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Abstract
Large Language Models (LLMs) struggle with
complex reasoning due to limited diversity and
inefficient search. We propose Soft Reasoning,
an embedding-based search framework that opti-
mises the embedding of the first token to guide
generation. It combines (1) embedding perturba-
tion for controlled exploration and (2) Bayesian
optimisation to refine embeddings via a verifier-
guided objective, balancing exploration and ex-
ploitation. This approach improves reasoning ac-
curacy and coherence while avoiding reliance on
heuristic search. Experiments demonstrate supe-
rior correctness with minimal computation, mak-
ing it a scalable, model-agnostic solution.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able potential in various reasoning tasks, particularly on rel-
atively simple and common benchmarks (Huang & Chang,
2023; Xu et al., 2025). Despite this, they still face signif-
icant limitations in complex tasks (Lightman et al., 2024;
Wang et al., 2023a), which often require deeper levels of
thought, and answers generated solely based on maximum
likelihood are frequently incorrect. To increase the proba-
bility that the correct answer is included among generated
candidates, many existing approaches aim to enhance gener-
ation diversity through multiple sampling (Lightman et al.,
2024). A common mechanism for achieving such diver-
sity is temperature scaling, which adjusts the randomness
of token selection (Brown et al., 2024). Complementary
to this, planning-based methods, such as chain-of-thought
reasoning (Wei et al., 2022; Wang et al., 2023a) or tree-
structured search (Yao et al., 2023), attempt to locate the
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correct answer by following language-based instructions.

Despite these efforts, two key challenges remain: (1) En-
hancing generation diversity typically relies on increasing
the temperature parameter, which flattens the token distri-
bution. This, however, does not necessarily result in better
coverage of the correct answer, as increasing low-probability
token likelihood indiscriminately may introduce noise rather
than meaningful exploration (Holtzman et al., 2020). (2)
Existing planning and search methods such as sampling
multiple reasoning paths rely heavily on heuristic strate-
gies, guided by prompts (Hao et al., 2023; Qi et al., 2025b).
However, these approaches do not directly adjust for the
model’s internal representations, thereby making the search
process inefficient and highly dependent on surface-level
prompt variations. This often leads to a “wild-goose chase”,
where search remains constrained by randomness and indi-
rect heuristics rather than systematic optimisation.

To address these challenges, we propose Soft Reasoning, a
novel approach using controlled embedding exploration: (1)
By injecting a Gaussian embedding into the decoding of
the first answer token, we can adjust the distribution of low-
probability tokens in a more controlled manner than uniform
temperature tuning, leading to more flexible generation. (2)
Treating the LLM as a black box verifier, we apply Bayesian
optimisation (Frazier, 2018) on the injected embedding to
maximise a verification-based reward. This allows us to
use observerd rewards to directly guide the exploration in
the embedding space. As a result, Soft Reasoning improves
performance without a strong verifier—even when both
generation and verification originate from the same model.

As illustrated in Figure 1, Soft Reasoning leverages injected
vectors to change the distribution of the next generated to-
ken, rather than simply flattening the output probability
curve. In this injection-based generation process, decoding
is performed via greedy search, ensuring that each injected
vector corresponds to a unique generated sequence. This
guarantees both controllability and repeatability. The effect
of each injected vector can then be evaluated using a reward
function that accounts for both correctness and coherence
of the generated sequence. Next, in a sequential way, we
identify promising directions for further exploration based
on all observed injection-reward pairs by utilising Bayesian
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Figure 1. Comparison of Mainstream and Proposed Approaches.

optimisation. Again, thanks to the one-to-one mapping be-
tween initial vectors and generation outcomes, this process
enables an effective search for optimal vectors that enhance
generation quality. A notable advantage of this approach
is that it operates without requiring access to the internal
parameters of the LLM, allowing for efficient, low-resource
control over generation behaviour.

Our contributions can be summarised as follows:

• We propose a reasoning method, Soft Reasoning, which
combines embedding perturbation and Bayesian opti-
misation to better control low-probability token selec-
tion, enabling more flexible and diverse generation
than temperature tuning.

• Instead of language-based instruction or heuristic
search, our method directly optimises the embedding
of the first generated token to control the direction of
thinking and exploration in LLM, effectively reducing
the searching and reasoning complexity, and improving
efficiency and accuracy.

• Soft Reasoning is able to control and optimise the rea-
soning without accessing model parameters or requir-
ing additional verifier, allowing seamless integration
into different mainstream LLMs. Experiments across
a variety of LLMs and reasoning tasks demonstrate
improved correctness and efficiency of Soft Reasoning
over traditional decoding.

2. Related Work
2.1. Decoding Strategies and Diversity

Recent advances in LLM decoding aim to enhance diver-
sity for tasks requiring creativity and exploration. Tradi-
tional methods such as greedy and beam search often pro-
duce repetitive outputs (Holtzman et al., 2020; Welleck
et al., 2019), while sampling-based approaches (top-k, nu-

cleus) introduce randomness but struggle to balance qual-
ity and diversity (Fan et al., 2018; Holtzman et al., 2020).
High-temperature settings can lead to incoherent outputs
(Minh et al., 2025), and adaptive methods like min-p sam-
pling (Minh et al., 2025) require careful tuning. Debiasing-
Diversifying Decoding (D3) mitigates amplification bias but
increases computational cost (Bao et al., 2024). Crucially,
most methods overlook the impact of initial token selection,
which significantly influences reasoning outcomes (Wang
& Zhou, 2024). Our approach addresses this by perturbing
initial token embeddings with Gaussian noise, reshaping
the probability distribution to improve exploration while
maintaining quality and efficiency.

2.2. Efficient Exploration of Solution Spaces

Efficient solution space exploration is crucial for enhancing
LLM reasoning while maintaining practical computational
costs. Increasing generated samples improves coverage
(Brown et al., 2024) but is computationally prohibitive. Op-
timising test-time compute allocation is more effective than
scaling model size (Snell et al., 2025), though it requires
task-specific strategies. Mutual reasoning frameworks lever-
aging self-play and MCTS (Qi et al., 2025b; Yan et al.,
2024), as well as Tree of Thoughts (ToT) (Yao et al., 2023),
explore multiple reasoning paths but incur high computa-
tional overhead. Thought Space Explorer (TSE) (Zhang
& Liu, 2024) enhances reasoning breadth but at additional
cost. Soft Reasoning refines these approaches by integrat-
ing controlled initial-token embedding perturbations with
a strategic search algorithm inspired by MCTS and mutual
reasoning. By introducing exploration early through embed-
ding perturbation and guiding search via a verifier, we im-
prove efficiency without excessive computational overhead,
striking a balance between exploration and exploitation to
optimise reasoning performance.
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3. Preliminary: Temperature Scaling
A common approach for generating diverse outputs is tem-
perature scaling, which controls the randomness in the token
generation process by modifying the softmax distribution
over the model’s output logits. For a given temperature
τ > 0, the probability of selecting token w(t) at time step t
is given by:

P (w(t) | w(1:t−1); θ, τ) =
exp(ℓt,w(t)/τ)∑
w exp(ℓt,w/τ)

,

where w(1:t−1) represents the sequence of tokens
{w(1), . . . , w(t−1)} generated from the first token up to the
(t−1)th token, ℓt,w denotes the logit at time t corresponding
to token w, and τ controls the sharpness of the distribution.
This scaling flattens the distribution but preserves the rel-
ative ranking of token probabilities. When τ is low, the
results concentrate on a few high-probability tokens, lead-
ing to overly deterministic generations with limited diversity.
When τ is high, the model may sample low-probability to-
kens, leading to incoherent outputs.

While this approach increases diversity, it lacks control,
blindly flattening token probabilities; adaptability, as it ig-
nores verifier feedback; and efficiency, often requiring mul-
tiple samples or retraining (Joy et al., 2023; Xie et al., 2024).
These limitations make it ineffective for structured reason-
ing tasks that demand precise and efficient exploration.

