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Abstract001

Fine-tuning large language models (LLMs) can002
cause them to lose their general capabilities.003
However, the intrinsic mechanisms behind such004
forgetting remain unexplored. In this paper,005
we begin by examining this phenomenon by006
focusing on knowledge understanding and in-007
struction following, with the latter identified008
as the main contributor to forgetting during009
fine-tuning. Consequently, we propose the010
Instruction Vector (IV) framework to capture011
model representations highly related to specific012
instruction-following capabilities, thereby mak-013
ing it possible to understand model-intrinsic014
forgetting. Through the analysis of IV dynam-015
ics pre and post-training, we suggest that fine-016
tuning mostly adds specialized reasoning pat-017
terns instead of erasing previous skills, which018
may appear as forgetting. Building on this in-019
sight, we develop IV-guided training, which020
aims to preserve original computation graph,021
thereby mitigating catastrophic forgetting. Em-022
pirical tests on three benchmarks confirm the023
efficacy of this new approach, supporting the024
relationship between IVs and forgetting. Our025
code will be made available soon.026

1 Introduction027

Instruction fine-tuning (Peng et al., 2023; Chung028

et al., 2024) has emerged as an indispensable in-029

gredient in the development of Large Language030

Models (LLMs) (Brown et al., 2020; Radford et al.,031

2019; Touvron et al., 2023b),enabling them to meet032

the demands of specific domains (Roziere et al.,033

2023; Thirunavukarasu et al., 2023) and human034

preferences (Ouyang et al., 2022). However, a no-035

table concern with this fine-tuning is "catastrophic036

forgetting" (McCloskey and Cohen, 1989; Kirk-037

patrick et al., 2017), where models may lose es-038

sential skills (Dou et al., 2023; Chen et al., 2023)039

such as mathematical reasoning while adjusting to040

user instructions. This raises questions about which041
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Figure 1: Instruction vector hypothesis for LLM under-
standing. θc is extracted by aggregating representations
of attention heads identified to have causal influence to
the output. Forgetting is resulted from the suppression
of instruction vector associated computation graph.

abilities are most susceptible to forgetting and the 042

underlying causes of these losses in LLMs. 043

Research on LLM forgetting (Luo et al., 2024; 044

Wang et al., 2023b; Wu et al., 2024a) generally 045

examines changes in abilities like reading com- 046

prehension, factual retention, mathematical skills, 047

and code generation, underscoring the existence 048

of catastrophic forgetting. Despite these findings, 049

there is a notable gap in understanding the inter- 050

nal mechanisms responsible for these losses. To 051

date, only a few studies, such as Kotha et al. (2024) 052

proposing the task inference hypothesis, have be- 053

gun to explore how conflicts between task proces- 054

sors might lead to forgetting. Nevertheless, the 055

literature still lacks comprehensive insights into 056

the exact changes that result in forgetting, leav- 057

ing open questions about whether these changes 058

involve overwriting of old modules or if they are 059

simply overshadowed by new, specialized patterns. 060

In this paper, we first present a novel perspec- 061

tive to investigate catastrophic forgetting in LLMs, 062

focusing on the capabilities developed during pre- 063

training and alignment phases. We suggest that 064

the task proficiency in LLMs involves understand- 065

ing task-specific knowledge and following instruc- 066

tions, assessed through Knowledge Probability 067

P (y|x) and Instruction Probability P (yc|c, x), re- 068

spectively (as depicted in Fig. 2). Our empiri- 069
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cal analysis within a continual instruction tuning070

