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Abstract
List learning is an important topic in both theoreti-
cal and empirical machine learning research, play-
ing a key role in the recent breakthrough result of
(Brukhim et al., 2022) on the characterization of
multiclass PAC learnability, as well as the ambi-
guity of labels in computer vision classification
tasks, among others. In this paper, we study the
problem of list transductive online learning. In
this framework, the learner outputs a list of mul-
tiple labels for each instance rather than just one,
as in traditional multiclass classification. In the
realizable setting, we demonstrate a trichotomy of
possible rates of the minimax number of mistakes.
In particular, if the learner plays for T ∈ N rounds,
its minimax number of mistakes can only be of the
orders Θ(T), Θ(logT), or Θ(1). This resolves an
open question raised by (Hanneke et al., 2024b).
On the other hand, in the agnostic setting, we char-
acterize the learnability by constructively prov-
ing the Õ(

√
T) upper bound on the minimax ex-

pected regret. Along this way, we also answer an-
other open question asked by (Moran et al., 2023).
To establish these results, we introduce two new
combinatorial complexity dimensions, called the
Level-constrained (L + 1)-Littlestone dimension
and Level-constrained (L + 1)-Branching dimen-
sion, if the list size is L ∈ N. Eventually, we
conclude our work by raising an open question
regarding eliminating the factor of list size, which
seems to be a crucial step, as it has consistently
appeared in previous works on this subject.

1. Introduction
List learning is a significant subject in both theoretical and
empirical machine learning research. From a theoretical
point of view, a key technique in the recent breakthrough
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result by (Brukhim et al., 2022) on the combinatorial char-
acterization of multiclass PAC learnability is the use of list
learners. Subsequent works, including (Charikar & Pab-
baraju, 2023), (Moran et al., 2023), (Brukhim et al., 2024),
(Hanneke et al., 2024a), and (Pabbaraju & Sarmasarkar,
2024) have studied the notion of list learnability in various
contexts, such as PAC learning, online learning, boosting, as
well as sample compression and uniform convergence, and
real-valued regression, accordingly. Moreover, this topic
brings to mind the fundamental setting of list-decodable
learning in statistics. For a detailed discussion, for example,
refer to Chapter 5 of the recent textbook by (Diakonikolas
& Kane, 2023). From an empirical point of view, there are
many scenarios in which one may prefer the list learning
approach to the classical multiclass classification. For in-
stance, in recommendation systems, the objective is often to
present a short list of items to users, trying to ensure that the
user will select one of the items from the list. As another
example, in computer vision classification tasks, predict-
ing a list of labels can potentially prevent label ambiguity.
Furthermore, this subject may bring to mind the fundamen-
tal setting of conformal prediction in practical applications,
which can be viewed as a dual counterpart of the list setting.

Consider a round-robin tennis tournament consisting of T ∈
N matches, all scheduled in advance. In tennis, each set
continues until one player leads by at least two games, so
sets can, in theory, play on indefinitely; this means the space
of possible exact outcomes is countably infinite. A gambler,
aware of the players participating in each match based on
the schedule, aims to predict the exact outcomes. Since
predicting the precise results is challenging, the gambler is
allowed to submit a list of L ∈ N possible outcomes for
each match before it begins. After each match concludes,
the actual result is disclosed. The gambler earns a profit
if the actual outcome is among the predictions they have
submitted for that match. Given minimal assumptions about
the nature of the matches, how can the gambler effectively
select predictions to maximize the number of rounds that
yield a profit?

The aforementioned example, along with many other real-
world scenarios involving possibly adversarially chosen pre-
specified schedules, can be formulated within the framework
called List Transductive Online Learning. This framework
is informally defined as follows. Initially, an adversary
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selects a finite sequence of instances, such as images, of
which the learner is aware. In each subsequent round, the
learner must predict a list of labels, such as a list of possible
categories for an image, for the next instance in the sequence.
Following each prediction, an adversary reveals the correct
label. Importantly, in this setting, the learner provides a
list of multiple labels for each instance instead of a single
label, as in traditional multiclass classification. Moreover,
the primary quantity of interest in this framework is the
notion of the number of mistakes the learner makes over
time. In particular, a mistake occurs if the correct label is
not included in the learner’s predicted list of labels. For
simplicity, the informal formulation is presented here in the
context of deterministic learners.

To derive meaningful results, this work adopts the well-
established notion of a concept class, consisting of func-
tions mapping the instance space to the label space. In
the realizable setting, we assume that the sequence gener-
ated by the adversary is consistent with at least one of the
concepts within the concept class. Furthermore, in this set-
ting, we focus specifically on minimizing the number of
mistakes made by the learner as the primary objective. In
contrast, in the agnostic setting, no assumptions are made
about the sequence generated by the adversary. Here, rather
than directly minimizing the learner’s number of mistakes,
we compare the learner’s performance to that of the best
concept within the concept class, a standard performance
measure known as regret. Additionally, we note that when
the learner’s predictions are randomized, we focus on the
expected values of the mentioned objectives.

In this paper, our main contribution is constructively answer-
ing the following questions in the list transductive online
learning framework:

• What are the possible rates of the minimax number
of mistakes in the realizable setting as a function of
the concept class C and the size of the initial sequence
selected by the adversary T?

• What is the necessary and sufficient combinatorial con-
dition to make learnability possible in the agnostic
regime?

Before this study, the questions outlined above remained
entirely open, particularly in scenarios where the number
of labels is unbounded. In fact, we show that there exists a
concept class that is not learnable in the list online learning
framework of (Moran et al., 2023), which does not assume
prior knowledge of the sequence of instances, but it becomes
learnable in the list transductive online learning framework
with only a few mistakes Proposition C.5. Notably, the
special case of list size of one, which is equivalent to the
multiclass transductive online learning framework, was re-
cently studied in (Hanneke et al., 2024b). In particular, our

results answer an open question posed in their paper, re-
garding the generalization of their results to the list setting.
Moreover, we also demonstrate the existence of a concept
class that is not learnable in the multiclass transductive on-
line learning framework; however, again, it is learnable in
the list transductive online learning framework with only a
few mistakes by using a list size of two Proposition C.3. To
complete our findings, we illustrate an example of another
concept class, which is easily list PAC learnable, but it is not
list transductive online learnable, showing that the finiteness
of the dimension from the work of (Charikar & Pabbaraju,
2023) is not sufficient for list transductive online learnability
Proposition C.4. Finally, we note that in the way of proving
the agnostic result, we also resolve another open question
asked by (Moran et al., 2023), regarding the extension of
their agnostic result to the unbounded label spaces.

1.1. Related Work

Online Learning. Online learning has been a subject of
study for more than half a century, gaining significant atten-
tion within the computer science community since the semi-
nal work of (Littlestone, 1988). This foundational contribu-
tion introduced the adversarial online learning framework
for binary classification setting, where during each round,
an adversary selects an instance; afterward, the learner is
required to predict a binary label for that instance; following
this, the adversary reveals the correct label. The celebrated
work of (Littlestone, 1988) also provided a combinatorial
characterization of learnability for the mentioned problem
in the realizable setting based on the Littlestone dimension.
Later, (Ben-David et al., 2009) extended Littlestone’s result
to the agnostic setting, showing that the Littlestone dimen-
sion continues to characterize the learnability. Since then,
online learning has been explored in various frameworks,
including multiclass setting (Daniely et al., 2012; Hanneke
et al., 2023a), and list setting (Moran et al., 2023). Given
its fundamental nature, online learning has found numerous
practical applications.