Generating accurate answers in complex tasks requires both
exploring reasoning paths and verifying for their correct-
ness. To achieve this, we propose a two-step framework as
shown in Figure 2: (1) Embedding perturbation applies a
Gaussian adjustment to the first-token embedding for con-
trolled modifications beyond uniform tuning, (2) Bayesian
optimisation refines the perturbed embedding to maximise a
verifier-guided reward, improving reasoning path selection.

3.1. Embedding Perturbation

Given a generative model gθ and a natural language question
prompt q, the first token w(1) is generated using greedy de-
coding, which selects the token with the highest probability
from the model’s predicted distribution:

w(1) = argmax
w

P (w | q; θ),

where P (· | q; θ) represents the probability distribution over
the possible tokens predicted by the model gθ, with input q.

Let z ∈ RD represent the embedding of the token w(1). This
embedding serves as a prior, representing a “correct starting
point” in the latent space. To explore the neighbourhood of
this embedding, we define a set of perturbed embeddings xi

for i = 1, . . . , k as follows:

xi = z + σεi, εi ∼ N (0, I),

where εi represents independent random perturbations
drawn from a standard normal distribution, and σ is a scaling
factor controlling the magnitude of the perturbation. This
formulation allows us to sample from the local vicinity of
the original embedding z, exploring variations around the
initial token representation.

For each perturbed embedding xi, we introduce a corre-
sponding special token mapped to xi and add it to the vo-
cabulary. This special token is then used as the first token
for generating an answer. Since we use greedy decoding,
this xi fully determines the entire output sequence, i.e. the
remaining tokens w(2)

i , w
(3)
i , . . . , w

(L)
i are then determinis-

tically generated in a sequential manner:

w
(t)
i = argmax

w
P (w | xi, w

(2:t−1)
i , q; θ).

We denote yi := w
(1:L)
i to be the complete output based

on the initial perturbed embedding xi. We then repeat this
process k times to generate k different answers: y1, . . . , yk.
Since each output yi is fully determined by xi, embedding
perturbation effectively serves as a sampling mechanism
over the entire answer space.

3.2. Exploring the Embedding Space

Randomly sampling points with infinite computational re-
sources could theoretically approximate the optimal solu-
tion, but this approach is highly inefficient, especially given
the computational expense of sampling with an LLM. In-
stead, we adopt Bayesian optimisation, which consists of
two key components: an objective function and an acqui-
sition function that determine where to sample next. We
use Expected Improvement (EI) as our acquisition func-
tion, which offers a closed-form solution (Frazier, 2018)
with negligible computational cost, making it significantly
more efficient by comparison. EI effectively balances explo-
ration (searching uncertain regions) and exploitation (refin-
ing promising areas), selecting the point with the highest EI
at each iteration to guide the optimisation process toward
convergence.

Optimisation Objective. To evaluate the objective func-
tion with k sampled perturbed embeddings, we consider
the sequence x1:k = {x1, . . . , xk}, where each xi ∈ RD.
The corresponding answers are then generated as described
above: y1:k = {y1, . . . , yk}. Comparing and refining mul-
tiple generated answers has been shown to improve per-
formance (Miao et al., 2024). Additionally, since LLMs
are primarily trained for text generation rather than explicit
judgment, prompting them to regenerate and compare out-
puts can yield better results (Zhang et al., 2024). Building
on these insights, we propose a verifier-guided approach,
where the model evaluates a batch of candidate answers and
produces a refined output yv = V(y1:k). The correctness of
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Figure 2. Overview of Soft Reasoning. Starting with a natural language question prompt, the model generates initial token embeddings
w(1), which, due to greedy decoding, determine the entire output. These embeddings are perturbed to create candidate embeddings x1:k,
leading to outputs y1:k through greedy search, which are then evaluated for coherence and verifier feedback. A Bayesian optimisation
framework updates its estimation of the space based on this feedback and selects the next sampling point that maximises the expected
improvement, balancing exploration and exploitation to refine the search for high-quality outputs.

an answer y is then assessed as a binary indicator (0 or 1),
based on its alignment with the verifier’s final output. The
verifier is the same model as the generator employed.

The embedding space may not be uniform, implying that
perturbations in different directions can lead to uneven se-
mantic shifts (Li et al., 2023; Park et al., 2024). In some
dimensions, even small perturbations can significantly alter
meaning, potentially disrupting grammar or context consis-
tency and leading to incoherent outputs. To address this
issue, we introduce the coherence term to prune low-quality
generations, ensuring that only outputs with desirable se-
mantic and syntactic properties are retained. To evaluate
the quality of a generated output y, we define an objective
function f(x) that balances correctness and fluency:

f(x) = rverifier(y) + rcoherence(y), (1)

where:

• Verifier Score (rverifier): This is a binary indicator
provided by the verifier, reflecting the correctness of y:

rverifier(y) = 1{yv=y};

• Coherence (rcoherence): This term evaluates the fluency
of the generated sequence based on token probabilities:

rcoherence(y) =

T∑
i=1

logP (w(i)),

where P (w(i)) is the probability of generating token
w(i) from the LLM’s entire vocabulary.

Bayesian Optimisation. Our goal is to maximise f(·), as
defined in (1), over the embedding space RD. To optimise
this black-box function, Bayesian optimisation uses a prior
distribution on the domain to represent our beliefs about the
behavior of the function and iteratively updates this prior
using newly acquired data. Specifically, we model the prior
joint distribution as a multivariate Gaussian distribution:

f(x1:n) ∼ N
(
µ0(x1:n),Σ0(x1:n, x1:n)

)
,

where µ0(x1:n) is the prior mean vector, and Σ0(x1:n, x1:n)
is the prior covariance matrix.

After observing f(x1:k), we aim to infer the value of f(x) at
a new point x. Using Bayes’ rule (Rasmussen & Williams,
2006), we update the posterior distribution of f(x) condi-
tioned on these observed values:

f(x) | f(x1:k) ∼ N (µk(x), σ
2
k(x)). (2)

Here, µk(x) and σ2
k(x) represent the posterior mean and

variance, respectively. A detailed discussion on the choice
of the prior distribution and the computation of the posterior
distribution is provided in Appendix A.2.

A naive way to find the maximiser at this stage would be
to select among the previously evaluated points x1, . . . , xk

the one with the highest observed function value. Let f∗
k :=

maxm≤k f(xm) denote this value. If we were to sample
another point x ∈ RD and observe f(x), then the value of
the best observed point would either be f(x) (if f(x) ≥ f∗

k )
or f∗

k (if f(x) < f∗
k ). The improvement in the value of the
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best observed point could be expressed as [f(x)− f∗
k ]

+ :=
max(f(x)− f∗

k , 0).

While we would ideally choose x to maximise this improve-
ment, f(x) is unknown until after the evaluation. Instead,
we select x that maximises the expected improvement under
the posterior distribution, defined as

EIk(x) := Ek

[
[f(x)− f∗

k ]
+
]
, (3)

where Ek denotes the expectation taken with respect to the
posterior distribution (2). Using integration by parts, we can
write EI (3) in a closed-form expression:

EIk(x) =
[
µk(x)− f∗

k

]+
+ σk(x)ϕ

(
µk(x)− f∗

k

σk(x)

)
−
∣∣µk(x)− f∗

k

∣∣Φ(µk(x)− f∗
k

σk(x)

)
,

where ϕ and Φ denote the probability density function and
the cumulative distribution function of the standard normal
distribution, respectively.

Our next sampling point, xk+1 ∈ RD, is the maximiser of
EI. We then iteratively update the posterior distribution and
the EI function. Details on how we select x to maximise
EIk(x) can be found in Appendix A.3. Convergence is con-
sidered achieved when the change in the objective function
between consecutive iterations satisfies |fk − fk−1| < ϵ,
where ϵ is a predefined threshold. Additionally, the algo-
rithm terminates after a maximum of K iterations if conver-
gence has not been reached.