framework reveals distinct forgetting patterns be-071

tween these two aspects, with shifts in instruction072

following primarily driving performance declines.073

To investigate the internal changes of the model074

during forgetting, we introduce the Instruction075

Vector (IV) framework to extract representations076

closely associated with the task processing. We077

hypothesize a straightforward yet robust compu-078

tational graph for LLMs (see Fig. 1 b), featuring079

an intermediate variable θc crucial for task perfor-080

mance. The presence or absence of θc directly im-081

pacts the model’s capability to handle instruction c.082

This hypothesis is supported by causal intervention083

experiments in Sec. 3.2. By analyzing IV dynam-084

ics pre and post-training, we find minor changes085

in IV expression with forgetting happens. Further-086

more, explicitly incorporating IV into the model’s087

computational graph can recover the mastery of088

the corresponding instruction. This results indicate089

that fine-tuning mostly adds specialized reasoning090

patterns instead of erasing previous skills, which091

may appear as forgetting.092

Building on these insights, we develop an IV-093

guided training methodology to mitigate catas-094

trophic forgetting. This method incorporates a095

progressive IV-intervention training mechanism,096

in which the IV is initially introduced through in-097

tervention and is then gradually phased out during098

the training process. The deliberate inclusion of IV099

aids in optimizing the model by ensuring adherence100

to the IV-related computational graph, thereby min-101

imizing the overshadowing effect of new reasoning102

pathways. Additionally, we have introduced an IV-103

based KL-Divergence loss function to reduce the104

discrepancies between zero-shot and IV-intervened105

logits, ensuring that the model’s behavior remains106

aligned with the original computational structure.107

Validated across multiple datasets, this method sig-108

nificantly alleviate forgetting in both general and109

in-context learning abilities, confirming the link110

between IV and forgetting.111

Main Findings and Contributions. (1) We112

introduce a new perspective on catastrophic for-113

getting by using Knowledge and Instruction Prob-114

ability to evaluate how well LLMs retain task-115

specific knowledge and follow instructions after116

tuning, showing that changes in instruction ad-117

herence mainly drive performance declines. (2)118

We are the first to interpret forgetting with the119

Instruction Vector framework, identifying inher-120

ent changes during fine-tuning. The findings in-121

dicate that fine-tuning generally introduces spe- 122

cialized reasoning patterns rather than removing 123

existing skills. (3) We develop an IV-guided train- 124

ing approach that focuses on preserving and re- 125

aligning the model’s computational graph during 126

fine-tuning. This significantly enhances the general 127

and in-context learning capabilities across various 128

datasets in continual learning. 129

2 Catastrophic Forgetting in LLMs 130

In this section, we present a new perspective to 131

investigate catastrophic forgetting in LLMs, con- 132

centrating on the capabilities embedded within pre- 133

training and instruction tuning stages, as opposed 134

to focusing on pure performance shifts as noted 135

in earlier studies (Wang et al., 2023b; Zhai et al., 136

2023). We start with a discussion on the capabili- 137

ties encoded in LLMs, proceed to develop continual 138

instruction tuning setup to investigate forgetting, 139

and conclude with the empirical observations. 140

Let M denote the model pre-trained on large 141

scale data corpus DPT = {Xi} with the language 142

modeling task (Brown et al., 2020; Radford et al., 143

2019). We assume that M has built an impres- 144

sive ability to capture world knowledge across var- 145

ious domains, i.e., M assigns the maximum likeli- 146

hood to P (y|x,M) for certain datasets denoted by 147

DK = {(xi, yi)} ∈ DPT . Here, the pair [xi, yi] 148

may represent a segment extracted from raw text 149

Xj . For example, consider x being "The capital 150

city of Japan is" and y being "Tokyo"; such a pair- 151

ing frequently appears in blogs. In this paper, we 152

refer to P (y|x,M) as the Knowledge Probability, 153

which serves as a metric for evaluating the model’s 154

proficiency in comprehending world knowledge. 155

While processing instructional data, the model 156

M is presented with the dataset Dc = {(c, xi, yci )}, 157

where each tuple consists of an instruction c, an 158

input prompt xi, and an expected output yci . For 159

𝒚𝒄𝒄𝒚𝒙
4Choose the answer from 

1. kyooto, 3. okinawa, 
2. nara, and 4. tokyo

TokyoThe capital city of 
Japan

BWhat is the best end in 
the following. A: "makes 
an orange drink from a 
bucket.", B: "hits it a few 
times and then its 
someone else's turn."

hits it a few 
times and 
then its 
someone 
else's turn

A little girl in a 
room standing in 
front of some 
chairs is hitting a 
dora pinata. she

construirTranslate to spanishbuildLast item in the 
list [mint, grateful, 
vulture, resilient, 
build] is

Figure 2: Task in world knowledge form (x, y) and
instruction form (x, c, yc).
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instance, c might be "Choose the best answer from160

