Under review as a conference paper at ICLR 2026

NEUROSYMBOLIC LANGUAGE REASONING AS
SATISFIABILITY MODULO THEORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Natural language understanding requires interleaving textual and logical
reasoning, yet large language models often fail to perform such reason-
ing reliably. Existing neurosymbolic systems combine LLMs with solvers
but remain limited to fully formalizable tasks such as math or program
synthesis, leaving natural documents with only partial logical structure
unaddressed. We introduce Logitext, a neurosymbolic language that rep-
resents documents as natural language text constraints (NLTCs), making
partial logical structure explicit. We develop an algorithm that integrates
LLM-based constraint evaluation with satisfiability modulo theory (SMT)
solving, enabling joint textual-logical reasoning. Experiments on a new
content moderation benchmark, together with LegalBench and SuperNatu-
ral Instructions, show that Logitext improves both accuracy and coverage.
This work is the first that treats LLM-based reasoning as an SMT theory,
extending neurosymbolic methods beyond fully formalizable domains.

1 INTRODUCTION

Large language models (LLMs) remain unreliable at logical reasoning in_natural language,
often producing inconsistent or incomplete results despite recent progress [Sakai et al| (2025);
Lin et al| (2025)]. Logical solvers provide reliable guarantees but are confined to fully
formalizable domains such as math and program synthesis. Existing neurosymbolic systems
combine LLMs with logical solvers to achieve strong results in these domains [Olausson et al.
(2023); [Ye et al) (2023); Wen et al| (2025)], but they face two key limitations. First, they
remain restricted to fully formalizable settings and thus cannot naturally handle documents
that mix textual and logical structure. Second, they typically adopt a staged architecture in
which the LLM formalizes the problem once and the logical solver executes it. This design
precludes the iterative interleaving of textual and logical reasoning required for many natural
language tasks.

Real-world documents highlight this gap. Policies specify conditions on user posts, instruc-
tions impose formatting rules, and statutes constrain legal interpretations. These constraints
are seldom fully formalizable, yet they combine naturally with logical operators and interact
with calculations. To capture such cases, we introduce Logitext, a neurosymbolic language
that expresses constraints directly in text. At the core of Logitext are natural language
text constraints (NLTCs), a representation that makes partial logical structure explicit and
allows textual and symbolic constraints to work together.

Ezample. Consider a policy stating that “a post must be removed if it is both hateful and
an immediate threat.” The textual notions of “hateful” and “immediate threat” cannot
be fully formalized in logic, but they can be represented as NLTCs. Logitext links these
textual constraints with a logical conjunction, ensuring that the decision depends on both
the logical structure and the outcome of the textual judgments.

We realize this idea by extending satisfiability modulo theory (SMT) with a new theory
for textual constraints. Modern SMT logical solvers assign values to variables step by step
and propagate the consequences across theories such as strings, floats, and sets [Dayis et al.
(11962), Marques-Silva & Sakallah (1999), de Moura & Bjgrnern (2008), Barrett et al| (2010),
Zheng et al| (2017), Riimmer & Wah] (2010)]. With NLTCs, this propagation requires

Under review as a conference paper at ICLR 2026

M C
Messages containing disruptive behavior are those ! addressed at a group (not just an individual),

C
where ~?the group targeted by the message is defined by ethnicity, gender, color, nationality, sexual
orientation, race, or physical disability, and the message matches at least one of the following sub-rules:

« Bias: SMessage contains stereotyping, insensitive remarks, fear of difference, non-inclusive
language, microaggressions, justifying biases by seeking out like-minded people, accepting neg-
ative or misinformation/screening out positive information.

Cy
e Violence: Message is related to murder, rape, assault, arson, terrorism, vandalism, desecra-
tion, or threats.

Cs
o Genocide: ~ Message is related to the act or intent to deliberately and systematically annihilate
an entire people.

C .
Based on the above, a message is an immediate threat if Sit expresses a violent or genocidal intention
and the context is enough to suggest that the safety and/or life of an individual or group of people is at

risk.
(a)
Check if the following message M contains disruptive behavior [or an immediate threat] as per the above policy: ...
(b)

Create a sample message M that contains disruptive behavior as per the above policy. Ensure that the message
does not involve violence or genocide.

(c)
Create sample messages M that each contain disruptive behavior according to the policy. Ensure that the messages
do not involve violence or genocide. Create a sample for every valid combination of policy criteria.

(d)

Figure 1: Example: A content moderation policy (a) illustrates a fine-grained mix of logical
and textual constraints. Combined with (b), it yields a prompt that requires compositional
logical reasoning, and with (c-d), combinatorial reasoning.

solving textual constraints iteratively so that assignments remain consistent with Boolean
conditions. We develop a theory that performs this process efficiently and integrate it
into existing SMT solvers, thereby positioning LLM-based reasoning as an SMT-solver-
compatible theory.

Contributions. This paper formalizes LLM-based reasoning as an SMT theory and intro-
duces the first framework to support SMT-solver-compatible reasoning with partial logical
structure:

e Concept: We show the necessity of interleaving textual and logical reasoning and
characterize the limitations of staged approaches (§2).

o Language: We introduce Logitext, a neurosymbolic language that enriches docu-
ts with logic and represents them as NLTCs interfacing with SMT solvers (§B.1),
g@

).
e« NLTC Solver: We present an algorithm that solves NLTCs and extends the SMT
framework with this capability (§B.3).

o Evaluation: We show that Logitext outperforms staged baselines on a new content
moderation benchmark and improves accuracy and coverage on LegalBench and
SuperNatural Instructions (§E;ﬂ

2 INTERLEAVED TEXT/LOGIC REASONING IN TEXT UNDERSTANDING

We illustrate the need for interleaved textual and logical reasoning using a content moder-
ation policy.

2.1 COMPOSITIONAL VS COMBINATORIAL REASONING IN NATURAL TEXT

Figure m shows a common LLM use case. A policy document (Figure B) defines notions
such as “disruptive behavior” and “immediate threat.” When paired with a task description

Under review as a conference paper at ICLR 2026

(Figures @—@) and an input message, the document becomes an LLM prompt whose
reliable reasoning is the objective.

The document expresses intent through both textual and logical relations. Shaded text
within each clause C; specifies its meaning relative to the input message M and possibly
other clauses. For example, given M = “Americans love ice cream,” clause C; (“addressed
at a group”) and Cy (“targeted by nationality”) both evaluate to True. Underlined text
between clauses then constrains these meanings logically. Formally, whether a message is
disruptive (d) depends on:

d =[] AMICT A ([Cs]] Vv [[Cal] v (IG5 (1)

Compositional reasoning. The classification task in Figure @ asks whether a message
is disruptive (d) or an immediate threat (t). Solving for d requires one pass of textual
reasoning to evaluate each [[C;]], followed by logical evaluation of the formula. At first
glance, ¢ appears to need only textual reasoning ([[Cs]]). However, Cg checks whether the
message “expresses violent or genocidal intention,” which depends on prior results [[C4]] and
[[C5]]. Thus, t requires information from a logical disjunction [[Cy]] V [[C5]], showing the
benefit of interleaving logical with textual reasoning.

Combinatorial reasoning. The constrained generation task in Figure E reverses the
classification problem: instead of labeling a given message, the goal is to generate a message
M that satisfies both a partial assignment of clause values and the policy as a whole. This
requires two steps. First, a logical solver proposes candidate assignments for the relevant
clauses (e.g., Cy ...Cj5) that are consistent with the partial assignment and with the logical
definition of d. Second, a generator synthesizes a message M whose text realizes those
clause assignments. If the synthesis step fails to produce a valid message, the process must
repeat with a new candidate assignment. The high-coverage generation task in Figure E‘is
an even harder variant: it requires generating messages that realize many or all satisfying
assignments, not just one. Such tasks inherently demand iterative cooperation between
logical solving and textual synthesis.

2.2 LOGICAL REASONING GAPS

50%

M bullying mdrugs m fraudulent m political mreligious cmod cmod cmod cmod cmod
45% == Political [Religious [Fraudulent Emm Bullying
(6 clauses) (8 clauses) (12 clauses) (21 clauses) (22 clauses)
40%
100
35%
30% R w0
25% 8
20% 5%
15% §
0 2 a0
10% s
5% I I I S 2
oy HNEN
o L]
oY B “25 oA gptdo-mini gptS-nano 03-mini o4-mini 03 gpts
0¥ B 0T e M\ LLM Model
(a) Compositional gap (b) Combinatorial gap

Figure 2: Gaps in logical reasoning (See App EI) on content moderation across LLMs.

How well do LLMs perform the logical reasoning needed for these tasks? To evaluate this,
we define reasoning gaps: the difference between (1) performance when an LLM handles
textual reasoning and a logical solver executes logical reasoning, versus (2) performance
when the LLM alone handles the entire prompt. We denote the compositional gap by A
and the combinatorial gap by A’. Our dataset contains five content safety policies with
621 clauses.

Figure @ shows A across models, measured as classification accuracy. Smaller models
exhibit large compositional gaps, while stronger models narrow them. Within each model,
the size of the gap increases with task complexity, reflecting the number of interacting
clauses.

Figure @ shows A’ for combinatorial reasoning, measured as the number of distinct correct
assignments generated. Here the gaps are dramatic: even state-of-the-art models such as

Under review as a conference paper at ICLR 2026

*'C(M:str, d, t, C1, C2, C3, C4, C5, C6, C7)"""

Messages containing disruptive behavior are those {{let C1 = [[addressed at a group (excludes messages
targeted at just an individual)]] where "messages” is M}} and {{let C2 = [[the group targeted by the
message is defined by {{forsome [[ethnicity]], [[gender]], [[color]], [[nationality]], [[sexual orientation]],
[[race]], or [[physical disability]] }}]] where "message” is M} }, and the message matches at least one of the
following sub-rules:

Bias: {{let €3 = [[Message contains stereotyping, insensitive remarks, fear of difference, non-inclusive
language, microaggressions, justifying biases by seeking out like-minded people, accepting negative or
misinformation/screening out positive information.]] where "message” is M} }

Violence: {{let C4 = [[Message is related to murder, rape, assault, arson, terrorism, vandalism,
desecration, or threats.]] where "message” is M}}

Genocide: {{let €6 = [[Message is related to the act or intent to deliberately and systematically
annihilate an entire people.]] where "message” is M}}

C8 = C4 or C5

Based on the above, a message is an immediate threat if {{let C6 = [[it expresses a violent or genocidal
intention]] where "it expresses a violent or genocidal intention” is €C8}} and {{let €7 = [[the context is
enough to suggest that the safety and/or life of an individual or group of people is at risk.]] where “the
context” is M }}

C1 and C2 and (C3 or C4 or C5)
C6 and C7

s ct
nmon

Figure 3: Content moderation policy example implemented as Logitext Document

GPT-5 fail to recover over 99% of satisfying assignments that an SMT solver (Z3) can
enumerate, and GPT-4o-mini fails completely across all tasks. Unlike compositional gaps,
which shrinks with model scale, combinatorial gaps remain severe even for frontier models.