In defining f(x), we assume an ideal verifier with perfect
accuracy, meaning it provides an error-free assessment of
correctness. However, in practice, the verifier’s accuracy
is less than 1, introducing uncertainty into its evaluations.
To address this noise in Bayesian optimisation, we use an
adaptive version of the EI acquisition function that explic-
itly incorporates observation uncertainty. This adaptation
dynamically adjusts the exploration rate based on uncer-
tainty, ensuring a higher probability of convergence while
balancing exploration and exploitation (Vakili et al., 2021;
Tran-The et al., 2022). Theoretical foundations and imple-
mentation details are provided in Appendix A.4.

Dimension Reduction. One shortcoming of using tradi-
tional Bayesian optimisation methods for identifying the
point with maximum EI (Mockus, 1975; Hvarfner et al.,
2024) is that they perform poorly when the search space ex-
ceeds 20–30 dimensions due to the curse of dimensionality
(Kandasamy et al., 2015; Letham et al., 2020; Wang et al.,
2023b). In high-dimensional spaces, surrogate models re-
quire an exponentially larger number of points to accurately
estimate the maximum of the EI function, making optimi-
sation highly inefficient. With the dimension of embedding
vectors for LLMs typically ranging from 768 to 8192 or
more, traditional methods are impractical in our setting.

To address this, we leverage a dimension reduction approach
based on random embeddings (Wang et al., 2016; Nayebi
et al., 2019). Specifically, if a function f : RD → R has
an effective dimension de ≤ D, then with high probabil-
ity, there exists a lower-dimensional representation g(u) :=
f(Au), where A is a random projection matrix. This allows
optimisation to be performed in a lower-dimensional space
Rd instead of the original RD. Using this approach, we iter-
atively optimise the function in the reduced space and map
solutions back to the original space. Theoretical foundations
and implementation details are provided in Appendix A.5.

4. Experiments
We benchmark Soft Reasoning against strong baselines and
conduct ablation studies.

4.1. Experimental Setup

Datasets and Models. We conduct experiments using
three LLMs: Llama-3.1-8B-Instruct (Meta, 2024), Qwen2-
7B-Instruct, Qwen2-70B-Instruct (Yang et al., 2024), and
Mistral-8B-Instruct (Jiang et al., 2023). The models are eval-
uated on four benchmark datasets, including three complex
mathematical tasks (GSM8K (Cobbe et al., 2021), GSM-
Hard (Gao et al., 2023), SVAMP (Patel et al., 2021)), and
one commonsense reasoning task StrategyQA (Geva et al.,
2021). For the Qwen2-70B-Ins model, we additionally eval-
uate its performance on the AIME-2024 benchmark.

Baselines. Our baselines include: (1) CoT Prompting,
which includes zero-shot CoT (Kojima et al., 2022) and
few-shot CoT (Wei et al., 2022); (2) Self-Consistency (SC)
Decoding (Wang et al., 2023c), which involves sampling
answers at various temperatures τ ∈ {0.4, 0.6, 0.8} and se-
lecting the final answer through majority voting; (3) FIRE
(Chen et al., 2025), which adjusts the decoding process by
setting the temperature of the first token to 30 to enhance
diversity, while subsequent tokens are generated using the
standard temperature setting; (4) CoT-Decoding (Wang &
Zhou, 2024), which generates k answers by sampling the
top-k tokens from the probability distribution of the first to-
ken. Each of these top-k tokens is used as the starting point
for decoding the remainder of the answer; and (5) RAP (Hao
et al., 2023), which uses Monte Carlo Tree Search to explore
reasoning paths strategically, balancing exploration and ex-
ploitation to find solutions efficiently. Note that RAP re-
quires problem decomposition via examples; hence we only
report its performance in the few-shot setting. Additionally,
we compare Soft Reasoning with recent controlled genera-
tion approaches, including Trainable Prefix Scorers (Mudgal
et al., 2024) and Constrained Fine-tuning (Qi et al., 2025a),
with further details provided in Appendix B.2.
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Table 1. Performances of different reasoning methods on Accuracy (%) across all benchmarks.

Model Method GSM8K GSM-Hard SVAMP StrategyQA
Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot

LLaMA3-8B-Ins

CoT 53.0±0.0 77.4±0.0 14.0±0.0 28.0±0.0 61.0±0.0 83.0±0.0 58.5±0.0 68.5±0.0

SC(τ = 0.4) 73.0±1.6 80.4±1.4 25.7±0.4 31.8±1.8 79.1±1.2 87.1±1.0 64.7±0.7 71.6±0.8

SC(τ = 0.6) 73.6±2.5 80.6±1.5 24.5±1.1 31.2±1.3 76.1±3.9 87.7±1.2 59.9±2.0 71.3±1.5

SC(τ = 0.8) 65.0±2.0 81.1±1.1 21.8±1.3 30.8±0.9 69.6±2.0 87.4±1.2 54.4±2.6 72.7±1.2

FIRE 73.8±2.3 79.6±2.9 25.2±3.0 25.7±2.1 81.5±0.8 87.6±2.0 63.0±3.7 72.8±1.5

CoT-Decoding 73.9±1.9 80.3±1.7 24.8±1.3 30.3±1.3 83.2±1.2 88.2±1.0 64.6±1.6 73.3±1.8

RAP - 80.7±1.4 - 32.7±1.2 - 87.9±1.1 - 73.4±1.1

Soft Reasoning 79.4±1.2 84.3±1.4 28.2±1.8 35.7±1.0 88.2±1.3 90.2±0.6 67.2±0.7 75.6±0.8

w/o rverifier 76.8±1.0 82.0±0.5 26.3±1.3 34.8±0.3 86.7±1.2 89.5±0.5 66.2±2.8 74.3±1.6

w/o rcoherence 77.4±2.1 83.4±0.7 27.9±1.5 35.3±1.3 84.6±2.4 90.1±0.9 66.0±1.3 75.0±1.5

Qwen2-7B-Ins

CoT 64.5±0.0 82.5±0.0 40.0±0.0 55.5±0.0 43.5±0.0 86.0±0.0 63.0±0.0 70.0±0.0

SC(τ = 0.4) 81.2±0.6 85.7±1.5 47.5±1.4 55.4±0.7 72.3±2.0 90.3±1.2 67.1±1.5 71.1±1.6

SC(τ = 0.6) 80.2±1.9 85.4±0.9 46.2±1.9 53.4±0.6 77.3±1.2 90.4±0.6 67.5±0.7 69.1±1.2

SC(τ = 0.8) 80.0±0.9 85.1±1.6 47.3±1.3 55.4±0.9 78.6±2.1 90.6±1.2 67.0±1.0 70.1±0.8

FIRE 81.0±1.8 83.0±1.3 45.1±2.0 51.0±1.8 76.3±2.2 90.6±0.2 67.6±0.8 68.1±0.8

CoT-Decoding 82.0±2.8 84.5±2.1 46.7±2.3 52.1±1.0 78.6±1.6 89.7±0.5 65.9±1.5 69.5±2.1

RAP - 86.2±1.2 - 56.2±0.8 - 90.8±1.1 - 71.3±1.3

Soft Reasoning 88.6±1.2 90.0±1.4 53.7±1.6 58.7±0.5 83.4±2.4 92.2±0.8 68.1±1.5 70.3±1.3

w/o rverifier 87.0±1.0 89.7±1.8 51.2±2.1 58.3±1.0 73.5±4.0 90.5±1.5 66.0±0.9 68.3±1.6

w/o rcoherence 87.3±2.0 89.2±1.3 52.0±1.5 60.0±1.0 76.7±1.4 90.7±0.6 66.5±0.5 69.5±1.5

Mistral-7B-Ins

CoT 42.0±0.0 54.0±0.0 14.5±0.0 24.0±0.0 52.0±0.0 72.0±0.0 62.0±0.0 69.0±0.0

SC(τ = 0.4) 52.9±0.5 58.3±1.5 19.5±1.0 26.1±1.5 67.4±2.5 77.8±1.0 63.9±1.5 72.6±1.2