Transductive Online Learning. In contrast to the above
definition of online learning, an alternative setting involves
a scenario where the sequence of instances is predetermined
by an adversary before the start of the game. This setting
can eliminate the uncertainty associated with instances, yet
retains the uncertainty about the labels. The study of this
setting was first initiated by (Ben-David et al., 1997), with
the goal of exploring how uncertainty in labeling alone
influences the optimal number of mistakes. Furthermore,
given that the online learnable classes are quite limiting,
it is natural to extend the learnable classes whenever we
have additional assumptions. Notably, the recent work of
(Hanneke et al., 2023b) referred to this setting by the term
“Transductive Online Learning” due to its relation to trans-
ductive PAC learning. Given the set of instances before the
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start of the game, other related lines of research include the
self-directed online learning framework, in which the learn-
ing algorithm is permitted to choose the next instance for
prediction from the remaining set of instances in each round.
Additionally, there is the best order framework, where the
learner, rather than an adversary, determines the order of
instances at the outset of the game. See (Goldman & Sloan,
1994; Ben-David et al., 1995; Ben-David & Eiron, 1998;
Devulapalli & Hanneke, 2024) for more details.

1.2. Overview of the Main Results

In the subsequent subsection, we provide an overview of the
primary results in our paper along with a summary of the
proof techniques.

1.2.1. LIST TRANSDUCTIVE ONLINE LEARNING
FRAMEWORK

We consider a sequential game between the learner and an
adversary over a total of T ∈ N rounds. Initially, an adver-
sary chooses a sequence of T instances from a non-empty
instance space X , namely (x1, x2, . . . , xT) and reveals it to
the learner. Moreover, at each round t ∈ [T], the adversary
selects a label yt from a non-empty label space Y , which
can possibly be uncountable; then, the learner predicts a
list of size L ∈ N of labels, which can be randomized; sub-
sequently, the learner, observes the true label yt. Before
going forward, following the well-established frameworks
in learning theory, we consider a concept class C as a set of
mappings from X to Y that is known to the learner before
starting the game. See subsubsection 2.2.1 and subsubsec-
tion 2.2.2 for more details.

1.2.2. REALIZABLE SETTING

In the realizable setting, we assume that the sequence
(x1, y1), . . . , (xT, yT), generated by the adversary, is con-
sistent with at least one mapping in the concept class C.
Moreover, in this setting, we focus on the standard notion of
the number of mistakes made by the learner over T rounds.
In particular, we aim to establish upper and lower bounds on
the minimax number of mistakes, as a function of Q as an
instance of the list transductive online learning framework
and T as a total number of rounds, denoted by M⋆(Q,T).
See subsubsection 2.2.4 for more details.

Our primary result in this part demonstrates that if the
learner plays for T ∈ N rounds, its minimax number of
mistakes can only be of the orders Θ(T), Θ(logT), or Θ(1).
Furthermore, this trichotomy is fully characterized by the
finiteness of the Level-constrained (L + 1)-Littlestone di-
mension and the Level-constrained (L + 1)-Branching di-
mension, where the list size is L ∈ N.

To define the Level-constrained (L + 1)-Littlestone dimen-

sion, we first need to define the Level-constrained (L + 1)-
Littlestone tree. A Level-constrained (L + 1)-Littlestone
tree is a (L + 1)-Littlestone tree with the additional require-
ment that for a given level the same instance has to label
all nodes. Then, the (L + 1)-Level-constrained Littlestone
dimension is defined as supd∈N such that there exists a shat-
tered Level-constrained (L + 1)-Littlestone tree of depth d.
To define the Level-constrained (L + 1)-Branching dimen-
sion, we first need to define the Level-constrained (L + 1)-
Branching tree. A Level-constrained (L + 1)-Branching
tree is a Level-constrained (L + 1)-Littlestone tree without
the restriction that the labels on the two outgoing edges are
distinct. Then, the Level-constrained (L + 1)-Branching
dimension is defined as supd∈N such that there exists a shat-
tered Level-constrained (L + 1)-Branching tree such that
every root-to-leaf path contains at least d nodes with all dis-
tinct labels. See subsection 2.3 for more details. Formally,
we have the following theorem.

Theorem 1.1. Let Q =
(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. Then, we have:

M⋆(Q,T) ∈


Θ(1), B(Q) < ∞
Θ(log T), D(Q) < ∞ and B(Q) = ∞ ,

Θ(T), D(Q) = ∞

where B(Q) is the Level-constrained L-Branching dimen-
sion of Q, and D(Q) is the Level-constrained L-Littlestone
dimension of Q, both of them defined in subsection 2.3.

The proof of the above theorem comprises up several com-
ponents. First, to establish the upper bound in the constant
case, basically, we generalize the notion of rank introduced
by (Ben-David et al., 1997) to the list setting. Then, we use
the adaptation of Littlestone’s Standard Optimal Algorithm
(SOA) to get the final result. Next, we derive two lower
bounds by using ideas from (Hanneke et al., 2024b). For the
upper bound in the logT case, the first idea that one may
think of is to employ the Halving algorithm combined with
the list Sauer-Shelah-Perles (SSP) Lemma from (Charikar
& Pabbaraju, 2023; Hanneke et al., 2024a). However, as
discussed by (Hanneke et al., 2024b), this approach is in-
applicable when the label space is unbounded. Importantly,
even when focusing on the finite label space setting, this
approach is not applicable at all. To see this, notice that
the number of functions based on the list SSP Lemma from
(Charikar & Pabbaraju, 2023; Hanneke et al., 2024a), can
be of order O(LT Td kLd), where k denotes the size of the
label space, L is the list size, and d is the associated dimen-
sion. Consequently, as the reduction in the version space per
mistake is only by a factor of 1− L / k, this approach leads
to a bound that is linear in T. To overcome this obstacle, we
generalize the technique of (Hanneke et al., 2024b). This
technique enables us to establish the desired upper bound
of logT on the minimax number of mistakes. In summary,
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we define a notion of shattering for a sequence of instances
from X . Based on the finiteness of D(Q), we can bound the
total number of sub-sequences of the initial sequence played
by the adversary that are shattered. A key observation is that
if we do not have any shattered sub-sequence, we will make
no more mistakes. Our algorithm can guarantee a decrease
in the number of shattered sub-sequences after making a
mistake, so the total number of mistakes is bounded. See
section 3 and Appendix A for more details.

Before proceeding, we emphasize that in contrast to the
multiclass setting, even the finite label space regime for
list learning cannot be handled by the simple approach of
Halving via the SSP Lemma. Moreover, there are differ-
ent ways of selecting L labels. We found that decreas-
ingly sorting the label set Y based on appropriate mea-
sures and selecting the first L labels works in both of our
upper bounds. Also, we have the following inequalities:
DS(Q) ≤ D(Q) ≤ B(Q) ≤ LD(Q); see Appendix C.

