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Abstract

Common simplifying assumptions often cause standard reinforcement learning1

(RL) methods to fail on complex, open-ended environments. Creating a new wrap-2

per for each environment and learning library can help alleviate these limitations,3

but building them is labor-intensive and error-prone. This practical tooling gap4

restricts the applicability of RL as a whole. To address this challenge, Puffer-5

Lib transforms complex environments into a broadly compatible, vectorized for-6

mat that eliminates the need for bespoke conversion layers and enables rigorous7

cross-environment testing. PufferLib does this without deviating from standard8

reinforcement learning APIs, significantly reducing the technical overhead. We9

release1 PufferLib’s complete source code under the MIT license, a pip module, a10

containerized setup, comprehensive documentation, and example integrations. We11

also maintain a community Discord channel to facilitate support and discussion.12

1 Background and Introduction13

Reinforcement Learning (RL) generates data through interaction with a multitude of parallel en-14

vironment simulations. This dynamism introduces non-stationarity into the optimization process,15

necessitating algorithmic treatments distinct from those employed in supervised learning. When16

compounded by sparse reward signals, this issue yields several complications, including extreme17

sensitivity to hyperparameters, which extends even to the random seed. Consequently, experiments18

often yield unpredictable learning curves with spikes, plateaus, or crashes, deviating from the more19

reliable behavior observed in other machine learning domains.20

Alongside this lies the pragmatic challenge of implementing RL in complex environments with21

currently available tools. Although this is arguably a more solvable problem than optimizing the22

online learning process, the lack of effective tooling often exacerbates the problem, making it an23

arduous task to resolve despite thorough investigation. These issues frequently cause significant24

delays, frustration, and stagnation in the field, potentially deterring talented researchers from pursuing25

work in this area.26

PufferLib is a middleware layer that resolves longstanding compatibility issues between environments27

and tools. Our work enables other research in open-endedness by removing a large practical28

barrier to studying complex environments. Existing solutions such as Gym/Gymnasium [Brockman29

et al., 2016], PettingZoo [Terry et al., 2020b], and SuperSuit [Terry et al., 2020a] aim to define standard30

1As this is a software release with an existing community, it is impossible to fully anonymize the submission.
We ask reviewers to take this practical limitation into account when assessing our adherence to double blind.

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.



Figure 1: Detailed but non-comprehensive illustration of the PufferLib system architecture, com-
prising emulation, vectorization, and learning framework integrations. The orange emulation block
demonstrate how PufferLib receives and processes environment data. The red emulation block
demonstrates how PufferLib processes actions from the neural network to send to the environment.
The blue vectorization blocks aggregate and split data received from and sent to the environment.
Finally, the pink and purple blocks summarize how PufferLib provides compatibility with multiple
frameworks given a single PyTorch network.

APIs for environments and implement common wrappers. PufferLib builds on Gym and PettingZoo31

but also addresses their specific limitations, which we will discuss after providing comprehensive32

context for the problem at hand.33

PufferLib allows users to wrap most new environments in a single line of code, without changing34

the original Gym/Gymnasium/PettingZoo API. This wrapper makes environments compatible with35

popular reinforcement learning libraries, such as CleanRL [Huang et al., 2021a] and RLlib [Liang36

et al., 2017]. It natively supports multi-agent and variable-agent environments and addresses common37

complexities that include batching structured observations and actions, featurizing observations,38

shaping rewards, and grouping agents into teams. PufferLib is also designed for extensibility and is39

capable of supporting new learning libraries with a complete feature set in typically about a hundred40

lines of code.41

2 Problem Statement42

Middleware limitations are seldom topics of sustained academic interest, but perhaps for this reason,43

their impact can be prolonged and severe. To thoroughly ground our work, we will walk through the44

intricacies of the transformations that reinforcement learning data must undergo, and demonstrate the45

shortcomings of existing approaches. Specifically, we will trace the required transformations from46

simulation onset to data processing by the initial model layer, and from action computation to the47

point when those actions influence the environment.48

We will use Neural MMO [Suarez et al., 2021], a PettingZoo-compliant environment, as our guiding49

example. This environment encapsules many complexities common in advanced environments. It50

features 128 agents competing to complete open-ended tasks in a procedurally-generated world.51
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Agents are provided with rich, structured observations of their surroundings and a hierarchical action52

space for interactions.53

The environment initialization starts with a configuration file and a reset to yield an initial set of54

observations. This results in a dictionary of 128 individual observations, each of which is a structured55

dictionary housing differently-shaped tensors related to various aspects of the observation. As a part56

of the environment’s standard training setting, these agents are grouped into teams of 8. Each team57

observation is then processed by a featurizer to yield a single structured observation, aggregating58

information from across the team’s agents. Subsequently, this observation must be batched for model59

usage.60

This introduces two challenges. First, since the observation is structured, we cannot merely con-61

catenate tensors; we must concatenate each sub-observation across agents. Secondly, many learning62

libraries presuppose that observations can be stored in flat tensors, thus requiring data flattening.63

