per 
position.  

Atrous convolution is originally proposed for the 
efficient computation of the undecimated wavelet transform 
in the algorithme àtrous scheme of [18] and is recently used 
in the deep learning community [19] to enlarge the receptive 
fields of filters in semantic segmentation task. Taking one-
dimensional signals as example, the output ݕ[݅ሿ of atrous 
convolution of 1-D input signal ݔ[݅ሿ with a kernel f[k] of 
length K could be formulated as:  

ሿ݅]ݕ  ൌ ∑ ݅]ݔ ൅ ݀ ∗ ݇ሿݓ[݇ሿ௄௞ୀଵ  (1) 

The dilation rate, denoted as ݀ , corresponds to the stride 
with which the input signal is sampled. Regular convolution 
can be regarded as a special case of atrous convolution 
when ݀ ൌ 1 . The dilation algorithm is equivalent to 
stretching the filter by a factor of d and filling the holes with 
0.  

A. Training ARPN 

As illustrated in Fig. 1, our ARPN model has 4 parallel 
branches following conv5_3. Each branch consists of an 
atrous convolution layer with ReLU activations connected to 
two sibling 1 × 1 convolutional reg and cls layers for 
predicting objectness scores and bounding box regressions, 
similar to [8]. The genuine kernel sizes of the atrous filters 
are all 3 × 3, the dilation rates are 1, 2, 4 and 8 for branches 
from top to bottom, corresponding to the receptive fields of 
3 × 3, 5 × 5, 9 × 9 and 17 × 17 respectively. The reg outputs 
from all branches are then concatenated together along the 
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channel axis and the same applies to the cls outputs for example sampling in training stage.  
 

Figure 3.  Dense Fast R-CNN architecture. Two transformations are performed on the basis of FRCN. Firstly, the striding parameter of pool4, the max-
pooling layer that just precedes conv5, is set to 1 instread of 2. Secondly, the filters in conv5 is dilated by a factor of 2 to fit the upsampled output of conv4 

The anchors at each sliding position span 4 scales (64, 
128, 256, and 512) and 3 aspect ratios (1:1, 1:2, and 2:1). 
They are labeled as fg or bg using the mechanism of RPN. 
Loss function for ARPN is also the weighted sum of 
normalized log cross entropy for cls and normalized robust 
loss function (smooth L1) [7] for reg in each minibatch 
because of its wide adoption. All layers in each branch are 
initialized from scratch. The model parameters before 
ARPN are initialized with the Image- Net pre-trained model 
VGG16 [20]. During training, gradients are back-
propagated to 4 branches to update scale-specific conv 
filters. We explicitly enforce neurons in each branch to 
learn for different scale of objects by providing supervision 
about the scales of the reference anchors. Therefore, ARPN 
are able to predict region proposals at multiple scales. The 
experiments in section IV demonstrate that ARPN has 
higher Average Recall [11] than RPN. The superiority is 
even larger for small scale objects.  

 

 
Figure 4.  VOC 2007 test detection average precision (%) over all 
categories. The categories are arranged in ascending order measured by the 
average normalized box (see the definition in the footnote of current page) 

III. DENSE FAST R-CNN 

DCNNs are originally designed for image classification 
[21] [20]. The repeated combinations of max-pooling and 
down- sampling in the DCNNs is essential for image 
classification, but results in a dramatic resolution drop of 
conv feature maps in deep layers that may not be able to 
offer enough information to detect objects, especially for 
small targets. The R-CNN [4] solves this problem through 

warping the image patch into a canonical scale (e.g. 227 × 
227) at the cost of performing a forward pass on every 
single image patch independently. Although Fast R-CNN [7] 
speeds up the training and test stages compared to R-CNN 
and enables end-to-end training, it still does not explicitly 
address the reduced resolution problem.  