SC(τ = 0.6) 55.1±3.6 57.4±1.0 20.7±1.5 25.3±1.6 69.7±1.6 78.4±2.0 64.2±1.0 71.7±0.8

SC(τ = 0.8) 50.2±2.6 57.7±2.6 19.1±2.0 26.6±1.1 68.3±0.9 77.6±1.1 64.9±1.0 72.1±1.5

FIRE 47.2±2.9 56.1±3.2 18.1±1.9 26.3±1.4 67.1±1.9 78.4±1.2 64.2±1.0 71.0±2.2

CoT-Decoding 47.3±3.0 58.2±2.3 16.6±0.7 27.4±1.6 69.4±2.5 78.6±1.4 63.5±1.5 72.7±2.1

RAP - 58.6±1.8 - 27.6±1.2 - 79.4±1.1 - 72.4±1.3

Soft Reasoning 61.4±2.5 62.7±1.0 25.8±1.8 32.5±1.5 72.2±2.2 82.1±1.2 66.1±1.9 72.8±1.5

w/o rverifier 59.5±1.3 59.7±2.8 24.8±0.8 30.8±2.1 69.5±2.3 79.8±0.8 64.8±0.6 71.8±1.4

w/o rcoherence 61.2±2.3 60.3±2.5 25.5±3.3 29.5±2.3 70.2±1.6 80.0±1.0 65.5±1.7 72.0±1.3

Setup & Hyperparameters. Experiments are conducted
in zero-shot and few-shot settings, with prompts including 1,
2, 4, and 8 exemplars for few-shot settings. To reduce vari-
ance, each configuration is repeated five times with different
random seeds. We report the mean and standard deviation
of accuracy across all runs. The convergence threshold is
set to 0.01.

4.2. Experimental Results

Overall Performance. Table 1 presents the accuracy of
Soft Reasoning compared to baselines across four bench-
marks and three LLMs under zero-shot and few-shot (8-shot)
settings. The full table and the results for the Qwen2-70B-
Ins model can be found in Tables 13 and 12, respectively, in
Appendix B.8. Our approach consistently outperforms the
best-performing baseline across different models, especially
in the zero-shot setting (average improvement of 5% on
GSM8K and 3% on GSM-Hard). Similar gains appear in
the few-shot setting, where our method achieves the highest
accuracy on most tasks and model variants. While effective,
SC requires extensive hyperparameter tuning (e.g. varying
temperature values) for each individual model and dataset to
achieve optimal performance. In contrast, our more system-
atic search method improves solution quality consistently
without the need for separate tuning in each scenario.

Coverage Analysis. For each method, we calculate the
probability of covering the correct answer in at least one of
the generated answers. Our approach consistently achieves
the highest coverage across all models and datasets. For
instance, on GSM8K with LLaMA3-8B-Ins in the zero-shot
setting, our method attains 91.8% coverage, outperforming
FIRE (84.5%) and CoT-Decoding (85.3%). Detailed cover-
age probabilities for all models and datasets can be found in
Table 14 in Appendix B.8. These results demonstrate that
our controlled exploration strategy effectively enhances the
likelihood of generating correct answers, highlighting its
robustness over traditional methods.

Effect of Exploration with Embedding Perturbations
and Bayesian Optimisation. A natural question to con-
sider is why adding noise to embeddings leads to more di-
verse answer generation than temperature tuning. We follow
Naik et al. (2024) to investigate this from the perspective
of neuron activations in the Transformer’s MLP layers. As
shown in Figure 3, applying our method increases the acti-
vation rate of neurons by roughly 3–4% in nearly all layers
relative to the Self-Consistency (SC) baseline, suggesting
that our perturbations stochastically trigger more diverse
neural pathways.

To probe whether a specific subset of “critical neurons” may
be responsible for correct reasoning, we identify neurons
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Figure 3. MLP layer activation rates across Transformer layers
for the first five tokens of generated answers, sampled 200 times.
The curves compare our method (Soft Reasoning) and the Self-
Consistency (SC) baseline, further separated into correct and in-
correct answers.

Figure 4. Activation rates of critical MLP neurons across Trans-
former layers during initialisation and iterations.

in a single sample whose activations exhibit the strongest
correlation with correctness. In Figure 4, we track the ac-
tivation rate of these critical neurons across our Bayesian
optimisation iterations. We observe a steady increase, partic-
ularly in layers 15-30, suggesting that our iterative sampling
and verification increasingly activates these key pathways.

Together, these findings support the hypothesis that our em-
bedding perturbation and controlled exploration approach
not only diversifies generation but also systematically uncov-
ers and reinforces the neuron activations crucial for deriving
correct answers. For more detailed experimental procedures,
please refer to Appendix B.3.

Convergence of Bayesian Optimisation. Another ques-
tion regarding our search algorithm is how quickly and
reliably it converges. To investigate this, we track two key
metrics across our Bayesian optimisation iterations: (1) The
evolution of the correlation matrix among the sampled em-
bedding points. As shown in Figure 5, the correlation matrix
becomes more structured over iterations, showing higher
correlations among top-performing candidates. (2) The pro-

portion of test examples that terminate after the nth iteration
for each dataset in both zero-shot and few-shot settings, as
reported in Table 2. With a maximum of 4 iterations, no
search exceeds the fourth iteration, and only a small fraction
require iteration 4. This rapid termination suggests that the
EI-driven sampling strategy quickly identifies promising re-
gions of the embedding space for most queries, minimising
the need for further rounds of exploration.

Accuracy

Correlation  
Matrix

1st iteration 2nd iterationInitialisation 3rd iteration

Figure 5. Visualisation of the correlation matrix evolution during
Bayesian optimisation across iterations.

Table 2. Proportion (%) of test examples that terminate at the nth

iteration for each dataset and setting using LLaMA.

Shot Iteration GSM8K GSM-Hard SVAMP StrategyQA

Zero

1 65.0±2.9 70.3±3.0 64.8±1.9 58.8±2.3

2 30.1±2.9 24.4±3.0 28.9±1.8 31.1±2.3

3 4.1±1.6 4.9±1.6 5.4±1.3 8.8±1.8

4 0.8±0.8 0.4±0.3 0.9±0.5 1.4±0.5

Few

1 76.8±2.2 77.4±2.2 79.7±2.0 66.7±3.7

2 20.7±0.8 20.6±2.7 19.1±2.8 26.6±3.7

3 2.5±1.4 1.8±0.6 1.2±1.0 6.1±2.1

4 0.0±0.0 0.2±0.3 0.0±0.0 0.6±0.4

Table 3. Comparison of performance and token usage between our
method and RAP across benchmarks.

Category Method GSM8K GSM-Hard SVAMP StrategyQA

Result (%) RAP 80.7 32.7 87.9 73.4
Soft Reasoning 84.3 35.7 90.2 75.6

Input Token Count RAP 25710.8k 33152.1k 15058.5k 17426.2k
Soft Reasoning 1457.1k 1847.8k 1172.8k 1180.6k

Output Token Count RAP 334.1k 402.5k 241.2k 274.1k
Soft Reasoning 211.9k 262.5k 162.4k 155.4k

Time (min) RAP 184.5 234.1 142.5 149.7
Soft Reasoning 23.2 28.4 18.4 17.4

Efficiency and Performance Analysis. Table 3 presents a
comparison of our approach with RAP in both performance
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and efficiency. Our method achieves better accuracy on all
tasks while drastically reducing computational overhead.
Specifically, our input token consumption averages only
6.19% of RAP’s, our output token usage is 63.28% of RAP’s,
and our inference time is 14.3% of RAP’s. These results
highlight that our method not only improves accuracy but
also substantially reduces token usage, thereby delivering
superior overall efficiency. Additional analysis of inference
time and memory usage is provided in Appendix B.5.