A, B, C, and D (with options given).", x could be161

"The capital city of Japan is", and yc would be162

"D", which aligns with the answer "Tokyo". The163

model is supposed to generate yc that accurately164

responds to the instruction c with the context of x,165

i.e., maximize P (yc|c, x,M), which is termed as166

the Instruction Probability.167

In this paper, when discussing catastrophic for-168

getting of a task, we consider alterations in both169

Knowledge and Instruction Probabilities. Typically,170

a test instance xi is typically presented as a tuple171

(xi, yi, c, y
c
i ) (examples are listed in Fig. 2), with172

shifts in P (yci |c, xi,M) signaling variations in the173

model’s proficiency in instruction processing and174

knowledge understanding and shifts in P (yi|xi,M)175

solely reflect changes in the world knowledge com-176

prehension. Our work go beyond simple perfor-177

mance metrics evaluation, offering a detailed ex-178

amination of distinct capabilities amidst CF. This179

method reveals if performance degradation stems180

from an actual loss of world knowledge or a reduc-181

tion in the ability to follow instructions.182

Continual instruction tuning setup. To explore183

CF in LLMs, we conduct an empirical study within184

the continual instruction tuning framework. In this185

setup, a model is sequentially trained on a series of186

streaming tasks, denoted as {Dc1 , Dc2 , ..., DcT }.187

Here, Dct = {(c, xi, yci )} symbolizes the t-th task188

associated with a specific instruction ct. While189

learning each task Dct , the model can only access190

to the corresponding data, with the goal of minimiz-191

ing loss on all learned tasks. Specifically, the model192

is optimized with minM
1
N

∑N
i=1 ℓ(yi,M(c, xi)),193

where N is the size of training set and ℓ is usually194

the cross-entropy loss on the entire vocabulary. In195

addition to avoiding forgetting on previous learned196

tasks {Dc1 , ..., Dct−1}, the model is also evalu-197

ated on held-out evaluation sets (e.g., Common-198

senseQA (Talmor et al., 2018), MMLU (Hendrycks199

et al., 2020)) to measure its general ability.200

We select two different continual instruction tun-201

ing benchmarks. The first is from TRACE (Wang202

et al., 2023b) benchmark, which consists of 6 dif-203

ferent complex generation tasks including multi-204

choice QA, code generation, mathematical reason-205

ing and summary. The second is called FUNC,206

adapted from the datasets in Todd et al. (2023),207

in which tasks have clear and simple instruc-208

tions. For example, task Verb-Spanish and Last-209

Spanish are both translation task but differ in210

the selection from list. For the general evalua- 211

tion datasets, we utilize Hellaswag (Zellers et al., 212

2019), ARC-challenge (Clark et al., 2018), Com- 213

monsenseQA (Talmor et al., 2018), and MMLU- 214

social (Hendrycks et al., 2020). The detailed 215

dataset information and evaluation metrics are 216

present in Appendix A. 217

We adopt LLAMA2-7B-Chat (Touvron et al., 218

2023b) as the base model, with its effectiveness in 219

both understanding world knowledge and follow- 220

ing instructions. Without specific notification, the 221

model is fine-tuned with LORA approach (Hu et al., 222

2021), using the Adam optimizer with a learning 223

rate set to 1e-4. Additional details regarding the 224

implementation are provided in the Appendix C. 225

Forgetting properties in knowledge and instruc- 226

tion probabilities. In our empirical study, we 227

aim to investigate the factors responsible for the 228

model performance drop. To show this, we present 229

the accuracy curve for task in knowledge and in- 230

struction forms (cases in Fig. 2) during continual 231

tuning in Fig. 3. Knowledge accuracy is deter- 232

mined by evaluating P (y|x), whereas instruction 233

accuracy is derived from P (yc|c, x). The reported 234

accuracy follows the evaluation method in Brown 235

et al. (2020); Bordes et al. (2016) which involves 236

choosing the label with the highest log-likelihood. 237

The results reveal a consistent presence of the for- 238

getting effect in LLMs across both general and 239

newly acquired tasks throughout continual instruc- 240

tion tuning. More observations are as follow: 241

1) Instruction Following Accuracy Decline. At 242

the end of training sequence, the average instruc- 243

tion accuracy for the general evaluation set de- 244

creases by 10.24 as compared to the pre-trained 245

model. On the other hand, knowledge accuracy 246

sees an average increase of 1.93. This suggests loss 247

in instruction following ability is the reason for task 248

performance drop. 2) In-Context Learning (ICL) 249

Ineffectiveness: When attempting to recover per- 250

formance with ICL (see the red line in Fig. 3), we 251

observe a average decrease of 14.67 in performance 252

compared to zero-shot results. The significant de- 253

cline indicates that the bias in instruction-following 254

ability is further magnified by ICL. 3) Severe For- 255

getting of Newly Learned Concepts: Forgetting 256

of newly acquired skills is particularly significant. 257

The drop in results for Cstance reaches as much as 258

3.0 points at each stage of training, while in tasks 259

like ARC the number is just 0.63. 260
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Figure 3: Accuracy curve across naive sequential instruction fine-tuning on the TRACE benchmark. X-axis
delineates the stages through training, with "M0" indicating the original pre-trained model, and "Mi" signifying the
model post-instruction fine-tuning for the i-th task in sequence. The tasks follow the sequence of Cstance, Fomc,
Meetingbank, Py150, ScienceQA, and Numgluecm. Y-axis indicates the rank classification accuracy. Notably, the
first four datasets are absent from the training set, whereas the final three datasets are part of the training distribution.

3 Interpret Catastrophic Forgetting via261

Instruction Vector262

Our empirical research indicates that, during the263

tuning process, models tend to forget instruction-264

following capabilities as opposed to world knowl-265

edge understanding aptitudes. To further investi-266

gate the inherent mechanisms of such forgetting,267

we introduces a framework for interpretability, uti-268

lizing Instruction Vectors (IV) to decouple the dis-269

tinct functionalities of the model. This approach270

is inspired by the ideas presented by Todd et al.271

(2023) and Hendel et al. (2023), which suggest that272

an input-output function can be represented as a273

vector within LLMs. We reveal that the activation274

level of IV is positively correlated with the LLMs’275

proficiency in relevant instruction-following skills276

during training. Through the analysis of IV’s con-277

sistency before and after instruction tuning, this278

paper elucidates the fundamental mechanisms of279

forgetting within LLMs.280

Subsequently, we will first put forth our hypothe-281

sis and then introduce the Instruction Vectors frame-282

work. Finally, displaying the experimental results283

on IV, unveiling the dynamic process of forgetting.284

3.1 Instruction Vector Hypothesis285

Task in instruction dataset Dc is to predict a tar-286

get variable yc, given a token sequence x condi-287

tioned on instruction c. We assume a potentially288

high-dimensional latent variable θc exists, which289

governs the model’s capability in following instruc-290

tion c. This suggests a direct computational graph291

relationship among x, c, θc, and yc, mathemati-292

cally depicted as fM (x, c, θc) → yc, as illustrated293

in Fig. 4. Here, fM denotes the mapping function294

with model M and we call fM (x, c, θc) → yc the295

IV-associate computation graph.296

Our hypothesis about the computational graph is 297

supported by key observations illustrated in Fig. 4: 298

i) In (a-c), by intervening zero-shot input inference 299

with representations drawn from in-context learn- 300

ing (ICL) samples (see Sec. 3.2), accuracy improve 301

from 24% to 68%. The effectiveness of this rep- 302

resentation aligns with our definition of θc, which 303

may be activated by introducing a prompt before 304

input or directly adding to the hidden states dur- 305

ing the inference. ii) In (d,e), removing certain 306

representations from well-behaved model results 307

in a dramatic decline in performance from 52% to 308

0%, indicating a reliance on θc for producing yc, 309

beyond just the inputs x and c. iii) Moreover, the 310

differential impact on task performance in knowl- 311

edge and instruction form point to a separation in 312

the model’s ability to handle x and c. Hence, it’s 313

reasonable to conjecture that output relies on θc as 314

opposed to θx,c. Given the focus of this paper on 315

instruction forgetting, the potential influence of θx 316

is omitted in the following analysis. 317

3.2 Instruction Vector 318

We next consider how to extract θc for a given 319

dataset Dc, drawing on the concept of function vec- 320

tors proposed by Todd et al. (2023). This extraction 321

is carried out using in-context learning (ICL) sam- 322

ples, where the model incorporates task-relevant 323

information into its hidden states as it engages with 324

examples with the ICL prompt. This process is 325

associated with the emergence of θc (Todd et al., 326

2023; Hendel et al., 2023). Subsequently, a causal 327

mediation analysis (Pearl, 2013; Vig et al., 2020; Li 328

et al., 2024) is conducted on the ICL inputs to iden- 329

tify attention heads with significant causal impacts 330

on the output, and aggregating their representations 331

results in θc. Interestingly, this vector remains ef- 332

fective even under zero-shot input scenarios, as 333
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Figure 4: Illustration of the instruction vector hypothesis. Here, x represents the context, c stands for a specific
instruction, yc is the desirable output, and θc denotes the instruction vector. From (a) to (g), it visually details how
these variables interact under different model conditions, with the accuracy above correlating to the respective
performance on the CommonsenseQA task. The model configuration depicted in (d) is identified as the best state.

demonstrated in Fig. 4 b,c. The detailed procedure334

is outlined below:335

First, we start by gathering the task-conditioned336

activation for each model head by averaging the337

ICL input representation of the given task Dc, i.e.,338

h̄clj =
1

|Dc|
∑

(xi,c)∈Dc

hℓj ([pi, xi, c]) . (1)339

Where pi = [(x1, c, y
c
1), ..., (xN , c, ycN )] repre-340

sents the N-shot ICL prompt text made up of held-341

out samples of task c, hlj is the model activation342

at the last token, layer l and position j, and h̄clj343

represents the task-conditioned activations.344

Then to assess the existence of a cause-and-345

effect relationship between h̄clj and correct out-346

put, we employ causal mediation analysis. The347

model will run on a counterfactual ICL input348

[p̂i, xi, c] incorporating a label-shuffled prompt349

p̂i = [(x1, c, ŷ
c
1), ..., (xN , c, ŷcN )], typically lead-350

ing to incorrect outcomes. We then substitute the351

value of the specific head with the task-specific352

conditioned activation h̄clj and calculate its causal353

effect (CE) on the model’s output.354

CElj([p̂i, xi, c]) = P (yci | [p̂i, xi, c],Mhc
lj→h̄c

lj
)

