
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Neurosymbolic Language Reasoning as
Satisfiability Modulo Theory

Anonymous authors
Paper under double-blind review

Abstract

Natural language understanding requires interleaving textual and logical
reasoning, yet large language models often fail to perform such reason-
ing reliably. Existing neurosymbolic systems combine LLMs with solvers
but remain limited to fully formalizable tasks such as math or program
synthesis, leaving natural documents with only partial logical structure
unaddressed. We introduce Logitext, a neurosymbolic language that rep-
resents documents as natural language text constraints (NLTCs), making
partial logical structure explicit. We develop an algorithm that integrates
LLM-based constraint evaluation with satisfiability modulo theory (SMT)
solving, enabling joint textual–logical reasoning. Experiments on a new
content moderation benchmark, together with LegalBench and SuperNatu-
ral Instructions, show that Logitext improves both accuracy and coverage.
This work is the first that treats LLM-based reasoning as an SMT theory,
extending neurosymbolic methods beyond fully formalizable domains.

1 Introduction

Large language models (LLMs) remain unreliable at logical reasoning in natural language,
often producing inconsistent or incomplete results despite recent progress [Sakai et al. (2025);
Lin et al. (2025)]. Logical solvers provide reliable guarantees but are confined to fully
formalizable domains such as math and program synthesis. Existing neurosymbolic systems
combine LLMs with logical solvers to achieve strong results in these domains [Olausson et al.
(2023); Ye et al. (2023); Wen et al. (2025)], but they face two key limitations. First, they
remain restricted to fully formalizable settings and thus cannot naturally handle documents
that mix textual and logical structure. Second, they typically adopt a staged architecture in
which the LLM formalizes the problem once and the logical solver executes it. This design
precludes the iterative interleaving of textual and logical reasoning required for many natural
language tasks.
Real-world documents highlight this gap. Policies specify conditions on user posts, instruc-
tions impose formatting rules, and statutes constrain legal interpretations. These constraints
are seldom fully formalizable, yet they combine naturally with logical operators and interact
with calculations. To capture such cases, we introduce Logitext, a neurosymbolic language
that expresses constraints directly in text. At the core of Logitext are natural language
text constraints (NLTCs), a representation that makes partial logical structure explicit and
allows textual and symbolic constraints to work together.
Example. Consider a policy stating that “a post must be removed if it is both hateful and
an immediate threat.” The textual notions of “hateful” and “immediate threat” cannot
be fully formalized in logic, but they can be represented as NLTCs. Logitext links these
textual constraints with a logical conjunction, ensuring that the decision depends on both
the logical structure and the outcome of the textual judgments.
We realize this idea by extending satisfiability modulo theory (SMT) with a new theory
for textual constraints. Modern SMT logical solvers assign values to variables step by step
and propagate the consequences across theories such as strings, floats, and sets [Davis et al.
(1962), Marques-Silva & Sakallah (1999), de Moura & Bjørner (2008), Barrett et al. (2010),
Zheng et al. (2017), Rümmer & Wahl (2010)]. With NLTCs, this propagation requires

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MessagesM containing disruptive behavior are those C1 addressed at a group (not just an individual),

where C2 the group targeted by the message is defined by ethnicity, gender, color, nationality, sexual
orientation, race, or physical disability, and the message matches at least one of the following sub-rules:

• Bias: C3 Message contains stereotyping, insensitive remarks, fear of difference, non-inclusive
language, microaggressions, justifying biases by seeking out like-minded people, accepting neg-
ative or misinformation/screening out positive information.

• Violence: C4 Message is related to murder, rape, assault, arson, terrorism, vandalism, desecra-
tion, or threats.

• Genocide: C5 Message is related to the act or intent to deliberately and systematically annihilate
an entire people.

Based on the above, a message is an immediate threat if C6 it expresses a violent or genocidal intention
and the context is enough to suggest that the safety and/or life of an individual or group of people is at
risk.

(a)
Check if the following message M contains disruptive behavior [or an immediate threat] as per the above policy: …

(b)
Create a sample message M that contains disruptive behavior as per the above policy. Ensure that the message
does not involve violence or genocide.

(c)
Create sample messages M that each contain disruptive behavior according to the policy. Ensure that the messages
do not involve violence or genocide. Create a sample for every valid combination of policy criteria.

(d)

Figure 1: Example: A content moderation policy (a) illustrates a fine-grained mix of logical
and textual constraints. Combined with (b), it yields a prompt that requires compositional
logical reasoning, and with (c-d), combinatorial reasoning.
solving textual constraints iteratively so that assignments remain consistent with Boolean
conditions. We develop a theory that performs this process efficiently and integrate it
into existing SMT solvers, thereby positioning LLM-based reasoning as an SMT-solver-
compatible theory.
Contributions. This paper formalizes LLM-based reasoning as an SMT theory and intro-
duces the first framework to support SMT-solver-compatible reasoning with partial logical
structure:

• Concept: We show the necessity of interleaving textual and logical reasoning and
characterize the limitations of staged approaches (§2).

• Language: We introduce Logitext, a neurosymbolic language that enriches docu-
ments with logic and represents them as NLTCs interfacing with SMT solvers (§3.1,
§3.2).

• NLTC Solver: We present an algorithm that solves NLTCs and extends the SMT
framework with this capability (§3.3).

• Evaluation: We show that Logitext outperforms staged baselines on a new content
moderation benchmark and improves accuracy and coverage on LegalBench and
SuperNatural Instructions (§4).

2 Interleaved text/logic reasoning in text understanding

We illustrate the need for interleaved textual and logical reasoning using a content moder-
ation policy.

2.1 Compositional vs combinatorial reasoning in natural text

Figure 1 shows a common LLM use case. A policy document (Figure 1a) defines notions
such as “disruptive behavior” and “immediate threat.” When paired with a task description

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Figures 1b–1d) and an input message, the document becomes an LLM prompt whose
reliable reasoning is the objective.
The document expresses intent through both textual and logical relations. Shaded text
within each clause Ci specifies its meaning relative to the input message M and possibly
other clauses. For example, given M = “Americans love ice cream,” clause C1 (“addressed
at a group”) and C2 (“targeted by nationality”) both evaluate to True. Underlined text
between clauses then constrains these meanings logically. Formally, whether a message is
disruptive (d) depends on:

d = [[C1]] ∧ [[C2]] ∧ ([[C3]] ∨ [[C4]] ∨ [[C5]]) (1)
Compositional reasoning. The classification task in Figure 1b asks whether a message
is disruptive (d) or an immediate threat (t). Solving for d requires one pass of textual
reasoning to evaluate each [[Ci]], followed by logical evaluation of the formula. At first
glance, t appears to need only textual reasoning ([[C6]]). However, C6 checks whether the
message “expresses violent or genocidal intention,” which depends on prior results [[C4]] and
[[C5]]. Thus, t requires information from a logical disjunction [[C4]] ∨ [[C5]], showing the
benefit of interleaving logical with textual reasoning.
Combinatorial reasoning. The constrained generation task in Figure 1c reverses the
classification problem: instead of labeling a given message, the goal is to generate a message
M that satisfies both a partial assignment of clause values and the policy as a whole. This
requires two steps. First, a logical solver proposes candidate assignments for the relevant
clauses (e.g., C1 . . . C5) that are consistent with the partial assignment and with the logical
definition of d. Second, a generator synthesizes a message M whose text realizes those
clause assignments. If the synthesis step fails to produce a valid message, the process must
repeat with a new candidate assignment. The high-coverage generation task in Figure 1d is
an even harder variant: it requires generating messages that realize many or all satisfying
assignments, not just one. Such tasks inherently demand iterative cooperation between
logical solving and textual synthesis.

2.2 Logical reasoning gaps

(a) Compositional gap

gpt4o-mini gpt5-nano o3-mini o4-mini o3 gpt5
LLM Model

0

20

40

60

80

100

Co
m

bi
na

to
ria

l G
ap

 (%
)

cmod
Political
(6 clauses)

cmod
Religious
(8 clauses)

cmod
Fraudulent
(12 clauses)

cmod
Bullying
(21 clauses)

cmod
Drugs
(22 clauses)

(b) Combinatorial gap
Figure 2: Gaps in logical reasoning (See App A.1.) on content moderation across LLMs.

How well do LLMs perform the logical reasoning needed for these tasks? To evaluate this,
we define reasoning gaps: the difference between (1) performance when an LLM handles
textual reasoning and a logical solver executes logical reasoning, versus (2) performance
when the LLM alone handles the entire prompt. We denote the compositional gap by ∆
and the combinatorial gap by ∆′. Our dataset contains five content safety policies with
6–21 clauses.
Figure 2a shows ∆ across models, measured as classification accuracy. Smaller models
exhibit large compositional gaps, while stronger models narrow them. Within each model,
the size of the gap increases with task complexity, reflecting the number of interacting
clauses.
Figure 2b shows ∆′ for combinatorial reasoning, measured as the number of distinct correct
assignments generated. Here the gaps are dramatic: even state-of-the-art models such as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

```(M:str, d, t, C1, C2, C3, C4, C5, C6, C7)```
Messages containing disruptive behavior are those {{let C1 = [[addressed at a group (excludes messages
targeted at just an individual)]] where ”messages” is M}} and {{let C2 = [[the group targeted by the
message is defined by {{forsome [[ethnicity]], [[gender]], [[color]], [[nationality]], [[sexual orientation]],
[[race]], or [[physical disability]] }}]] where ”message” is M}}, and the message matches at least one of the
following sub-rules:

Bias: {{let C3 = [[Message contains stereotyping, insensitive remarks, fear of difference, non-inclusive
language, microaggressions, justifying biases by seeking out like-minded people, accepting negative or
misinformation/screening out positive information.]] where ”message” is M}}

Violence: {{let C4 = [[Message is related to murder, rape, assault, arson, terrorism, vandalism,
desecration, or threats.]] where ”message” is M}}

Genocide: {{let C5 = [[Message is related to the act or intent to deliberately and systematically
annihilate an entire people.]] where ”message” is M}}
```
C8 = C4 or C5
```
Based on the above, a message is an immediate threat if {{let C6 = [[it expresses a violent or genocidal
intention]] where ”it expresses a violent or genocidal intention” is C8}} and {{let C7 = [[the context is
enough to suggest that the safety and/or life of an individual or group of people is at risk.]] where ”the
context” is M }}