4.3. Ablation studies

Objective Function. To evaluate the importance of each
reward component, we removed either the verifier score
(w/o rverifier) or the coherence term (w/o rcoherence) from our
method. Table 1 compare these ablated variants with our full
approach. In all tasks and model configurations, omitting
either term degrades both accuracy and coverage, indicating
that both components are vital. The verifier score clearly
helps filter out incorrect or spurious solutions, while the
coherence penalty ensures each output remains semantically
consistent, particularly for complex or multi-step reasoning.
Indeed, both correctness-guided verification and semantic
coherence play essential roles in navigating the solution
space effectively.

Why Choose EI? There are various acquisition functions
for Bayesian Optimization (BO), such as the UCB score,
Probability of Improvement (PI), and GP-UCB. While PI
and GP-UCB are viable alternatives to Expected Improve-
ment (EI), the cumulative regret bound for GP-UCB matches
that of EI (Shahriari et al., 2015). In contrast, PI considers
only the probability of improvement and ignores its magni-
tude, making it less theoretically grounded and more prone
to premature exploitation (Srinivas et al., 2010).

Table 4. Performance comparison between different acquisition
functions across datasets and settings using LLaMa.

Shot Method GSM8K GSM-Hard SVAMP StrategyQA

Zero

EI (ours) 79.4±1.2 28.2±1.8 88.2±1.3 67.2±0.7
PI 74.6±1.5 28.0±1.5 85.3±1.0 66.9±1.8
UCB β=1 76.7±1.3 27.7±1.6 86.0±1.5 66.7±1.5
UCB β=2 77.9±1.9 27.8±0.8 85.0±1.0 66.8±2.3
UCB β=5 75.6±1.9 27.7±0.8 85.3±0.8 66.7±1.0

Few

EI (ours) 84.3±1.4 35.7±1.0 90.2±0.6 75.6±0.8
PI 82.1±1.2 35.2±0.8 89.5±2.2 74.3±0.4
UCB β=1 83.3±0.3 34.7±1.2 88.0±0.0 74.7±1.5
UCB β=2 83.3±1.6 36.2±1.5 88.7±1.4 75.7±1.9
UCB β=5 81.8±0.9 34.2±2.5 89.7±0.8 75.0±0.7

As shown in Table 4, the experiments show that PI consis-
tently underperforms compared to EI, as expected from the
theoretical discussion above. For GP-UCB, its performance
is sensitive to the choice of the exploration parameter and
is, in most settings, worse than EI. We also note that the op-
timal parameter choice for GP-UCB varies across different

tasks, making it difficult to guarantee good performance in
unseen settings. In contrast, EI performs robustly without
requiring task-specific tuning.

Optimisation Scope To investigate how the number of
optimised tokens affects performance, we conducted addi-
tional experiments where we optimised embeddings for the
first k tokens (instead of just the first token).

Table 5. Accuracy (%) when optimising embeddings for different
numbers of initial tokens using LLaMa.

Shot #token (k) GSM8K GSM-Hard SVAMP StrategyQA

Zero

1 (ours) 79.4±1.2 28.2±1.8 88.2±1.3 67.2±0.7

2 75.0±0.8 24.8±0.6 83.0±0.5 68.5±0.5

5 69.7±3.5 22.2±1.0 85.5±0.3 66.3±0.6

10 61.0±3.1 17.2±1.6 82.8±0.8 67.3±1.9

20 52.2±2.3 19.0±1.3 74.3±0.6 67.8±2.5

Few

1 (ours) 84.3±1.4 35.7±1.0 90.2±0.6 75.6±0.8

2 83.3±1.3 34.7±1.0 90.2±1.4 74.2±1.3

5 81.2±2.1 29.8±0.8 88.3±0.3 71.7±1.2

10 73.7±2.3 23.8±0.3 86.8±0.8 71.7±1.6

20 62.0±2.6 18.2±1.9 81.5±2.0 68.7±1.1

As shown in Tab 5, the performance generally degrades as
k increases, especially beyond 5 tokens. This suggests that
naively extending to multiple tokens can introduce instabil-
ity or overfitting. We also compared with RAP (one of our
baselines), a tree-search-based method that operates at the
sequence level rather than token-by-token—though it shares
similar ideas with token-wise search. While RAP achieves
strong performance, it incurs substantially higher cost and
still underperforms our approach. Developing a multi-token
optimisation strategy that can achieve both high accuracy
and cost-effectiveness would require deeper investigation
and extensive experimentation.

Figure 6. Accuracy (solid lines) and standard deviation (shaded
areas) across reduced dimensions.
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Impact of Lower-Dimensional Space Dimensionality.
We evaluate our Bayesian optimisation approach under var-
ious reduced dimensions before mapping back to the full
embedding space (Figure 6). Across all four tasks and both
zero- and few-shot settings, performance tends to improve
up to d = 50. Although increasing d to 60 sometimes
yields a small additional gain, the differences are minor,
and d = 50 consistently achieves near-best or best results.
To further evaluate the robustness of random projection,
we conducted additional stability experiments, which are
presented in Appendix B.4.

Impact of Special Token Placement. We compare three
ways of inserting the perturbed special token into the prompt:
at the beginning (First), somewhere in the middle (Middle),
or as an appended token (Last). Table 6 shows for both zero-
shot and few-shot settings, placing the special token at the
end of the prompt (Last) generally yields higher accuracy
and better coverage. One possible explanation is that placing
the special token last ensures minimal disruption to the
original semantics of the prompt, while still allowing Soft
Reasoning to alter the initial token embedding and induce
sufficiently diverse generation pathways. Based on this
observation, we adopt the Last placement strategy in all
subsequent experiments.

Table 6. Comparison of accuracy and coverage across different
special token placements using LLaMa.

Type Shot Iteration GSM8K GSM-Hard SVAMP StrategyQA

Result

Zero
First 77.7±2.5 25.5±1.3 85.0±0.9 67.0±1.3

Middle 78.5±3.1 27.3±1.3 84.0±0.9 67.8±4.4

Last (ours) 79.4±1.2 28.2±1.8 88.2±1.3 67.2±0.7

Few
First 82.1±0.8 29.0±3.5 89.2±0.3 74.1±0.8

Middle 82.3±0.8 32.3±1.8 89.7±1.3 74.0±3.0

Last (ours) 84.3±1.4 35.7±1.0 90.2±0.6 75.6±0.8

Coverage

Zero
First 85.8±2.3 31.2±2.8 93.0±1.8 92.7±0.0

Middle 89.5±2.6 32.7±0.8 93.3±1.0 93.1±0.3

Last (ours) 91.8±1.4 37.0±1.5 93.8±0.4 93.7±1.3

Few
First 92.0±0.5 40.8±1.2 94.7±1.2 93.4±0.9

Middle 92.2±1.0 44.7±2.5 94.5±0.5 93.1±0.8

Last (ours) 92.2±0.8 49.8±1.0 95.8±1.2 93.3±1.8

Verifier Comparison: Judgement vs. Generation. In-
spired by recent work suggesting that LLMs can be more
adept at generating correct outputs than critiquing existing
ones (Miao et al., 2024; Zhang et al., 2024), we explore
four verifier strategies: Single-Judge, which evaluates each
candidate independently; Single-Generate, which regener-
ates a purportedly correct answer for each candidate; Multi-
Judge, which scores multiple candidates collectively; and
Multi-Generate, which produces a new solution from multi-
ple candidates, labeling any matching candidate as correct.
Given its consistently strong performance across settings,
we select Multi-Generate as the default verifier in our exper-
iments. The detailed definitions of these prompt templates
are provided in Appendix B.6.

Table 7. Binary classification accuracy (%) of different verifier
strategies, each determining whether a generated answer is correct.
Single strategies judge or generate in isolation per answer, while
Multi strategies consider multiple candidate solutions together.