1.2.3. AGNOSTIC SETTING

In the agnostic setting, we make no assumptions about the
sequence (x1, y1), (x2, y2), . . . , (xT, yT), generated by the
adversary. Moreover, in this setting, our focus shifts to
the standard notion of expected regret, which compares
the expected number of mistakes made by the learner to
those made by the best concept in the concept class C over
the sequence. In particular, we say that an instance of the
list transductive online learning framework Q is agnostic
learnable in the list transductive online learning framework,
if the minimax expected regret, as a function of Q and T as a
total number of rounds, denoted by R⋆(Q,T), is sub-linear
in T. See subsubsection 2.2.5 for more details.

Our primary result in this part demonstrates that this crite-
rion for learnability is fully characterized by the finiteness
of the Level-constrained (L + 1)-Littlestone dimension, if
the list size is L ∈ N. Formally, we have the following
theorem.

Theorem 1.2. Let Q =
(
X ,L,Y, C

)
be an instance of

the list transductive online learning framework. Then, Q
is agnostic learnable in the list transductive online learn-
ing framework if and only if it has finite Level-constrained
(L + 1)-Littlestone dimension.

The proof of the above theorem involves a few pieces. First,
we establish the lower bound for randomized learners by
leveraging ideas from (Moran et al., 2023). To prove the
upper bound, we face the challenge of dealing with an un-
bounded label space, which renders the standard techniques
from (Ben-David et al., 2009; Daniely et al., 2012) inappli-
cable. To overcome this obstacle, we employ the dynamic
expert technique from the recent work of (Hanneke et al.,
2023a). To do so, we use our technique from the realizable

setting for proving the upper bound in the log(T) case. Fur-
thermore, we combined dynamic experts with the celebrated
exponential weights algorithm to get the final result. Our
finding indicates that the technique introduced in (Hanneke
et al., 2023a) effectively addresses infinite label spaces even
in the list setting, thereby resolving the question raised by
(Moran et al., 2023) regarding the extension of their agnos-
tic result to the unbounded label spaces. See section 4 and
Appendix B for more details.

1.3. Organization

The rest of the paper is organized as follows. In section 2,
we formally set the notation and definitions. Subsequently,
in section 3, we present our results for the realizable setting.
Then, in section 4, we extend our results to the agnostic set-
ting. Afterward, in Appendix C, we provide a few examples
showing separations between different related combinato-
rial complexity dimensions. Eventually, in section 5, we
conclude our manuscript and present some future directions.

2. Notations, Definitions, and Preliminaries
In this section, we set our basic notations in subsection 2.1.
Then, we present the List Transductive Online Learning
framework in subsection 2.2. Finally, we define main combi-
natorial complexity measures in this paper in subsection 2.3.

2.1. Notations

In this subsection, we present the basic notations that we
use throughout our paper. Let N and R stand for the set
of natural and real numbers, accordingly. We denote by
N̄ the extended natural number system defined as N̄ :=
N ∪ {−∞,+∞}. Also, for a given n ∈ N, we use [n] to
denote

{
1, 2, . . . , n

}
. Next, let n ∈ N, for any sequence of

size n or n-tuple x, and any i ∈ N such that 1 ≤ i ≤ n,
let us use xi to denote the i-th element in x. To increase
the readability of our manuscript, we use “,” to separate
indices of elements when we have more than one index; for
instance, let x be a sequence of size 5 of 2-tuples, we denote
by x5,1 the first element of the 5-th element of x. We denote
by A × B the Cartesian product of two arbitrarily sets A
and B. In addition, for any set A and any n ∈ N, we let
An indicate n times the Cartesian product of A with itself.
Note that, for any set A, we define A0 := {∅}. Also, given
a set A, we denote by A⋆ the set of all finite sequences
of the members of A; more formally, A⋆ :=

⋃∞
T=0 A

T .
Then, for the arbitrary sets X and Y , we use Y X to denote
the space of all functions from X to Y . Finally, we use
O(.), O(.), Ω(.), ω(.), and Θ(.) as standard notations
of them in the theoretical computer science. We also use
Õ(.), Ω̃(.), Θ̃(.) to exclude logarithmic factors as well as
constant coefficients.
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2.2. List Transductive Online Learning Framework

In this subsection, we present the List Transductive Online
Learning framework. To do so, first, we give the problem
setup in subsubsection 2.2.1. Then, we formulate the prob-
lem in subsubsection 2.2.2. Afterward, we define list trans-
ductive online learning algorithms in subsubsection 2.2.3.
Finally, we give the associated definitions with the realizable
and agnostic settings in subsubsection 2.2.4 and subsubsec-
tion 2.2.5, accordingly.

2.2.1. PROBLEM SETUP

Fix a non-empty set X as the instance space. Let L ∈ N be
the size of the list. Also, fix a non-empty set Y equipped
with a σ-algebra such that every subset of Y with cardi-
nality L is measurable as the label space. We note briefly
that, since our focus is on deterministic algorithms in the
realizable setting, no measurability assumptions on Y are
required. Following the well-established frameworks in
learning theory, let C ⊆ YX be a concept class. In particu-
lar, a 4-tuple Q =

(
X ,L,Y, C

)
presents an instance of the

list transductive online learning framework.

2.2.2. LIST TRANSDUCTIVE ONLINE LEARNING GAME

Let T ∈ N. The problem of list transductive online learn-
ing is formulated as a T-rounded sequential game between
the learner/player and an adversary/opponent. Initially, an
adversary chooses a sequence of T instances X ∈ X T and
reveals it to the learner. Moreover, at each round t ∈ [T]:

• The adversary chooses a label yt from Y .

• The learner predicts a list of size L of labels.

• The adversary reveals the true label yt.

2.2.3. LIST TRANSDUCTIVE ONLINE LEARNING RULES

We consider two different types of list transductive online
learning rules/algorithms, namely deterministic rules and
randomized rules. As a result, we have the following defini-
tions.
Definition 2.1 (Deterministic List Transductive Online
Learning Rule). Let D =

{
(x⋆, y⋆)

∣∣ x⋆ ∈ X ⋆, y⋆ ∈
Y⋆, |y⋆| < |x⋆|

}
. In addition, let YL = {A | A ⊆

Y, |A| = L}. A deterministic list transductive online
learning rule is a mapping A : D → YL.

In words, it is a mapping that maps each finite sequence of
instances and a finite sequence of labels with a size smaller
than the size of the sequence of instances to a set of size L
of labels.
Definition 2.2 (Randomized List Transductive Online Learn-
ing Rule). Let YL = {A | A ⊆ Y, |A| = L}. In addi-
tion, let D =

{
(x⋆, a⋆, y⋆)

∣∣ x⋆ ∈ X ⋆, a⋆ ∈ A⋆, y⋆ ∈

Y⋆, |a⋆| = |y⋆| < |x⋆|
}

. A randomized list transductive
online learning rule is a mapping A : D → Π(YL).

In words, it is a mapping that maps each finite sequence of
instances denoted by x′, a finite sequence of set of labels of
size L denoted by a′, and a finite sequence of labels denoted
by y′ such that |a⋆| = |y⋆| < |x⋆| to a probability measure
on YL.