```
d = C1 and C2 and (C3 or C4 or C5)
t = C6 and C7
```

Figure 3: Content moderation policy example implemented as Logitext Document

GPT-5 fail to recover over 99% of satisfying assignments that an SMT solver (Z3) can
enumerate, and GPT-4o-mini fails completely across all tasks. Unlike compositional gaps,
which shrinks with model scale, combinatorial gaps remain severe even for frontier models.
In summary, although improvements in models gradually address compositional gaps, com-
binatorial gaps (which affect the solve/synthesize loop of language reasoning) are still signif-
icant. Logitext is designed to bridge these gaps by helping specify textual vs logical intent
of natural documents precisely, and finely interleave LLM decoding and logic solving to
support combinatorially efficient and semantically faithful interpretation of the intent.

3 Logitext: Language, representation and solver

Given a conventional textual prompt as in Figure 1, we convert it to Logitext program
format by annotating it (Section 3.1). The Logitext program is parsed into set of hybrid
Natural Language Text Constraints (NLTCs) (Section 3.2). Section 3.3 presents an LLM-
based solver NLSolver for NLTCs and pair it with a logical solver to produce the final task
response.

3.1 The Logitext language

Logitext extends conventional text prompts into hybrid text/logic documents, enabling nat-
ural language clauses to interact directly with formal constraints. It supports partial formal-
ization: only those parts of a document that benefit from logical structure are annotated,
while the rest remain textual. This selective annotation allows reasoning to interleave be-
tween textual interpretation and logical propagation, as motivated in Section 2.1.
A Logitext document (Figure 3) enriches a textual policy (Figure 1a) with four constructs
(see Appendix A.2 for the full syntax):

• Variable declarations (e.g., (M:str, d, t, …)) define the symbols that participate
in logical constraints. Variables may be Boolean or string; string variables must be
typed explicitly (e.g., M:str for an input message).

• Textual let bindings of the form {{let <var_0> = [[<clause>]] where
<subclause_1> is <var_1> ... and <subclause_n> is <var_n>}} (a) binds a textual

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

clause (i.e., a sentence fragment) to a logical variable (for example, the clause “ad-
dressed at a group …just an individual” is named C1), and (b) associates sub-clauses
within the clause (e.g., “messages”) with external variables, e.g. M. Intuitively,
<clause> represent a constraint between the variables <var_i>.

• Logical constraint blocks (delimited by ```) specify logical relations (e.g., t =
C6 and C7) among variables, using pyz3 notation [z3p; de Moura & Bjørner (2008)].

• Convenience constructs such as forall and forsome compactly handle textual
lists, internally expanded into disjunctions or conjunctions over let-bindings.

Such Logitext documents are “executed” using a check() function as in constraint solving.
Given a partial assignment p of variables in a document d, check(d, p, cover) searches for
a satisfying assignment that respects both the logical and textual constraints:

check(d:LogitextDocument, p:Dict[str, bool|str], cover:Option[bool])
-> Dict[str, bool|str] | unsat | timeout

If a solution exists, check() returns a full assignment as a mapping from variable names
to values. Otherwise it reports unsatisfiability or timeout. With the optional flag cover,
check() enumerates multiple satisfying assignments. This mechanism generalizes the famil-
iar complete() execution of text prompts to a richer constraint-satisfaction setting.
The expressiveness of Logitext unifies diverse language understanding tasks under a sin-
gle interface. The three tasks of Figure 1(b)–(d) are expressed uniformly as constraint
checking: (i) classification (lt.check(d, {'M': M})['d']), (ii) partially constrained in-
stance generation (lt.check(d, {'C4': False, 'C5': False})['M']), and (iii) coverage
generation ([g['M'] for g in lt.check(d, {'C4': False, 'C5': False}, cover=True)]).
In contrast to raw prompting, Logitext makes explicit the logical structure of documents,
enabling solver-style propagation to cooperate with LLM-based textual reasoning.

3.2 Natural language text constraints

The constructs in Section 3.1 define how Logitext documents combine textual clauses with
logical constraints. To reason with such documents, we require a representation that treats
textual clauses as first-class objects alongside logical formulas. We introduce natural lan-
guage text constraints (NLTCs), which bind clauses to variables, record references to external
context, and allow seamless interaction with solvers.
Recall from the previous section that, in addition to a variable declaration section, an
unparsed Logitext document d consists of alternating code blocks and text blocks (Figure 3).
Each code block is a sequence of logical strings k, e.g., C8 = C4 or C5. Each text block
contains a sequence of let-binding text strings L of the form:

let v = [[c]] where u1 is p1 . . . un is pn.

Here v is a boolean variable to which c is bound, while the ui are strings (typically substrings
of c) associated with variables pi defined elsewhere.
To process a document d, we parse it into an abstract representation D in three steps:

1. Variable collection. Identify boolean variables vsD = v1, . . . , vn and string vari-
ables usD = u1, . . . , un′ . These variables include those declared explicitly and those
introduced in let bindings as above.

2. Logical constraint parsing. Convert each logical string k from a logical text
string into a solver-ready formula ϕ using Z3’s parser.

3. Textual constraint parsing. Translate each let-binding L into an NLTC ν =
(v, c, {u1 : p1, . . . , un : pn}, d): each NLTC binds v to the clause c, records its
dependencies, and points to the full document d so c can be interpreted in context.

After parsing, the abstract document is D = (vsD, usD, ϕD, νD), where ϕD = ϕ1, . . . , ϕm

are logical constraints and νD = ν1, . . . , νn are NLTCs. Reasoning proceeds with respect to
a partial assignment πD : usD ∪ vsD → bool|str, which specifies known variable values and
lets the solver–LLM loop infer the rest, as discussed in the next section.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 Solving natural language text constraints

Algorithm 1 check(D = (ν, ϕ, vs, us), πD)

1: while true do
2: πZ ← Z3(ϕ, vs, πD) ▷ Propose bool. assignment
3: return UNSAT if not πZ

4: for unbound u ∈ us do with sat← true; πs ← {}
5: u∗ ← NLSolver(u, ν[u], πD ∪ πs ∪ πZ)
6: if !u∗ then Z3.block(πZ) ; sat← ∅ ; break
7: πs ← πs ∪ {u = u∗}
8: if !sat then continue
9: return πs ∪ πD ∪ πZ

(a) Outer logical solver loop

NLSolver(u, ν, π)
1: u∗ ← LLMPropose(ν, π, {}, None) ▷ Propose
2: for t = 1 to T do
3: for νk ∈ ν do with sat← true; π̄ ← {}
4: ▷ Verify proposal; record unsatisfied clause
5: if LLMVerify(νk, π ∪ {u = u∗}) ̸= π[νk] then
6: sat← false ; π̄ ← π̄ ∪ {νk}
7: If sat then return u∗

8: u∗ ← LLMPropose(ν, π, π̄, u∗) ▷ Refine
9: return None

(b) Inner text solver loop
Figure 4: Core Logitext constraint solving algorithms

Figure 4 shows how Logitext solves hybrid systems of natural language text constraints
(NLTCs, ν) and logical constraints (ϕ), given shared Boolean variables vs, text-string vari-
ables us, and a partial assignment πD of Booleans and strings. The goal is to extend πD

into a complete satisfying assignment π′D, using an LLM-based solver as an extension to the
core logical (aka SMT) solver.
The overall strategy is simple. A logical solver (we use Z3 de Moura & Bjørner (2008))
produces candidate Boolean assignments that satisfy Boolean constraints (Fig 4a), and
our LLM-based solver (called NLSolver) then attempts to produce assignments to string
variables that satisfy text constraints while maintaining the Boolean assignments (Fig 4a).
We begin with the outer logical solver loop of Fig 4a. We use Z3 to generate candidate
assignments πZ of variables vs consistent with ϕ and πD (Line 2). We now loop sequentially
over unbound string variables u (Lines 4-9), trying to find satisfying assignments for each,
compatible with all assignments so far. Each u is passed to text-constraint solver NLSolver,
which attempts to generate a text string value u∗ for each unbound string variable u (Line 5),
given the constraints ν[u] ⊆ ν that read or write u, and the assignments so far (πs∪πD∪πZ).
If NLSolver fails to find a u∗, we block Z3 from regenerating candidate assignment πZ ,
break out of the loop over us (Line 6) and continue generating more candidate Boolean
assignments (Lines 8, 2). If all string variables u are assigned, we declare success and return
all assignments accumulated (Lines 7, 9). If no candidates remain, we declare unsatisfiabilty
(Line 3).
NLSolver (Fig. 4b) is given a variable u, a set ν of NLTCs that read u, and a partial
assignment π. Its job is to produce a textual string u∗ for u that satisfies constraints ν
given partial assignment π. It does so through a propose-verify-refine loop. It starts by
prompting an LLM, via the LLMPropose() call (see Appendix 3), to propose a candidate
u∗ that satisfies ν and π (Line 1). It then uses T rounds (Line 2) to refine this solution
to one that satisfies ν. In each round, for every NLTC νk ∈ ν, it calls into an LLM via
LLMVerify() (Appendix ??) to infer the truth value for the variable bound by νk, given
u = u∗ and existing assignment π, and compares this truth value to that required by
the partial assignment π (Line 5). If all truth values are compatible, it returns u∗ as a
satisfying assignment (Line 7). Otherwise, it uses LLMPropose() to refine u∗ (Line 8). The
refinement is guided by an additional “needs-to-change” set π̄, which lists the constraints
that u∗ currently violates. After T rounds of not finding u∗, we declare failure (Line 9).
The above describes the essence of how Logitext solves NLTCs. In practice, we include two
further techniques that have modest impact. First, note that LLMPropose() may produce
a piece of text that does not match the current partial assignment π, and is therefore
rejected by LLMVerify(). However, LLMPropose() itself may be called many thousands of
times for various candidate assignments in the check() algorithm, Line5. Given that calls
to LLMPropose() are relatively expensive since it calls out to LLMs, we cache results from
these calls and consider the for use on future calls to NLSolver. Second, when we propose a
refinement of textual value u∗, it helps not only to have the “needs-to-change” list mentioned
above, but also a history of the previous refinements proposed on u∗ and their outcome from
LLMVerify. These two techniques are described further in the appendix, and the (modest
but noticeable) impact of caching is analyzed in the evaluation section (Figure 6).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

cmod
Drugs

cmod
Political

cmod
Religious

cmod
Bullying

cmod
Fraudulent

lb
cuad

warranty

lb
housing

lb
div_2

lb
Supply
Best

lb
Supply

Disclosed

ni
MCTACO

ni
CosmosQA

ni
Cont.
Abuse

ni
MATRES
Cond.

ni
MATRES

Static Cls.
Tasks

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e 

(%
)

End to End LLM (GPT5) Logitext (GPT5-nano) Logitext (GPT5)

(a) Text instance generation (TIG)

cmod
Drugs

cmod
Political

cmod
Religious

cmod
Bullying

cmod
Fraudulent

lb
cuad

warranty

lb
housing

lb
div_2

lb
Supply
Best

lb
Supply

Disclosed

ni
MCTACO

ni
CosmosQA

ni
Cont.
Abuse

ni
MATRES
Cond.

ni
MATRES

Static Cls.
Tasks

100

101

102

# 
of

 C
ov

er
ag

e 
Ex

am
pl

es

End to End LLM (GPT5) Logitext (GPT5-nano) Logitext (GPT5)

(b) Text coverage generation (TCG)
Figure 5: End-to-End performance comparison per task.

4 Evaluation

4.1 Benchmarks and setup

Content Moderation (CMOD). A new benchmark of five multi-page moderation policies
(2–5 pages, 6–22 annotated clauses) covering drugs (22 clauses), politics (8), religion (6),
bullying (21), and fraud (12) (see Appendix A.9 for an example). These tasks are designed
to reflect realistic compliance settings where policy documents constrain user-generated
content.
Legal Benchmark (LegalBench, LB). We select five tasks from LegalBench [Guha et al.
(2023)], an extensive benchmark for reasoning over statutory and regulatory text. The tasks
cover domains such as diversity jurisdiction, housing and warranty law, and supply-chain
transparency. Each task is 20–50 lines with 2–4 annotated clauses. This benchmark captures
challenges in legal text where precise logical structure interacts with natural language.