In summary, although improvements in models gradually address compositional gaps, com-
binatorial gaps (which affect the solve/synthesize loop of language reasoning) are still signif-
icant. Logitext is designed to bridge these gaps by helping specify textual vs logical intent
of natural documents precisely, and finely interleave LLM decoding and logic solving to
support combinatorially efficient and semantically faithful interpretation of the intent.

3 LOGITEXT: LANGUAGE, REPRESENTATION AND SOLVER

Given a conventional textual prompt as in Figure m, we convert it to Logitext program
format by annotating it (Section @) The Logitext ram is parsed into set of hybrid
Natural Language Text Constraints (NLTCs) (Sectionpﬁ Section ﬁpresents an LLM-
based solver NLSolver for NLTCs and pair it with a logical solver to produce the final task
response.

3.1 THE LOGITEXT LANGUAGE

Logitext extends conventional text prompts into hybrid text/logic documents, enabling nat-
ural language clauses to interact directly with formal constraints. It supports partial formal-
ization: only those parts of a document that benefit from logical structure are annotated,
while the rest remain textual. This selective annotation allows reasoning to interleave be-
tween textual interpretation and logical propagation, as motivated in Sectionﬁ.

A Logitext document (Figure E) enriches a textual policy (Figure @) with four constructs
(see Appendix for the full syntax):

o Variable declarations (e.g., (M:str, d, t, ..)) define the symbols that participate
in logical constraints. Variables may be Boolean or string; string variables must be
typed explicitly (e.g., M:str for an input message).

e Textual let bindings of the form {{let <var_0> = [[<clause>]] where
<subclause_1> is <var_1> ... and <subclause_n> is <var_n>}} (a) binds a textual

Under review as a conference paper at ICLR 2026

clause (i.e., a sentence fragment) to a logical variable (for example, the clause “ad-
dressed at a group ..just an individual” is named C1), and (b) associates sub-clauses
within the clause (e.g., “messages”) with external variables, e.g. M. Intuitively,
<clause> represent a constraint between the variables <var_i>.

o Logical constraint blocks (delimited by ~~*) specify logical relations (e.g., t =
C6 and C7) among variables, using pyz3 notation [z3p; de Moura & Bjgrner (2008)].

e Convenience constructs such as forall and forsome compactly handle textual
lists, internally expanded into disjunctions or conjunctions over let-bindings.

Such Logitext documents are “executed” using a check() function as in constraint solving.
Given a partial assignment p of variables in a document d, check(d, p, cover) searches for
a satisfying assignment that respects both the logical and textual constraints:

check(d:LogitextDocument, p:Dict[str, bool|str], cover:Option[booll)
-> Dict[str, boollstr] | unsat | timeout

If a solution exists, check() returns a full assignment as a mapping from variable names
to values. Otherwise it reports unsatisfiability or timeout. With the optional flag cover,
check() enumerates multiple satisfying assignments. This mechanism generalizes the famil-
iar complete() execution of text prompts to a richer constraint-satisfaction setting.

The expressiveness of Logitext unifies diverse language understanding tasks under a sin-
gle interface. The three tasks of Figure Er(b)f(d) are expressed uniformly as constraint
checking: (i) classification (1t.check(d, {'M': M})['d']l), (ii) partially constrained in-
stance generation (1t.check(d, {'C4': False, 'C5': False})['M']), and (iii) coverage
generation ([g['M'] for g in lt.check(d, {'C4': False, 'C5': False}, cover=True)]).
In contrast to raw prompting, Logitext makes explicit the logical structure of documents,
enabling solver-style propagation to cooperate with LLM-based textual reasoning.

3.2 NATURAL LANGUAGE TEXT CONSTRAINTS

The constructs in Section @ define how Logitext documents combine textual clauses with
logical constraints. To reason with such documents, we require a representation that treats
textual clauses as first-class objects alongside logical formulas. We introduce natural lan-
guage text constraints (NLTCs), which bind clauses to variables, record references to external
context, and allow seamless interaction with solvers.

Recall from the previous section that, in addition to a variable declaration section, an
unparsed Logitext document d consists of alternating code blocks and text blocks (Figure g)
Each code block is a sequence of logical strings k, e.g., C8 = C4 or C5. Each text block
contains a sequence of let-binding text strings L of the form:

let v = [[]] where u; is py...u, is py.

Here v is a boolean variable to which ¢ is bound, while the u; are strings (typically substrings
of ¢) associated with variables p; defined elsewhere.

To process a document d, we parse it into an abstract representation D in three steps:

1. Variable collection. Identify boolean variables vsp = v1,...,v, and string vari-
ables usp = uq,...,u, . These variables include those declared explicitly and those
introduced in let bindings as above.

2. Logical constraint parsing. Convert each logical string k from a logical text
string into a solver-ready formula ¢ using Z3’s parser.

3. Textual constraint parsing. Translate each let-binding L into an NLTC v =
(v,¢,{ur : p1,...,un : Pn},d): each NLTC binds v to the clause ¢, records its
dependencies, and points to the full document d so ¢ can be interpreted in context.

After parsing, the abstract document is D = (vsp,usp, dp,vp), where ¢p = ¢1,...,dm
are logical constraints and vp = v4,...,v, are NLTCs. Reasoning proceeds with respect to
a partial assignment 7p : usp Uwvsp — bool|str, which specifies known variable values and
lets the solver-LLM loop infer the rest, as discussed in the next section.

Under review as a conference paper at ICLR 2026

3.3 SOLVING NATURAL LANGUAGE TEXT CONSTRAINTS

Algorithm 1 check(D = (v, ¢, vs,us),7p) NLSolver(u, v,)
1: while true do 1: w* + LLMPropose(v, 7, {}, None) > Propose
2: wz <+ Z3(¢,vs, mp) > Propose bool. assignment 2: for t =1 to T do
3: return UNSAT if not 7z 3: for v, € v do with sat < true; ™ < {}
4: for unbound u € us do with sat < true; 75 < {} 4: > Verify proposal; record unsatisfied clause
5: u* + NLSolver(u, v[u], 1p Urs Unyz) 5: if LLMVerify(vg, 7 U {u = u"}) # w[vs] then
6: if 'u* then Z3.block(rz) ; sat + @ ; break 6: sat « false ; @ «+ 7 U {vi }
7 T s U{u=1u"} 7 If sat then return u”
8: if !sat then continue 8 w” <« LLMPropose(v, m, 7, u*) > Refine
9: return 7, Unp Uy 9: return None

(a) Outer logical solver loop (b) Inner text solver loop

Figure 4: Core Logitext constraint solving algorithms
Figure H shows how Logitext solves hybrid systems of natural language text constraints
(NLTGCs, v) and logical constraints (¢), given shared Boolean variables vs, text-string vari-
ables us, and a partial assignment 7mp of Booleans and strings. The goal is to extend 7p
into a complete satisfying assignment 7/, using an LLM-based solver as an extension to the
core logical (aka SMT) solver.

The overall strategy is simple. A logical solver (we use Z3 de Moura & Bjgrner (2008))
produces candidate Boolean assignments that satisfy Boolean constraints (Fig fa), and
our LLM-based solver (called NLSolver) then attempts to produce assignments to string
variables that satisfy text constraints while maintaining the Boolean assignments (Fig fa).

We begin with the outer logical solver loop of Fig Ha We uge Z3 to generate candidate
assignments 7z of variables vs consiste ith ¢ and mp (Llneua). We now loop sequentially
over unbound string variables u (Line n@), trying to find satisfying assignments for each,
compatible with all assignments so far. Each u is passed to text-constraint solver NLSolver,
which attempts to generate a text string value u* for each unbound string variable u (Line E)
given the constraints v[u] C v that read or write u, and the assignments so far (7, UrpUmz).
If NLSolver fails to find a u*, we block Z3 from regenerating candidate assignment 7y,
break out of the logop over us LIHGE and continue generating more candidate Boolean
assignments (Lines g§,). If all strin riables u are assigned, we declare success and return
all assjgnments accumulated LIDGSE g If no candidates remain, we declare unsatisfiabilty
(Line E)

NLSolver (Fig. Hb) is given a variable u, a set v of NLTCs that read u, and a partial
assignment 7. Its job is to produce a textual string u* for u that satisfies constraints v
given partial assignment 7. It does so through a propose-verify-refine loop. It starts by
prompting an LLM, via the LLMPropose() call (see Appendixfé) to propose a candidate
u* that satisfies v and 7 (Line [l]). It then uses T rounds (Line E) to refine this solution
to one that satisfies v. In each round, for every NLTC v, € v, it calls into an LLM via
LLMVerify() (Appendix ??) to infer the truth value for the variable bound by vy, given
u = u* and existing assignment 7, and compares this truth value to that required by
the partial assignment 7 ('neré) If all truth values are compatible, it returns y* as a
satisfying assignment (Linela). Otherwise, it uses LLMPropose() to refine u* (Line g) The
refinement is guided by an additional “needs-to-change” set 7, which lists the constraints
that u* currently violates. After T rounds of not finding u*, we declare failure (Line EE;

The above describes the essence of how Logitext solves NLTCs. In practice, we include two
further techniques that have modest impact. First, note that LLMPropose() may produce
a piece of text that does not match the current partial assignment 7, and is therefore
rejected by LLMVerify(). However, LLMPropose() itself may be called many thousands of
times for various candidate assignments in the check() algorithm, Linefj. Given that calls
to LLMPropose() are relatively expensive since it calls out to LLMs, we cache results from
these calls and consider the for use on future calls to NLSolver. Second, when we propose a
refinement of textual value u*, it helps not only to have the “needs-to-change” list mentioned
above, but also a history of the previous refinements proposed on u* and their outcome from
LLMVerify. These two techniques are described further in the appendix, and the (modest
but noticeable) impact of caching is analyzed in the evaluation section (Figure f).

Under review as a conference paper at ICLR 2026

I End to End LLM (GPT5) I Logitext (GPT5-nano) I Logitext (GPT5)

100%
3
SE 80%
[
]
g 60%
%)
O 40%
v
v
A 20%

0% -
cmod cmod cmod cmod cmod Ib Ib Ib Ib Ib ni ni ni ni ni
Drugs Political Religious Bullying Fraudulent cuad housing div_2 Supply ~ Supply ~MCTACO CosmosQA Cont. ~ MATRES MATRES
warranty Best Disclosed Abuse Cond. Static Cls.
Tasks
(a) Text instance generation (TIG)
I End to End LLM (GPT5) I Logitext (GPT5-nano) I Logitext (GPT5)

(7]

<

Q

§ 10

< 1074

w

[}

()]

[

@ 104

>

o

O

k]

100 4
H*

cmod m cmod cmod cmod Ib Ib Ib Ib Ib ni ni ni ni ni
Drugs Political ~ Religious Bullying Fraudulent cuad housing div_2 Supply Supply MCTACO CosmosQA Cont. MATRES ~ MATRES
warranty Best Disclosed Abuse Cond. Static Cls.