2.2.4. REALIZABLE SETTING

Here, we begin by defining a realizable sequence. Then,
to evaluate the performance of any deterministic algorithm,
we define the well-known notion of the number of mistakes
adapted to our framework. Finally, we define the optimal
mistake bound, building on the previous definitions.

Definition 2.3 (Realizable Sequence). Fix T ∈ N. We
say that a finite sequence of size T of instance-label pairs(
(x1, y1), (x2, y2), . . . , (xT, yT)

)
∈ (X × Y)T is realizable

by a concept class C if there exists a concept c ∈ C such that
for every i ∈ [T], we have c(xi) = yi.

Definition 2.4 (Number of Mistakes). Let A be a deter-
ministic list transductive online learning rule. Fix T ∈ N.
Let S be a finite sequence of size T of instance-label pairs
S =

(
(x1, y1), (x2, y2), . . . , (xT, yT)

)
∈ (X × Y)T. We

define the number of mistakes made by A with respect to
the sequence S, denoted by M(A;S), as follows:

M(A;S) :=

T∑
t=1

1

{
yt /∈ A

((
S ′, (y1, y2, . . . , yt−1)

))}
,

where S ′ is defined as follows: S ′ := (x1, x2, . . . , xT).

Definition 2.5 (Optimal Mistake Bound). Let Q =(
X ,L,Y, C

)
be an instance of the list transductive online

learning framework. The optimal mistake bound of Q as
a function of the time horizon T, denoted by M⋆(Q,T), is
defined as follows:

M⋆(Q,T) := inf
A ∈ A

sup
S ∈ (X×Y)T which is

realizable by C

M(A;S),

where A is defined as the set of all deterministic list trans-
ductive online learning rules.

Before proceeding, it is important to note that while our
definitions are based on an oblivious adversary, it is straight-
forward to see that they are equivalent to the case with an
adaptive adversary.

2.2.5. AGNOSTIC SETTING

In this subsubsection, we begin by defining the well-known
game theoretic notion of regret. Then, we present the defini-
tion of agnostic learnability.
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Definition 2.6 (Expected Regret). Let A be a randomized
list transductive online learning rule. Fix T ∈ N. Let
S be a finite sequence of size T of instance-label pairs
S =

(
(x1, y1), (x2, y2), . . . , (xT, yT)

)
∈ (X × Y)T. We

define the expected regret of A with respect to the se-
quence S against the competitor concept class C, denoted
by R(A;S; C), as follows:

R(A;S; C) := EA′

[
M(A′;S)

]
− inf

c∈C

T∑
t=1

1
{
yt ̸= c(xt)

}
,

where we view a single run of the randomized list transduc-
tive online learning rule A as running a deterministic list
transductive online learning rule A′. Moreover, we take the
expectation over a random sequence of outputs of A.

Definition 2.7 (Optimal Expected Regret). Let Q =(
X ,L,Y, C

)
be an instance of the list transductive online

learning framework. The optimal expected regret bound of
Q as a function of the time horizon T, denoted by R⋆(Q,T),
is defined as follows:

R⋆(Q,T) := inf
A ∈A

sup
S ∈ (X×Y)T

R(A;S; C),

where A is defined as the set of all randomized list transduc-
tive online learning rules.

Definition 2.8 (Agnostic Learnability). We say that an in-
stance of the list transductive online learning framework
Q =

(
X ,L,Y, C

)
is agnostic learnable in the list transduc-

tive online learning framework, if R⋆(Q,T) as a function
of the time horizon T is sub-linear in T.

Before proceeding, it is important to note that while our
definitions are based on an oblivious adversary, it is straight-
forward to see that they are equivalent to the case with an
adaptive adversary. See Lemma 4.1 in (Cesa-Bianchi &
Lugosi, 2006).

We emphasize that one may also consider a similar notion
of learnability defined using O(T ) in the realizable setting.

2.3. Combinatorial Complexity Parameters

In this subsection, we first set our notations for trees. Then,
we proceed with the definitions of the main combinatorial
complexity parameters in our paper based on previous defi-
nitions.

Definition 2.9 (Perfect Rooted L-ary Trees). Let L ∈ N. A
perfect rooted L-ary tree T is a rooted tree, each of whose
internal nodes has exactly L children and all leaves have the
same depth.

Definition 2.10 (L-ary (X ,Y )-valued Trees). Let L ∈ N.
Also, let X ,Y be any non-empty sets. A L-ary (X ,Y )-
valued tree T is a perfect rooted L-ary tree, each of whose
nodes are labeled by an element of X , and each of whose

edges are labeled by an element of Y . Moreover, for any L-
ary (X ,Y )-valued tree, a root to leaf path of length ℓ ∈ N
can be identified by a sequence of pairs s ∈ (X × Y )ℓ.

2.3.1. (L + 1)-LITTLESTONE DIMENSION

Definition 2.11 ((L + 1)-Littlestone Tree). Let Q =(
X ,L,Y, C

)
be an instance of the list transductive online

learning framework. An (L + 1)-ary
(
X ,Y

)
-valued tree T

is called (L + 1)-Littlestone tree for Q.

Definition 2.12 (Shattered (L + 1)-Littlestone Tree). Let
Q =

(
X ,L,Y, C

)
be an instance of the list transductive on-

line learning framework. We say that a (L + 1)-Littlestone
tree for T for Q is shattered by C, if for every finite root to
leaf path in T , identified by s ∈ (X × Y)ℓ for some ℓ ∈ N,
there exists a concept c ∈ C such that for every i ∈ N, i ≤ ℓ,
we have: si,2 = c(si,1).

Definition 2.13 ((L + 1)-Littlestone Dimension). Let Q =(
X ,L,Y, C

)
be an instance of the list transductive online

learning framework. The (L + 1)-Littlestone dimension of
Q, denoted by L(Q), is defined as a supd∈N̄ such that there
exists a (L + 1)-Littlestone tree T of depth d for Q that all
children of every node have distinct labels which is shattered
by C. Also, if C = {∅}, we have: L(Q) = 0.

2.3.2. LEVEL-CONSTRAINED (L + 1)-LITTLESTONE
DIMENSION

Definition 2.14 (Level-constrained (L + 1)-Littlestone Di-
mension). Let Q =

(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. The Level-
constrained (L + 1)-Littlestone dimension of Q, denoted
by D(Q) ∈ N̄, is defined as a supd∈N such that there exists
a (L + 1)-Littlestone tree T of depth d for Q that all chil-
dren of every node are labeled by distinct elements of Y and
all nodes at the same level are labeled by the same element
of X which is shattered by C. Also, if C = {∅}, we have:
D(Q) = 0.

2.3.3. LEVEL-CONSTRAINED (L + 1)-BRANCHING
DIMENSION

Definition 2.15 (Level-constrained (L + 1)-Branching Di-
mension). Let Q =

(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. The Level-
constrained (L + 1)-Branching dimension of Q denoted by
B(Q) ∈ N̄, is defined as a supd∈N such that there exists a
(L + 1)-Littlestone tree T for Q that all nodes at the same
level are labeled by the same element of X and every root
to leaf path contains at least d nodes labeled by distinct
elements of Y which is shattered by C. Also, if C = {∅},
we have: B(Q) = 0.
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3. Realizable Setting
First, we restate the main theorem in the realizable setting
here for the sake of simplicity.