−P (yci | [p̂i, xi, c],M).
(2)355

Here, Mhc
lj→h̄c

lj
denotes the model with a replace-356

ment operation on attention head (l, j) at last token357

of the input sentence. A higher CE suggests that358

the specific head’s state is crucial in enabling ac-359

curate predictions, denoting the encoding of more360

task-relevant information. For each head at layer361

l and position j,we adopt the approach proposed362

by Todd et al. (2023) to calculate the average CE363

across a variety of tasks. Subsequently, we iden-364

tify the top 10 heads with the highest average CE365

(recorded as set S) as the most critical in conveying366

task-relevant information. The task vector θc is is367

then obtained by aggregating the task-conditioned 368

activation from the attention heads in the set S , i.e., 369

θc =
∑

aℓj∈S h̄clj . 370

We then evaluates the effectiveness of the In- 371

struction Vector (θc) through intervention experi- 372

ments on the initial model across multiple datasets. 373

The detail experiments can be found in Appendix E. 374

Results show that the IV significantly influences the 375

output behavior for specific tasks, with its introduc- 376

tion notably improving zero-shot performance in 377

certain tasks and removal diminishing the model’s 378

ability to produce correct outputs. This suggests 379

that the model’s specific abilities can be identified 380

and analyzed by studying the corresponding IV. 381

3.3 Fine-tuning Dynamics 382

In this series of experiments, we aim to explore 383

how the Instruction Vector (IV) evolves during con- 384

tinual instruction tuning to better understand the 385

mechanisms underlying forgetting. 386

Finding 1. Alignment between the fine-tuned 387

computation graph and the IV-associated computa- 388

tion graph correlates with task performance. Fig. 5 389

shows the relationship between zero-shot perfor- 390

mance and the similarity of hidden states to their 391

respective instruction vector, measuring alignment 392

through the cosine similarity Cosine(hl, θc). This 393

similarity is utilized to reflects the alignment be- 394

tween the computation graphs, with hl denotes the 395

hidden state of the l-th layer. The maximum value 396

across all layers is reported. 397

Post fine-tuning, the model appears to incor- 398

porate θc into the hidden states, evidenced by a 399

similarity score of 0.249 for Last-Spanish in stage 400

2, correlating with improved task accuracy (65%). 401

Conversely, a performance decline is linked to a 402

decrease in similarity. For instance, in the Last- 403

Spanish task, accuracy fell from 65% to 1% in stage 404

3-6, alongside a drop in similarity. On the other 405
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(a) (b) (c)

Figure 5: (a): Relationship between zero-shot task performance (red line) and similarity (blue bar) between hidden
states and IV during tuning on FUNC benchmark. Here, CommonsenseQA is the general evaluation set and
Last-Spanish is the second training task. (b): Representation shift on IV/Random position with 10-shot performance
during tuning. (c): Casual mediate analysis results on model fine-tuned after 6-th stage on TRACE benchmark. The
report value is casual effect and black boxes denote the top-10 heads of the initial model.

hand, in CommonsenseQA, consistent similarity406

coincided with stable performance, underscoring407

the importance of maintaining the IV-associated408

computation graph for task effectiveness.409

Finding 2. The consistency of IV before and after410

fine-tuning does not play a key role in preventing411

forgetting. Fig. 5 (b) shows shifts in the instruction412

vector θc and representation from random positions413

during training. The results of two test datasets that414

exhibit significant forgetting are reported in the fig-415

ure, including the CommonsenseQA in TRACE416

and Last-Spanish in FUNC. "IV sim." in the dia-417

gram refers to Cosine(θ0c , θ
i
c), where θic is the IV418

after fine-tuning the i-th task. "Rand sim." tracks419

changes from 10 randomly chosen head outputs,420

averaged over 100 seeds. Despite IV maintain-421

ing stability at 0.95/0.79 even into the 6-th phase,422

compared to random similarity scores of 0.8/0.48,423

significant model forgetting still occurs by the 6-th424

phase, with accuracy for Last-Spanish falling to425

26% and CommonsenseQA to 17.25%.426

Furthermore, experiments with IV-related inter-427

ventions, where hidden states contribute to IV in428

the fine-tuned model were replaced with their ini-429

tial values (stage 0), are shown by the red line in430

the Fig. 5 (b). The purpose of this experiment was431

to re-activate the model’s capacity to handle the432

specific task by fully recovering the representation433

of IV. However, results suggested minimal effec-434

tiveness. The findings indicate that after training,435

the model cannot implicitly utilize θc; hence, the436

output y becomes detached from θc, disrupting the437

computation graph. Thus, changes in IV before and438

after fine-tuning do not contribute to the observed439

forgetting. 440

Finding 3. Model forgetting stems from suppres- 441

sion by new specialized patterns. We conducted a 442

causal mediate analysis (Sec. 3.2) on the fine-tuned 443

model and observed a significant shift in the set S 444

of casual attention heads. The results are reported 445

in Fig. 5 (c). This suggests that the original capa- 446

bility of the model to process tasks was suppressed 447

by new, specialized patterns, leading to a decrease 448

in general capability. 449

Furthermore, we conducted an intervention ex- 450

periment on the CommonsenseQA task with the 451

model fine-tuned on the TRACE benchmark (re- 452

fer to Fig. 7). The results show that the model 453

exhibited significant forgetting in both 0-shot and 454

10-shot performance, dropping to 0.03 and 0.15, re- 455

spectively. However, integrating IV into the model 456

(as shown in Fig. 1(g)), i.e., hl = hl + θc, result 457

in a substantial recovery in model performance, 458

achieving 0.47 with the current model’s IV and 459

0.49 with the initial model’s IV. This demonstrates 460

that by explicitly adding IV back to the computa- 461

tion graph, the model can still adhere to current 462

task instructions, indicating that the observed for- 463

getting is not due to a loss of the model’s ability to 464

handle instructions. 465

In conclusion, our analysis suggests that forget- 466

ting in large language models (LLMs) results from 467

a dynamic conflict between the dominance and sup- 468

pression of existing computation graphs and new, 469

specialized reasoning patterns learned from fine- 470

tuning. This extends previous findings Kotha et al. 471

(2024) by utilizing IV framework to explore the 472

underlying processes of forgetting in these models 473
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and confirming its theoretical underpinnings.474