Natural Instructions (NI). We select five tasks from SuperNatural Instructions [Wang
et al. (2022)], focusing on problems with implicit logical constraints such as detecting gram-
matical inconsistencies, reasoning about hypothetical actions, and identifying abusive con-
tent. Each task is 3–10 lines with 2–5 annotated clauses. This benchmark tests generaliza-
tion to diverse instruction-following tasks beyond policy or law.
Together these benchmarks yield 15 tasks with 10+ instances each, spanning policy, legal,
and open-domain instructions. All tasks require mapping text inputs to structured out-
puts (classifications or constrained generations). We evaluate Logitext on three settings
aligned with Fig. 1: (a) Task execution (TE) — measuring classification accuracy on
task instances, (b) Text instance generation (TIG) — testing the ability to generate
valid inputs under partial constraints, and (c) Text coverage generation (TCG) —
enumerating as many valid inputs as possible.

4.2 Results

Text instance generation (TIG). Figure 5a compares Logitext with direct prompting.
With both GPT5 and GPT5-nano as base models, Logitext generates valid assignments
reliably via check(). The results indicate that (i) Logitext attains near-saturation perfor-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8
Maximum # of iteration on NLSolver

40%

50%

60%

70%

80%

90%

Su
cc

es
s R

at
e 

(%
)

297/457
(64.99%)

426/457
(93.22%)

449/637
(70.49%)

615/637
(96.55%)

396/1165
(33.99%)

1004/1165
(86.18%)

443/1226
(36.13%)

Logitext w/o Cache (GPT5)
Logitext w/ Cache (GPT5)
Logitext w/o Cache (GPT5-nano)
Logitext w/ Cache (GPT5-nano)

(a) Test coverage generation

1 2 3 4 5 6 7 8
Maximum # of iteration on NLSolver

60%

70%

80%

90%

100%

Su
cc

es
s R

at
e 

(%
)

401/500
(80.20%)

500/500
(100.00%)

417/499
(83.57%)

498/499
(99.80%)

286/501
(57.09%)

268/498
(53.82%)

493/498
(99.00%)

Logitext w/o Cache (GPT5)
Logitext w/ Cache (GPT5)
Logitext w/o Cache (GPT5-nano)
Logitext w/ Cache (GPT5-nano)

(b) Test instance generation
Figure 6: NLSolver success rate vs num. iterations.

mance even with the weaker GPT5-nano, while direct prompting to GPT5 shows noticeable
degradation; and (ii) degradation is most evident on complex CMOD policies, although
performance on Drugs is relatively stronger than other cases.

LLM (GPT5) Logitext
Method (Truth Value Assignment)

10 3

10 2

10 1

100

101

102

Av
er

ag
e 

La
te

nc
y 

(s
ec

, l
og

 sc
al

e) lb cuad warranty
lb div_2
lb Supply Disclosed
ni MCTACO 
ni CosmosQA
ni MATRES static Cls.
lb Supply Best
ni MATRES Cond. Cls.
lb housing
cmod Political
cmod Religious
ni cont. abuse
cmod Fraudulent
cmod Bullying
cmod Drugs

(a) Candidate generation

LLM (GPT5) Logitext
Method (Coverage Example Generation)

0

50

100

150

200

250

Av
er

ag
e 

La
te

nc
y 

(s
ec

on
ds

) lb cuad warranty
lb div_2
lb Supply Disclosed
ni MCTACO 
ni CosmosQA
ni MATRES static Cls.
lb Supply Best
ni MATRES Cond. Cls.
lb housing
cmod Political
cmod Religious
ni cont. abuse
cmod Fraudulent
cmod Bullying
cmod Drugs

(b) NLSolver call latency
Figure 7: Component-wise latency on TCG (tasks sorted by the #clauses).

Text coverage generation (TCG). Figure 5b (log scale) reports coverage under a fixed
time budget of 3000s. Baseline GPT is allowed up to 5 iterations for candidate generation
and 5 additional iterations for finding satisfying assignments. Logitext achieves broader
coverage, particularly with GPT5-nano. Figure 7 provides an explanation: candidate gen-
eration is significantly faster with Logitext since it uses a solver rather than repeated LLM
calls (Fig. 7a). The advantage is reduced in the solving phase (Fig. 7b), where NLSolver
calls dominate, but this bottleneck is smaller for faster base models such as GPT5-nano.
We also report the LLM call statistics of NLSolver in Figure 11 of Appendix.
NLSolver iterative refinement. Figure 6 shows that NLSolver improves success rates as
the number of iterations increases. Caching can be beneficial in some settings (e.g., coverage
generation with GPT5), though its overall effect across tasks is limited.

Xbox Content Moderation (v2) LegalBench Supernatural Instructions
Benchmark Name

0.0

0.2

0.4

0.6

0.8

C
or

re
ct

ne
ss

 ra
te

 a
cr

os
s 

4 
ru

ns
 o

f 1
2 

in
st

an
ce

s

Correctness rate of approaches across benchmarks

Approach
Fewshot only Logitext Neurosymbolic

cu
ad

_w
arr

an
ty_

du
rat

ion

div
ers

ity
_2

lea
rne

d_
ha

nd
s_

ho
us

ing

su
pp

ly_
ch

ain
_d

isc
los

ure
_b

es
t_p

rac
tic

e_
ve

rifi
ca

tio
n

su
pp

ly_
ch

ain
_d

isc
los

ure
_d

isc
los

ed
_c

ert
ific

ati
on

Benchmark Name

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 ra
te

 a
cr

os
s 

4 
ru

ns
 o

f 1
2 

in
st

an
ce

s

Correctness rate of approaches on tasks in legalbench
Approach

llm logitext routed_hybrid

Figure 8: Aggregated Task Execution (TE) Result (left), Legalbench in detail (right).
Task Execution (TE). Figure 8(left) presents accuracy on TE tasks using GPT-4o. In
addition to few-shot prompting, we include a neurosymbolic prompt that generates and ex-
ecutes code. Logitext performs better on CMOD and NI benchmarks but underperforms on
LegalBench. Figure 8(right) highlights two main sources of error: (i) in some cases, clause-
level outputs [[Ci]] were incorrectly predicted by the LLM, but the LLM-only approach
produced correct answers using holistic reasoning, revealing a robustness limitation for Log-
itext; (ii) in other cases, lists such as “x, y, and z” were intended as examples rather than
conjuncts, but were annotated as the latter. These issues point to the need for clause-level
error correction and more careful handling of list annotations in future work.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Overall, the experiments show that Logitext improves performance on both constrained
generation and classification tasks across multiple benchmarks, while highlighting remaining
challenges in clause-level robustness and annotation handling.

5 Related work

Prompt-based reasoning. Prompting strategies such as Chain-of-Thought (CoT) [Wei
et al. (2022)] and Tree-of-Thought (ToT) [Yao et al. (2023)] elicit multi-step reasoning by
decomposing queries into textual steps. Chain-of-Logic [Servantez et al. (2024)] separates
logical reasoning from answer prediction, aiming to improve consistency in step-wise deduc-
tion. While these approaches enhance local coherence or allow limited backtracking, they
lack mechanisms to bridge deeper compositional and combinatorial reasoning gaps and can-
not ensure global logical consistency across clauses. Once an error propagates, there is no
principled way to validate against constraints. Our framework differs by explicitly defining
these reasoning gaps and incorporating symbolic validation into the reasoning process itself.
Systematic generalization and constraint solving. Our challenges relate closely to
systematic generalization tasks [Lake & Baroni (2018), Keysers et al. (2020), Kim & Linzen
(2020)], which demonstrate that sequence models fail when compositional rules must be
recombined in novel ways. Similar issues arise in program synthesis and constraint satis-
faction tasks, where LLMs can propose candidate programs or assignments (e.g., Codex for
SAT/SMT) but collapse under combinatorial growth in the search space. These methods
provide no principled mechanism to enforce or recover from violated constraints. We for-
malize these compositional and combinatorial reasoning gaps as structural limitations of
LLM inference and show how solver integration can systematically mitigate them in natural
language contexts.
Reasoning models. Reasoning models such as OpenAI o3/o4-mini and DeepSeek-R1 [Guo
et al. (2025)] have shown improved performance on benchmarks for logical reasoning and
robust instruction following. RL allows limited correction through feedback [Kalyanpur
et al. (2024)] or exploration [Xie et al. (2025)]. However, they depend heavily on reward
shaping or sample filtering, lack a formal representational layer for partial logical structures.
As a result, they cannot enforce symbolic constraints or recover from violated ones during
inference. Our framework complements these advances by introducing a neurosymbolic
language that supports constraint-aware reasoning within an SMT framework.
Neuro-symbolic reasoning. Recent systems such as LINQ [Olausson et al. (2023)],
CLOVER [Ryu et al. (2025)], and ZebraLogic [Lin et al. (2025)] connect LLMs with symbolic
solvers by translating natural language into executable logic programs. These approaches
achieve strong guarantees when tasks are fully formalizable, but their reliance on complete
logical structure restricts applicability to natural documents like policies or legal texts,
where only fragments of logic are explicit. ZebraLogic also provided an initial study of the
combinatorial gap, but its scope was limited to well-defined mathematical domains. In con-
trast, our work addresses this challenge in natural language contexts that inherently contain
uncertainty and partial structure. We introduce natural language text constraints (NLTCs),
enabling partial formalization and iterative solver-guided reasoning that better reflects the
complexity of real-world documents.

6 Conclusion

In this work we introduced Logitext, a neurosymbolic framework that treats LLM reasoning
as an SMT theory through natural language text constraints. We first motivated the need
for such a framework by showing that even frontier LLMs continue to exhibit two reasoning
gaps: compositional gaps that narrow with scale but persist, and combinatorial gaps that
remain severe. By interleaving solver propagation with LLM decoding, Logitext provides
a principled way to reduce these gaps. More broadly, our results suggest a path toward
positioning LLMs as solver-compatible theories, opening opportunities for scalable, reliable,
and trustworthy natural language reasoning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Z3py api documentation. https://z3prover.github.io/api/html/namespacez3py.html.

Accessed: 2025-11-19.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard: Version 2.0. Tech-
nical report, Department of Computer Science, The University of Iowa, 2010. URL
https://theory.stanford.edu/~barrett/pubs/BST10.pdf.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962. doi: 10.1145/368273.368557.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in
Computer Science, pp. 337–340. Springer, 2008. doi: 10.1007/978-3-540-78800-3_24.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood,
Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench:
A collaboratively built benchmark for measuring legal reasoning in large language models.
Advances in neural information processing systems, 36:44123–44279, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Aditya Kalyanpur, Kailash Karthik Saravanakumar, Victor Barres, Jennifer Chu-Carroll,
David Melville, and David Ferrucci. Llm-arc: Enhancing llms with an automated reason-
ing critic. arXiv preprint arXiv:2406.17663, 2024.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii
Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry
Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional
generalization: A comprehensive method on realistic data, 2020. URL https://arxiv.
org/abs/1912.09713.

Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on
semantic interpretation, 2020. URL https://arxiv.org/abs/2010.05465.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks, 2018. URL https:
//arxiv.org/abs/1711.00350.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran,
Peter Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning,
2025. URL https://arxiv.org/abs/2502.01100.

João P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999. doi: 10.1109/12.
769433.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua
Tenenbaum, and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by
combining language models with first-order logic provers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5153–5176. As-
sociation for Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.313.
URL http://dx.doi.org/10.18653/v1/2023.emnlp-main.313.

Philipp Rümmer and Thomas Wahl. An SMT-LIB theory of binary floating-point arithmetic.
In Proc. 8th Intl. Workshop on Satisfiability Modulo Theories (SMT’10), 2010.

Hyun Ryu, Gyeongman Kim, Hyemin S. Lee, and Eunho Yang. Divide and translate:
Compositional first-order logic translation and verification for complex logical reasoning,
2025. URL https://arxiv.org/abs/2410.08047.

10

https://z3prover.github.io/api/html/namespacez3py.html