Theorem 3.1. Let Q =
(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. Then, we have:

M⋆(Q,T) ∈


Θ(1), B(Q) < ∞
Θ(log T), D(Q) < ∞ and B(Q) = ∞ ,

Θ(T), D(Q) = ∞

Proof. The theorem can be proved by combining two lower
bounds of Lemma 3.2 and Lemma 3.5 as well as two upper
bounds from Lemma A.1 and Lemma A.3. This finishes the
proof.

We provide the proofs for the lower bounds in the main
text, while deferring the more technical proofs for the upper
bounds to Appendix A.

3.1. Lower Bound T

We start by proving the lower bound for the linear case. Fur-
thermore, the proof of the following Lemma uses the main
idea in the lower bound proof of the work of (Littlestone,
1988).

Lemma 3.2. Let Q =
(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. Assume that
D(Q) = ∞. Then, we have M⋆(Q,T) ∈ Ω(T).

Proof. Fix T ∈ N. Let T be a (L + 1)-Littlestone tree
witnessing D(Q) = T. Note that such a tree should exist
as D(Q) = ∞. Based on Definition 2.14, this tree should
have depth T as well. Also, at each level of T , all nodes are
labeled by the same instance from X . In addition, children
of all nodes are labeled by distinct labels from Y . Let A
be any deterministic list transductive online learning rule.
Now, we will build an adversarial strategy against A using
T . To do so, we first present T instances at T levels of T in
order to the learner before starting the game. Furthermore,
we will continue to make this strategy based on a special
root-to-leaf path in T , which depends on A. Receive the
first set of labels of size L predicted by the learner. As
we have L + 1 edges for the root node of T labeled with
distinct labels from Y , there exists at least one of them,
which is labeled by a label that is not in the received set.
We output that label. Moreover, we will continue this con-
struction of the adversarial strategy based on T and A.
Indeed, we can force T number of mistakes to the A. In
addition, as T is shattered by C, there exists a concept in C,
which is consistent with the root-to-leaf path that we used.
So, we are in the realizable setting. As a result, we have:
supS ∈ (X×Y)T which is

realizable by C
M(A;S) ≥ T. Since we are able to

construct an adversarial strategy for an arbitrary determin-
istic list transductive online learning rule A, we conclude
M⋆(Q,T) ≥ T. Finally, note that this argument works for
any T ∈ N. This finishes the proof.

Fix T ∈ N. Indeed, for a given Q =
(
X ,L,Y, C

)
, if

D(Q) = d, using the above proof, we can show min
{

T,d
}

lower bound.

3.2. Lower Bound log(L T+1)
log(L+1)

We continue by proving the lower bound for the Logarith-
mic case. Furthermore, the proof requires the following
combinatorial Lemma. Additionally, we establish a similar
lower bound as the one we just proved before presenting the
main result.

Lemma 3.3. Let Q =
(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. Assume that
B(Q) = d for some d ∈ N. Then, there exists a (L + 1)-

Littlestone tree of maximum depth
(L + 1)d − 1

L
witnessing

B(Q) = d, crucially, just using a subset of nodes in any
tree witnessing B(Q) = d.

Proof. We prove this Lemma by induction. We start with
the base case. In particular, assume d = 1. Let T be a
(L+1)-Littlestone tree witnessing B(Q) = 1. Thus, in every
root-leaf-path in T , we should have at least one node whose
outgoing edges are labeled by (L + 1) distinct values from
Y . Take one such node. Indeed, this node can itself witness

B(Q) = 1. So, the depth is at most 1 ≤ (L + 1)
1 − 1

L
= 1.

This finishes the proof of the base case. Now, assume the
claim is true for d ∈ N. Subsequently, we prove the claim
for d+1. More specifically, we show that if B(Q) = d+1,
then there exists a (L + 1)-Littlestone tree of maximum

depth
(L + 1)

d+1 − 1

L
witnessing B(Q) = d+1. Let T be

a (L + 1)-Littlestone tree witnessing B(Q) = d+1. Find
the node with the minimum level in T whose outgoing
edges are labeled by (L+1) distinct values from Y . Indeed,
such a node should exist. Also, we have several of them,
just take one. Now, denote (L + 1) sub-trees of that node
by T1, T2, . . . , T(L+1). Restrict our instance space X to
instances on the levels of these sub-trees and call it X ′.
Also, consider functions induced by the projection of C
to X ′ and call it C′. Let Q′ :=

(
X ′,L,Y, C′). Based on

our construction of Q′, we have B(Q′) = d. Now, we
apply the induction hypothesis and get T ′

1 , T ′
2 , . . . , T ′

(L+1)

such that each of them witness B(Q′) = d and their depths

are bounded above by
(L + 1)d − 1

L
. Subsequently, let us

join our one node to these sub-trees. In particular, to keep
the level -constraint property, the final depth is bound by
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(L+1)× (L + 1)d − 1

L
+1 =

(L + 1)
d+1 − 1

L
. As we have

a node with L + 1 outgoing edges labeled by L + 1 distinct
labels from Y , the resulting tree can witness B(Q) = d+1.
This completes the proof.

Lemma 3.4. Let Q =
(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. Assume that
B(Q) = d for some d ∈ N. Then, we have M⋆(Q,T) ≥ d
for large enough T.

Proof. Let T be a (L + 1)-Littlestone tree of depth r ∈ N
witnessing B(Q) = d. Based on Definition 2.15, at each
level of T , all nodes are labeled with the same instance
from X . Let A be any deterministic list transductive online
learning rule. Now, we will build an adversarial strategy
against A using T . To do so, we first present r instances
at r levels of T in order to the learner before starting the
game. Furthermore, we will continue to make this strategy
based on a special root-to-leaf path in T , which depends on
A. Receive the first set of labels of size L predicted by the
learner. We may have L + 1 edges for the root node of T
labeled with distinct labels from Y . If that is the case, then
there exists at least one of them, which is labeled by a label
that is not in the received set. We output that label. If that
is not the case, just output any of them. Moreover, we will
continue this construction of the adversarial strategy based
on T and A. Indeed, we can force d number of mistakes to
the A. This is because every root-to-leaf path in T should
contain at least d nodes having L+1 outgoing edges labeled
by distinct labels from Y . In addition, as T is shattered by C,
there exists a concept in C, which is consistent with the root-
to-leaf path that we used. So, we are in the realizable setting.
As a result, we have: supS ∈ (X×Y)T which is

realizable by C
M(A;S) ≥ d.

Since we are able to construct an adversarial strategy for an
arbitrary deterministic list transductive online learning rule
A, we conclude M⋆(Q,T) ≥ d for large enough T = r.
This finishes the proof.

Lemma 3.5. Let Q =
(
X ,L,Y, C

)
be an instance

of the list transductive online learning framework. As-
sume that B(Q) = ∞. Then, we have M⋆(Q,T) ∈

Ω
( log(L T + 1)

log(L + 1)

)
∈ Ω(log T).