Tasks
(b) Text coverage generation (TCG)

Figure 5: End-to-End performance comparison per task.

4 EVALUATION

4.1 BENCHMARKS AND SETUP

Content Moderation (CMOD). A new benchmark of five multi-page moderation policies
(2-5 pages, 6—22 annotated clauses) coverin ugs (22 clauses), politics (8), religion (6),
bullying (21), and fraud (12) (see Appendix for an example). These tasks are designed
to reflect realistic compliance settings where policy documents constrain user-generated
content.

egal Benchmark (LegalBench, LB). We select five tasks from LegalBench [
], an extensive benchmark for reasoning over statutory and regulatory text. The tasks
cover domains such as diversity jurisdiction, housing and warranty law, and supply-chain
transparency. Each task is 20-50 lines with 2-4 annotated clauses. This benchmark captures
challenges in legal text where precise logical structure interacts with natural language.

1ra structions (NI). We select five tasks from SuperNatural Instructions [
t al ()], focusing on problems with implicit logical constraints such as detecting gram-

matical inconsistencies, reasoning about hypothetical actions, and identifying abusive con-
tent. Each task is 3-10 lines with 2-5 annotated clauses. This benchmark tests generaliza-
tion to diverse instruction-following tasks beyond policy or law.

—_—

Together these benchmarks yield 15 tasks with 10+ instances each, spanning policy, legal,
and open-domain instructions. All tasks require mapping text inputs to structured out-
puts (classifications or constrained generations). We evaluate Logitext on three settings
aligned with Fig. [Il: (a) Task execution (TE) — measuring classification accuracy on
task instances, (b) Text instance generation (TIG) — testing the ability to generate
valid inputs under partial constraints, and (¢) Text coverage generation (TCG) —
enumerating as many valid inputs as possible.

4.2 RESULTS

Text instance generation (TIG). Figure @ compares Logitext with direct prompting.
With both GPT5 and GPT5-nano as base models, Logitext generates valid assignments
reliably via check(). The results indicate that (i) Logitext attains near-saturation perfor-

Under review as a conference paper at ICLR 2026

498/499
(99.80%)
100% 4 8 T

©
3
=

R so% S
~ 429/637 -
9 (70.49%) i} .
5% v S 8%
§ 60% : ﬁ
g —— Log!text w/o Cache (GPT5) § 70% —e— Logitext w/o Cache (GPT5)
3 50% —e— Logitext w/ Cache (GPT5) @ —e— Logitext w/ Cache (GPT5)
20%(26.13%) Logitext w/o Cache (GPT5-nano) 60% Logitext w/o Cache (GPT5-nano)
—e— Logitext w/ Cache (GPT5-nano) —e— Logitext w/ Cache (GPT5-nano)
2 3 4 5 6 7 8 B 3 4 5 6 7 8
Maximum # of iteration on NLSolver Maximum # of iteration on NLSolver
(a) Test coverage generation (b) Test instance generation

Figure 6: NLSolver success rate vs num. iterations.
mance even with the weaker GPT5-nano, while direct prompting to GPT5 shows noticeable
degradation; and (ii) degradation is most evident on complex CMOD policies, although
performance on Drugs is relatively stronger than other cases.

% 102] B b cuad warranty _ B b cuad warranty
3 = b div 2) = b div 2
o B b Supply Disclosed 2 2507 B |b Supply Disclosed
S 104 B ni MCTACO S B ni MCTACO
h’; BB ni CosmosQA fn: 200 4 B ni CosmosQA
8 100 EEE ni MATRES static Cls. > B ni MATRES static Cis.
> = Ib Supply Best g 150 4 S Ib Supply Best
< 1074 B ni MATRES Cond. Cls. 2 B ni MATRES Cond. Cls.
2 B Ib housing 2 100 B b housing
— 9021 B cmod Political o = cmod Political
Iy =1 cmod Religious S ol =3 cmod Religious
S 0] =1 ni cont. abuse z =1 ni cont. abuse
<>(=3 cmod Fraudulent 1 || =3 cmod Fraudulent
LLM (GPTS) Logitext £ cmod Bullying LLM (GPTS) Logitext =2 cmod Bullying
Method (Truth Value Assignment) = cmod Drugs Method (Coverage Example Generation) £ cmod Drugs
(a) Candidate generation (b) NLSolver call latency

Figure 7: Component-wise latency on TCG (tasks sorted by the #clauses).

Text coverage generation (TCG). Figure @ (log scale) reports coverage under a fixed
time budget of 3000s. Baseline GPT is allowed up to 5 iterations for candidate generation
and 5 additional iterations for finding satisfying assignments. Logitext achieves broader
coverage, particularly with GPT5-nano. FigureE provides an explanation: candidate gen-
eration is sjgnificantly faster with Logitext since it uses a solver rather_than repeated LLM
calls (Fig. [f4). The advantage is reduced in the solving phase (Fig. [/H), where NLSolver
calls dominate, but this bottleneck is smaller for faster base_models such as GPT5-nano.
We also report the LLM call statistics of NLSolver in Figure ﬂof Appendix.

NLSolver iterative refinement. Figure H shows that NLSolver improves success rates as
the number of iterations increases. Caching can be beneficial in some settings (e.g., coverage
generation with GPT5), though its overall effect across tasks is limited.

Correctness rate of approaches across benchmarks.

Correctness rate of approaches on tasks in legalbench

Approach
i ogilext N routed_hybrig

8

6
4
00

Xbox Content Moderation (v2) LegalBench ‘Superatural Instructions. &
Benchmark Name o
Approach & o

== Fowshotonly mes Logiext s Neurosymbolic <

Figure 8: Aggregated Task Execution (TE) Result (left), Legalbench in detail (right).

Task Execution (TE). Figure E(left) presents accuracy on TE tasks using GPT-40. In
addition to few-shot prompting, we include a neurosymbolic prompt that generates and ex-
ecutes code. Logitext performs better on CMOD and NI benchmarks but underperforms on
LegalBench. FigurexE(right) highlights two main sources of error: (i) in some cases, clause-
level outputs [[C;]] were incorrectly predicted by the LLM, but the LLM-only approach
produced correct answers using holistic reasoning, revealing a robustness limitation for Log-
itext; (ii) in other cases, lists such as “x, y, and z” were intended as examples rather than
conjuncts, but were annotated as the latter. These issues point to the need for clause-level
error correction and more careful handling of list annotations in future work.

0

& Y © & &
&
o e o

o
&
o

Correctness rate across 4 runs of 12 instances.

&

Correctness rate across 4 runs of 12 instances

Benchmark Name

Under review as a conference paper at ICLR 2026

Overall, the experiments show that Logitext improves performance on both constrained
generation and classification tasks across multiple benchmarks, while highlighting remaining
challenges in clause-level robustness and annotation handling.

5 RELATED WORK

Prompt-based reasoning. Prompting strategies such as Chain-of-Thought (CoT) [Wei
et all (2022)] and Tree-of-Thought (ToT) [Yao et al] (2023)] elicit multi-step reasoning by
decomposing queries into textual steps. Chain-of-Logic [Servantez et al! (2024)] separates
logical reasoning from answer prediction, aiming to improve consistency in step-wise deduc-
tion. While these approaches enhance local coherence or allow limited backtracking, they
lack mechanisms to bridge deeper compositional and combinatorial reasoning gaps and can-
not ensure global logical consistency across clauses. Once an error propagates, there is no
principled way to validate against constraints. Our framework differs by explicitly defining
these reasoning gaps and incorporating symbolic validation into the reasoning process itself.

Systematic generalization and constraint solving. Our challenges relate closely to
systematic generalization tasks [Lake & Baronj (2018), Keysers et al| (2020), Kim & Linzen
(2020)], which demonstrate that sequence models fail when compositional rules must be
recombined in novel ways. Similar issues arise in program synthesis and constraint satis-
faction tasks, where LLMs can propose candidate programs or assignments (e.g., Codex for
SAT/SMT) but collapse under combinatorial growth in the search space. These methods
provide no principled mechanism to enforce or recover from violated constraints. We for-
malize these compositional and combinatorial reasoning gaps as structural limitations of
LLM inference and show how solver integration can systematically mitigate them in natural
language contexts.

Reasoning models. Reasoning models such as OpenAl 03/04-mini and DeepSeek-R1 [Guo
et al| (2025)] have shown improved performance on benchmarks for logical reasoning and
robust instruction following. RIL allows limjted correction through feedback [Kalyanpur
et al| (2024)] or exploration [Xie et all (2025)]. However, they depend heavily on reward
shaping or sample filtering, lack a formal representational layer for partial logical structures.
As a result, they cannot enforce symbolic constraints or recover from violated ones during
inference. Our framework complements these advances by introducing a neurosymbolic
language that supports constraint-aware reasoning within an SMT framework.

Neuro-symbolic reasoning. Recent systems such as LINQ [Olausson et al] (2023)],
CLOVER [Ryu et al| (2025)], and ZebraLogic [Lin et al| (2025)] connect LLMs with symbolic
solvers by translating natural language into executable logic programs. These approaches
achieve strong guarantees when tasks are fully formalizable, but their reliance on complete
logical structure restricts applicability to natural documents like policies or legal texts,
where only fragments of logic are explicit. ZebralLogic also provided an initial study of the
combinatorial gap, but its scope was limited to well-defined mathematical domains. In con-
trast, our work addresses this challenge in natural language contexts that inherently contain
uncertainty and partial structure. We introduce natural language text constraints (NLTCs),
enabling partial formalization and iterative solver-guided reasoning that better reflects the
complexity of real-world documents.

6 CONCLUSION

In this work we introduced Logitext, a neurosymbolic framework that treats LLM reasoning
as an SMT theory through natural language text constraints. We first motivated the need
for such a framework by showing that even frontier LLMs continue to exhibit two reasoning
gaps: compositional gaps that narrow with scale but persist, and combinatorial gaps that
remain severe. By interleaving solver propagation with LLM decoding, Logitext provides
a principled way to reduce these gaps. More broadly, our results suggest a path toward
positioning LLMs as solver-compatible theories, opening opportunities for scalable, reliable,
and trustworthy natural language reasoning.