https://theory.stanford.edu/~barrett/pubs/BST10.pdf
https://arxiv.org/abs/1912.09713
https://arxiv.org/abs/1912.09713
https://arxiv.org/abs/2010.05465
https://arxiv.org/abs/1711.00350
https://arxiv.org/abs/1711.00350
https://arxiv.org/abs/2502.01100
http://dx.doi.org/10.18653/v1/2023.emnlp-main.313
https://arxiv.org/abs/2410.08047


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yusuke Sakai, Hidetaka Kamigaito, and Taro Watanabe. Revisiting compositional gen-
eralization capability of large language models considering instruction following abil-
ity. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 31219–31238, Vienna, Austria, 2025. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2025.acl-long.1508. URL
https://aclanthology.org/2025.acl-long.1508/.

Sergio Servantez, Joe Barrow, Kristian Hammond, and Rajiv Jain. Chain of logic: Rule-
based reasoning with large language models, 2024. URL https://arxiv.org/abs/2402.
10400.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik,
David Stap, et al. Super-naturalinstructions: Generalization via declarative instructions
on 1600+ nlp tasks. arXiv preprint arXiv:2204.07705, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
CoRR, abs/2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and Minlie Huang. Codeplan:
Unlocking reasoning potential in large language models by scaling code-form plan-
ning. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/hash/
c362b360765ed90ae4bd9c6764837e0e-Abstract-Conference.html.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou,
Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based
reinforcement learning. arXiv preprint arXiv:2502.14768, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: deliberate problem solving with large language
models. In Proceedings of the 37th International Conference on Neural Information Pro-
cessing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language
models using declarative prompting. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2023. doi: 10.48550/arXiv.2305.09656. URL https://arxiv.org/abs/
2305.09656.

Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy Berzish, Julian
Dolby, and Xiangyu Zhang. Z3str2: an efficient solver for strings, regular expressions,
and length constraints. Formal Methods in System Design, 50(2-3):249–288, 2017.

A Appendix

Additional information follows.

A.1 Definitions of gaps

Each policy p is annotated with clauses Ci and associated with a formula ϕ as in Fig 1 and
Eqn1, and comes with 10-20 test messages Mj each with ground truth Hj .
Definition 1 (Compositional gap ∆mp of LLM m on prompt p). For each Mj , prompt
m with p for (i) the meanings bij of clauses Ci , and (ii) whole-prompt result hj . This results
in overall accuracy a = meanjδ(hj ,Hj), where δ(x, x′) = 1 if x = x′, else 0. Now, use a
logical solver to evaluate h∗j = ϕ(bij), giving corresponding accuracy a∗. Then compositional
gap ∆mp = a− a∗

11

https://aclanthology.org/2025.acl-long.1508/
https://arxiv.org/abs/2402.10400
https://arxiv.org/abs/2402.10400
https://arxiv.org/abs/2201.11903
https://proceedings.iclr.cc/paper_files/paper/2025/hash/c362b360765ed90ae4bd9c6764837e0e-Abstract-Conference.html
https://proceedings.iclr.cc/paper_files/paper/2025/hash/c362b360765ed90ae4bd9c6764837e0e-Abstract-Conference.html
https://arxiv.org/abs/2305.09656
https://arxiv.org/abs/2305.09656


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Definition 2 (Combinatorial gap ∆′mp of model LLM m on prompt p). Prompt
m with p to produce (i) all policy inputs Mj , and (ii) complete assignments bij for clauses
Ci such that the policy is true. Use a logical solver to filter out bij that do not satisfy
ϕ, and also to generate independently its satisfying assignments b∗ij . Let nj (resp. n∗j ) be
number of such assignments . The combinatorial gap is the relative discrepancy between
these numbers: ∆′mp = meanj(n

∗
j − nj)/n

∗
j ,

A.2 Syntax for Logitext documents

doc d← [b | c]+

text block b← [s | t]+

code block c← ```[(v1, . . . , vn)]⟨code⟩```
text s← ⟨strings without {{ or }}⟩

term t← l | q
let l← {{ let v = [[b]] where r1 is v1 and . . . and rn is vn }}

quantifier q ← {{forall [s | [[b]]]+ }} | {{forsome [s | [[b]]]+ }}
typed variable v ← ⟨variable name⟩[: str]

quoted str. r ← "..."

A.3 Expanded dataset

Benchmark Task Original Submission Resubmission Evaluated
#Inst #Runs #Inst #Runs #Inst

cmod
Bullying_2.0 12 5 100 5 0
Drugs_&_Alcohol_2.0 12 5 100 5 0
Fraudulent_v2.0v 12 5 100 5 0
Political_v2.0v 12 5 100 5 0
Religious_v2.0v 12 5 100 5 0

legalbench
cuad_warranty_duration 12 5 100 5 100
diversity_2 12 5 100 5 100
learned_hands_housing 12 5 100 5 100
supply_chain_disclosure_best_practice_verification 12 5 100 5 100
supply_chain_disclosure_disclosed_certification 12 5 100 5 100

natural_instructions
task021_mctaco_grammatical_logical 12 5 100 5 50
task022_cosmosqa_passage_inappropriate_binary 12 5 100 5 50
task108_contextualabusedetection_classification 12 5 100 5 50
task457_matres_conditional_classification 12 5 100 5 50
task459_matres_static_classification 12 5 100 5 50

Table 1: Comparison of dataset instance counts and runs in the original submission vs.
resubmission.

We have expanded the dataset evaluated to 100 samples per task from 12 samples per task
as shown in Table 1. We are in the process of running evaluations on the data. So far,
we have completed full re-evaluation on 100 samples on 5 tasks (from Legalbench), partial
re-evaluation on 50 samples on (from Supernatural Language Instructions (SNLI)), and
have not yet started re-evaluation on our most favorable dataset CMOD. For Legalbench
and SNLI, each task had sufficient samples that we were able to simply incorporate more
samples from the existing dataset. For CMOD, we had to generate samples analogous to
production moderation data, a task that requires some care.
We focused on re-running the Task Execution (TE) experiments (Figure 8), both because
these are the least favorable to us, and because the combinatorial gap experiments take
much longer to run. Of course, we will complete running all experiments on all datasets
over the next few days.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

As Tables 2 and 3 show, the expanded results don’t change the highest level message on the
Task Execution task qualitatively: Logitext does provide a noticeable boost on many tasks,
and prevails in 7 of 10 tasks, but the baseline model does do better in some cases. Perhaps
interestingly, Logitext now does relatively better on Legalbench, prevailing in 4/5 tasks, and
slightly worse on SNLI (3/5). Once again, when Logitext fails, the main culprit seems to
be clause-level evaluation errors, which we have discussed in more detail in Appendix A.4,
and mentioned in the original submission.

Task Name Fewshot Neurosymbolic Logitext
cuad_warranty_duration 0.50 0.19 0.61

diversity_2 0.76 0.35 0.83
learned_hands_housing 0.50 0.34 0.60

supply_chain_disclosure_best_practice_verification 0.58 0.02 0.59
supply_chain_disclosure_disclosed_certification 0.72 0.57 0.33

Table 2: Correctness on the TG task for Legalbench (100 samples/task)

Task Name Fewshot Neurosymbolic Logitext
task021_mctaco_grammatical_logical 0.41 0.44 0.50

task022_cosmosqa_passage_inappropriate_binary 0.78 0.69 0.80
task108_contextualabusedetection_classification 0.75 0.38 0.63

task457_matres_conditional_classification 0.87 0.49 0.59
task459_matres_static_classification 0.57 0.56 0.69

Table 3: Correctness on the TG task for SNLI (50 samples/task)

A.4 Clause-level error analysis

Figure 9: Clause-level accuracy for Disruptive Behavior policy from Figure 1a

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 9 is a quick analysis of clause-level accuracy for the “Disruptive Behavior” prompt
of Figure 1a. The x-axis of the figure lists the various clauses in the prompt1. The y-
axis represents individual messages input to the prompt. Each message was run 100 times
through the prompt using gpt-4.1-nano as the base model. Each entry in the the table is
the fraction of times the answer for a particular clause was correct for that message. Some
entries are missing because some runs did not complete.
Several points are worth noting, all admittedly only in the context of the current prompt:

1. Sub-clause level inference can be quite stable across runs. They are usually either
always correct or always wrong, only occasionally are they not 0 or 1. Thus the
worst case of several sub-clauses at a time unpredictably producing errors due to
stochastic variation is not inevitable.

2. Inference results are predominantly correct, i.e., sub-clause level accuracy may be
much higher than “holistic” document-level accuracy.

3. Certain clauses (i.e., columns, e.g. Gender) are consistently interpreted incorrectly
across inputs. In a production setting, we would consider re-wording these, hope-
fully yielding consistently correct clauses.

4. Most inputs (i.e., rows) always have at least one sub-clause evaluated incorrectly.
This may seem fatal, until we recall the logic of the prompt is essentially d =
isGroup ∧ (PhysicalDisability ∨ Color ∨ Ethnicity ∨Gender ∨ Nationality ∨ Race ∨
SexualOrientation) ∧ (Bias ∨Discrimination ∨Humiliation ∨Genocide ∨Violence).
If a clause Gender, which is supposed to be False by default, wrongly evaluates to
True, it will not cause an end-to-end error given that Gender is part of a larger
disjunction (“or”) operation. Thus the precise value of the error, the operation it is
part of, and the values of other operands in the operation all contribute to whether
a higher-level error is generated. Clausal error does not necessarily imply global
error.

While this analysis is by no means comprehensive, it gives some intuition of why the in-
troduction of clause-level errors does not necessarily lead to catastrophic failure at the
whole-formula level.

A.5 Solver algorithms

A.5.1 Check() algorithm details

The fully detailed version of the Check() algorithm (Figure 10) for solving Logitext con-
straints is moved here. The version includes details of caching and history, as mentioned in
the main body of the paper.

1Note in the version of the example used in the body of the paper, we omit the Discrimination
and Humiliation categories for brevity but they are included in this analysis, which was performed
on the complete version of the policy document.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 check(D,πD)

1: In: Doc. D = (vs, us, ϕ, ν), asst. πD

2: Out: UNSAT or satisfying asst. π′
D3: Initialize logical solver Zϕ with ϕ

4: if all ui ∈ us are bound in πD then
5: return LLMVerify(ν, ϕ, πD)
6: while true do
7: //Propose asst. respecting ϕ and πD

8: πZ ← Zϕ(vs, πD)

9: return UNSAT if πZ = ∅
10: // NLTC solving for unbound text vars
11: πs, satisfiable← {}, true
12: for each unbound uj ∈ us do
13: // Use relevant constraints N for uj

14: N = {νi ∈ ν | νi reads uj}
15: u∗

j ← NLSolver(uj , N , πD ∪ πs ∪ πZ)
16: if u∗

j is None then
17: Zϕ.block(πZ)

18: satisfiable← false ; break
19: πs ← πs ∪ {uj = u∗

j }
20: if not satisfiable then continue
21: return πs ∪ πD ∪ πZ

(a) Outer SMT/NLSolver loop

NLSolver(u, N , π)
1: In: Search target u, NLTC set N , its partial asst. π,

Cache C, and T ∈ N
2: Out: String value u∗ or None
3: if (u,N , π) ∈ C then ▷ Cache Lookup
4: return C[(u,N , π)]
5: else if ∃ C.partial_match(u,N , π) then
6: u∗ ← C.closest_partial_match(u,N , π)
7: else
8: Sample u∗ ∼ LLM (N , π, ∅,∅,∅)
9: History H ← {u∗}
10: for t = 1 to T do
11: sat← true, π̄ ← ∅, π̃ ← ∅
12: for νk ∈ N do
13: bk ← Truth value for νk from π
14: b̃k ←LLMVerify(νk, π ∪ {u = u∗})
15: if bk ̸= b̃k then
16: sat← false
17: π̄ ← π̄ ∪ {(νk, bk)}
18: π̃ ← π̃ ∪ {(νk, b̃k)}
19: C[(u,N , (π − π̄) ∪ π̃)]← u∗

20: If sat then return u∗

21: u∗ ← LLM(N , π, H, π̄, u∗)
22: History H ← H ∪ {(u∗, π̄)}
23: return None

(b) NLSolver: A theory for NLTCs
Figure 10: The check() algorithm for solving logitext constraints

A.5.2 LLMPropose algorithm details

LLMPropose (Algorithm 3), given a string variable u, a set of NLTCs, a partial assign-
ment, produces a text string corresponding to u that satisfies the NLTCs and the partial
assignment. LLMPropose is a thin wrapper around an LLM prompt (Appendix A.7.1).

Algorithm 3 LLMPropose(u, Nk, P)
1: Input: string varialbe u, NLTCs Nk, context value assignments P
2: Output: Generated text string
3: prompt← Format Nk and P as a text prompt (Appendix A.7.1) that requests generation

of text satisfying Nk given context P
4: response← LLM.call(prompt)
5: result← Parse and extract the generated text from response
6: return result

A.5.3 LLMVerify algorithm details