Proof. Fix T ∈ N. Solve
(L + 1)d − 1

L
= T for d. So, the

result is
log(L T + 1)

log(L + 1)
. Now, define r :=

⌊ log(L T + 1)

log(L + 1)

⌋
.

Let T be a (L + 1)-Littlestone tree witnessing B(Q) = r.
Note that such a tree should exist as B(Q) = ∞. Now,
apply Lemma 3.3 on T . Thus, we can get a (L + 1)-
Littlestone tree witnessing B(Q) = r whose depth is at
most T. Subsequently, based on the proof of Lemma 3.4,

we have M⋆(Q,T) ≥ r. Finally, note that this argument
works for any T ∈ N. This concludes the proof.

4. Agnostic Setting
First, we restate the main theorem in the agnostic setting
here for the sake of simplicity.

Theorem 4.1. Let Q =
(
X ,L,Y, C

)
be an instance of the

list transductive online learning framework. Then, Q is
agnostic learnable in the list transductive online learning
framework if and only if D(Q) < ∞.

Proof. The theorem can be proved by combining a lower
bound of Lemma B.1 and as well as an upper bound from
Lemma B.2.

5. Conclusion, Discussion, and Future
Directions

In this work, we investigated the problem of list transduc-
tive online learning with possibly arbitrary label space. In
the realizable setting, we showed a trichotomy of possible
minimax rates for the number of mistakes. In addition, we
demonstrated a dichotomy of the minimax expected regret
in the agnostic setting. To do so, we introduced two new
combinatorial complexity parameters, the Level-constrained
(L + 1)-Littlestone dimension and the Level-constrained
(L + 1)-Branching dimension for some L ∈ N.

Finally, we outline a potential future direction for this line
of research. Similarly to our work, in all previous studies
on list learnability, including (Charikar & Pabbaraju, 2023;
Moran et al., 2023; Brukhim et al., 2024), additional factors
related to the size of the list appear in the upper bounds.
For instance, if the size of the list is L ∈ N, in the work of
(Charikar & Pabbaraju, 2023), a factor L6 is present, or in
the work of (Brukhim et al., 2024), a factor L4 arises. A
key open question is how to eliminate such factors from our
logT upper bound in the realizable setting. Addressing this
question could potentially lead to the elimination of list size
factors in other related problems as well. In close relation to
this question, one could explore the problem of list learning
with possibly unbounded list size. For example, the label
space can be the real numbers, while lists are intervals of
size c for some constant c ∈ R.

Impact Statement
This paper presents work whose goal is to advance the field
of Statistical Learning Theory. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.
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List Transductive Standard Optimal Algorithm (LTSOA)

Input: A 4-tuple Q =
(
X ,L,Y, C

)
, a total number of rounds T ∈ N, and a sequence of T instances X ∈ X T.

Initialize V0 = C and t = 1.

While (t ≤ T):

1. Sort labels in Y in a non-increasing order according to the values B
((

(Xt+1, Xt+2, . . . , XT),L,Y,Vt−1
xt→y

))
for y ∈ Y .

2. Predict the list At which consists of the top L labels in the above order.

3. Receive a label yt ∈ Y .

4. Set Vt = V t−1
xt→yt

and update t = t+ 1.

Figure 1: List Transductive Standard Optimal Algorithm (LTSOA) is a variant of Standard Optimal Algorithm (SOA)
originally proposed by (Littlestone, 1988). Further, see the definition of Vx→y for some V ⊆ YX , x ∈ X , and y ∈ Y in the
proof of Lemma A.1. In addition, see the definition of a sequence-dependent Level-constraint (L + 1)-Branching dimension
in the proof of Lemma A.1.

A. Realizable Upper Bounds Proofs
A.1. Upper Bound B(Q)

Next, we move on to the proof of the constant upper bound. Furthermore, the proof of the following Lemma uses the main
idea in the upper bound proof of the work of (Littlestone, 1988).

Lemma A.1. Let Q =
(
X ,L,Y, C

)
be an instance of the list transductive online learning framework. Assume that

B(Q) = d. Then, we have M⋆(Q,T) ∈ O(d) ∈ O(1).

Proof. We first define Vx→y for some V ⊆ YX , x ∈ X , and y ∈ Y . In particular, Vx→y :=
{
c | c ∈ Vx→y, c(x) = y

}
.

Next, for every X ∈ X k for some k ∈ N, we define B
((

X,L,Y, C
))

by adding a new constraint to Definition 2.15. In
particular, we require to use instances of X in order as the label of the nodes of (L + 1)-ary Littlestone tree.

Now, we proceed with the proof of the Lemma. Fix T ∈ N. We run LTSOA Algorithm 1 with input Q, T, and X ∈ X T as
the initial sequence of instances chosen by the adversary. First of all, notice that for any instance of the list transductive
online learning framework Q′, we have B(Q′) ≥ 0. Also, notice that B

((
(X1, X2, . . . , XT),L,Y, C

))
≤ B(Q). As

a result, based on the following Claim, it is clear that supS ∈ (X×Y)T which is
realizable by C

M(LTSOA;S) ≤ B(Q) = d. Therefore,

M⋆(Q,T) ≤ B(Q) = d. This completes the proof. Subsequently, we prove the following Claim.

Claim A.2. For every t ∈ [T], if yt /∈ At, then B
((

(Xt, Xt+1, . . . , XT),L,Y,Vt−1
))

> B
((

(Xt+1,

Xt+2, . . . , XT),L,Y,Vt
))

.

Proof We prove this claim by contradiction. For simplicity, denote B
((

(Xt, Xt+1, . . . , XT),L,Y,Vt−1
))

by A. Also,

denote B
((

(Xt+1, Xt+2, . . . , XT),L,Y,Vt
))

by B. Assume that A ≥ B. Indeed, the case that A < B is not possible. So,
assume that A = B. If that is the case, based on lines 1 and 2 in Algorithm 1, it means that there are at least L + 1 labels
such that the restriction of the current concept class V t−1 to xt using those labels still leads to A as a new dimension. Thus,
this means that A > A as we can construct a new tree. This is a clear contradiction.
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List Shattering Algorithm

Input: A 4-tuple Q =
(
X ,L,Y, C

)
, a total number of rounds T ∈ N, and a sequence of T instances X ∈ X T.

Initialize V0 = C and t = 1.

While (t ≤ T):

1. Sort labels in Y in a non-increasing order according to the values Sh
((

(Xt+1, Xt+2, . . . , XT),L,Y,Vt−1
xt→y

))
for y ∈ Y .

2. Predict the list At which consists of the top L labels in the above order.

3. Receive a label yt ∈ Y .

4. Set Vt = V t−1
xt→yt

and update t = t+ 1.

Figure 2: See the definition of Vx→y for some V ⊆ YX , x ∈ X , and y ∈ Y in the proof of Lemma A.3. In addition, see the
definition of Sh(.) in the proof of Lemma A.3.

A.2. Upper Bound LD(C) log
(

e T
D(Q)

)
Finally, we turn our attention to proving the logT upper bound. Moreover, the proof of the following lemma represents the
main contribution of this section, relying on the shattering technique from the recent work of (Hanneke et al., 2024b).