Under review as a conference paper at ICLR 2026

REFERENCES

Z3py api documentation. https://z3prover.github.io/api/html/namespacez3py.html.
Accessed: 2025-11-19.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard: Version 2.0. Tech-
nical report, Department of Computer Science, The University of Iowa, 2010. URL
https://theory.stanford.edu/~barrett/pubs/BST10.pdf.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394-397, 1962. doi: 10.1145/368273.368557.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in
Computer Science, pp. 337-340. Springer, 2008. doi: 10.1007/978-3-540-78800-3_ 24.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood,
Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench:
A collaboratively built benchmark for measuring legal reasoning in large language models.
Advances in neural information processing systems, 36:44123-44279, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning
capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Aditya Kalyanpur, Kailash Karthik Saravanakumar, Victor Barres, Jennifer Chu-Carroll,
David Melville, and David Ferrucci. Llm-arc: Enhancing llms with an automated reason-
ing critic. arXiv preprint arXiv:2406.17663, 2024.

Daniel Keysers, Nathanael Schéarli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii
Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry
Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional
generalization: A comprehensive method on realistic data, 2020. URL https://arxiv.
org/abs/1912.09713.

Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on
semantic interpretation, 2020. URL https://arxiv.org/abs/2010.05465.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks, 2018. URL https:
//arxiv.org/abs/1711.00350.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran,
Peter Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning,
2025. URL https://arxiv.org/abs/2502.01100.

Joao P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506-521, 1999. doi: 10.1109/12.
769433.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua
Tenenbaum, and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by
combining language models with first-order logic provers. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5153-5176. As-
sociation for Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.313.
URL http://dx.doi.org/10.18653/v1/2023.emnlp-main.313.

Philipp Riimmer and Thomas Wahl. An SMT-LIB theory of binary floating-point arithmetic.
In Proc. 8th Intl. Workshop on Satisfiability Modulo Theories (SMT’10), 2010.

Hyun Ryu, Gyeongman Kim, Hyemin S. Lee, and Eunho Yang. Divide and translate:

Compositional first-order logic translation and verification for complex logical reasoning,
2025. URL https://arxiv.org/abs/2410.08047.

10

https://z3prover.github.io/api/html/namespacez3py.html
https://theory.stanford.edu/~barrett/pubs/BST10.pdf
https://arxiv.org/abs/1912.09713
https://arxiv.org/abs/1912.09713
https://arxiv.org/abs/2010.05465
https://arxiv.org/abs/1711.00350
https://arxiv.org/abs/1711.00350
https://arxiv.org/abs/2502.01100
http://dx.doi.org/10.18653/v1/2023.emnlp-main.313
https://arxiv.org/abs/2410.08047

Under review as a conference paper at ICLR 2026

Yusuke Sakai, Hidetaka Kamigaito, and Taro Watanabe. Revisiting compositional gen-
eralization capability of large language models considering instruction following abil-
ity. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 31219-31238, Vienna, Austria, 2025. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2025.acl-long.1508. URL
https://aclanthology.org/2025.acl-long.1508/.

Sergio Servantez, Joe Barrow, Kristian Hammond, and Rajiv Jain. Chain of logic: Rule-
based reasoning with large language models, 2024. URL https://arxiv.org/abs/2402.
10400.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik,
David Stap, et al. Super-naturalinstructions: Generalization via declarative instructions
on 1600+ nlp tasks. arXiv preprint arXiv:2204.07705, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
CoRR, abs/2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and Minlie Huang. Codeplan:
Unlocking reasoning potential in large language models by scaling code-form plan-
ning. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025. URL https://proceedings.iclr.cc/paper files/paper/2025/hash/
c362b360765ed90ae4bd9c6764837e0e-Abstract-Conference.html.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqgian Hong, Bryan Dai, Joey Zhou,
Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based
reinforcement learning. arXiv preprint arXiv:2502.14768, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: deliberate problem solving with large language
models. In Proceedings of the 37th International Conference on Neural Information Pro-
cessing Systems, NIPS "23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language
models using declarative prompting. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2023. doi: 10.48550/arXiv.2305.09656. URL https://arxiv.org/abs/
2305.09656.

Yunhui Zheng, Vijay Ganesh, Sanu Subramanian, Omer Tripp, Murphy Berzish, Julian
Dolby, and Xiangyu Zhang. Z3str2: an efficient solver for strings, regular expressions,
and length constraints. Formal Methods in System Design, 50(2-3):249-288, 2017.

A APPENDIX

Additional information follows.

A.1 DEFINITIONS OF GAPS

Each policy p is annotated with clauses C; and associated with a formula ¢ as in Fig m and
Eqnll], and comes with 10-20 test messages M, each with ground truth Hj;.

Definition 1 (Compositional gap A,,, of LLM m on prompt p). For each M;, prompt
m with p for (i) the meanings b;; of clauses C; , and (ii) whole-prompt result &;. This results
in overall accuracy a = mean;d(h;, H;), where §(z,2") = 1 if = 2/, else 0. Now, use a
logical solver to evaluate h} = ¢(bi;), giving corresponding accuracy a*. Then compositional
gap App =a —a*

11

https://aclanthology.org/2025.acl-long.1508/
https://arxiv.org/abs/2402.10400
https://arxiv.org/abs/2402.10400
https://arxiv.org/abs/2201.11903
https://proceedings.iclr.cc/paper_files/paper/2025/hash/c362b360765ed90ae4bd9c6764837e0e-Abstract-Conference.html
https://proceedings.iclr.cc/paper_files/paper/2025/hash/c362b360765ed90ae4bd9c6764837e0e-Abstract-Conference.html
https://arxiv.org/abs/2305.09656
https://arxiv.org/abs/2305.09656

Under review as a conference paper at ICLR 2026

Definition 2 (Combinatorial gap A;np of model LLM m on prompt p). Prompt
m with p to produce (i) all policy inputs M, and (ii) complete assignments b;; for clauses
C; such that the policy is true. Use a logical solver to filter out b;; that do not satisfy
¢, and also to generate independently its satisfying assignments b};. Let n; (resp. nj) be
number of such assignments . The combinatorial gap is the relative discrepancy between
these numbers: A} = mean;(n} —n;)/nj,

A.2 SYNTAX FOR LOGITEXT DOCUMENTS

docd <+ [b]| "
text block b+ [s | t]©
code block ¢ + ~~[(vl,...,vn)]{code) "
text s < (strings without {{ or }})
termt <« 1]|q
let | + {{ let v = [[b]] where r; is v; and ... and r, is v, }}
quantifier ¢ « {{forall [s | [b]]]T }} | {{forsome [s | [[b]]]" }}
typed variable v < (variable name)][: str]
quoted str.r«+ "..."

A.3 EXPANDED DATASET

Benchmark Task Original Submission = Resubmission Evaluated
#Inst #Runs #Inst #Runs #Inst
cmod
Bullying_ 2.0 12 5 100 5 0
Drugs_&_ Alcohol 2.0 12 5 100 5 0
Fraudulent_ v2.0v 12 5 100 5 0
Political_v2.0v 12 5 100 5 0
Religious_ v2.0v 12 5 100 5 0
legalbench
cuad__warranty__duration 12 5 100 5 100
diversity 2 12 5 100 5 100
learned__hands__housing 12 5 100 5 100
supply chain_disclosure best_practice verification 12 5 100 5 100
supply__chain__disclosure__disclosed__certification 12 5 100 5 100
natural__instructions
task021 mctaco_grammatical logical 12 5 100 5 50
task022__cosmosqa__passage__inappropriate__binary 12 5 100 5 50
task108 contextualabusedetection classification 12 5 100 5 50
task457 matres_ conditional classification 12 5 100 5 50
task459 matres_ static_ classification 12 5 100 5 50

Table 1: Comparison of dataset instance counts and runs in the original submission vs.
resubmission.

We have expanded the dataset evaluated to 100 samples per task from 12 samples per task
as shown in Table [l. We are in the process of running evaluations on the data. So far,
we have completed full re-evaluation on 100 samples on 5 tasks (from Legalbench), partial
re-evaluation on 50 samples on (from Supernatural Language Instructions (SNLI)), and
have not yet started re-evaluation on our most favorable dataset CMOD. For Legalbench
and SNLI, each task had sufficient samples that we were able to simply incorporate more
samples from the existing dataset. For CMOD, we had to generate samples analogous to
production moderation data, a task that requires some care.

We focused on re-running the Task Execution (TE) experiments (Figure E), both because
these are the least favorable to us, and because the combinatorial gap experiments take
much longer to run. Of course, we will complete running all experiments on all datasets
over the next few days.

12

Under review as a conference paper at ICLR 2026

As Tables E and E show, the expanded results don’t change the highest level message on the
Task Execution task qualitatively: Logitext does provide a noticeable boost on many tasks,
and prevails in 7 of 10 tasks, but the baseline model does do better in some cases. Perhaps
interestingly, Logitext now does relatively better on Legalbench, prevailing in 4/5 tasks, and
slightly worse on SNLI (3/5). Once again, when Logitext fails, the main culprit see

be clause-level evaluation errors, which we have discussed in more detail in Appendif@o,

and mentioned in the original submission.

Task Name Fewshot Neurosymbolic Logitext
cuad_ warranty_ duration 0.50 0.19 0.61
diversity 2 0.76 0.35 0.83
learned__hands_ housing 0.50 0.34 0.60
supply_ chain_ disclosure_ best_ practice_ verification 0.58 0.02 0.59
supply_ chain_ disclosure_ disclosed_ certification 0.72 0.57 0.33

Table 2: Correctness on the TG task for Legalbench (100 samples/task)

Task Name Fewshot Neurosymbolic Logitext
task021__mctaco_grammatical logical 0.41 0.44 0.50
task022__cosmosqa_ passage__inappropriate_ binary 0.78 0.69 0.80
task108 contextualabusedetection classification 0.75 0.38 0.63
task457 matres_ conditional classification 0.87 0.49 0.59
task459 matres static_ classification 0.57 0.56 0.69

Table 3: Correctness on the TG task for SNLI (50 samples/task)

A.4 CLAUSE-LEVEL ERROR ANALYSIS

Correctness by Message and Variable

bias_protected - 1 1 [l 1 1 1 1 1
bias_protected 2- 1 1 1 WY LA il
bias_protected 3- 1 1 101 1 1 1 1
bicyclists genocide- 1 1 1 1 1 1 1 1 1 1
dehumanizing nogroup-1 1 1 1 1 1 1 1 1 1 1
dehumanizing rogroup 2-1 1 1 1 1 1 1 1 1l
dehumanizing_not_protected- 1 1 1 1 1 1 1 1 1 1 1
dehumanizing protected - 1 1 1 T
employment_discr_not_protected- 1 1 1 1 1 1 1 1 1 1 1
gendernoissue il 1 1 1 1 1 1 1 1 1 1
5 genocide_protected - 1 1 1 0.4 5} 1
= humiliation_protected - 1 1 1 1 i B 1
4 humiliation_protected 2 - 1 1 1 Ak gl 1
E individual_employment_discr- 1 1 1 1 1 1 1 1 nﬁ 1
individual_threat- 1 1 1 1 1 09 1 1 1 1
isolation_not_protected- 1 1 1 1 1 1 1 1 1 1
like_minded_protected - 1 1 1 i, at
seeking_likeminded_not protected- 1 1 1 1 1 1 1 1 1
seeking_likeminded_not protected 2- 1 1 1 1 1 1 1 1 1
slur_protected - 1 1 1 kT 1
violence_bycyclists- 1 1 1 1 1 1 1 1 1 1
violence_protected - 1 1 1 1L kel 1
violence_protected 2- 1 1 1 B 1
violence_protected_3 - Il Il]I_ Il |]I_ } Il | Il
S5 2858285 855
= o © o = g
5§58z ge82E " 8B
PR £ S = £ =
= 5 i = @ E E
s = = 3
= = 5 5 2
= I @
2 2 B
&= [}
B n