Verifier GSM8K GSM-Hard SVAMP StrategyQA
Single-Judge 75.9 60.9 82.7 63.9
Multi-Judge 80.4 46.8 87.5 67.3

Single-Generate 78.0 40.7 82.7 71.7
Multi-Generate (ours) 87.6 78.2 93.4 78.9

Table 7 reports the binary classification accuracies for each
verifier. Multi-Generate yields the highest verification ac-
curacy on all datasets. This indicates that leveraging the
model’s generative capabilities leads to more reliable cor-
rectness assessment.

Table 8. Final accuracy (%) achieved by using different verifier
strategies in our overall framework using LLaMa.

Shot Verifier GSM8K GSM-Hard SVAMP StrategyQA

Zero

Single-Judge 76.3±1.5 28.1±1.6 83.0±1.4 63.0±1.7

Multi-Judge 77.4±2.2 26.5±2.2 86.5±1.3 67.1±0.8

Single-Generate 76.5±1.1 27.6±2.1 84.3±0.0 66.4±0.0

Multi-Generate 79.4±1.2 28.2±1.8 88.2±1.3 67.2±0.7

Few

Single-Judge 82.4±1.5 35.0±1.4 89.6±1.4 72.0±1.3

Multi-Judge 82.5±1.3 36.1±2.1 90.1±0.9 73.2±1.2

Single-Generate 82.4±1.3 34.5±1.4 89.7±1.2 74.7±1.2

Multi-Generate 84.3±1.4 35.7±1.0 90.2±0.6 75.6±0.8

We compare final solution accuracy in Table 8. While sin-
gle verifier judge or generate answers individually, multi-
candidate generation leads to the highest end-to-end per-
formance. Multi-Generate outperforms alternatives in both
zero-shot and few-shot settings, harnessing the model’s gen-
erative capacity more effectively than judgment-based veri-
fiers. Notably, even substituting simpler verifiers keeps our
framework competitive with strong baselines, underscoring
the robustness and efficacy of generation-based verifica-
tion. Details on how the number of sampled embeddings k
influences performance are provided in Appendix B.7.

5. Conclusions and Future Directions
We introduce an embedding-based optimisation framework
that enhances LLM reasoning by refining the first-token
embedding. By integrating controlled perturbations with
Bayesian optimisation, Soft Reasoning improves accuracy,
is model-agnostic, and remains computationally efficient.
Our approach relies on a verifier that may provide unreliable
feedback, impacting optimisation. It also operates at the
token level, which poses challenges for interpreting how
perturbations influence reasoning. Future work will focus
on improving verifier reliability, extending optimisation
beyond the first token, and enhancing interpretability to
better understand perturbation effects on reasoning.
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A. Methodology Supplement
A.1. Technical Details on Optimisation Objective

Although we simply sum the two components, they natu-
rally operate in a progressive, tie-breaking manner. If two
candidate outputs differ in their verifier scores, the one with
the higher rverifier value immediately results in a higher f(x).
Only when the verifier scores are identical does rcoherence
serve to break the tie, making the process effectively hierar-
chical, even in this additive form.

A.2. Technical Details on Bayesian Optimisation

In constructing the prior distribution, for a finite collection
of points x1:n, the prior joint distribution on them is:

f(x1:n) ∼ N (µ0(x1:n),Σ0(x1:n, x1:n)),

where f(x1:n) = [f(x1), . . . , f(xn)]
⊤, µ0(x1:n) =

[µ0(x1), . . . , µ0(xn)]
⊤, and the covariance matrix is:

Σ0(x1:n, x1:n) =

Σ0(x1, x1) . . . Σ0(x1, xn)
...

. . .
...

Σ0(xn, x1) . . . Σ0(xn, xn)

 .

We set µ0(x) = 0, indicating no additional preference for
function values at the prior stage. For the covariance matrix
Σ0(xi, xj), we use the Gaussian kernel with bandwidth ℓ:

Σ0(xi, xj) = k(xi, xj) = exp

(
−∥xi − xj∥2

2ℓ2

)
.

The kernel is chosen such that when xi and xj are close,
the kernel value k(xi, xj) approaches 1, indicating strong
correlation, and when they are far apart, the kernel value
approaches 0, reflecting weak correlation.

After observing f(x1:k), we aim to infer the value of f(x) at
a new point x. Using Bayes’ rule (Rasmussen & Williams,
2006), we update the posterior distribution of f(x) condi-
tioned on these observed values:

f(x) | f(x1:k) ∼ N (µk(x), σ
2
k(x)),

where the posterior mean and variance are given by

µk(x) = Σ0(x, x1:k)Σ0(x1:k, x1:k)
−1(f(x1:k)−

µ0(x1:k)) + µ0(x),

σ2
k(x) = Σ0(x, x)−

[
Σ0(x, x1:k)Σ0(x1:k, x1:k)

−1

Σ0(x1:k, x)
]
.

A.3. Maximising Expected Improvement

To select the point x that maximises the expected improve-
ment EIk(x), we adopt a sampling-based approach. Specif-
ically, we randomly sample a large number of candidate
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points from a standard normal distribution. In our exper-
iments, we generate 5000 points x1, x2, . . . , x5000, where
each point xi ∈ RD is sampled as:

xi ∼ N (0, 1)D, i = 1, 2, . . . , 5000.

For each sampled point, we compute the expected improve-
ment EIk(x) using (3). After evaluating the expected im-
provement for all sampled points, we select the point with
the maximum EIk(x) as the next candidate for evaluation.
This method provides an efficient and practical way to ap-
proximate the global maximum of EIk(x) within the sam-
pling budget.

A.4. Adaptive Expected Improvement

In defining f(x), we assume an ideal verifier with perfect
accuracy, meaning it provides an error-free assessment of
correctness. However, in practice, the verifier’s accuracy
is less than 1, introducing uncertainty into its evaluations.
This results in noisy observations, where the observed score
ok deviates from the true function value f(xk). We model
this noise as:

ok = f(xk) + ηk, ηk ∼ N (0, λI),

where λ is an objective noise constant, determined by the
inherent noise level. To address this noise in Bayesian opti-
misation, we use an adaptive version of the EI acquisition
function that explicitly accounts for the uncertainty in ob-
servations:

EIk(x) =
[
µk(x)− f∗

k

]+
+ ωkσk(x)ϕ

(
µk(x)− f∗

k

ωkσk(x)

)
−
∣∣µk(x)− f∗

k

∣∣Φ(µk(x)− f∗
k

ωkσk(x)

)
,

where ωk =
√
γk + 1 + ln(1/δ) is the noise-adaptive scal-

ing factor, and information gain term γk is defined as:

γk = max I(o(x1:k); f(xi:k))

=
1

2
log det(I + λ−1Σ0(x1:k, x1:k)).

I(o(x1:k); f(xi:k)) represents the mutual information be-
tween the function values and the noisy observations, and
δ is a hyperparameter in (0, 1), controlling the balance be-
tween exploration and exploitation. This adaptation is in-
spired by the following observation (Vakili et al., 2021;
Tran-The et al., 2022):

Theorem A.1. For any choice of δ ∈ (0, 1), with probability
at least 1− δ, the cumulative regret RT satisfies

RT :=

T∑
k=1

[
f∗
k − f(xk)

]
= O

(
γT

√
T
)
.

This sublinear bound ensures that, with high probability, the
regret grows at a slower rate than the number of iterations,
thereby guaranteeing the convergence of the optimisation
process.

We set δ = 0.1, ensuring a 90% probability of convergence
while balancing exploration and exploitation. A smaller δ
(e.g., 0.01) strengthens theoretical guarantees but increases
exploration, slowing convergence. A larger δ (e.g., 0.2)
favours exploitation, accelerating convergence but weaken-
ing guarantees. Our choice provides stability and efficiency
without excessive exploration.