One way to improve the performance of small-scale 
object detection is re-scaling. Besides this common method, 
some other techniques arising in dense prediction tasks, 
such as semantic segmentation, could be used for reference 
in object detection context. Long et al. [17] use VGG16 as 
the base network. They upsample the deep conv feature 
maps via a technique called deconvolution and then 
combine the upsampled deep conv feature maps with the 
shallow conv feature maps through skip layer fusion to get a 
local-to-global representation. In spite of its success, 
Deconvolution Net with skip connection is claimed to be 
hard to train, since it requires normalizing activations 
among different layers [22]. SegNet [23] develops an 
efficient upsample layer. The upsampled maps are sparse 
and convolved with trainable filters to produce dense 
feature maps. While the symmetric encoder-decoder 
architecture of the SegNet is elegant, the network depth is 
still doubled and the decoder sub-network can only be 
initialized from scratch. Atrous convolution [16] has the 
advantage of al- lowing computing the feature maps at any 
desirable resolution without increasing the network 
parameters. It can be applied post-hoc, once a network has 
been trained, but can also be seamlessly integrated with 
training.  

This paper incorporates atrous convolution into Fast R- 
CNN. Fast R-CNN directly pools the features from the last 
conv feature map (conv5_3 for VGG16) to represent an 
object. The projected region on conv5_3 of each proposal is 
divided into a 7 × 7 spatial grid and features are pooled 
using max-pooling over each grid. Due to the progressive 
striding of max-pooling layers, a 16 × 16 image window is 
mapped to a single pixel at conv5_3. If an object proposal is 
pretty small, the same feature may repeat over several grids, 
which would impair the detection performance. We 
conjecture that enriching the object representation would be 
beneficial to the performance especially for small objects. 
To demonstrate our conjecture, we simply apply atrous 
convolution on the pre- trained VGG16 model to upsample 
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the conv5 feature maps and then fine-tune the model using 
detection datasets. We call our method Dense Fast R-CNN, 
which undergoes two transformations based on Fast R-CNN. 
The implementation details are explained as following:  

• We set the stride of pool4 (max-pooling layer 
striding 2 just preceding conv5 layers) to 1 to avoid 
signal decimation. In order to ensure that the input 
volume and output volume of pool4 will have the 
same size, we set the pooling window to 3 and zero 
padding to 1. As illustrated in Fig. 2, the output 
volume of pool4 is upsampled by a factor of 2. 

• The upsampled pool4 map is convolved with filters 
‘with holes’, in which we upsample the original 
filters by a factor of 2 as well, and introduce zeros in 
between filter values. In terms of implementation 
details, we replace the standard convolutional layers 
in conv5 with atrous convolutional layers of which 
the dilation rate d in Equation 1 all equal to 2. The 
number of non-zero filter values keep constant, 
hence the atrous convolutional layers can also be 
initialized using the corresponding filters in conv5 of 
the pre-trained VGG16 model. 

The resulted conv5_3 conv feature map (bottom row in 
Fig. 2) is upsampled by a factor 2, and semantically similar 
to the original (top row in Fig. 2) so that it makes sense to 
fine-tune our network initialized by pre-trained VGG16 
model. Following Fast R-CNN, each proposal then pools 
feature from the conv5_3 map. The features are finally fed 
to a classifier, composed of 2 successive fc layers with 
dropout layers [24], for estimating class-specific 
probabilities and bounding box regressions. The overall 
model architecture is illustrated by Fig. 3. 

Our method accomplishes the goal of enriching object’s 
representation via the upsampled conv5_3 map that would 
be pooled for features. We simply upsample the conv5_3 
map by a factor of 2 for the purpose of verifying our 
conjecture stated above. As expected, our conjecture is 
experimentally demonstrated to hold (refer Section IV for 
details).  

IV. EXPERIMENTS 

We evaluate ARPN, DFRCN, and the unified Atrous 
Faster R-CNN that combines ARPN and DFRCN on the 
PASCAL VOC 2007 detection benchmark [25]. This 
dataset consists of about 5k trainval images and 5k test 
images over 20 object categories. We further argument the 
training set with PASCAL VOC 2012 trainval images, 
roughly tripling the number of images to 16.5k. For the 
ImageNet pre-trained network, we use the public available 
VGG16 model that has 13 conv layers and 3 fc layers. We 
use Caffe [26] for development in all experiments.  