HHHR

l ﬂ h

1 1
1 1 |
0 0.8
1 H
1 1 K
1, T
1 1 1 0.6
il
1 10
1 1 K
af At
Il 1 0.4
Al el
1 NED.94
1, Al
T
ik 0.2
(1 T
TR
kgl
m—— .,
L W F
BT W
g ¢ 9
2 g F
& 5

Figure 9: Clause-level accuracy for Disruptive Behavior policy from Figure B

13

Under review as a conference paper at ICLR 2026

Figure E is a quick analysis of clause-level accuracy for the “Disruptive Behaviomr” prompt
of Figure [la. The x-axis of the figure lists the various clauses in the prompt®. The y-
axis represents individual messages input to the prompt. Each message was run 100 times
through the prompt using gpt-4.1-nano as the base model. Each entry in the the table is
the fraction of times the answer for a particular clause was correct for that message. Some
entries are missing because some runs did not complete.

Several points are worth noting, all admittedly only in the context of the current prompt:

1. Sub-clause level inference can be quite stable across runs. They are usually either
always correct or always wrong, only occasionally are they not 0 or 1. Thus the
worst case of several sub-clauses at a time unpredictably producing errors due to
stochastic variation is not inevitable.

2. Inference results are predominantly correct, i.e., sub-clause level accuracy may be
much higher than “holistic” document-level accuracy.

3. Certain clauses (i.e., columns, e.g. Gender) are consistently interpreted incorrectly
across inputs. In a production setting, we would consider re-wording these, hope-
fully yielding consistently correct clauses.

4. Most inputs (i.e., rows) always have at least one sub-clause evaluated incorrectly.
This may seem fatal, until we recall the logic of the prompt is essentially d =
isGroup A (PhysicalDisability V Color V Ethnicity V Gender V Nationality V Race V
SexualOrientation) A (Bias V Discrimination V Humiliation V Genocide V Violence).
If a clause Gender, which is supposed to be False by default, wrongly evaluates to
True, it will not cause an end-to-end error given that Gender is part of a larger
disjunction (“or”) operation. Thus the precise value of the error, the operation it is
part of, and the values of other operands in the operation all contribute to whether
a higher-level error is generated. Clausal error does not necessarily imply global
error.

While this analysis is by no means comprehensive, it gives some intuition of why the in-
troduction of clause-level errors does not necessarily lead to catastrophic failure at the
whole-formula level.

A.5 SOLVER ALGORITHMS

A.5.1 CHECK() ALGORITHM DETAILS

The fully detailed version of the Check() algorithm (Figure @) for solving Logitext con-
straints is moved here. The version includes details of caching and history, as mentioned in
the main body of the paper.

Note in the version of the example used in the body of the paper, we omit the Discrimination
and Humiliation categories for brevity but they are included in this analysis, which was performed
on the complete version of the policy document.

14

Under review as a conference paper at ICLR 2026

Algorithm 2 check(D,7p) NLSolver(u, N, 7)
1: In: Doc. D = (vs,us, ¢,v), asst. mp 1: In: Search target u, NLTC set N, its partial asst. =,
2: Out: UNSAT or satisfying asst. 7/, Cache C, and T € N
3: Initialize logical solver Zy with ¢ 2: Out: String value u* or None
4: if all u; € us are bound in 7p then 3: if (u, N,) € C then > Cache Lookup
5: return LLMVerify(v, ¢, mp) 4: return C[(u, N,)]
6: while true do 5: else if 3 C.partial_match(u, N, 7) then
’g: //Propose asst. respecting ¢ and 7 p g:) u* <« C.closest_partial _match(u, N, 7)
: Ty Zg(vs,TD) : else .
9: return UNSAT if 7 = & 8: Sample u* ~ LLM (N, 7, 9,9,9)
10: // NLTC solving for unbound text vars 9: History H «+ {u*}
11: s, satisfiable «— {}, true 10: for t =1 to T do
12: for each unbound u; € us do 11: sat < true, T + 0, ® < 0
13: // Use relevant constraints N for u; 12: for v, € N do
14: N ={v; € v | v; reads u;} 13: by « Truth V.alue for v from 71'*
15: u; <+ NLSolver(u;, N, m1p Ums Umz) 14: [‘*LLMVCUfy(ka mU{u=u"})
16: if u} is None then %g if by, Zé bkf tlhen
. : sat + false
17 Z¢:block(7rz) . 17 7 TU {(Vk, bk)}
18: satisfiable < false ; break 18: 7 e 7 UL B)}
. R : k> b
19: ms s Ufuy =uj} 19: Cl(w, N, (7 — ®) U)] < u*
20: if not satisfiable then continue 20: If sat then return u*
21: return 7, Ump Umyz 21: w* — LLM(N7 w, H, 7, u*)
22: History H <~ H U {(uv™,7)}
(a) Outer SMT/NLSolver loop 23: return None

(b) NLSolver: A theory for NLTCs

Figure 10: The check() algorithm for solving logitext constraints

A.5.2 LLMPROPOSE ALGORITHM DETAILS

LLMPropose (Algorithm E), given a string variable u, a set of NLTCs, a partial assign-
ment, produces a text string corresponding to w that satisfies the NLTCs and the partial
assignment. LLMPropose is a thin wrapper around an LLM prompt (Appendix)

Algorithm 3 LLMPropose(u, Ni, P)

1: Input: string varialbe u, NLTCs Ny, context value assignments P

2: Output: Generated text string

3: prompt < Format Ny and P as a text prompt (Appendix) that requests generation
of text satisfying Ny given context P

4: response < LLM.call(prompt)

result < Parse and extract the generated text from response

6: return result

o

A.5.3 LLMVERIFY ALGORITHM DETAILS

Given an NLTC and an assignment of variables to values, LLM Verify (Algorithm H) evaluates
the output (Baolean) variable of the NLTC. it is a thin wrapper around the LLM prompt
of Appendix .

Algorithm 4 LLMVerify(Ny, P)

1: Input: NL Text constraint N, context value assignments P

2: Output: True/False

3: prompt < Format Ny and P as a text prompt (Appendix) that queries whether
Ny, is True or False based on the context P

4: response < LLM.call(prompt)

result < Parse the response into True or False

6: return result

o

A.6 NUMBER OF LLM cALLS FROM NLSOLVER

15

Under review as a conference paper at ICLR 2026

16 1 No Cache © o - o o o
Cache
14 o O
12 4 o o O (o]
v
© 10
S 10 o o o o
E i
I 84 (o] o O o O
H*
g 6 (o] o O
|_
4-’1‘ o O o O (o] o O
| | l l]j B
0 1 o o
NI NI LB LB CMOD CMOD CMOD CMOD
cosmosga contextual housing best religious political fraudulent bullying
inappropriate abuse practice
detection

LogiText Tasks

Figure 11: Boxplot of the number of LLM calls per coverage example made by the NLSolver

algorithm across all benchmark tasks. The X-axis denotes
reports the distribution of LLM call counts per task.

A.7 LLM PROMPTS USED FOR NLSOLVER ALGORITHM

These are the LLM prompts for logitext’s NLSolver algorit

A.7.1 LLM ProrPOSE PROMPT

individual tasks, and the Y-axis

hm.

"user" R
semantic constraint truth values.

Constraints (with target truth values):
{constraints_block}

If some constraints previously failed, focus
{failed_block}

Guidelines:

Write one coherent text (few paragraphs max)
ALL target truth values.

The text should be natural and readable.

Avoid mentioning constraints explicitly.

Do not include JSON. Output ONLY the text.

Previous attempts for context (do NOT copy;
{history_block}

16

[
(
"system",
"You write concise, clear prose that
constraints. "
"Return ONLY the text, no preambles.'
)’
(

meets semantic

"""You must produce a text that satisfies the following

on satisfying them now:

that attempts to satisfy

improve instead):

Under review as a conference paper at ICLR 2026

Listing 1: LLM Propose Prompt

A.7.2 ExaMPLE LLM PROPOSE PROMPT INSTANCE

--- System Prompt
You write concise, clear prose that meets semantic constraints. Return
ONLY the text, no preambles.

--- User Prompt
You must produce a text that satisfies the following semantic
constraint truth values.
Constraints (with target truth values):
- (C1) target=True :: Content that is a political reference. In this
case there is
sufficient context.

- *x*Political Reference**x - Words or phrases that are
political
references. Includes political titles, entities, slogans,
government buildings, federal properties, etc.

- (C2) target=False :: Content that is a political reference. In this
case there is
sufficient context.

- **xPolitical Party or Affiliation** - Name of a political
party
or group, including the people that belong to it.

- (C3) target=False :: Content or activity related to politics.

= **Activity/Discussion** - Activities or discussions
related to
politics. Includes political ideologies, debates,
campaigning,
causes, events, etc.

- (C4) target=False :: **Potential Political Referencex*
Content that could be a political reference. In this case it is
uncertain due to its commonality, multiple meanings, current
usage,
and/or insufficient context.

- *xGeneral Reference** - Words or short phrases that could
potentially be used in a political manner, although there
is not
enough context to make that determination.
- (C5) target=False :: Names of Political figures or people
For example, "Joe Biden", "Donald Trump".
- (C6) target=False :: References to royal families, their titles and

duties.

17

Under review as a conference paper at ICLR 2026

For example, "King Charles", "Prince William".

If some constraints previously failed, focus on satisfying them now:
- (C2) target=False, predicted=True :: Content that is a political
reference. In this case there is sufficient context.

- **xPolitical Party or Affiliation** - Name of a political
party
or group, including the people that belong to it. [why
failed last time: No political party names or
affiliations appear in the text.]
- (C3) target=False, predicted=True :: Content or activity related to
politics.

= **Activity/Discussion** - Activities or discussions
related to politics. Includes political ideologies,
debates, campaigning, causes, events, etc. [why failed
last time: The text is about gaming, not politics.]

- (C5) target=False, predicted=True :: Names of Political figures or
people
For example, "Joe Biden", "Donald Trump". [why failed last
time: No names of political figures appear in the text.]
- (C6) target=False, predicted=True :: References to royal families,

their titles and duties.