Given an NLTC and an assignment of variables to values, LLMVerify (Algorithm 4) evaluates
the output (Boolean) variable of the NLTC. it is a thin wrapper around the LLM prompt
of Appendix A.7.3.

Algorithm 4 LLMVerify(Nk, P)
1: Input: NL Text constraint Nk, context value assignments P
2: Output: True/False
3: prompt ← Format Nk and P as a text prompt (Appendix A.7.3) that queries whether

Nk is True or False based on the context P
4: response← LLM.call(prompt)
5: result← Parse the response into True or False
6: return result

A.6 Number of LLM calls from NLSolver

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

NI
cosmosqa

inappropriate

NI
contextual

abuse
detection

LB
housing

LB
best

practice

CMOD
religious

CMOD
political

CMOD
fraudulent

CMOD
bullying

LogiText Tasks

0

2

4

6

8

10

12

14

16

To
ta

l #
 L

LM
 C

al
ls

No Cache
Cache

Figure 11: Boxplot of the number of LLM calls per coverage example made by the NLSolver
algorithm across all benchmark tasks. The X-axis denotes individual tasks, and the Y-axis
reports the distribution of LLM call counts per task.

A.7 LLM Prompts used for NLSolver algorithm

These are the LLM prompts for logitext’s NLSolver algorithm.

A.7.1 LLM Propose Prompt

[
(

"system",
"You write concise, clear prose that meets semantic

constraints. "
"Return ONLY the text, no preambles."

),
(

"user",
"""You must produce a text that satisfies the following

semantic constraint truth values.

Constraints (with target truth values):
{constraints_block}

If some constraints previously failed, focus on satisfying them now:
{failed_block}

Guidelines:
Write one coherent text (few paragraphs max) that attempts to satisfy

ALL target truth values.
The text should be natural and readable.
Avoid mentioning constraints explicitly.
Do not include JSON. Output ONLY the text.

Previous attempts for context (do NOT copy; improve instead):
{history_block}
"""

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

),
]

Listing 1: LLM Propose Prompt

A.7.2 Example LLM Propose Prompt Instance

--- System Prompt
You write concise, clear prose that meets semantic constraints. Return

ONLY the text, no preambles.

--- User Prompt
You must produce a text that satisfies the following semantic

constraint truth values.
Constraints (with target truth values):
- (C1) target=True :: Content that is a political reference. In this

case there is
sufficient context.

- **Political Reference** - Words or phrases that are
political
references. Includes political titles, entities, slogans,
government buildings , federal properties , etc.

- (C2) target=False :: Content that is a political reference. In this
case there is

sufficient context.

- **Political Party or Affiliation** - Name of a political
party
or group, including the people that belong to it.

- (C3) target=False :: Content or activity related to politics.

- **Activity/Discussion** - Activities or discussions
related to
politics. Includes political ideologies , debates,

campaigning ,
causes, events, etc.

- (C4) target=False :: **Potential Political Reference**
Content that could be a political reference. In this case it is

uncertain due to its commonality , multiple meanings , current
usage,

and/or insufficient context.

- **General Reference** - Words or short phrases that could
potentially be used in a political manner, although there

is not
enough context to make that determination.

- (C5) target=False :: Names of Political figures or people

For example, "Joe Biden", "Donald Trump".

- (C6) target=False :: References to royal families, their titles and
duties.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For example, "King Charles", "Prince William".

If some constraints previously failed, focus on satisfying them now:
- (C2) target=False, predicted=True :: Content that is a political

reference. In this case there is sufficient context.

- **Political Party or Affiliation** - Name of a political
party
or group, including the people that belong to it. [why

failed last time: No political party names or
affiliations appear in the text.]

- (C3) target=False, predicted=True :: Content or activity related to
politics.

- **Activity/Discussion** - Activities or discussions
related to politics. Includes political ideologies ,
debates, campaigning , causes, events, etc. [why failed
last time: The text is about gaming, not politics.]

- (C5) target=False, predicted=True :: Names of Political figures or
people

For example, "Joe Biden", "Donald Trump". [why failed last
time: No names of political figures appear in the text.]

- (C6) target=False, predicted=True :: References to royal families ,
their titles and duties.

For example, "King Charles", "Prince William". [why failed
last time: The text does not mention royalty.]

Guidelines:
- Write one coherent text (few paragraphs max) that attempts to

satisfy ALL target truth values.
- The text should be natural and readable.
- Avoid mentioning constraints explicitly.
- Do not include JSON. Output ONLY the text.

Previous attempts for context (do NOT copy; improve instead):
That last boss was —insanewe pulled it off just in time. The map\'s

skyline had a Capitol-like building , which gave a real-world vibe
without leaving the game.

---

Just got through a brutal boss. The ’maps skyline features a Capitol-
like dome in the distance, giving the game a real-world vibe
without leaving the fantasy setting. Came down to a clutch —
finishtotally worth the grind.

Listing 2: LLM Generation Prompt Example for Political CMOD Task

A.7.3 LLM Verify (Constraint Verification) Prompt

[
(

"system",
"You are a meticulous verifier. "
"Given a candidate text and a list of constraints with desired

truth values, "
"judge for EACH constraint whether it is semantically TRUE or

FALSE in the candidate text. "
"Be strict and literal, not aspirational."

),
(

"user",

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

"""Candidate text:
\"\"\"
{candidate}
\"\"\"

Evaluate each constraint independently. For each item, return JSON
array entries of the form:

{
"id": "<constraint id>",
"description": "<verbatim description >",
"target": true|false,
"predicted": true|false,
"rationale": "<short explanation >"

}

Constraints:
{constraints_block}

Return ONLY valid JSON array, nothing else."""
),

]

Listing 3: LLM Verify Prompt

A.7.4 Example LLM Verify Prompt Instance

--- System Prompt

You are a meticulous verifier. Given a candidate text and a list of
constraints with desired truth values, judge for EACH constraint
whether it is semantically TRUE or FALSE in the candidate text. Be
strict and literal, not aspirational.

--- User Prompt

Candidate text:
"""
Just cleared a brutal boss. The skyline in the distance features a

Capitol-like dome, giving the map a real-world vibe while staying
firmly in fantasy. We pulled off a clutch finish as the timer hit
zero, grabbed the loot, and exploded in celebration. The ’domes
presence made the level feel epic without leaning into politics.

"""

Evaluate each constraint independently. For each item, return JSON
array entries of the form:

{
"id": "<constraint id>",
"description": "<verbatim description >",
"target": true|false,
"predicted": true|false,
"rationale": "<short explanation >"

}

Constraints:
- (C1) target=True :: Content that is a political reference. In this

case there is
sufficient context.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

- **Political Reference** - Words or phrases that are
political
references. Includes political titles, entities, slogans,
government buildings , federal properties , etc.

- (C2) target=False :: Content that is a political reference. In this
case there is

sufficient context.

- **Political Party or Affiliation** - Name of a political
party
or group, including the people that belong to it.

- (C3) target=False :: Content or activity related to politics.

- **Activity/Discussion** - Activities or discussions
related to
politics. Includes political ideologies , debates,

campaigning ,
causes, events, etc.

- (C4) target=False :: **Potential Political Reference**
Content that could be a political reference. In this case it is

uncertain due to its commonality , multiple meanings , current
usage,

and/or insufficient context.

- **General Reference** - Words or short phrases that could
potentially be used in a political manner, although there

is not
enough context to make that determination.

- (C5) target=False :: Names of Political figures or people

For example, "Joe Biden", "Donald Trump".

- (C6) target=False :: References to royal families, their titles and
duties.

For example, "King Charles", "Prince William".

Return ONLY valid JSON array, nothing else.

Listing 4: LLM Verification Prompt Example for Political CMOD Task

A.8 LLM Prompts used for Neurosymbolic approach

These are the LLM prompts for the neurosymbolic approach used in Task Execution (TE)
experiments.
Decide what level of reasoning is needed for a task, then route to the appropriate reasoning
prompt
Routing level 1: LLM-heavy simple decision with minimal Z3 validation
Routing level 2: Boolean logic breakdown with moderate Z3 reasoning
Routing level 3: Complex constraints with heavy Z3 reasoning

A.8.1 Neurosymbolic Router Prompt

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 5 Neurosymbolic algorithm
1: Input: Task description
2: Output: True/False
3: routing_level ← LLM.call(neurosymbolic_router_prompt.format(task_description))

(Appendix A.8.1)
4: if routing_level == 1 then
5: result ← LLM.call(level_one_reasoning_prompt.format(task_description)) (Ap-

pendix A.8.2)
6: else if routing_level == 2 then
7: result ← LLM.call(level_two_reasoning_prompt.format(task_description)) (Ap-

pendix A.8.3)
8: else
9: result ← LLM.call(level_three_reasoning_prompt.format(task_description)) (Ap-

pendix A.8.4)
10: return result

[

("user",
""" You are an expert AI judge that analyzes reasoning tasks to

determine the optimal logical complexity level.

Your job is to route this task directly to the most appropriate
reasoning level:

LEVEL 1 (Simple Decision): LLM-heavy simple decision with minimal Z3
validation

- Use for: Simple yes/no questions , straightforward interpretive tasks
- Best when: Single decision path, minimal logical complexity

LEVEL 2 (Propositional Logic): Boolean logic breakdown with moderate
Z3 reasoning

- Use for: Multiple boolean conditions , AND/OR combinations , decision
trees

- Best when: Multiple criteria to evaluate, logical paths can be
separated

LEVEL 3 (First-Order Logic): Complex constraints with heavy Z3
reasoning

- Use for: Quantifiers , arithmetic , complex relationships , constraint
satisfaction

- Best when: Numerical calculations , entity relationships ,
mathematical constraints

TASK: {task_description}

ROUTING ANALYSIS:

1. **Task Complexity Assessment:**
- Does this task involve multiple boolean conditions that can be

separated? →( Level 2)
- Does this task involve quantifiers , arithmetic , or complex

entity relationships? →( Level 3)
- Is this a simple decision that doesn't need logical breakdown?

→( Level 1)

2. **Case Factual Richness:**
- Does the case provide specific numerical values or structured

data? (supports Level 3)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

- Does the case have facts for multiple distinct conditions? (
supports Level 2)

- Does the case have basic facts for straightforward analysis? (
supports Level 1)

3. **Optimal Level Determination:**
- Level 1: Simple tasks with basic facts
- Level 2: Multi-condition tasks with sufficient facts for each

condition
- Level 3: Complex quantitative tasks with numerical/structured

data

Respond in JSON format:
{{

"target_level": 1, 2, or 3,
"reasoning": "Detailed explanation of why this level is optimal",
"task_complexity": "simple"/"moderate"/"complex",
"factual_richness": "basic"/"moderate"/"rich",
"key_indicators": ["list", "of", "specific", "complexity", "

indicators"]
}}
"""

)

]

Listing 5: Neurosymbolic Router Prompt

A.8.2 Level 1 Reasoning Prompt

[

("user",
"""{z3_syntax_rules}

PROBLEM: {task_description}

LEVEL 1 APPROACH - Simple Decision:

Simple decision uses a single boolean variable to represent the final
decision.

Analyze the problem and determine the value of this single decision
variable.

STEP-BY-STEP CODE GENERATION:
1. Import and setup: import z3; s = z3.Solver()
2. Declare single boolean variable: decision = z3.Bool('decision ')
3. Analyze the problem and determine if decision should be True or

False
4. Add constraint: s.add(decision == True) or s.add(decision == False)
5. Add final constraint: s.add(decision)

MANDATORY TEMPLATE:
```
import z3
s = z3.Solver()