A.5. Addressing the Curse of Dimensionality in
Bayesian Optimisation

Traditional Bayesian optimisation struggles in high-
dimensional spaces due to the curse of dimensionality, mak-
ing it impractical for embedding vectors used in LLMs. To
address this challenge, we leverage the following result from
high-dimensional optimisation (Wang et al., 2016; Nayebi
et al., 2019), which allows us to perform optimisation in a
lower-dimensional space and to subsequently map points
back to the original space.

Theorem A.2. Let D be the dimension of the embedding
vectors. A function f : RD → R is defined to have an
effective dimensionality de, with de ≤ D, if the following
condition is satisfied: ∃ a subspace E of dimension de, such
that ∀xE ∈ E ⊂ RD and x⊥ ∈ E⊥ ⊂ RD, where E⊥

is the orthogonal complement of E, the function satisfies:
f(xE + x⊥) = f(xE). In other words, de is the smallest
dimension that retains all variability of f . Now, for d ≥ de,
consider a random matrix A ∈ RD×d with independent
N (0, 1) entries. Then,

∀x ∈ RD, ∃u ∈ Rd such that f(x) = f(Au).

This result implies that for any optimiser x∗ ∈ RD, there
exists a corresponding point u∗ ∈ Rd such that f(x∗) =
f(Au∗). Therefore, instead of performing optimisation in
the high-dimensional space, we can optimise the function
g(u) := f(Au) in the lower-dimensional space.

Suppose our initial sampled points and their evaluations are
denoted by the set Uk = {(u1, g(u1)), . . . , (uk, g(uk))},
where each ui ∈ Rd has independent standard normal en-
tries. Similarly, we initialise A ∈ RD×d as a random matrix
with independent N (0, 1) entries. We then find the next
point to sample uk+1 ∈ Rd by optimising the acquisition
function:

uk+1 = argmax
u∈Rd

EIk(u | Uk),

where EIk(· | Uk) represents the Expected Improvement
conditioned on the current dataset Uk with the objective
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function being g(·) on Rd. Then, we augment the dataset

Uk+1 := Uk ∪ {(uk+1, f(Auk+1))},

and iterate.

A.6. Setting the Convergence Threshold

The convergence threshold ϵ determines when the algorithm
stops iterating. While smaller thresholds generally lead to
more precise results, they can also increase computational
costs due to additional iterations. We set ϵ = 0.01 in our
experiments, as this value strikes a balance between conver-
gence quality and computational efficiency.

B. More Experimental Details
B.1. Experiment Settings

We evaluate all methods on four benchmark datasets
(GSM8K, GSM-Hard, SVAMP, and StrategyQA) using 200
randomly sampled test examples per dataset, with a max-
imum output length of 300 tokens. For SC, FIRE, and
CoT-Decoding, we follow baseline settings with a tempera-
ture of 0.8 and sample 5 outputs per example for majority
voting. For RAP, we adopt the original paper’s settings (Hao
et al., 2023), using Monte Carlo Tree Search with 4 actions,
a confidence threshold of 8, a depth limit of 5, and 10 search
iterations.

B.2. Comparison with Controlled Generation Methods

We additionally compare our method against two recent
controlled generation approaches: Trainable Prefix Scor-
ers (Mudgal et al., 2024) and Constrained fine-tuning (Qi
et al., 2025a).

The prefix scorer method uses trainable scorers to guide de-
coding, while constrained fine-tuning proposes a fine-tuning
objective aimed at improving robustness against adversarial
prompts. Both require additional training, making direct
comparison with our training-free method less straightfor-
ward. For a fair comparison, we implemented baselines
without extra training where possible.

Method Training Shot GSM8K GSM-Hard SVAMP StrategyQA

Constrained Fine-tuning ✓(LoRA) - 78.3±0.7 13.6±0.5 83.5±0.7 81.3±0.8

Prefix Scorer ✗ Zero 75.2±0.9 26.1±1.3 83.6±0.9 65.2±1.3

Soft Reasoning ✗ Zero 79.4±1.2 28.2±1.8 88.2±1.3 67.2±0.7

Prefix Scorer ✗ Few 81.2±1.6 33.6±1.4 88.5±1.2 72.4±1.1

Soft Reasoning ✗ Few 84.3±1.4 35.7±1.0 90.2±0.6 75.6±0.8

Table 9. Accuracy (%) comparison with trainable prefix scorers
and constrained fine-tuning methods. Our method requires no
additional training.

As shown, while constrained fine-tuning achieves the best
performance on StrategyQA with additional training, our
method—without requiring any extra training—achieves

superior results on GSM8K, GSM-Hard, and SVAMP, par-
ticularly in the few-shot setting. In a fairer comparison
(without any training), our method consistently outperforms
the prefix scorer across all tasks.

B.3. Additional Details on Neuron Activation Analysis

B.3.1. OVERALL ACTIVATION RATE

We analyse the neuron activations in the GLU-based MLP
layers of the LLaMA model (Naik et al., 2024). Specifically,
the hidden representation in the i-th layer is computed as:

hi =
(
act fn(h̃iW i

1)⊗ h̃iW i
3

)
·W i

2, (4)

where ⊗ denotes element-wise multiplication, and act fn(·)
is a non-linear activation function. We consider the j-th
neuron inside the i-th FFN layer activated if its activation
value

[
act fn(h̃iW i

1)
]
j

exceeds zero.

We compare Self-Consistency (SC) (Wang et al., 2023c)
with our Bayesian-optimisation-based perturbation method.
For a single question (i.e., same prompt), we generate 200
samples using LLaMA and record neuron activations for
each of the first 5 output tokens. We then visualise and
compare the average activation rates between SC and our
approach in Figure 3.

B.3.2. KEY NEURON IDENTIFICATION AND
VERIFICATION

We identify key neurons by analysing activation rates in
SC-generated samples. We first separate these samples into
correct and incorrect categories. For each neuron j in layer
i, we calculate the activation difference:

∆i,j = avgcorrect(ai,j)− avgincorrect(ai,j),

where ai,j denotes the activation value of the j-th neuron
in the i-th layer. We first select the top 25% of neurons
with the highest activation frequency, then rank these by
∆i,j , and select the top 20% with the largest positive values,
resulting in 5% of all neurons as “key neurons.”

This statistical approach to identifying critical neurons is
grounded in prior research demonstrating that it is possible
to trace information flow within transformers and isolate
neurons with causal influence on model predictions. Such
studies have used targeted interventions like activation re-
placement or ablation to validate neuron importance (Dai
et al., 2022; Meng et al., 2022).

To validate the functional significance of the identified key
neurons, we conducted targeted masking experiments fol-
lowing this line of work. Masking the critical neurons iden-
tified for each input led to a significant drop in accuracy
from 62.14% to 13.27%. As a control, we randomly masked
an equivalent number of neurons under identical settings, re-
sulting in a considerably higher average accuracy of 41.89%.
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The substantial gap (41.89% → 13.27%) confirms that the
identified neurons play an essential role in the model’s rea-
soning process, beyond what would be expected by chance.

B.4. Random Projection Stability

While dimensionality reduction alleviates the curse of di-
mensionality, it may lead to information loss. To examine
whether the negative impacts of dimensionality reduction
via random projection are controllable, we conducted addi-
tional validation experiments.

We tested the stability of random projection by running
simulations using 50 different random projection matrices.
For each run, we applied Bayesian optimisation under the
same settings and recorded the final performance. The ex-
periments were conducted on the GSM8K dataset using
the LLaMA3-8B-Ins model. The results are summarised in
Figure 7.

Figure 7. Distribution of final accuracy across 50 random projec-
tion matrices. Performance remains stable, indicating that random
projection does not introduce significant variance.

The results indicate that performance remains stable across
different random projections, with minimal variance be-
tween runs. This demonstrates that although some degree of
information loss is inevitable, it does not introduce signifi-
cant instability into the optimisation process. The chosen
dimension (d = 50) offers a good balance between perfor-
mance and computational efficiency.