For example, "King Charles", "Prince William". [why failed
last time: The text does not mention royalty.]

Guidelines:

- Write omne coherent text (few paragraphs max) that attempts to
satisfy ALL target truth values.

- The text should be natural and readable.

- Avoid mentioning constraints explicitly.

- Do not include JSON. Output ONLY the text.

Previous attempts for context (do NOT copy; improve instead):

That last boss was -insanewe pulled it off just in time. The map\'s
skyline had a Capitol-like building, which gave a real-world vibe
without leaving the game.

Just got through a brutal boss. The ’maps skyline features a Capitol-
like dome in the distance, giving the game a real-world vibe

without leaving the fantasy setting. Came down to a clutch -
finishtotally worth the grind.

Listing 2: LLM Generation Prompt Example for Political CMOD Task

A.7.3 LLM VERIFY (CONSTRAINT VERIFICATION) PROMPT

[
(
"system",
"You are a meticulous verifier. "
"Given a candidate text and a list of constraints with desired
truth values, "
"judge for EACH constraint whether it is semantically TRUE or
FALSE in the candidate text. "
"Be strict and literal, not aspirational."
)!
(
lluser n s

18

Under review as a conference paper at ICLR 2026

"""Candidate text:
\II\II\II
{candidate}
\II\II\II

Evaluate each constraint independently. For each item, return JSON
array entries of the form:

{
"id": "<constraint id>",
"description": "<verbatim description>",
"target": truel|false,
"predicted": true|false,
"rationale": "<short explanation>"
}
Constraints:

{constraints_block}

Return ONLY valid JSON array, nothing else."""
)3
]

Listing 3: LLM Verify Prompt

A.7.4 EXAMPLE LLM VERIFY PROMPT INSTANCE

--- System Prompt

You are a meticulous verifier. Given a candidate text and a list of
constraints with desired truth values, judge for EACH constraint
whether it is semantically TRUE or FALSE in the candidate text. Be

strict and literal, not aspirational.

--- User Prompt

Candidate text:

Just cleared a brutal boss. The skyline in the distance features a
Capitol-like dome, giving the map a real-world vibe while staying
firmly in fantasy. We pulled off a clutch finish as the timer hit
zero, grabbed the loot, and exploded in celebration. The ’domes

presence made the level feel epic without leaning into politics.
nun

Evaluate each constraint independently. For each item, return JSON
array entries of the form:

{
"id": "<constraint id>",
"description": "<verbatim description>",
"target": truelfalse,
"predicted": true|false,
"rationale": "<short explanation>"
}
Constraints:
- (C1) target=True :: Content that is a political reference. In this

case there is
sufficient context.

19

Under review as a conference paper at ICLR 2026

- *x*Political Reference**x - Words or phrases that are
political
references. Includes political titles, entities, slogans,
government buildings, federal properties, etc.

- (C2) target=False :: Content that is a political reference. In this
case there is
sufficient context.

- **xPolitical Party or Affiliation** - Name of a political

party
or group, including the people that belong to it.

- (C3) target=False :: Content or activity related to politics.

= **Activity/Discussion** - Activities or discussions
related to
politics. Includes political ideologies, debates,
campaigning,
causes, events, etc.

- (C4) target=False :: **Potential Political Referencex*
Content that could be a political reference. In this case it is
uncertain due to its commonality, multiple meanings, current
usage,
and/or insufficient context.

- *xGeneral Reference** - Words or short phrases that could
potentially be used in a political manner, although there
is not
enough context to make that determination.
- (C5) target=False :: Names of Political figures or people
For example, "Joe Biden", "Domnald Trump".
- (C6) target=False :: References to royal families, their titles and
duties.
For example, "King Charles", "Prince William".

Return ONLY valid JSON array, nothing else.

Listing 4: LLM Verification Prompt Example for Political CMOD Task

A.8 LLM PROMPTS USED FOR NEUROSYMBOLIC APPROACH

These are the LLM prompts for the neurosymbolic approach used in Task Execution (TE)
experiments.

Decide what level of reasoning is needed for a task, then route to the appropriate reasoning
prompt

Routing level 1: LLM-heavy simple decision with minimal Z3 validation
Routing level 2: Boolean logic breakdown with moderate Z3 reasoning

Routing level 3: Complex constraints with heavy Z3 reasoning

A.8.1 NEUROSYMBOLIC ROUTER PROMPT

20

Under review as a conference paper at ICLR 2026

Algorithm 5 Neurosymbolic algorithm

1:

Input: Task description

2: Output: True/False

10:

routing_leve LLM.call(neurosymbolic_ router_ prompt.format(task_ description))
(Appendix
if routing level == 1 then

resu LLM.call(level one_reasoning_prompt.format(task description)) (Ap-
pendix)
else if routing level == 2 then

resu LLM.call(level _two_ reasoning_ prompt.format(task_ description)) (Ap-
pendix)
else
resuﬁ LLM.call(level _three_reasoning_prompt.format(task_ description)) (Ap-

A /

pendix)

return result

(nusern s
""" You are an expert AI judge that analyzes reasoning tasks to
determine the optimal logical complexity level.

Your job is to route this task directly to the most appropriate
reasoning level:

LEVEL 1 (Simple Decision): LLM-heavy simple decision with minimal Z3
validation

- Use for: Simple yes/no questions, straightforward interpretive tasks

- Best when: Single decision path, minimal logical complexity

LEVEL 2 (Propositional Logic): Boolean logic breakdown with moderate
Z3 reasoning

- Use for: Multiple boolean conditions, AND/OR combinations, decision
trees

- Best when: Multiple criteria to evaluate, logical paths can be
separated

LEVEL 3 (First-Order Logic): Complex constraints with heavy Z3
reasoning

- Use for: Quantifiers, arithmetic, complex relationships, constraint
satisfaction

- Best when: Numerical calculations, entity relationships,
mathematical constraints

TASK: {task_description}
ROUTING ANALYSIS:

1. **Task Complexity Assessment:**
- Does this task involve multiple boolean conditions that can be
separated? -+(Level 2)
- Does this task involve quantifiers, arithmetic, or complex
entity relationships? =+(Level 3)
- Is this a simple decision that doesn't need logical breakdown?
+(Level 1)

2. **Case Factual Richness:*x*

- Does the case provide specific numerical values or structured
data? (supports Level 3)

21

Under review as a conference paper at ICLR 2026

- Does the case have facts for multiple distinct conditions? (
supports Level 2)

- Does the case have basic facts for straightforward analysis? (
supports Level 1)

3. **0Optimal Level Determination:x**
- Level 1: Simple tasks with basic facts
- Level 2: Multi-condition tasks with sufficient facts for each
condition
- Level 3: Complex quantitative tasks with numerical/structured
data

Respond in JSON format:

{{
"target_level": 1, 2, or 3,
"reasoning": "Detailed explanation of why this level is optimal",
"task_complexity": "simple"/"moderate"/"complex",
"factual_richness": "basic"/"moderate"/"rich",
"key_indicators": ["list", "of", "specific", "complexity", "

indicators"]

1

nun
)

]

Listing 5: Neurosymbolic Router Prompt

A.8.2 LEVEL 1 REASONING PROMPT

[

("user",
"nn{z3_syntax_rules}

PROBLEM: {task_description}

LEVEL 1 APPROACH - Simple Decision:

Simple decision uses a single boolean variable to represent the finmal
decision.

Analyze the problem and determine the value of this single decision

variable.

STEP-BY-STEP CODE GENERATION:
1. Import and setup: import z3; s = z3.Solver()

2. Declare single boolean variable: decision = z3.Bool('decision')

3. Analyze the problem and determine if decision should be True or
False

4. Add constraint: s.add(decision == True) or s.add(decision == False)

5. Add final constraint: s.add(decision)

MANDATORY TEMPLATE:
import z3
s = z3.Solver ()

Single decision variable
decision = z3.Bool('decision') # add brief description of the decision
as comment

Set decision value based on analysis
s.add(decision == True) # or False based on your assignment

22

Under review as a conference paper at ICLR 2026

Final constraint
s.add(decision)

Analyze the problem and determine whether the decision should be True
(YES) or False (NO).

Respond in JSON format:

{{
"z3_code": "import z3\\mns = z3.Solver ()\\ndecision = z3.Bool('decision
'")\\ns.add(decision == True)\\ns.add(decision)",
"assignments": {{
"decision": {{
"value": true,
"reasoning": "Detailed step-by-step analysis explaining why this
should be True or False"
3
1
1
CRITICAL:

- Use literal \\n for newlines

- Analyze the problem carefully to determine if decision should be
True (YES) or False (NO)

- Set decision == True for YES cases, decision == False for NO cases

- Always end with s.add(decision)

- WARNING: Invalid JSON will cause parsing errors. Double-check

escaping!
nun

Listing 6: Level 1 Reasoning Prompt

A.8.3 LEVEL 2 REASONING PROMPT

[
("'LISGI" ,
""n{z3_syntax_rules} (Appendix~\ref{app:neurosym-z3-syntax-rules})

PROBLEM: {prompt}

LEVEL 2 APPROACH - Propositional Logic with Systematic Fact Extraction

Propositional logic uses boolean variables and logical connectives (
AND, OR, NOT).

Break down the problem into boolean conditions and combine them
logically.