4 Refinement of Training Methods to475

Mitigate Forgetting in LLMs476

Our previous research highlighted the critical role477

of the Instruction Vector (IV)-associated compu-478

tation graph in Large Language Models (LLMs),479

crucial for maintaining the model’s original capa-480

bilities. This insight prompted a reassessment of481

the training approaches to minimize forgetting. In482

this section, we show that fine-tuning guided by483

the Instruction Vector helps balance the model’s484

existing capabilities with new learning. This led485

us to reevaluate our training methods to prevent486

forgetting. This method, combined with existing487

continual learning algorithms, effectively reduces488

the forgetting of general abilities while preserv-489

ing in-context reasoning capabilities, with minimal490

impact on plasticity.491

Instruction vector guided fine-tuning. In our492

analysis, we established a direct link between the493

IV-associated computation graph and the model’s494

inherent task processing abilities. Forgetting typ-495

ically occurs when the model’s output becomes496

independent of the computation graph post-tuning.497

To address this, we propose an IV-guided training498

mechanism aimed at preserving capabilities before499

and after fine-tuning:500

Initially, to utilize of the capabilities introduced501

by the IV, we propose a progressive IV interven-502

tion training. At training’s start, the IV is explicitly503

included, with its influence gradually diminishing504

from 1 to 0 as training advances. This inclusion505

helps the model adhere to the computation graph506

outlined earlier, thus mitigating the overshadow-507

ing of existing capabilities by new learning. The508

original training objective is reformulated as:509

min
M

1

N

N∑
i=1

ℓ
(
yi,Mhc

lj→hc
lj+s∗h̄c

lj
(c, xi)

)
, (3)510

where Mhc
lj→hc

lj+s∗h̄c
lj

denotes the intervention511

model on the causal attention heads set i.e., (l, j) ∈512

S. s is a scaling factor that gradually decreases513

from 1 to 0 during training.514

Furthermore, we introduce an IV-based KL-515

divergence loss function to better align the be-516

haviour of fine-tuned computation graph with the517

IV indications:518

ℓKL = −KL[P (yc|[c, x],M)∥
P (yc|[c, x],Mhc

lj→hc
lj+h̄c

lj
)].

(4)519

This IV-guided fine-tuning approach leverages the 520

existing knowledge within the model to direct the 521

fine-tuning process, ensuring that the model retains 522

a robust computation graph after fine-tuning and 523

minimizes the impact of newly introduced knowl- 524

edge on past knowledge and abilities. 525

Experimental Setup. Following the continual in- 526

struction tuning setup in Sec. 2, we test our newly 527

proposed method on TRACE and FUNC bench- 528

marks additionally with a LONG sequence con- 529

tinual learning benchmark (Razdaibiedina et al., 530

2023) with 15 tasks. For the held-out evalua- 531

tion set, we utilize Hellaswag, ARC-challenge, 532

CommonsenseQA, and MMLU-social. The ex- 533

periments were conducted on the Llama2-7B-chat 534

model, demonstrating its effectiveness in combina- 535

tion with existing continual learning methods, such 536

as incremental Lora (Hu et al., 2021) (IncLora), 537

Learning without forgetting (Li and Hoiem, 2017) 538

(Lwf), Elastic weight consolidation (Kirkpatrick 539

et al., 2017) (Ewc), Orthogonal Lora (Wang et al., 540

2023a) (OLora). In our comparison, we prior- 541

itized training with hyper-parameters mentioned 542

in previous works. We loaded the base LM into 543

torch.bfloat16 to save memory and ran the experi- 544

ments on 4 NVIDIA A100 GPUs. 545

To evaluate the performance of proposed algo- 546

rithms, we utilize the average zero-shot held-out 547

performance HP = 1
n

∑n
i=1 a

hi
T to measure shift 548

in general capabilities, average in-content held-out 549

performance IP = 1
n

∑n
i=1 â

hi
T to evaluate for- 550

getting in reasoning abilities, and overall training 551

performance OP = 1
T

∑T
i=1 a

ti
T to assess the de- 552

gree of catastrophic forgetting on newly learned 553

abilities. Here, aij represents the zero-shot evalua- 554

tion score on the evaluation task i after sequentially 555

learning the j-th task. â denotes the in-context eval- 556

uation score. hi and ti denotes the i-th held-out 557

evaluation set and i-th training task, respectively. 558

Results. Table 1 shows the continual instruction 559

tuning performance on three benchmarks, leading 560

to several key observations: 561

Observation 1: IV-guided training significantly 562

prevents the loss of general and reasoning capa- 563

bilities. Unlike most continual learning methods, 564

which struggle with substantial forgetting of gen- 565

eral abilities, our IV-guided training effectively mit- 566

igates this issue, resulting in an average forgetting 567

rate on HP of -0.16, compared to 5.03. Addition- 568

ally, it enhances in-context performance from 37.90 569

to 50.05, underscoring the benefits of maintaining 570
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Method TRACE LONG FUNC
HP IP OP HP IP OP HP IP OP

Init 52.76 54.31 18.68 52.76 54.31 42.62 52.76 54.31 11.70

IncLora 48.69 26.73 47.60 50.28 49.75 78.11 53.12 51.78 43.34
+ IVG 54.75 (+6.06) 45.85 (+19.1) 47.20 52.54 (+2.26) 51.64 (+1.89) 77.41 54.36 (+1.24) 53.89 (+2.11) 69.48

Ewc 52.80 43.96 47.70 45.83 43.61 73.62 52.05 50.33 38.46
+ IVG 54.94 (+2.14) 54.58 (+10.6) 46.69 52.38 (+6.55) 53.36 (+9.75) 71.71 54.22 (+2.17) 54.03 (+3.70) 38.56

Lwf 52.71 54.44 34.68 51.73 52.40 69.39 53.33 54.43 57.91
+ IVG 52.93 (+0.22) 54.49 (+0.05) 34.65 53.85 (+0.56) 53.89 (-0.40) 70.60 53.59 (+0.26) 54.23 (-0.20) 61.92