Single decision variable
decision = z3.Bool('decision ') # add brief description of the decision

as comment

Set decision value based on analysis
s.add(decision == True) # or False based on your assignment

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Final constraint
s.add(decision)
```

Analyze the problem and determine whether the decision should be True
(YES) or False (NO).

Respond in JSON format:
{{
"z3_code": "import z3\\ns = z3.Solver()\\ndecision = z3.Bool('decision

')\\ns.add(decision == True)\\ns.add(decision)",
"assignments": {{

"decision": {{
"value": true,
"reasoning": "Detailed step-by-step analysis explaining why this

should be True or False"
}}

}}
}}

CRITICAL:
- Use literal \\n for newlines
- Analyze the problem carefully to determine if decision should be

True (YES) or False (NO)
- Set decision == True for YES cases, decision == False for NO cases
- Always end with s.add(decision)
- WARNING: Invalid JSON will cause parsing errors. Double-check

escaping!
"""

)
]

Listing 6: Level 1 Reasoning Prompt

A.8.3 Level 2 Reasoning Prompt

[
("user",
"""{z3_syntax_rules} (Appendix~\ref{app:neurosym-z3-syntax-rules})

PROBLEM: {prompt}

LEVEL 2 APPROACH - Propositional Logic with Systematic Fact Extraction
:

Propositional logic uses boolean variables and logical connectives (
AND, OR, NOT).

Break down the problem into boolean conditions and combine them
logically.

SYSTEMATIC FACT EXTRACTION PROCESS:
1. **Identify Boolean Predicates**: Extract all boolean conditions

from the task description
2. **Map Facts to Predicates**: For each boolean predicate , find

relevant facts in the case
3. **Evaluate Truth Values**: Carefully assess whether each fact

satisfies the predicate condition
4. **Cross-Reference Validation**: Verify fact assessments against all

available case information
5. **Logical Combination**: Combine predicates using appropriate

boolean operators

STEP-BY-STEP CODE GENERATION:

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1. Import and setup: import z3; s = z3.Solver()
2. Declare boolean variables (use meaningful variable names): e.g.,

meaningful_variable_name1 = z3.Bool('meaningful_variable_name1 ')
3. Create logical combinations: combined = e.g., z3.And(

meaningful_variable_name1 , meaningful_variable_name2)
4. Create final decision: decision = z3.Or(meaningful_path_name1 ,

meaningful_path_name2)
5. Add value constraints: s.add(meaningful_variable_name1 == True)
6. Add final constraint: s.add(decision)

FACT EXTRACTION GUIDELINES:
- **Thorough Analysis**: Read the entire case description carefully

before making assignments
- **Explicit Reasoning**: For each boolean assignment , provide clear

reasoning based on specific case facts
- **Conservative Assessment**: When facts are ambiguous , err on the

side of what can be definitively established
- **Context Consideration**: Consider the broader context and

relationships between different facts
- **Evidence-Based**: Base each boolean value on concrete evidence

from the case, not assumptions

MANDATORY TEMPLATE:
```
import z3
s = z3.Solver()

Boolean conditions (extracted from task requirements)
condition_a = z3.Bool('condition_a ')
condition_b = z3.Bool('condition_b ')
condition_c = z3.Bool('condition_c ')

Logical combinations (reflecting task structure)
primary_path = z3.And(condition_a , condition_b)
alternative_path = condition_c

Final decision logic
decision = z3.Or(primary_path , alternative_path)