SYSTEMATIC FACT EXTRACTION PROCESS:

1. **Identify Boolean Predicatesx**: Extract all boolean conditions
from the task description

2. *xMap Facts to Predicates**: For each boolean predicate, find
relevant facts in the case

3. **Evaluate Truth Values**: Carefully assess whether each fact
satisfies the predicate condition

4. x*Cross-Reference Validation**: Verify fact assessments against all

available case information

5. *xLogical Combination**: Combine predicates using appropriate

boolean operators

STEP-BY-STEP CODE GENERATION:

23

Under review as a conference paper at ICLR 2026

1. Import and setup: import z3; s = z3.Solver()
2. Declare boolean variables (use meaningful variable names): e.g.,

meaningful_variable_namel = z3.Bool('meaningful_variable_namel')

3. Create logical combinations: combined = e.g., z3.And(
meaningful_variable_namel, meaningful_variable_name2)

4. Create final decision: decision = z3.0r(meaningful_path_namel,
meaningful_path_name?2)

5. Add value constraints: s.add(meaningful_variable_namel == True)

6. Add final constraint: s.add(decision)

FACT EXTRACTION GUIDELINES:

- **Thorough Analysis**: Read the entire case description carefully
before making assignments

- **Explicit Reasoning**: For each boolean assignment, provide clear
reasoning based on specific case facts

- **Conservative Assessment**: When facts are ambiguous, err on the
side of what can be definitively established

- **Context Consideration**: Consider the broader context and
relationships between different facts

- **xEvidence-Based**: Base each boolean value on concrete evidence
from the case, not assumptions

MANDATORY TEMPLATE:

import z3
s = z3.Solver ()

Boolean conditions (extracted from task requirements)

condition_a = z3.Bool('condition_a')
condition_b = z3.Bool('condition_b')
condition_c = z3.Bool('condition_c')

Logical combinations (reflecting task structure)
primary_path = z3.And(condition_a, condition_b)
alternative_path = condition_c

Final decision logic
decision = z3.0r(primary_path, alternative_path)

Value assignments (based on systematic fact extraction)

s.add(condition_a == True) # Must provide specific case-based
reasoning

s.add(condition_b == False) # Must provide specific case-based
reasoning

s.add(condition_c == True) # Must provide specific case-based
reasoning

Final constraint
s.add(decision)

ASSIGNMENT REASONING REQUIREMENTS:

For each boolean assignment in the "assignments" section, you MUST:

1. **Quote Specific Facts**: Reference exact facts from the case
description

2. *xExplain Relationship**: Show how the fact relates to the boolean
condition

3. **Justify Truth Valuex**: Clearly explain why the fact makes the
condition True or False

4. x*Consider All Evidence**: Acknowledge any facts that might support

the opposite conclusion

Respond in JSON format:
{{

24

Under review as a conference paper at ICLR 2026

"z3_code": "import z3\\ns = z3.Solver()\\ncondition_1 = z3.Bool('
condition_1"')\\ncondition_2 = z3.Bool('condition_2')\\ndecision =
z3.And (condition_1, condition_2)\\ns.add(condition_1 == True) \\ns.
add(condition_2 == False)\\ns.add(decision)",

"assignments": {{

"condition_1": {{
"value": true,
"reasoning": "SPECIFIC case facts that establish this condition as
true, with explicit quotations and logical connection"
1,
"condition_2": {{
"value": false,
"reasoning": "SPECIFIC case facts that establish this condition as
false, with explicit quotations and logical connection"
1>
1
1

CRITICAL REQUIREMENTS:

- Use literal \\n for newlines

- decision must be assigned the logical expression

- Name the final decision variable 'decision'

- Each assignment reasoning must reference SPECIFIC case facts

- Provide detailed evidence-based justification for each boolean value

- Consider the complete case context when making assessments

- WARNING: Invalid JSON will cause parsing errors. Double-check
escaping!

)

Listing 7: Level 2 Reasoning Prompt

A.8.4 LEVEL 3 REASONING PROMPT

[
("user",
"nn{z3_syntax_rules}(Appendix~\ref{app:neurosym-z3-syntax-
rules})

PROBLEM: {prompt}

LEVEL 3 APPROACH - First-Order Logic with Systematic Constraint
Modeling:

CRITICAL JSON SAFETY RULES:

- Double-escape ALL backslashes in z3_code: \\\\ becomes \\\\\\\\
- Double-escape ALL quotes in z3_code: \\" becomes \\\\\\"

- Use \\\\\\\\n for line breaks in z3_code string

- Test your JSON before responding - ensure it's valid

First-order logic includes quantifiers, domain variables, predicates,
and arithmetic operations.

Systematically model the problem using formal logical constructs and
constraint relationships.

SYSTEMATIC CONSTRAINT MODELING PROCESS:
1. **%Domain Analysis**: Identify entities, values, and relationships
that need formal modeling
2. **Variable Declaration#**: Define appropriate domain variables (Int,
Real, String, Bool)
3. **Predicate Definition**: Create boolean predicates that capture
key relationships

25

Under review as a conference paper at ICLR 2026

S

#

#

#

#
X

#

*xConstraint Formulation**: Build arithmetic and logical
constraints from requirements

Quantifier Integration: Add universal/existential quantifiers
where appropriate

xDecision Integration: Combine all constraints into a unified
decision formula

FIRST-ORDER LOGIC ELEMENTS:

Quantifiers: z3.ForAll(), z3.Exists()

Domain variables: z3.Int(), z3.Real(), z3.String()
Predicates and relations over domains

Arithmetic operations: +, -, *, /, >, <, >=, <=

Complex symbolic reasoning with variables and functions

STEP-BY-STEP CODE GENERATION:
1.
2.

Import and setup: import z3; s = z3.Solver()

Declare domain variables (use meaningful names): entity = z3.Int('

entity'); name = z3.String('name')

Create predicates: has_property = z3.Bool('has_property')

Build arithmetic/comparison expressions: meets_threshold = value >=
threshold

Add quantifiers when needed: z3.ForAll([x], z3.Implies(P(x), Q(x)))

Create decision: decision = z3.And(arithmetic_conditions,

boolean_conditions)

Add constraints and final constraint: s.add(decision)

CONSTRAINT MODELING GUIDELINES:

Formal Precision: Use precise mathematical relationships and
logical operators
Complete Modeling: Capture all relevant constraints and
relationships from the problem
Value Extraction: Extract specific numerical values, thresholds,
and measurements from the case
Relationship Mapping: Model complex relationships between
entities and their properties
Quantifier Usage: Use quantifiers when dealing with universal or
existential statements

MANDATORY TEMPLATE:

import z3

= z3.Solver ()

Domain variables (extracted from case facts)

entity_value = z3.Int('entity_value')
threshold = z3.Int('threshold')
entity_name = z3.String('entity_name')

Predicates (boolean conditions from requirements)

has_required_property = z3.Bool('has_required_property')
satisfies_constraints = z3.Bool('satisfies_constraints')

Arithmetic/comparison expressions (from numerical requirements)

meets_threshold = entity_value >= threshold
value_in_range = z3.And(entity_value >= 0, entity_value <= 1000)

Quantified expressions (when applicable)
= z3.Int('x")

universal_property = z3.ForAll([x],

z3.Implies(x >= threshold, x >= entity_value))

Combined first-order decision (integrating all constraints)

decision = z3.And(

meets_threshold,
has_required_property,

26

Under review as a conference paper at ICLR 2026

satisfies_constraints,
value_in_range,
universal_property

)

Value assignments (based on systematic fact extraction)
s.add(entity_value == 75)

s.add (threshold == 50)

s.add (has_required_property == True)
s.add(satisfies_constraints == True)

Final constraint
s.add(decision)

ASSIGNMENT REASONING REQUIREMENTS:

For each variable assignment in the "assignments" section, you MUST:

1. **Value Source**: Clearly identify where each value comes from in
the case facts

2. **Relationship Explanation**: Explain how the variable relates to
the overall constraint model

3. **Mathematical Justification**: For numerical values, explain the
mathematical reasoning

4. **Constraint Integration**: Show how the variable fits into the
broader logical framework

5. **Validation Check**: Verify that the assignment is consistent with

all problem requirements

Respond in JSON format:

{{

"z3_code": "import z3\\ns = z3.Solver()\\nvalue = z3.Int('value')\\
nthreshold = z3.Int('threshold')\\nhas_property = z3.Bool('
has_property ') \\nmeets_req = value >= threshold\\nx = z3.Int('x')
\\nuniversal = z3.ForAll([x], z3.Implies(x >= threshold, x >=
value))\\ndecision = z3.And(meets_req, has_property, universal)\\
ns.add(value == 75)\\ns.add(threshold == 50)\\ns.add(has_property
== True)\\ns.add(decision)",

"assignments": {{

"value": {{

"value": 75,

"reasoning": "Value source: [specific case fact]. Relationship: [
how it relates to constraint model]. Mathematical
justification: [numerical reasoning]. Constraint integration:
[role in decision formula]."

1,

"threshold": {{

"value": 50,

"reasoning": "Value source: [specific case fact]. Relationship: [
how it relates to constraint model]. Mathematical
justification: [numerical reasoning]. Constraint integration:
[role in decision formula]."

1,

"has_property": {{

"value": true,

"reasoning": "Value source: [specific case fact]. Relationship: [
how it relates to constraint model]. Boolean justification: [
why True/False]. Constraint integration: [role in decision
formula]."

33

1

1

CRITICAL REQUIREMENTS:
- Use literal \\n for newlines

27

Under review as a conference paper at ICLR 2026

Must include first-order logic elements (quantifiers, domain
variables, arithmetic)

decision must be assigned the complete logical expression

Name the final decision variable 'decision'

Each assignment reasoning must follow the structured format above

Systematically extract and model all relevant numerical and
structural data

Use appropriate mathematical and logical operators for constraint
relationships

WARNING: Imnvalid JSON will cause parsing errors. Double-check
escaping!

)

Listing 8: Level 3 Reasoning Prompt

A.8.5 Z3 SyNTAX RULES

xk*kkkxkk*kkx Z3 SYNTAX RULES (Must Follow Exactly): skkkkkkkkkx

Use EXACTLY 4 spaces for each indentation level

NO TABS allowed - only spaces

All lines at same level must have identical indentation
Check each line starts with correct number of spaces
WRONG: Mixed spaces/tabs cause "unexpected indent" errors

BOOLEAN OPERATIONS:
CORRECT: z3.And(varil, var2, var3)
CORRECT: z3.0r(varl, var2)
CORRECT: z3.Not(varl)
CORRECT: z3.Implies(varl, var2)
WRONG: varl and var2 (Python operators don't work in Z3)
WRONG: varl or var2
WRONG: not varl

CONSTRAINT ASSIGNMENT:

- CORRECT: s.add(variable == True)
CORRECT: s.add(variable == False)
CORRECT: s.add(variable == z3.And(condl, cond2))

WRONG: s.add(variable == (condl and cond2))
WRONG: variable = condl and cond2

BOOLEAN VARIABLES ONLY IN Z3 FUNCTIONS:

CORRECT: z3.And(bool_varl, bool_var2)

CORRECT: z3.0r(condition_a, condition_b)

WRONG: z3.And('text', 'text') (String literals cause errors)
WRONG: z3.0r('nmamel', 'mame2')

FINAL DECISION CONSTRAINT:
ALWAYS END WITH: s.add(decision)
NEVER: if s.check() == sat:
NEVER: print(s.model())

VARIABLE DECLARATIONS:

CORRECT: var_name = z3.Bool('var_name')
CORRECT: amount = z3.Int('amount')
CORRECT: rate = z3.Real('rate')

DECISION VARIABLE ASSIGNMENT:

CORRECT: decision = z3.And(conditionl, comndition2)
CORRECT: decision = z3.0r(pathl, path2)

28

INDENTATION RULES (CRITICAL - PREVENTS "unexpected indent" ERRORS):

Under review as a conference paper at ICLR 2026

- WRONG: decision = z3.Bool("decision") (Should avoid creating
unrelated variable)

7. PYTHON LIST VS Z3 ARRAY DISTINCTION (CRITICAL):

- NEVER mix Python list indexing with Z3 symbolic variables

- WRONG: python_list[z3_variable] # Causes "list indices MUST be
integers" error

- CORRECT: Use Z3 arrays: z3.Array('array_name', z3.IntSort(), z3.
BoolSort ())

- CORRECT: Use explicit variables: varl, var2, var3 for small fixed
sets

COMMON ERROR PATTERNS TO AVOID:
- Don't access Python lists/arrays with Z3 symbolic variables
- Don't mix Python boolean operators (and/or/mot) with Z3 expressions
- Don't create unnecessary intermediate Boolean variables when direct
expressions work
- Don't use Python string comparison with Z3 string variables

Listing 9: Z3 Syntax Rules for above prompts

A.9 CONTENT MODERATION DATASET EXAMPLE

A.9.1 FRAUDULENT CONTENT POLICY

“ T @python(input_message) (result_var)

Fraudulent
Topic Definition

The Fraudulent Topic is used to identify attempts to deceive a victim
into providing funds or private information.