OLora 36.68 26.48 38.22 50.07 45.87 77.68 54.13 52.38 42.12
+ IVG 49.08 (+12.4) 46.35 (+19.9) 39.78 52.05 (+1.98) 51.48 (+5.61) 76.98 53.94 (-0.19) 53.90 (+1.52) 58.13

Table 1: Performance of baseline and their improved version with Instruction Vector Guided (IVG) training on three
benchmarks (all results reported in this paper are averaged over 4 random seeds).

the computation graph.571

Observation 2: IV-guided training does not com-572

promise the plasticity in learning new tasks. This573

approach shows only a slight reduction in the OP574

metric, with changes of -0.03 and -0.55 for TRACE575

and LONG, respectively. This is in sharp contrast576

to the Lwf algorithm, which significantly reduces577

adaptability, resulting in a dramatic 12.92 drop in578

OP on TRACE compared to IncLora.579

Observation 3: The likelihood of forgetting gen-580

eral abilities increases with the complexity of learn-581

ing tasks. The benchmarks in Table 1, ranked582

from simplest to most complex—FUNC, LONG,583

TRACE—show escalating HP forgetting rates from584

-0.40 to 2.89 and then to 5.04. The IV-guided train-585

ing method effectively manages tasks across vary-586

ing complexities, demonstrating its robustness in587

handling different learning challenges.588

5 Related work589

Catastrophic forgetting in fine-tuned language590

models. Fine-tuning foundational LLMs (Tou-591

vron et al., 2023a,b) has become a generic tech-592

nique for enhancing their capacity of following in-593

structions (Wei et al., 2022; Zhang et al., 2024a,b)594

and mastering domain-specific content (Yue et al.,595

2023; Christophe et al., 2024). However, adopt-596

ing such technique can have a negative effect of597

hurting the original ability of LLMs, which is598

widely known as Catastrophic Forgetting (Kirk-599

patrick et al., 2017; Zhai et al., 2023; Luo et al.,600

2024; Kotha et al., 2024; Wu et al., 2024b). In601

context of LLMs, existing approaches towards mit-602

igating this issue can mostly be categorized into603

three types: regularizing the update of model pa-604

rameters (Kirkpatrick et al., 2017; Huang et al.,605

2021; Cha et al., 2021), replaying previous or self-606

synthesized data (Scialom et al., 2022; Huang et al.,607

2024a) and resisting interference via parameter- 608

efficient fine-tuning (Razdaibiedina et al., 2023; 609

Wang et al., 2023a). 610

Mechanistic analysis to fine-tuning. Exist- 611

ing works on analyzing the internal mecha- 612

nism (Räuker et al., 2023; Ferrando et al., 2024) of 613

fine-tuning mainly focus on the question that how 614

LLMs acquire new capacity in the learning process, 615

arguing that models learn a minimal transformation 616

on top of the original capability (Jain et al., 2024) 617

(wrappers), subtractable and reusable parameter 618

shift vectors (Huang et al., 2024b; Gao et al., 2024) 619

(task vectors) and to align input queries with their 620

internal knowledge that are already acquired in the 621

pre-training stage (Ren et al., 2024). Nevertheless 622

the inherent reason for the forgetting issue brought 623

by fine-tuning currently remains unclear, and hence 624

our work instead targets on this important point. 625

6 Conclusion 626

In our study, we introduce Instruction Vector (IV), 627

which enables detailed analysis of LLMs task pro- 628

cessing capabilities. By analyzing IV dynamics 629

before and after training, we show that forget- 630

ting is caused by the overlay of new reasoning 631

patterns over pre-existing skills, while the perfor- 632

mance can be recovered by adding the IV to the 633

computation graph. Additionally, our proposal of 634

IV-guided training as a fine-tuning method success- 635

fully reduces forgetting by maintaining harmony 636

between the model’s computation graph and the 637

IV-associated one. These findings offer valuable 638

insights into the internal mechanisms causing for- 639

getting in LLMs and are expected to contribute 640

to advancing the development and application of 641

LLMs alignment. 642
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7 Limitation643

The IV-guided training method does not directly644

address the problem of forgetting newly learned645

knowledge in most cases, and needs to be com-646

bined with existing continual learning methods to647

acquire this ability. This is because we overcome648

forgetting by preserving the computation graph,649

which indicates the existing capabilities, making it650

unable to protect newly acquired knowledge. In-651

terestingly, in the FUNC dataset, our method sig-652

nificantly reduced forgetting of new knowledge653

on IncLora and OLora. These tasks have simple654

and deterministic instructions, which may allow655

the model to integrate new capabilities with the656

constructed computation graph during IV-guided657

training, thus overcoming forgetting. This inspires658

us to investigate the adaptability and generaliza-659

tion of the computation graph in future research for660

more refined learning of new knowledge.661

Second, we aggregate attention heads to extract662

the Instruction vector in this paper. Although this663

method is fast and efficient, it is susceptible to input664

noise and may suffer from insufficient expressive-665

ness. Therefore, we plan to use optimization-based666

methods in future to extract a more generalized and667

accurate Instruction vector.668

Finally, due to limitations in experimental re-669

sources, we did not conduct experiments on multi-670

ple backbones. In the future, we will validate our671

hypothesis about forgetting on more LLMs.672
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A Datasets 914