Lemma A.3. Let Q =
(
X ,L,Y, C

)
be an instance of the list transductive online learning framework. Assume that

D(Q) = d. Then, we have M⋆(Q,T) ∈ O
(
Ld log

(
e T
d

))
∈ log(T).

Proof. We first define Vx→y for some V ⊆ YX , x ∈ X , and y ∈ Y . In particular, Vx→y :=
{
c | c ∈ Vx→y, c(x) = y

}
.

Next, for every X ∈ X k for some k ∈ N, we say that X is full shattered by C if there exists a (L + 1)-ary Littlestone tree T
of depth k for Q such that all children of every node of T are labeled by distinct elements of Y and for every i ∈ [k] all
nodes at level i of T are labeled by Xi which is shattered by C. Now, let V ⊆ YX and X ∈ X k for some k ∈ N. Then, we
define Sh

((
(X1, X2, . . . , Xk),L,Y,V

))
as the number of non-empty sub-sequences of X that are full shattered by V .

The first observation is if X ∈ X ⋆ is full shattered by V ⊆ C, then the size of X should be smaller than d+1. Next, clearly,
if X ∈ X ⋆ does not have any non-empty sub-sequence that is full shattered by V ⊆ C, the projection of V on X is unique.

Now, we proceed with the proof of the Lemma. Fix T ∈ N. We run List Shattering Algorithm 2 with input Q, T, and
X ∈ X T as the initial sequence of instances chosen by the adversary. Based on the previous paragraph, we know
Sh
(
X,L,Y,V

)
≤
∑d

i=1

(T
i

)
≤
(
e T
d

)d
. Whenever we make a mistake, there are some cases to consider. (1) For each

sub-sequence full shattered by all L of the version spaces related to the labels in the predicted list, and by the yt version
space, there is another full shattered sequence being removed. In particular, the one that has the predicted point at its root
and the other L + 1 trees as its sub-trees. (2) The remaining full shattered sub-sequences by the yt version space can be full
shattered by at most L− 1 of the top L labels. Since those L labels all shattered at least as many sub-sequences as yt, that

should mean the maximum number of sub-sequences that can be full shattered by the yt version space is a (1− 1

L
) fraction

of the total full shattered sub-sequences. As a result, after at most m > − ln(A)

ln(1− 1
L )

mistakes, where A :=
(
e T
d

)d
, we have no

full shattered sub-sequences. Therefore, we can get M⋆(Q,T) ∈ O
(
Ld log

(
e T
d

))
∈ log(T).
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B. Agnostic Proofs
B.1. Lower Bound

We start by proving the lower bound for the linear case. Furthermore, the proof of the following Lemma uses the main idea
in the lower bound proof of the work of (Moran et al., 2023).
Lemma B.1. Let Q =

(
X ,L,Y, C

)
be an instance of the list transductive online learning framework. Assume that

D(Q) = ∞. Then, Q is not agnostic learnable in the list transductive online learning framework.

Proof. First of all, note that the realizable setting is a particular case of the agnostic setting. Fix T ∈ N. Let T be a
(L + 1)-Littlestone tree witnessing D(Q) = T. Note that such a tree should exist as D(Q) = ∞. Based on Definition
2.14, this tree should have depth T as well. Also, at each level of T , all nodes are labeled by the same instance from X .
In addition, children of all nodes are labeled by distinct labels from Y . Let A be any randomized list transductive online
learning rule. Now, we will build an adversarial strategy against A using T . To do so, we first present T instances at T
levels of T in order to the learner before starting the game. Furthermore, we will continue to make this strategy based on a
special root-to-leaf path in T . Receive the first set of labels of size L predicted by the learner. As we have L + 1 edges for
the root node of T labeled by distinct labels from Y , there exists at least one of them, which is labeled by a label that is
not in the received set. We output a random label from those labels according to the uniform distribution. Moreover, we
will continue this construction of the adversarial strategy based on T . Notice that, as T is shattered by C, there exists a
concept in C, which is consistent with the root-to-leaf path that we used. So, we are in the realizable setting. In addition,
notice that our choices of labels are completely independent of the learner’s prediction. So, A makes a mistake at every

point with probability of at least
1

L + 1
. Since we are able to construct an adversarial strategy for an arbitrary randomized

list transductive online learning rule A, we conclude any randomized rule has at least
T

L + 1
expected regret. It means that

Q is not agnostic learnable in the list transductive online learning framework. This finishes the proof.

B.2. Upper Bound

Finally, we turn our attention to proving the
√

T × log(T) upper bound. Moreover, the proof of the following lemma
represents the main contribution of this section, relying on the shattering technique from the realizable part, as well as the
proof technique of (Hanneke et al., 2023a).

We note that Algorithm 2 can be made conservative, that is, only adding an running the line 5 if it is a mistake. It is not hard
to see that we can get the same guarantee as in A.3. Also, we note that Algorithm 1 can be made conservative, that is, only
adding an running the line 5 if it is a mistake. It is not hard to see that we can get the same guarantee as in Lemma A.1.
Lemma B.2. Let Q =

(
X ,L,Y, C

)
be an instance of the list transductive online learning framework. Assume that

D(Q) = d < ∞ for some d inN. Then, Q is agnostic learnable in the list transductive online learning framework.

Proof. Fix T ∈ N. Based on the results in section 3, we know that there exists a conservative version of Algorithm 2, which
can give us M⋆(Q,T) ∈ O

(
Ld log

(
e T
d

))
∈ log(T). Let us call the best concept in C in the definition of regret for a given

S ∈ (X × Y)T as a sequence played by the adversary c⋆. Denote by R⋆ a sub-sequence of indices that c⋆ is correct on.
Indeed, if we run the mentioned algorithm only on these point, we make at most O

(
Ld log

(
e T
d

))
number of mistakes on

indices J⋆ ⊆ R⋆. In fact, we only need to update our algorithm on those points. Furthermore, between all experts updating
on every possible sub-sequence of size at most O

(
Ld log

(
e T
d

))
of T, one of them is the one that is updating on exactly on

J⋆. Thus, based on the celebrated prediction with expert advise algorithm (Cesa-Bianchi & Lugosi, 2006), we can get regret
of:

O

(√√√√T L D(Q) log
( e T
D(Q)

)
log

(
eT

L D(Q) log
(

e T
D(Q)

))) ∈ O(T)

We note that our experts are at most different on R⋆ with c⋆ on O
(
Ld log

(
e T
d

))
number of instances.

Importantly, the same technique can be used to overcome the issue of infinite label space in the work of (Moran et al., 2023),
thus answering their open question.

12



A Trichotomy for List Transductive Online Learning

C. Examples
This section provides three examples of instances within the list transductive online learning framework, revealing the
separations between related learnability definitions.

C.1. L-DS Dimension

Definition C.1 (i-neighbour). Let f, g ∈ Y d for some non-empty set Y and some d ∈ N. For every i ∈ [d], we say that f
and g are i-neighbours if fi ̸= gi and ∀j∈[d]−{i} fj = gj .