Following this, the data must be concatenated with information from several parallel environment64

instances. Once done, the data can be forwarded to the network.65

We now encounter another problem: the network itself is structured, and attempting to learn from66

the flattened representation is akin to unraveling an image and using dense layers. Therefore, the67

structured observation representation must be recovered in a batched form, allowing for efficient68

processing of each sub-observation across all teams and environments in parallel. The model69

then computes a multidiscrete output distribution and samples an integer array for each team and70

environment. The output data is divided across environments, and each multidiscrete action is mapped71

into a structured format where each integer signifies a specific agent’s action within a team. Finally,72

the environment can execute its first step.73

Regrettably, this is the least complex step. All preceding actions must be reiterated, but with additional74

complexities. For example, the environment must now also return rewards, dones, and infos. These75

outputs, particularly rewards and dones, require grouping by team. For each team, we must track76

which agents have completed their tasks and signal that team is done only when all agents have77

finished. Similarly, we need a method to post-process and group reward signals per team. Since most78

learning libraries anticipate each agent to return an observation on every step, we must zero-pad the79

tensor for any agents that are done. Moreover, as the PettingZoo API does not mandate a consistent80

observation return order (a common source of bugs), we must verify this as well.81

As illustrated, considerable work is needed to ensure compatibility between the environment and82

standard learning libraries - even for a fully Gym and PettingZoo-compliant environment like Neural83

MMO. We have provided support to the Neural MMO team in integrating PufferLib, and prior to84

integration, about a quarter of the Neural MMO code base was devoted to these transformations. This85

was also the primary source of bugs, many of which would lead to silent performance degradations.86

For instance, specific patterns of agent deaths could cause incorrectly ordered observations, leading87

to neural networks optimizing trajectories assembled from different agents. In another case, a bug in88

the reconstruction of observations misaligned data, causing incorrect subnetwork processing. Despite89

a strong engineering focus on testing, these bugs are two among dozens that reportedly emerged90

during Neural MMO’s development.91

3 Related Tools92

Gym and PettingZoo, the prevalent environment APIs for single-agent and multi-agent environments93

respectively, offer several tools to mitigate the complexities described earlier. Supplementary third-94

party tools, like SuperSuit, provide standalone wrappers, while numerous reinforcement learning95

libraries furnish wrappers compatible with their internal APIs. For instance, Gym provides a96

range of wrappers for image observation preprocessing, observation flattening, action and reward97

postprocessing, and even sanity check wrappers for bug prevention. SuperSuit further adds multi-98

agent wrappers specifically designed to address the agent termination and padding issues discussed99

previously.100

3



Current methodologies present some significant challenges. The tools described are designed as a set101

of wrappers applied sequentially to an environment instance, implying that (with a few exceptions),102

they should function in any order. However, particularly with PettingZoo, which caters to multi-103

and variable-agent environments, the gamut of possible environments is vast and challenging to test.104

This often results in scenarios where a bug in one wrapper causes an error in a different wrapper.105

Identifying the origin of such errors across deeply nested wrapper classes can be an overwhelming106

task, contributing to a general sense of frustration common in reinforcement learning research.107

Moreover, the coverage of wrappers is insufficient. Despite the difficulties in testing and maintaining108

compatibility among existing wrappers, more are still needed. As it stands, there is no wrapper109

ensuring consistent agent key ordering, despite many reinforcement learning libraries demanding this.110

No wrapper exists for grouping agents into teams, a common operation, nor a wrapper that natively111

vectorizes multi-agent environments across multiple cores. The current workarounds for the latter are112

unstable, abusing single-agent vectorization code. While additional development could resolve these113

issues, it would further aggravate the existing compatibility problem.114

Another challenge is that some wrappers are infeasible to construct using the above approach. An115

observation unflattening wrapper, often needed to store observations in flat tensors while retaining the116

structured format for the model, is one such example. If the flattening wrapper is not the outermost117

one, the observation space structure required to unflatten the observation is lost. Conversely, if the118

flattening wrapper is always the final layer, all other wrappers must handle structured observation119

spaces, thereby adding unnecessary complexity and error-prone code.120

4 PufferLib’s Approach121

PufferLib aims to handle all the complex data transformations discussed above, returning data in a122

format compatible with even the most basic reinforcement learning libraries. The system comprises123

three primary layers: emulation, vectorization, and framework integrations. The ultimate outcome124

allows users to wrap some of the most intricate reinforcement learning environments available with a125

single line of code and use a single PyTorch network to train with multiple reinforcement learning126

frameworks.127

4.1 Emulation128

This layer forms the core of PufferLib. By applying the aforementioned data transformations, it129

generates a simple, standard data format, thereby emulating the style of simpler environments. Our130

approach diverges from Gym, PettingZoo, and Supersuit in three significant ways:131