Three continual instruction tuning benchmarks and 915

severel general evaluation datasets are adopts in 916

this paper. The detailed information is as follows: 917

TRACE benchmark. TRACE benchmark is re- 918

leased by Wang et al. (2023b) for the study of for- 919

getting in LLMs, which consists of 8 different com- 920

plex generation tasks including multi-choice QA, 921

code generation, mathematical reasoning and sum- 922

mary. Without loss of generaliztion, we select 6 out 923

of 8 raw tasks to construct the training sequence as 924

our experiments setup. The statistical information 925

is listed in Table 2, while order in Table 6 926

The training epoch for this benchmark is 5 for 927

C-STANCE, Py150, NumGLUE-cm, 3 for FOMC 928

and ScienceQA, and 7 for MeetingBank. We eval- 929

uate them with a self-construct evaluation code 930

based on OpenCompass code framework. 931

LONG benchmark. LONG benchmark is 932

widely utilized in existing continual learning 933

works Wang et al. (2023a); Razdaibiedina et al. 934

(2023) with 15 task. The training epoch is set to 1 935

for each task following (Wang et al., 2023a). The 936

statistical information is listed in Table 4. 937

FUNC benchmark. FUNC benchmark is 938

adapted from the datasets in Todd et al. (2023), 939

in which tasks have clear and simple instructions. 940

For example, task Verb-Spanish and Last-Spanish 941

are both translation task but differ in the selection 942

from list. The training epoch is set to 10 for each 943

task. The statistical information is listed in Table 4. 944

General evaluation sets. For the general eval- 945

uation datasets, we utilize Hellaswag (Zellers 946

et al., 2019), ARC-challenge (Clark et al., 2018), 947

CommonsenseQA (Talmor et al., 2018), and 948

MMLU-social (Hendrycks et al., 2020). The 949

datasets is downloaded from https://github. 950

com/open-compass/opencompass and evaluate 951

with the OpenCompass code framework. 952

B Input template 953

In this paper, the instruction template is divided into 954

two parts, refer to Sec. 2. The first part corresponds 955

to knowledge probability, namely (x, y), and the 956

second part corresponds to Instruction probability, 957

namely (x, c, yc). The specific template content 958

used for each dataset is given below, as show in 959

Table 5, Table 7, and Table 8. 960
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Dataset Source Category Avg len Metric Language #data

ScienceQA Science Multi-Choice QA 210 Accuracy English 5,000
FOMC Finance Multi-Choice QA 51 Accuracy English 5,000
MeetingBank Meeting Summary 2853 ROUGE-L English 5,000
C-STANCE Social media Multi-Choice QA 127 Accuracy Chinese 5,000
Py150 Github Code generation 422 Edim similarity Python 5,000
NumGLUE-cm Math Math reasoning 32 Accuracy English 5,000

Table 2: A summary of dataset statistics in TRACE includes information on the source of the context, average
length in terms of word count for English, German, and code datasets, and character count for Chinese.

Dataset Source Category Avg len Metric Language #data

Yelp Yelp reviews Sentiment analysis 757 Accuracy English 5,000
SST2 Movie reviews Sentiment analysis 62 Accuracy English 2,000
Amazon Amazon reviews Sentiment analysis 458 Accuracy English 5,000
IMDB Movie reviews Sentiment analysis 1,340 Accuracy English 2,000
DBpedia Wikipedia Topic classification 324 Accuracy English 14,000
Yahoo Yahoo Q&A Topic classification 562 Accuracy English 10,000
AG News News Topic classification 259 Accuracy English 4,000
WiC Lexical database Disambiguation 93 Accuracy English 2,000
QQP Quora Paraphrase 158 Accuracy English 2,000
RTE News, Wikipedia NLI 365 Accuracy English 2,000
MNLI Multi NLI 205 Accuracy English 3,000
CB Multi NLI 365 Accuracy English 250
COPA blogs, encyclopedia Question answering 161 Accuracy English 400
BoolQ Wikipedia Question answering 655 Accuracy English 2,000
MultiRC SuperGLUE Question answering 1728 Accuracy English 2,000

Table 3: A summary of dataset statistics in LONG.

Dataset Source Category Avg len Metric Language #data

Alphabetically_last_of_5 − Extractive, Capital 144 Accuracy English 700
Choose_last_of_5_spanish − Extractive, Translation 109 Accuracy English, Spanish 700
AG News News Topic classification,QA 285 Accuracy English 1,500
Object_v_concept_5_spanish − Extractive, Translation 106 Accuracy English, Spanish 700
Verb_v_adjective_5_spanish − Extractive, Translation 106 Accuracy English, Spanish 700
Sentiment − Sentiment analysis,QA 75 Accuracy English 816

Table 4: A summary of dataset statistics in FUNC.

Task Template

Yelp, SST2, Amazon, IMDB "Input": "What is the sentiment of the following paragraph? [x]
Choose one from the option.", "Output": "[y]"

DBPedia, Yahoo, AG NEws "Input": "What is the topic of the following paragraph? [x]
Choose one from the option.", "Output": "[y]"

QQP "Input": "Whether the [x1] and the [x2] have the same meaning?
Choose one from the option.", "Output": "[y]"

RTE, MNLI, CB "Input": "What is the logical relationship between the [x1] and the [x2]?
Choose one from the option.", "Output": "[y]"

BoolQA "Input": "According to the following passage, is the question true or false? [x]
Choose one from the option.", "Output": "[y]"

MultiRC "Input": "According to the following passage and question, is the candidate answer true
or false? [x] Choose one from the option.", "Output": "[y]"

WiC "Input": "Given a word and two sentences, whether the word is used with the same sense
in both sentence? Choose one from the option.", "Output": "[y]"

Table 5: Input template for tasks in LONG benchmark.
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Benchmark Task Sequence

TRACE C-STANCE→ FOMC→ MeetingBank→ Py150→ ScienceQA → NumGLUE-cm

LONG Yelp→ Amazon→ MNLI→ CB→ COPA→ QQP→ RTE→ IMDB→
SST2→ DBpedia→ AG News→ Yahoo→ MultiRC→ BoolQ→ WiC

FUNC Verb-Spanish → Last-Spanish→ Sentiment-mc→ Object-Spanish→ Alphabetically-Capital → AGNews-mc

Table 6: The orders used for each benchmark.

Task Prompts

ScienceQA "Input": [x] "Output": [y]

FOMC "Input": “Text: [x] The monetary policy stance of above text is “, "Output": “[y]”

C-STANCE (Translate Chinese to English) "Input": ”Text: [x1] Object: [x2]
The attitude of above text towards object is”, "Output": “[yc]"

Last-Spanish "Input": "Choose the last item in the list. [x]", "Output": "[yc]"

Object-Spanish "Input": "Choose the object in the list. [x]", ”Output": "[y]"

Verb-Spanish "Input": "Choose the verb in the list. [x]", "Output": "[y]"

Alphabetically-Capital "Input": "Choose the last item in the order of alphabetically in the list. [x]", "Output": "[y]"

AGNews-mc "Input": "Classify the following news with the label Business,
Science, Sports, and World. [x] ", "Output": "[y]"

Sentiment-mc "Input": "[x]", "Output": "[y]"

Table 7: Input template for calculating knowledge probability for different tasks.