Value assignments (based on systematic fact extraction)
s.add(condition_a == True) # Must provide specific case-based

reasoning
s.add(condition_b == False) # Must provide specific case-based

reasoning
s.add(condition_c == True) # Must provide specific case-based

reasoning

Final constraint
s.add(decision)
```

ASSIGNMENT REASONING REQUIREMENTS:
For each boolean assignment in the "assignments" section, you MUST:
1. **Quote Specific Facts**: Reference exact facts from the case

description
2. **Explain Relationship**: Show how the fact relates to the boolean

condition
3. **Justify Truth Value**: Clearly explain why the fact makes the

condition True or False
4. **Consider All Evidence**: Acknowledge any facts that might support

the opposite conclusion

Respond in JSON format:
{{

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

"z3_code": "import z3\\ns = z3.Solver()\\ncondition_1 = z3.Bool('
condition_1 ')\\ncondition_2 = z3.Bool('condition_2 ')\\ndecision =
z3.And(condition_1 , condition_2)\\ns.add(condition_1 == True)\\ns.
add(condition_2 == False)\\ns.add(decision)",

"assignments": {{
"condition_1": {{
"value": true,
"reasoning": "SPECIFIC case facts that establish this condition as

true, with explicit quotations and logical connection"
}},
"condition_2": {{
"value": false,
"reasoning": "SPECIFIC case facts that establish this condition as

false, with explicit quotations and logical connection"
}}

}}
}}

CRITICAL REQUIREMENTS:
- Use literal \\n for newlines
- decision must be assigned the logical expression
- Name the final decision variable 'decision'
- Each assignment reasoning must reference SPECIFIC case facts
- Provide detailed evidence-based justification for each boolean value
- Consider the complete case context when making assessments
- WARNING: Invalid JSON will cause parsing errors. Double-check

escaping!
"""

)
]

Listing 7: Level 2 Reasoning Prompt

A.8.4 Level 3 Reasoning Prompt

[
("user",
"""{z3_syntax_rules}(Appendix~\ref{app:neurosym-z3-syntax-

rules})

PROBLEM: {prompt}

LEVEL 3 APPROACH - First-Order Logic with Systematic Constraint
Modeling:

CRITICAL JSON SAFETY RULES:
- Double-escape ALL backslashes in z3_code: \\\\ becomes \\\\\\\\
- Double-escape ALL quotes in z3_code: \\" becomes \\\\\\"
- Use \\\\\\\\n for line breaks in z3_code string
- Test your JSON before responding - ensure it's valid

First-order logic includes quantifiers , domain variables , predicates ,
and arithmetic operations.

Systematically model the problem using formal logical constructs and
constraint relationships.

SYSTEMATIC CONSTRAINT MODELING PROCESS:
1. **Domain Analysis**: Identify entities, values, and relationships

that need formal modeling
2. **Variable Declaration**: Define appropriate domain variables (Int,

Real, String, Bool)
3. **Predicate Definition**: Create boolean predicates that capture

key relationships

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

4. **Constraint Formulation**: Build arithmetic and logical
constraints from requirements

5. **Quantifier Integration**: Add universal/existential quantifiers
where appropriate

6. **Decision Integration**: Combine all constraints into a unified
decision formula

FIRST-ORDER LOGIC ELEMENTS:
- Quantifiers: z3.ForAll(), z3.Exists()
- Domain variables: z3.Int(), z3.Real(), z3.String()
- Predicates and relations over domains
- Arithmetic operations: +, -, *, /, >, <, >=, <=
- Complex symbolic reasoning with variables and functions

STEP-BY-STEP CODE GENERATION:
1. Import and setup: import z3; s = z3.Solver()
2. Declare domain variables (use meaningful names): entity = z3.Int('

entity '); name = z3.String('name')
3. Create predicates: has_property = z3.Bool('has_property ')
4. Build arithmetic/comparison expressions: meets_threshold = value >=

threshold
5. Add quantifiers when needed: z3.ForAll([x], z3.Implies(P(x), Q(x)))
6. Create decision: decision = z3.And(arithmetic_conditions ,

boolean_conditions)
7. Add constraints and final constraint: s.add(decision)

CONSTRAINT MODELING GUIDELINES:
- **Formal Precision**: Use precise mathematical relationships and

logical operators
- **Complete Modeling**: Capture all relevant constraints and

relationships from the problem
- **Value Extraction**: Extract specific numerical values, thresholds ,

and measurements from the case
- **Relationship Mapping**: Model complex relationships between

entities and their properties
- **Quantifier Usage**: Use quantifiers when dealing with universal or

existential statements

MANDATORY TEMPLATE:
```
import z3
s = z3.Solver()

Domain variables (extracted from case facts)
entity_value = z3.Int('entity_value ')
threshold = z3.Int('threshold ')
entity_name = z3.String('entity_name ')

Predicates (boolean conditions from requirements)
has_required_property = z3.Bool('has_required_property ')
satisfies_constraints = z3.Bool('satisfies_constraints ')

Arithmetic/comparison expressions (from numerical requirements)
meets_threshold = entity_value >= threshold
value_in_range = z3.And(entity_value >= 0, entity_value <= 1000)

Quantified expressions (when applicable)
x = z3.Int('x')
universal_property = z3.ForAll([x],

z3.Implies(x >= threshold , x >= entity_value))

Combined first-order decision (integrating all constraints)
decision = z3.And(

meets_threshold ,
has_required_property ,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

satisfies_constraints ,
value_in_range ,
universal_property

)

Value assignments (based on systematic fact extraction)
s.add(entity_value == 75)
s.add(threshold == 50)
s.add(has_required_property == True)
s.add(satisfies_constraints == True)

Final constraint
s.add(decision)
```

ASSIGNMENT REASONING REQUIREMENTS:
For each variable assignment in the "assignments" section, you MUST:
1. **Value Source**: Clearly identify where each value comes from in

the case facts
2. **Relationship Explanation**: Explain how the variable relates to

the overall constraint model
3. **Mathematical Justification**: For numerical values, explain the

mathematical reasoning
4. **Constraint Integration**: Show how the variable fits into the

broader logical framework
5. **Validation Check**: Verify that the assignment is consistent with

all problem requirements

Respond in JSON format:
{{
"z3_code": "import z3\\ns = z3.Solver()\\nvalue = z3.Int('value')\\

nthreshold = z3.Int('threshold ')\\nhas_property = z3.Bool('
has_property ')\\nmeets_req = value >= threshold\\nx = z3.Int('x')
\\nuniversal = z3.ForAll([x], z3.Implies(x >= threshold , x >=
value))\\ndecision = z3.And(meets_req , has_property , universal)\\
ns.add(value == 75)\\ns.add(threshold == 50)\\ns.add(has_property
== True)\\ns.add(decision)",

"assignments": {{
"value": {{
"value": 75,
"reasoning": "Value source: [specific case fact]. Relationship: [

how it relates to constraint model]. Mathematical
justification: [numerical reasoning]. Constraint integration:
[role in decision formula]."

}},
"threshold": {{
"value": 50,
"reasoning": "Value source: [specific case fact]. Relationship: [

how it relates to constraint model]. Mathematical
justification: [numerical reasoning]. Constraint integration:
[role in decision formula]."

}},
"has_property": {{
"value": true,
"reasoning": "Value source: [specific case fact]. Relationship: [

how it relates to constraint model]. Boolean justification: [
why True/False]. Constraint integration: [role in decision
formula]."

}}
}}
}}

CRITICAL REQUIREMENTS:
- Use literal \\n for newlines

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

- Must include first-order logic elements (quantifiers , domain
variables , arithmetic)

- decision must be assigned the complete logical expression
- Name the final decision variable 'decision'
- Each assignment reasoning must follow the structured format above
- Systematically extract and model all relevant numerical and

structural data
- Use appropriate mathematical and logical operators for constraint

relationships
- WARNING: Invalid JSON will cause parsing errors. Double-check

escaping!
"""

)
]

Listing 8: Level 3 Reasoning Prompt

A.8.5 Z3 Syntax Rules

*********** Z3 SYNTAX RULES (Must Follow Exactly): ***********

0. INDENTATION RULES (CRITICAL - PREVENTS "unexpected indent" ERRORS):
- Use EXACTLY 4 spaces for each indentation level
- NO TABS allowed - only spaces
- All lines at same level must have identical indentation
- Check each line starts with correct number of spaces
- WRONG: Mixed spaces/tabs cause "unexpected indent" errors

1. BOOLEAN OPERATIONS:
- CORRECT: z3.And(var1, var2, var3)
- CORRECT: z3.Or(var1, var2)
- CORRECT: z3.Not(var1)
- CORRECT: z3.Implies(var1, var2)
- WRONG: var1 and var2 (Python operators don't work in Z3)
- WRONG: var1 or var2
- WRONG: not var1

2. CONSTRAINT ASSIGNMENT:
- CORRECT: s.add(variable == True)
- CORRECT: s.add(variable == False)
- CORRECT: s.add(variable == z3.And(cond1, cond2))
- WRONG: s.add(variable == (cond1 and cond2))
- WRONG: variable = cond1 and cond2

3. BOOLEAN VARIABLES ONLY IN Z3 FUNCTIONS:
- CORRECT: z3.And(bool_var1 , bool_var2)
- CORRECT: z3.Or(condition_a , condition_b)
- WRONG: z3.And('text', 'text') (String literals cause errors)
- WRONG: z3.Or('name1', 'name2')

4. FINAL DECISION CONSTRAINT:
- ALWAYS END WITH: s.add(decision)
- NEVER: if s.check() == sat: ...
- NEVER: print(s.model())

5. VARIABLE DECLARATIONS:
- CORRECT: var_name = z3.Bool('var_name ')
- CORRECT: amount = z3.Int('amount ')
- CORRECT: rate = z3.Real('rate')

6. DECISION VARIABLE ASSIGNMENT:
- CORRECT: decision = z3.And(condition1 , condition2)
- CORRECT: decision = z3.Or(path1, path2)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

- WRONG: decision = z3.Bool("decision") (Should avoid creating
unrelated variable)

7. PYTHON LIST VS Z3 ARRAY DISTINCTION (CRITICAL):
- NEVER mix Python list indexing with Z3 symbolic variables
- WRONG: python_list[z3_variable] # Causes "list indices MUST be

integers" error
- CORRECT: Use Z3 arrays: z3.Array('array_name ', z3.IntSort(), z3.

BoolSort())
- CORRECT: Use explicit variables: var1, var2, var3 for small fixed

sets

8. COMMON ERROR PATTERNS TO AVOID:
- Don't access Python lists/arrays with Z3 symbolic variables
- Don't mix Python boolean operators (and/or/not) with Z3 expressions
- Don't create unnecessary intermediate Boolean variables when direct

expressions work
- Don't use Python string comparison with Z3 string variables

Listing 9: Z3 Syntax Rules for above prompts

A.9 Content moderation dataset example

A.9.1 Fraudulent Content Policy