1. PufferLib consists of a single wrapper layer with transformations applied in a fixed sequence.132

Observations are grouped, then featurized, subsequently flattened, and finally padded and133

sorted.134

2. It provides fast Cythonized utilities for both flattening and unflattening observations and135

actions without the issues described earlier.136

3. The wrapper includes substantial precomputation and caching of costly operations.137

The wrapper class is designed to address all the common difficulties associated with working with138

complex, multi-agent environments as simply as possible. For context, it totals only around 700 lines139

of code, which further shrinks excluding the various API usage, input checking exceptions, optional140

correctness checks, and utility functions. By comparison, the core of PufferLib is shorter than the141

domain-specific code previously used to support Neural MMO alone. In an ideal world, users would142

never face uncaught errors in internal libraries. However, as no reinforcement learning library to143

date has achieved this standard, PufferLib provides a pragmatic solution by offering a simple, single144

source of failure, as opposed to the potential confusion caused by dozens of conflicting wrappers.145
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4.2 Vectorization146

Existing vectorization tools built into Gym and PettingZoo lack stable support for multi-agent147

environments. PufferLib bridges this gap by including a suite of three vectorization tools. These148

tools leverage the sanitized output format provided by the emulation layer, allowing them to be both149

performant and simple. Each environment will consistently present the same number of agents, in the150

same order, with flattened observations. The three vectorization backends are as follows:151

1. Multiprocessing: This tool simulates n environments on each of m processes, totaling nm152

environments, using Python’s native multiprocessing. An additional version, which transfers153

observations via shared memory, is included. This variant can prove useful for environments154

demanding high data bandwidth.155

2. Ray: This tool, like the multiprocessing one, simulates n environments on each of m156

processes, using Anyscale’s Ray distributed backend. Although this implementation might157

be slower for fast environments, it works natively on multi-machine configurations. It also158

includes a version that transfers observations to the shared Ray memory store instead of159

directly to processes, which can be faster for specific environment configurations.160

3. Serial: This tool simulates all of the environments on a single thread. This setup proves161

useful for debugging, as it is compatible with breakpoints while maintaining the same162

API as the previous implementations. Additionally, it is faster for extremely low-latency163

environments where the overhead of multiprocessing outweighs its benefits.164

All these backends offer both synchronous and asynchronous APIs, facilitating their use in a buffered165

setup. In this configuration, the model processes observations for one set of environments while166

another set of environments processes the previous set of actions. Additionally, all these backends167

provide hooks for users to shuttle any arbitrary picklable data to the environments. This feature is168

essential for advanced training methods that need to communicate - for instance, new tasks or maps -169

with specific environments on remote processes.170

4.3 Integrations171

The current release of PufferLib includes support for CleanRL and RLlib, with an extension to172

Stable Baselines [Raffin et al., 2021] projected for the forthcoming minor versions. It also includes a173

customized version of CleanRL’s PPO implementation with additional performance optimizations174

enabled by PufferLib, such as asynchronous but on-policy sampling and improved handling of175

environments with variable numbers of agents. Owing to the consistent and standard format defined176

by the emulation layer, even for complex environments, it is relatively straightforward to employ the177

same PyTorch network across different framework APIs. PufferLib introduces an entirely optional178

PyTorch base class that separates the forward() function into two parts: encode_observations and179

decode_actions. Functions preceding a recurrent cell are categorized under the encoding function,180

and those succeeding it are under the decoding function. This division is implemented because181

the handling of recurrence is often the most challenging difference among various frameworks. In182

addition, the mishandling of data reshaping in the recurrent cell is a common source of implementation183

bugs. We provide additional checks to mitigate this risk. On top of this API, PufferLib constructs184

a small, per-framework wrapper, which activates the user-specified recurrent cell according to the185

specific requirements of the given framework. This approach may be expanded to include transformers186

in the future, although most RL frameworks currently lack support for this.187

5 Materials Available for Release188

The public version of PufferLib (version 0.4) is accessible at pufferai.github.io. Version 0.5 is planned189

for release by the end of the year and will include additional framework support. User testing greatly190

accelerates progress, and the exposure from publication would significantly benefit this work. We191

currently have the following materials ready for release:192
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• Simple documentation and demos for CleanRL and RLlib with Neural MMO available on193

the website mentioned above.194

• Built-in support and testing for Atari Bellemare et al. [2012], Butterfly (part of PettingZoo),195