Task Prompts

ScienceQA "Input": "Choose an answer for the following question and
give your reasons. Question: [x] Answer:", "Output": "[yc]"

FOMC "Input": "What is the monetary policy stance for the following text? A. dovish, B. hawkish,
C. neutral. Choose one from A, B and C. Text: [x] Stance:", "Output": "[yc]"

C-STANCE
(Translate Chinese to English) "Input": ”Determine the attitude of
the following text towards the specified object. Select one: A. Support,
B. Oppose, C. Neutral. Output A, B or C. Text: [x1] Object: [x2] Attitude:”, "Output": “[yc]"

MeetingBank "Input": "Write a summary of the following meeting transcripts.
Meeting transcripts: [x] Summary:", "Output": “[y]”

Py150 "Input": “<s> [x]”, "Output": “[y]”

NumGLUE-cm "Input": "Solve the following math problem. Question: [x] Answer:”, "Output": “[y]”

Last-Spanish "Input": "Choose the last item in the list and
translate to spanish. [x]", "Output": "[yc]"

Object-Spanish "Input": "Choose the object in the list and
translate to spanish. [x]", "Output": "[yc]"

Verb-Spanish "Input": "Choose the verb in the list and
translate to spanish. [x]", "Output": "[yc]"

Alphabetically-Capital "Input": "Choose the last item in the order of alphabetically in the list and
print in the capital form. [x]", "Output": "[yc]"

AGNews-mc "Input": "[x] A: Business B: Science C: Sports D: World", "Output": "[yc]"

Sentiment-mc "Input": "[x] a: positive b: negative", "Output": "[yc]"

Table 8: Input template for calculating instruction probability and training for different tasks.
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C Implementation961

We adopt LLAMA2-7B-Chat (Touvron et al.,962

2023b) as the base model, with its effectiveness963

in both understanding world knowledge and fol-964

lowing instructions. Without specific notification,965

the model is fine-tuned with LORA approach (Hu966

et al., 2021), where the rank dimension set to 8967

and the target module is query and value weight968

matrices. For IncLora, OLora, and Lwf methods, a969

new adapter is initialized at the beginning of learn-970

ing new task while keep the previous Lora adapters971

fixed. For Ewc, only one big adapter is initialized972

during the sequential learning, where rank is set to973

48 for TRACE and FUNC, and 60 for LONG.974

The maximum input sequence length is set to975

512 and the maximum output sequence length is976

set to 50. We train the model with the decoder977

only task calculating gradient only on the output978

tokens. We use an Adam optimizer with a weight979

decay of 0.01 and the learning rate set to 1e-4 for980

TRACE and FUNC, 1e-3 for LONG (following981

(Wang et al., 2023b)). The batch size is set to 8 and982

accumulate gradient step is set to 2 for each GPU983

while we run on 4 A100 GPUs with Deepspeed.984

The training size and epochs can be found in the985

introduction of datasets.986

As for the hyperparameters, we perform a grid987

search on the scale of KL-divergence loss within988

[1, 0.5, 0.25, 0.05, 0.01] and set 0.05 as the final989

choice. For the hyperparameters of existing contin-990

ual learning methods, I refer to the well-searched991

value reported in previous paper.992

D Implementation Detail of Instruction993

Vector Framework994

When extracting the Instruction Vector from995

in-context samples, we use 10-shot input prompt996

randomly selected from held-out training dataset.997

The task-conditioned activations are average on998

samples filtered with correct 10-shot answer from999

the validation set with 200 samples. As for the set1000

S of the casual attention heads, we follow the posi-1001

tion in Todd et al. (2023) and validate its efficiency1002

on our own datasets. Specifically, the set S is1003

[(14, 1), (11, 2), (9, 25), (12, 15), (12, 28), (13, 7),1004

(11, 18), (12, 18), (16, 10), (14, 16)].1005

E Effectiveness of Instruction Vector1006

To assess the effectiveness of the extracted θc, re-1007

ferred to as the Instruction Vector (IV) in this study,1008

we conduct a series of intervention experiments1009

across multiple datasets (see Fig. 6) on the initial 1010

model. These experiments consisted of either in- 1011

serting or removing an IV at the hidden states of a 1012

specific layer at the the last token position, to ex- 1013

amine the influence on the model output. More pre- 1014

cisely, in the transformer’s forward residual stream, 1015

the instruction vector θc modifies the hidden states 1016

at a select layer l as hl = hl + θc.

Figure 6: Intervention results on four datasets via En-
hanced Instruction Vector.

1017
We reported the intervention findings on four 1018

distinct datasets: 1) CommensenseQA, multiple- 1019

choice questions on common sense reasoning; 2) 1020

Antonym, a task aimed at generating antonyms; 3) 1021

AGNews, a text classification task with the article’s 1022

category as the label; and 4) Last-Spanish, a task 1023

that output the Spanish translation of the list’s final 1024

item. The results highlighted that the IV directly 1025

affects the model’s output behavior for specific 1026

tasks. In tasks such as Antonym, Last-Spanish, and 1027

CommonsenseQA, introducing IV significantly im- 1028

proved the zero-shot performance from a low level. 1029

Conversely, in the cases of AGNews and Common- 1030

senseQA, removing the IV resulted in a deteriora- 1031

tion of the model’s ability to produce the correct 1032

output. In contrast, interventions with random vec- 1033

tors had a negligible effect on the model. These 1034

findings indicate that the specific capabilities of the 1035

model can be identified and analyzed by examining 1036

the dynamics of the corresponding IV. 1037

F Recovery with Instruction Vector 1038

We conducted an intervention experiment on the 1039

CommonsenseQA task with the fine-tuned model 1040

on the TRACE benchmark (refer to Fig. 7). The 1041

results show that the model exhibited significant 1042

forgetting in both 0-shot and 10-shot performance, 1043

dropping to 0.03 and 0.15, respectively. How- 1044
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ever, integrating IV into the model (as shown in1045

Fig. 1(g)), i.e., hl = hl + θc, resulted in a substan-1046

tial recovery in model performance. Performance1047

reached 0.47 when using IV derived from the cur-1048

rent model and 0.49 with IV from the initial model.1049

Figure 7: The intervention results on model sequentially
fine-tuned on TRACE benchmark.
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