Critical Information

= Online fraud refers to online content and activity that uses
misrepresentation to deceive a victim into providing funds or
private information. Misrepresentation is often accomplished by
impersonation.

- Impersonation is where an individual falsely claims to be, or
presents themselves to be, another real or fictiomal
individual,
group, label, or entity.

= One of the most common methods used to commit online fraud is
phishing.

- **Phishing** is the fraudulent practice of sending emails or
other messages claiming to be from reputable companies in
order
to induce individuals to reveal personal information (e.g.,
passwords or credit card numbers).

= Online fraud includes but is not limited to:
= **kConsumer investment fraudx*x*
- The expected benefit is investment returns and includes

fake
shares, Ponzi schemes, film frauds, etc.

29

Under review as a conference paper at ICLR 2026

- **Consumer products and services fraudx**

= The expected benefit is the product or service and this
includes fake tickets, bogus holidays, dietary pills that
don't work, products that don't arrive, etc.

= **Employment fraud*x*

= The expected benefit is employment and these include fake
opportunities for jobs such as work at home scams, model
agency work, etc.

= **Prize and grant fraud*x*
- The expected benefit is winning a prize or other windfall
and this includes fake lotteries, 419 scams (e.g.,
Nigerian
prince), etc.
- **Phantom debt collection fraudx**

- The expected benefit is avoiding the consequences of
failing
to pay debts the victim did not know were previously owed
and this includes bogus demands for payment for debts,
taxes, etc.

- **xCharity fraudx*x*

- The expected benefit is contributing to a charity, but the
reality is that the victim is contributing to the
fraudsters, not a legitimate cause.

- **Relationship and trust fraudx*x*

- The expected benefit is a relationship, but the reality is
usually a fake identity aimed at securing monies from the
victim.

- **Identity Fraud*x*

= Personal data is extracted from the victim or from a third
party (such as the victim's bank).

= Currently, Community Sift does not provide a complete solution for
this Topic!

- Sift operates on single lines of text. This is a complex, nuanced,
and context-heavy Topic.

- For now, we are considering these as future expansions as we add
more context capabilities to our product.

= old subtopics
- Hacking References
- References to hacking accounts, games, or similar.
- Account Fraud

- Selling, exchanging, swapping, or advertising accounts,
account information, currency, or similar.

30

Under review as a conference paper at ICLR 2026

L

1]
[l

1]
[l

1]
CC

1]
[l

11

i

= Phishing Attempts

- Attempts to scam or induce individuals to reveal personal
information (e.g., account details, passwords, financial
information, etc.) for fraudulent purposes.

Subtopics & Subcategories

xxHacking and Cheating**\

{{ let matches_hacking_cheating_subcategory = [[Content and
activity that uses, shares, or promotes illegal ways of

obtaining currency, memberships, or similar in-app perks or

resources in gaming and/or social accounts.

{{forsome

[C- **Hacking Reference** - Content or activity that references
in-app hacking.

1]

[C- **Cheating Referencex** - Content or activity that references
in-app cheating.

1]

}}]] where "content" is input_message and "activity" is
input_message }}

*x0nline Fraudx*x*\

{{ let matches_online_fraud_subcategory = [[Content and activity
that uses misrepresentation to deceive a victim

into providing funds or private information.

{{forsome
- **Account and Password Fraud** - Content or activity that
attempts to request or facilitate the sharing, stealing,
buying,

or exchanging of in-app accounts or passwords.

- *xConsumer Investment Fraud** - Content or activity where the
expected benefit is investment returns and includes fake
shares,

Ponzi schemes, film frauds, etc.

- **Consumer Products and Services Fraud** - Content or activity
where the expected benefit is the product or service and this
includes fake tickets, bogus holidays, dietary pills that don'

t
work, products that don't arrive, etc.

- **Employment Fraud** - Content or activity where the expected
benefit is employment and these include fake opportunities for
jobs such as work at home scams, model agency work, etc.

- **Prize and Grant Fraud** - Content or activity where the
expected benefit is winning a prize or other windfall and this
includes fake lotteries, 419 scams (e.g., Nigerian prince),

etc.

31

Under review as a conference paper at ICLR 2026

- *x*Phantom Debt Collection Fraud** - Content or activity where
the expected benefit is avoiding the consequences of failing
to
pay debts the victim did not know were previously owed and
this
includes bogus demands for payment for debts, taxes, etc.

1]
Ll

- **Charity Fraud** - Content or activity where the expected
benefit is contributing to a charity, but the reality is that
the victim is contributing to the fraudsters, not a legitimate
cause.

1]
Ll

- **Relationship and Trust Fraud** - Content or activity where
the
expected benefit is a relationship, but the reality is usually
a
fake identity aimed at securing monies from the victim.

1]
Ll

- **Identity Fraud** - Content or activity where the personal
data
is extracted from the victim or from a third party (such as
the

victim's bank).

1]
}} 1] where "content" is input_message and "activity" is

input_message }}

Exclusions

The message does NOT match the topic if any of the following subtopics
AND their respective subcategories hold:

= xxLegitimate Codes*x*\
{{let exclusion_legitimate_codes = [[
Content or activity related to legitimate "cheat" codes or
promotional ("promo") codes that are part of the app or game.

= *xLegitimate Codes**\
Content or activity related to legitimate "cheat" codes or
promotional ("promo") codes that are part of the app or game.,
e.g., \"enter this promo code \[CODE\] to redeem 3 booster
packs !'\"

]] where "content" is input_message and "activity" is
input_message }}

Topic Overlaps

The Fraud Topic can overlap with the following Topics:
- *%PTT %%

- When the fraudulent content includes personally identifiable
information.

Risk Level Mapping

If the message matches a topic AND a subcategory under a risk level
AND

the intensity of the sentiment matches the examples, it matches that

topic at that risk level

32

Under review as a conference paper at ICLR 2026

- LOwW

= **Hacking and Cheating**

Hacking Reference, e.g., \"it's for hacking accounts\", \"
i
will hack your account\"

Cheating Reference, e.g., \"use the coin cheat to
duplicate
all your gold\"

= **0nline Fraudx**

- MEDIUM

Account and Password Fraud, e.g., \"anyone looking to
trade
accounts?\"

Consumer Investment Fraud, e.g., \"hey come sell herbalife
with me\"

Consumer Products and Services Fraud, e.g., \"you should
try

\[NAME\]! They are miracle weight loss pills!\"

Employment Fraud, e.g., \"work from home and make millions
just playing games!\"

Prize and Grant Fraud, e.g., \"you're the 100,000 visitor!
You're a winner! Follow these instructions to claim your
prize!\"

Phantom Debt Collection Fraud, e.g., \"our records
indicate

you have an outstanding payment of \451.35 dollars -
contact our offices asap\"

Charity Fraud, e.g., \"this xmas, donate to those who need
it more at \[FRAUDULENT CHARITY\J]\"

Relationship and Trust Fraud, e.g., \"young guy looking
for

love, prefer to date rich older women\"

Identity Fraud, e.g., \"example\"

= HIGH
= Account and Password Fraud, e.g., \"after you send the
money
i will give you my account info and password so you can
log
in\"
- Consumer Investment Fraud, e.g., \"provide us with you
financial information and a cheque for \[AMOUNT\] so we
can

add you to our system and immediately double your money!
you'll get rich in no time\"

Consumer Products and Services Fraud, e.g., \"click this

link \[LINK\] to get your ultra exclusive \[PRODUCT\] at
1/2

33

Under review as a conference paper at ICLR 2026

the price!\"

- Employment Fraud, e.g., \"send us your bank information
and
credit card information to receive your amazing paycheques
from \[FAKE COMPANY\]!\"

- Prize and Grant Fraud, e.g., \"click this private and
secure
link to include your credit card information and claim
your
million dollars!! offer expires today!\"

- Phantom Debt Collection Fraud, e.g., \"The authorities are
on their way regarding your \[CRIME\]. Settle payment now
to
prevent this. We accept all credit cards\"

- Charity Fraud, e.g., \"we need your contact information
and
credit card information to send you a tax credit for your
donation!\"

- Relationship and Trust Fraud, e.g., \"I need \[QUANTITY\]
dollars for my plane ticket to come meet you baby. You're
the love of my life and we'll get married soon. Just need
more money to make it there.\"

= Identity Fraud, e.g., \"i used this program \[NAME\] and
with the pictures, voice, and personal information of
\[PERSON\] you're able to get their bank to confirm their
details\"

Questions/Concerns

- N/A

Task: The above document describes a particular policy that we want to
check whether an input message violates. Your task is to evaluate
whether a given input message violates the above policy. The

message violates the above policy if it matches one or more

subtopics and no exclusions.

@python

matches_any_exclusions = exclusion_legitimate_codes

matches_fraud_subtopics = matches_hacking_cheating_subcategory or

matches_online_fraud_subcategory

fraud_policy_checker = matches_fraud_subtopics and (not

matches_any_exclusions)

result_var = fraud_policy_checker

Listing 10: Fraudulent v.1t

34

	Introduction
	Interleaved text/logic reasoning in text understanding
	Compositional vs combinatorial reasoning in natural text
	Logical reasoning gaps

	Logitext: Language, representation and solver
	The Logitext language
	Natural language text constraints
	Solving natural language text constraints

	Evaluation
	Benchmarks and setup
	Results

	Related work
	Conclusion
	Appendix
	Definitions of gaps
	Syntax for Logitext documents
	Expanded dataset
	Clause-level error analysis
	Solver algorithms
	Check() algorithm details
	LLMPropose algorithm details
	LLMVerify algorithm details

	Number of LLM calls from NLSolver
	LLM Prompts used for NLSolver algorithm
	LLM Propose Prompt
	Example LLM Propose Prompt Instance
	LLM Verify (Constraint Verification) Prompt
	Example LLM Verify Prompt Instance

	LLM Prompts used for Neurosymbolic approach
	Neurosymbolic Router Prompt
	Level 1 Reasoning Prompt
	Level 2 Reasoning Prompt
	Level 3 Reasoning Prompt
	Z3 Syntax Rules

	Content moderation dataset example
	Fraudulent Content Policy