Classic Control (part of Gym), Crafter Hafner [2021], MAgent Zheng et al. [2017], Mi-196

croRTS [Huang et al., 2021b], Nethack [Küttler et al., 2020], Neural MMO [Suarez et al.,197

2021], Griddly [Bamford et al., 2020], and partial support for and SMAC [Samvelyan et al.,198

2019], DM Lab [Beattie et al., 2016], DM Control [Tassa et al., 2018], ProcGen [Cobbe199

et al., 2019], and MineRL [Guss et al., 2019]. Most of these are one-line wrappers that200

primarily depend on ensuring compatibility of dependency versions. These are also included201

in our correctness tests.202

• A Docker container, fondly referred to as PufferTank, that comes pre-built with PufferLib203

and all of the above environments pre-installed. We have done additional versioning work to204

maximize the number of common environment that may be installed simultaneously without205

conflicts.206

• Baselines on the 6 original Atari environments from DQN [Mnih et al., 2013], sanity-checked207

against CleanRL’s vanilla implementation.208

• A community Discord server with 120 members, offering easy access to support.209

This version further includes an advanced set of correctness tests that reconstruct the original210

environment data format from the final version postprocessed by PufferLib. This has aided us in211

identifying several dozen minor bugs in our development builds. PufferLib is also being utilized212

in the upcoming Neural MMO competition, enabling much simpler baseline code than would be213

achievable without it.214

6 Limitations215

The most significant limitations of the current release of PufferLib include216

1. No support for Gymnasium. This is already corrected in the 0.5 dev branch.217

2. No support for heterogenous observation and action spaces. These are difficult to process218

efficiently in a vectorized manner. We have a potential workaround scheduled for a future219

version.220

3. No support for continuous action spaces. This will be supported with a medium amount of221

development effort in future versions.222

4. Environments must define a maximum number of agents that fits in memory. Additionally,223

agents may not respawn. The former is a fundamental limitation of the PettingZoo API. The224

latter may be supported in with a small amount of development effort.225

Additionally, as the first publication release of a new framework, we are heavily reliant upon growing226

a user base to ensure the stability of our tools. We run a battery of correctness tests and verify training227

performance on Atari in each new release, but subtle bugs have occasionally slipped through during228

development.229

7 Conclusion230

This paper introduces PufferLib, a versatile tool that simplifies working with both single and multi-231

agent reinforcement learning environments. By providing a consistent data format and handling232

complex transformations, PufferLib allows researchers to focus on scaling their work to more233

cognitively interesting environments rather than dealing with finicky compatibility details. Its built-in234

support for a wide variety of environments, coupled with its scalability and compatibility with popular235

RL frameworks, makes PufferLib a comprehensive solution for reinforcement learning tasks. We236

welcome the open-source community to use and contribute to PufferLib, and we anticipate that its237

ongoing development and integration will lower barriers to reinforcement learning research.238
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capabilities, which may be verified from downloading the library.303

(b) Did you describe the limitations of your work? [Yes] See Limitations304

(c) Did you discuss any potential negative societal impacts of your work? [No] This is a305

release of tools for academic research306

(d) Have you read the ethics review guidelines and ensured that your paper conforms to307

them? [Yes]308

2. If you are including theoretical results...309

(a) Did you state the full set of assumptions of all theoretical results? [N/A]310

(b) Did you include complete proofs of all theoretical results? [N/A]311

3. If you ran experiments (e.g. for benchmarks)...312

(a) Did you include the code, data, and instructions needed to reproduce the main experi-313

mental results (either in the supplemental material or as a URL)? [Yes] Included in the314

base repository, not the package itself315

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they316

were chosen)? [Yes] We used the default hyperparameters of the frameworks317

(c) Did you report error bars (e.g., with respect to the random seed after running experi-318

ments multiple times)? [No] These experiments were run only as correctness tests to319

verify similarity to base CleanRL etc.320

(d) Did you include the total amount of compute and the type of resources used (e.g., type321

of GPUs, internal cluster, or cloud provider)? [No] We used a single T40 and 4 cores322

for Atari baselines, run for a few days. Given that our work is tooling, this did not seem323

relevant to include in the main text.324

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...325

(a) If your work uses existing assets, did you cite the creators? [Yes] Attribution for the326

logo and design is provided on the main page327
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(b) Did you mention the license of the assets? [Yes] The release (i.e. everything but the328

logo) is MIT licensed. Copyright for the logo is owned by the author.329
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(e) Did you discuss whether the data you are using/curating contains personally identifiable334

information or offensive content? [N/A] No such data335

5. If you used crowdsourcing or conducted research with human subjects...336
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applicable? [N/A] No crowdsourcing338

(b) Did you describe any potential participant risks, with links to Institutional Review339
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