A. Performance of ARPN 

Table I shows the results of RPN and our ARPN for 
proposal selection. Both methods start from the same pre-
trained VGG16 network and use the same hyper-parameters. 
Following [11], average recall (AR) is used as performance 
metric. Since Faster R-CNN [8] didn’t evaluate the 

performance of RPN for proposal se- lection, we train a 
RPN model using the code released at 
https://github.com/rbgirshick/py-faster-rcnn and compute 
ARs for it. If we generate 2000 candidate proposals for each 
image, ARPN achieves a higher overall AR than RPN on 
VOC2007 (61.5% vs 59.4%). Furthermore, ARPN improves 
the AR on objects of all scales thanks to ARPN branches 
capturing object contexts at various scales. Especially, for 
small scale objects (area lies in 	[0, 32ଶ)) that this paper 
concentrates on, ARPN achieves an impressive 6.9% 
improvement over RPN. ARPN also obtains competitive 
results, with an overall AR of 59.1% while selecting only 
300 candidate proposals. Hence our ARPN is a better choice 
to support efficient object detection than RPN.  

B. Performance of DFRCN 

Table II shows FRCN and DFRCN detection accuracy 
when trained and tested using selective search proposals. 
We obtain FRCN results from [7] and use the same 
configuration to train a DFRCN model. DFRCN improves 
the AP on most categories and obtain the overall mAP 
71.7%, which is 1.7% higher than FRCN. In addition, we 
observe relatively higher improvements on small objects 
like bottles (5.6%) and chairs (4.4%). This confirms our 
hypothesis that improving resolution of ROI-pooled conv 
feature map is beneficial to object classification in Fast R-
CNN. In this paper, we use atrous convolution to increase 
by a factor of 2 the density of computed feature maps from 
a point of efficient/accuracy tradeoff. If a fast bilinear 
interpolation by an additional factor of 2 is followed to the 
last conv feature map, obtaining a high-level feature map 
for ROI pooling at 1/4 resolution of the original image, we 
suggest that detection accuracy would be improved further. 
This will be explored in our future work. 

C. Performance of Atrous Faster R-CNN 

In combination of ARPN and DFRCN, we propose a 
unified Atrous Faster R-CNN for object detection. Our 
unified network is similar to Faster R-CNN in architecture 
with RPN replaced by ARPN and FRCN replaced by 
DFRCN. Since conv5_3 is upsampled by a factor of 2 in 
DFRCN, we slide the pyramid filters of ARPN at the stride 
of 2 instead of 1 over conv5_3 for computational efficiency 
in our unified network. Table II shows the results of our 
unified network and comparisons with Faster R-CNN. We 
use the same configuration and learning parameters as in the 
previous experiments. Our approach achieves a mAP of 
76.9% based on VGG16 network, which outperforms the 
Faster R-CNN baseline by 3.7% on average. In particular, 
our method significantly improves APs for small scale 
categories over Faster R-CNN, such as 11.4% for bottles 
and 13.9% for plants. We visualize the detection results in 
Fig. 4, in which the horizontal categories are arranged in 
ascending scale order from left to right measured by the 
average normalized area1. We observe from Fig. 4 that our 

                                                           
1 Normalized area of a box is defined as the ratio of box area with the 
image size (width × height). The average normalized area of a category is 
defined as the average of normalized box among all boxes belonging to 
that category.  
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method (ARPN + DFRCN) improves the AP much more for 
smaller scale categories. This is a clear evidence showing 
the power of our Atrous Faster R-CNN on small scale 
objects.  

V. CONCLUSION 

In this paper, we investigate two issues that compromise 
the detection accuracy for small scale objects, 1) small scale 
objects are hard to find in candidate proposal selection stage, 
2) the resolution loss of DCNNs causes that the projected 
regions of small scale objects on deep conv maps are 
usually too small to contain enough high-level feature to 
provide reliable classification. We incorporate two new 
strategies, ARPN and DFRCN, to deal with these issues. 
ARPN improves the recall rate for small scale objects by 
sliding a pyramid of filters with different receptive fields 
capturing object contexts at multiple scales. DFRCN 
upsamples the conv5_3, that is pooled for object description 
by each proposal, to enrich the representations of small 
scale objects. Our experimental evaluation clearly 
demonstrates the benefits of ARPN and DFRCN in small 
scale object detection [27]. Although considerably accurate, 
current deep learning based object detection methods can 
not fit into embedded devices. We will explore the model 
compression applied to object detection in the future.  
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