```@python(input_message)(result_var)

```
# Fraudulent

## Topic Definition

The Fraudulent Topic is used to identify attempts to deceive a victim
into providing funds or private information.

## Critical Information

- Online fraud refers to online content and activity that uses
misrepresentation to deceive a victim into providing funds or
private information. Misrepresentation is often accomplished by
impersonation.

- Impersonation is where an individual falsely claims to be, or
presents themselves to be, another real or fictional

individual ,
group, label, or entity.

- One of the most common methods used to commit online fraud is
phishing.

- **Phishing** is the fraudulent practice of sending emails or
other messages claiming to be from reputable companies in

order
to induce individuals to reveal personal information (e.g.,
passwords or credit card numbers).

- Online fraud includes but is not limited to:

- **Consumer investment fraud**

- The expected benefit is investment returns and includes
fake
shares, Ponzi schemes, film frauds, etc.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

- **Consumer products and services fraud**

- The expected benefit is the product or service and this
includes fake tickets, bogus holidays , dietary pills that
don't work, products that don't arrive, etc.

- **Employment fraud**

- The expected benefit is employment and these include fake
opportunities for jobs such as work at home scams, model
agency work, etc.

- **Prize and grant fraud**

- The expected benefit is winning a prize or other windfall
and this includes fake lotteries , 419 scams (e.g.,

Nigerian
prince), etc.

- **Phantom debt collection fraud**

- The expected benefit is avoiding the consequences of
failing
to pay debts the victim did not know were previously owed
and this includes bogus demands for payment for debts,
taxes, etc.

- **Charity fraud**

- The expected benefit is contributing to a charity, but the
reality is that the victim is contributing to the
fraudsters , not a legitimate cause.

- **Relationship and trust fraud**

- The expected benefit is a relationship , but the reality is
usually a fake identity aimed at securing monies from the
victim.

- **Identity Fraud**

- Personal data is extracted from the victim or from a third
party (such as the victim's bank).

- Currently , Community Sift does not provide a complete solution for
this Topic!

- Sift operates on single lines of text. This is a complex, nuanced,
and context-heavy Topic.

- For now, we are considering these as future expansions as we add
more context capabilities to our product.

- old subtopics

- Hacking References

- References to hacking accounts, games, or similar.

- Account Fraud

- Selling, exchanging , swapping, or advertising accounts,
account information , currency , or similar.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

- Phishing Attempts

- Attempts to scam or induce individuals to reveal personal
information (e.g., account details, passwords , financial
information , etc.) for fraudulent purposes.

## Subtopics & Subcategories

- **Hacking and Cheating**\
{{ let matches_hacking_cheating_subcategory = [[ Content and

activity that uses, shares, or promotes illegal ways of
obtaining currency , memberships , or similar in-app perks or
resources in gaming and/or social accounts.
{{forsome

[[- **Hacking Reference** - Content or activity that references
in-app hacking.

]]

[[- **Cheating Reference** - Content or activity that references
in-app cheating.

]]
}}]] where "content" is input_message and "activity" is

input_message }}
- **Online Fraud**\

{{ let matches_online_fraud_subcategory = [[Content and activity
that uses misrepresentation to deceive a victim

into providing funds or private information.
{{forsome

[[
- **Account and Password Fraud** - Content or activity that

attempts to request or facilitate the sharing, stealing ,
buying,

or exchanging of in-app accounts or passwords.
]]

[[
- **Consumer Investment Fraud** - Content or activity where the

expected benefit is investment returns and includes fake
shares,

Ponzi schemes, film frauds, etc.
]]

[[
- **Consumer Products and Services Fraud** - Content or activity

where the expected benefit is the product or service and this
includes fake tickets, bogus holidays , dietary pills that don'

t
work, products that don't arrive, etc.

]]

[[
- **Employment Fraud** - Content or activity where the expected

benefit is employment and these include fake opportunities for
jobs such as work at home scams, model agency work, etc.

]]

[[
- **Prize and Grant Fraud** - Content or activity where the

expected benefit is winning a prize or other windfall and this
includes fake lotteries , 419 scams (e.g., Nigerian prince),

etc.
]]

[[

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

- **Phantom Debt Collection Fraud** - Content or activity where
the expected benefit is avoiding the consequences of failing

to
pay debts the victim did not know were previously owed and

this
includes bogus demands for payment for debts, taxes, etc.

]]

[[
- **Charity Fraud** - Content or activity where the expected

benefit is contributing to a charity, but the reality is that
the victim is contributing to the fraudsters , not a legitimate
cause.

]]

[[
- **Relationship and Trust Fraud** - Content or activity where

the
expected benefit is a relationship , but the reality is usually

a
fake identity aimed at securing monies from the victim.

]]

[[
- **Identity Fraud** - Content or activity where the personal

data
is extracted from the victim or from a third party (such as

the
victim's bank).

]]
}} ]] where "content" is input_message and "activity" is

input_message }}
## Exclusions

The message does NOT match the topic if any of the following subtopics
AND their respective subcategories hold:

- **Legitimate Codes**\
{{let exclusion_legitimate_codes = [[
Content or activity related to legitimate "cheat" codes or
promotional ("promo") codes that are part of the app or game.

- **Legitimate Codes**\
Content or activity related to legitimate "cheat" codes or
promotional ("promo") codes that are part of the app or game.,
e.g., \"enter this promo code \[CODE\] to redeem 3 booster
packs!\"

]] where "content" is input_message and "activity" is
input_message }}

## Topic Overlaps

The Fraud Topic can overlap with the following Topics:

- **PII**

- When the fraudulent content includes personally identifiable
information.

## Risk Level Mapping

If the message matches a topic AND a subcategory under a risk level
AND

the intensity of the sentiment matches the examples, it matches that
topic at that risk level

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

- **Hacking and Cheating**

- LOW

- Hacking Reference , e.g., \"it's for hacking accounts\", \"
i
will hack your account\"

- Cheating Reference , e.g., \"use the coin cheat to
duplicate
all your gold\"

- **Online Fraud**

- MEDIUM

- Account and Password Fraud, e.g., \"anyone looking to
trade
accounts?\"

- Consumer Investment Fraud, e.g., \"hey come sell herbalife
with me\"

- Consumer Products and Services Fraud, e.g., \"you should
try
\[NAME\]! They are miracle weight loss pills!\"

- Employment Fraud, e.g., \"work from home and make millions
just playing games!\"

- Prize and Grant Fraud, e.g., \"you're the 100,000 visitor!
You're a winner! Follow these instructions to claim your
prize!\"

- Phantom Debt Collection Fraud, e.g., \"our records
indicate
you have an outstanding payment of \451.35 dollars -
contact our offices asap\"

- Charity Fraud, e.g., \"this xmas, donate to those who need
it more at \[FRAUDULENT CHARITY\]\"

- Relationship and Trust Fraud, e.g., \"young guy looking
for
love, prefer to date rich older women\"

- Identity Fraud, e.g., \"example\"

- HIGH

- Account and Password Fraud, e.g., \"after you send the
money
i will give you my account info and password so you can

log
in\"

- Consumer Investment Fraud, e.g., \"provide us with you
financial information and a cheque for \[AMOUNT\] so we

can
add you to our system and immediately double your money!
you'll get rich in no time\"

- Consumer Products and Services Fraud, e.g., \"click this
link \[LINK\] to get your ultra exclusive \[PRODUCT\] at

1/2

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

the price!\"

- Employment Fraud, e.g., \"send us your bank information
and
credit card information to receive your amazing paycheques
from \[FAKE COMPANY\]!\"

- Prize and Grant Fraud, e.g., \"click this private and
secure
link to include your credit card information and claim

your
million dollars!! offer expires today!\"

- Phantom Debt Collection Fraud, e.g., \"The authorities are
on their way regarding your \[CRIME\]. Settle payment now

to
prevent this. We accept all credit cards\"

- Charity Fraud, e.g., \"we need your contact information
and
credit card information to send you a tax credit for your
donation!\"

- Relationship and Trust Fraud, e.g., \"I need \[QUANTITY\]
dollars for my plane ticket to come meet you baby. You're
the love of my life and we'll get married soon. Just need
more money to make it there.\"

- Identity Fraud, e.g., \"i used this program \[NAME\] and
with the pictures, voice, and personal information of
\[PERSON\] you're able to get their bank to confirm their
details\"

## Questions/Concerns

- N/A

Task: The above document describes a particular policy that we want to
check whether an input message violates. Your task is to evaluate
whether a given input message violates the above policy. The

message violates the above policy if it matches one or more
subtopics and no exclusions.

```@python
matches_any_exclusions = exclusion_legitimate_codes
matches_fraud_subtopics = matches_hacking_cheating_subcategory or

matches_online_fraud_subcategory
fraud_policy_checker = matches_fraud_subtopics and (not

matches_any_exclusions)

result_var = fraud_policy_checker
```

Listing 10: Fraudulent v.lt

34


	Introduction
	Interleaved text/logic reasoning in text understanding
	Compositional vs combinatorial reasoning in natural text
	Logical reasoning gaps

	Logitext: Language, representation and solver
	The Logitext language
	Natural language text constraints
	Solving natural language text constraints

	Evaluation
	Benchmarks and setup
	Results

	Related work
	Conclusion
	Appendix
	Definitions of gaps
	Syntax for Logitext documents
	Expanded dataset
	Clause-level error analysis
	Solver algorithms
	Check() algorithm details
	LLMPropose algorithm details
	LLMVerify algorithm details

	Number of LLM calls from NLSolver
	LLM Prompts used for NLSolver algorithm
	LLM Propose Prompt
	Example LLM Propose Prompt Instance
	LLM Verify (Constraint Verification) Prompt
	Example LLM Verify Prompt Instance

	LLM Prompts used for Neurosymbolic approach
	Neurosymbolic Router Prompt
	Level 1 Reasoning Prompt
	Level 2 Reasoning Prompt
	Level 3 Reasoning Prompt
	Z3 Syntax Rules

	Content moderation dataset example
	Fraudulent Content Policy