Definition C.2 (L-DS Dimension (Charikar & Pabbaraju, 2023)). Let Q =
(
X ,L,Y, C

)
be an instance of the list transductive

online learning framework. Let S ∈ X d be a sequence for some d ∈ N. We say that S is L-DS shattered by C, if there exists
F ⊆ C, |F | < ∞ such that for all f ∈ {g | g ∈ Yd, ∃g∈F ∀i∈[d] gi = f(Si)} and for all i ∈ [d], f has at least L number of
i-neighbor. The L-DS dimension of Q, denoted DS(Q), is the maximal size of a sequence S ∈ X d for some d ∈ N̄ that is
L-DS shattered by C.

C.2. Main Results on Learnability Separations

Our first result in this section implies a separation between realizable/agnostic multiclass transductive online learnability
(Hanneke et al., 2024b) and realizable/agnostic list transductive online learnability.

Proposition C.3. For every L ∈ N, there exists an instance of the list transductive online learning framework Q =(
X ,L,Y, C

)
and another instance of the list transductive online learning framework Q′ =

(
X ,L + 1,Y, C

)
such that

D(Q) = ∞ and B(Q′) = 0.

Proof. Fix L ∈ N. Let T be an infinite depth perfect rooted (L + 1)-ary tree Definition 2.9. The definition of such a tree
is similar to Definition 1.7 in the work of (Bousquet et al., 2021). For every i ∈ N, label all nodes at the level i − 1 of
T with i− 1. Also, for every node in T , label all its children with distinct elements from [L + 1]. Let X = {0} ∪ N. In
addition, let Y = [L + 1]. Further, define C ∈ YX so that it only contains all functions consistent with a root-to-leaf path of
T . Now, define Q :=

(
X ,L,Y, C

)
. Also, define Q′ :=

(
X ,L + 1,Y, C

)
. Based on the definition of T and Q, it is clear

that D(Q) = ∞. Additionally, notice that for every x ∈ X , the size of {y | ∃c∈C y = c(x)} is bounded above by L + 1. As
a result, B(Q′) = 0. This finishes the proof.

Our second result in this section implies a separation between realizable/agnostic list PAC learnability (Charikar & Pabbaraju,
2023) and realizable/agnostic list transductive online learnability.

Proposition C.4. For every L ∈ N, there exists an instance of the list transductive online learning framework Q =(
X ,L,Y, C

)
such that D(Q) = ∞ and DS(Q) = 1.

Proof. Fix L ∈ N. Let T be an infinite depth perfect rooted (L + 1)-ary tree Definition 2.9. The definition of such a tree is
similar to Definition 1.7 in the work of (Bousquet et al., 2021). For every i ∈ N, label all nodes at the level i− 1 of T with
i − 1. Also, label all edges of T with distinct elements of N. Let X = {0} ∪ N. In addition, let Y = N. Further, define
C ∈ YX such that it only contains all functions consistent with a root-to-leaf path of T . Now, define Q :=

(
X ,L,Y, C

)
.

Based on the definition of T and Q, it is clear that D(Q) = ∞. Subsequently, we prove that DS(Q) = 1. In particular, we
prove this mainly by contradiction. Assume DS(Q) ≥ 2. Thus, there exist S = (x1, x2) ⊂ X of size 2 and F ⊆ C, |F | < ∞
witnessing that DS(C) = 2. Without loss of generality, we assume that x1 is above x2 in T . Based on the fact that the
edges of T are labeled with distinct elements of Y , we can conclude that every pair of concepts from (c1, c2) ∈ C2 such that
c1(x2) = c2(x2) should have be equivalent on x1, meaning that c1(x1) = c2(x1) as well. So, we cannot even have one
neighbor. This is a contradiction. Therefore, DS(C) < 2. It is easy to see that the root node of T is L-DS shattered by C. As
a result, DS(Q) = 1. This finishes the proof.

Notably, one can also show that for every instance of the list transductive online learning framework Q =
(
X ,L,Y, C

)
, we

always have DS(Q) ≤ D(Q).

Our third result in this section implies a separation between realizable/agnostic list online learnability (Moran et al., 2023)
and realizable/agnostic list transductive online learnability.
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Proposition C.5. For every L ∈ N, there exists an instance of the list transductive online learning framework Q =(
X ,L,Y, C

)
such that L(Q) = ∞ and B(Q) ≤ 2.

Proof. Fix L ∈ N. Let T be an infinite depth perfect rooted (L + 1)-ary tree Definition 2.9. The definition of such a tree is
similar to Definition 1.7 in the work of (Bousquet et al., 2021). First, label all nodes of T with distinct elements of N. Also,
for every node in T , label all of its children with distinct elements from [L+ 1]. Let X = N. In addition, let Y = R. Further,
define C ∈ YX such that it only contains all functions consistent with a root-to-leaf path of T with a special property. In
particular, each of these functions equals to a unique element of R on all instances outside its associated root-to-leaf path.
Now, define Q :=

(
X ,L,Y, C

)
. Based on the definition of T and Q, it is clear that L(Q) = ∞. Subsequently, we prove

that B(Q) ≤ 2.

To prove this, we show that for every T ∈ N, we have: M⋆(Q,T) ≤ 2. So, we can then conclude that B(Q) ≤ 2. To see
why, just notice that we can prove a lower bound based on B(Q). In particular, if B(Q) > 2, we can always force at least
three number of mistakes to any deterministic list transductive online learning rule for large enough T.

This part of the proof is essentially identical to the similar part in the proof of Proposition 11 in the work of (Hanneke et al.,
2024b). We include it for the sake of completeness. Fix T ∈ N. Let SX T be the sequence chosen by the adversary at the
beginning of the game. Also, let c⋆ ∈ C be the target concept chosen by the adversary. Further, let u be the root-to-leaf
path in T associated with the concept c⋆. In addition, for every i ∈ [T ], let vi be a root-to-leaf path in T containing first i
members of S, if it exists. Finally, let i⋆ be the smallest positive integer such that vi⋆ does not exist. If i⋆ itself does not
exist, let i⋆ = T+1. Our algorithm predicts according to the [L+ 1] labels associated with the path vi⋆−1 for the first i⋆ − 1
points in S. Moreover, if the adversary ever reveals a unique label, we use its corresponding c ∈ C′ to make predictions in
all future rounds. For the i⋆’th member of S, if it exists, we predict arbitrarily. To see that this algorithm makes at most 2
mistakes, we consider two cases. (1) If i⋆ = T + 1, then our algorithm makes at most one mistake. In fact, our algorithm
makes a mistake: (a) if the adversary switches the label from something in [L + 1] to a unique label corresponding to the
target concept c⋆. (b) perhaps on the last instance. (2) Otherwise, the algorithm makes at most two mistakes; the first mistake
can be on round i⋆ − 1, and the second mistake can be on round i⋆, after which the true c⋆ is known to the learner from its
unique label. Indeed, if the adversary switches the label from [L + 1] to a unique label corresponding to the target concept
c⋆ before round i⋆ − 1, we only make one mistake. In fact, we just showed that even by using an algorithm having list size
of one, we can do so. This completes the proof.

Notably, one can also show that for every instance of the list transductive online learning framework Q =
(
X ,L,Y, C

)
, we

always have B(Q) ≤ L(Q).
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