B.5. Computational Efficiency

We supplement the token count statistics with comparisons
between our method and RAP on inference time and mem-
ory usage. To evaluate the latter, we focus on the two vari-
able components: (1) KV cache, and (2) intermediate activa-
tions, since model weights remain constant across methods.
Using vLLM’s block-based memory tracking, we report
both average and peak usage, sampled at 1-second intervals.

The results show that our method’s inference time is only

Dataset Method Time (min)
Intermediate

Act. (avg, MB)
Intermediate

Act. (peak, MB)
KV Cache
(avg, MB)

KV Cache
(peak, MB)

GSM8K RAP 184.52 1628.7 1874.4 252.5 568.0
Soft Reasoning 23.15 1137.2 1178.1 176.5 312.0

GSM-Hard RAP 234.14 1985.4 2354.9 426.5 574.0
Soft Reasoning 28.42 881.2 1096.2 254.6 336.0

SVAMP RAP 142.52 1464.8 2089.5 384.5 494.0
Soft Reasoning 18.41 932.4 1393.2 185.8 296.0

StrategyQA RAP 149.73 1833.5 1935.9 241.4 376.0
Soft Reasoning 17.44 748.0 932.4 118.0 264.0

Table 10. Comparison of inference time and memory usage be-
tween RAP and our method.

12.30% of RAP’s while also consuming significantly less
memory, further validating its computational efficiency ad-
vantage.

We also report inference time (minutes) across all baselines:

Method GSM8K GSM-Hard SVAMP StrategyQA

SC(τ=0.4) 26.58 33.91 20.54 20.04
SC(τ=0.6) 26.12 34.46 21.76 19.87
SC(τ=0.8) 27.28 34.86 21.16 20.80
FIRE 26.70 32.26 21.59 20.17
CoT-Decoding 26.56 32.55 21.53 20.60
RAP 184.52 234.14 142.52 149.73
Soft Reasoning 23.15 28.42 18.41 17.44

Table 11. Inference time (minutes) comparison across baselines.

Our method consistently achieves the lowest inference time
across all tasks, further demonstrating its efficiency beyond
token-level savings.

B.6. Prompts for Verifiers

We provide four prompt templates corresponding to the
verifier strategies introduced in Section 4.3. These templates
illustrate how each verifier approach is instantiated:

Single-Judge. This prompt asks the model to evaluate the
correctness of a single final answer. The user provides a
question, along with a final answer, and the verifier must
decide whether that answer is correct.

Multi-Judge. This prompt provides multiple candidate
answers and asks the verifier to assess their correctness
collectively. The user includes each candidate’s reasoning,
and the verifier classifies which answers are correct.

Single-Generate. The prompt demonstrates a scenario
where the verifier itself is prompted to re-generate the cor-
rect solution for one candidate. If the newly generated
solution matches the candidate’s answer, the candidate is
deemed correct.

Multi-Generate (Ours). This prompt processes all can-
didate answers together and generates a new solution it
believes to be correct. Any candidate matching this newly
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generated solution is labeled as correct. This leverages the
model’s generative capacity more thoroughly than pure clas-
sification, yielding better verification accuracy in practice.

B.7. Effect of the Number of Samples k.

Figure 8. Accuracy (solid lines) and standard deviation (shaded
areas) across different sample sizes k.

We investigate how the number of sampled embeddings k in
each iteration influences final performance. Figure 8 shows
that as k increases from 3 to 5, the final accuracy and cover-
age steadily rise for all evaluated tasks, although gains tend
to plateau or fluctuate slightly after k = 3. This upward
trend suggests that a moderate increase in k promotes better
exploration of potentially correct solutions in the embedding
space. Based on these observations, we adopt k = 5 as our
default setting, balancing solution diversity with computa-
tional cost.

B.8. Additional Results

Tables 13 and 14 present the full experimental results for
all methods and configurations across the four benchmarks
and three LLMs (LLaMA3-8B-Instruct, Qwen2-7B-Instruct,
and Mistral-7B-Instruct). These tables extend the summary
reported in the main text, showing detailed accuracy, cover-
age, and standard deviations for zero-shot to 8-shot setups.
They provide a comprehensive view of how each baseline
and our approach perform under various hyperparameter
and prompt configurations.
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Prompt for Single-Judge

Based on the given question and the previous answers, please provide your judgment on the correctness of the final answer.

Question:
Jessie currently weighs 9 kilograms. After she started to go jogging every day, she lost 62 kilograms in the first week and 140
kilograms in the second week. How much did she weigh before starting to jog?

Answer:
9 + 62 + 140 = 211. So, Jessie weighed 211 kilograms after 2 weeks of jogging. Since she weighed 9 kilograms initially, she
weighed 211− 9 = 202 kilograms before starting to jog. Answer: 202

Correct:
0

Question:
{User Question}

Answer:
{Previous answers}

Correct:

Prompt for Multi-Judge

Based on the given question and the previous answers, please provide your judgment on the correctness of the final answer.

Question:
Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2 liters of seawater in an old bucket. If the
water is 20% salt, how many ml of salt will Jack get when all the water evaporates?

Your previous answers:
0. Thought: 1250 ml of water evaporates, leaving 1000 ml of salt. Answer: 1000
1. Thought: The total amount of water is 2 liters = 2000 ml. The amount of salt is 20% of 2000 ml = 0.20 × 2000 ml =
⟨⟨0.20× 2000 = 400⟩⟩400 ml. Answer: 400
2. Thought: 20% of 2 liters is 2 × 20

100
= ⟨⟨2 × 20/100 = 0.4⟩⟩0.4 liters. Since there are 1000 ml in 1 liter, 0.4 liters is

0.4× 1000 = ⟨⟨0.4× 1000 = 400⟩⟩400 ml. Answer: 400
3. Thought: 1 liter of seawater is 20% salt. So, 1 liter of seawater has 20%× 1 liter = ⟨⟨20× 0.1 = 0.2⟩⟩0.2 liters of salt. Since
Jack has 2 liters of seawater, he will get 0.2× 2 = ⟨⟨0.2× 2 = 0.4⟩⟩0.4 liters of salt. Since there are 1000 ml in 1 liter, Jack
will get 0.4× 1000 = ⟨⟨0.4× 1000 = 400⟩⟩400 ml of salt. Answer: 400
4. Thought: 20% of 2 liters is 2 × 20

100
= ⟨⟨2 × 20/100 = 0.4⟩⟩0.4 liters. There are 1000 ml in 1 liter, so 0.4 liters is

0.4× 1000 = ⟨⟨0.4× 1000 = 400⟩⟩400 ml. Answer: 400

Correct:
1, 2, 3, 4

Question:
{User Question}

Your previous answers:
{Previous answers}

Correct:
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Prompt for Single-Generate

Based on the given question and the previous answers, please provide your analysis and final answer, starting the final answer
with ”Answer:”

Question:
Jack is stranded on a desert island. He wants some salt to season his fish. He collects 2 liters of seawater in an old bucket. If the
water is 20% salt, how many ml of salt will Jack get when all the water evaporates?

Your previous answers:
1250 ml of water evaporates, leaving 1000 ml of salt. Answer: 1000

Analysis:
Let’s think step by step. Jack has 2 liters of seawater, and 20% of it is salt. 2 liters = 2000 ml, so the amount of salt is 20% of
2000 ml = 0.20× 2000 = 400 ml of salt.

Answer:
400

Question:
{User Question}

Your previous answers:
{Previous answers}

Analysis:
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Prompt for Multi-Generate (ours)

Based on the given question and the previous answers, please provide your analysis and final answer, starting the final answer
with ”Answer:”

Question:
Artemis is making tea for a party. She knows her mom drinks an 8-ounce cup of tea and uses one ounce of tea. She will use this
same ratio for the party. The party has 12 people there and each of them wants a 6-ounce cup of tea. How many ounces of tea
does she need?

Your previous answers:
0. Thought: 8 ounces of tea for 1 cup, so 1 ounce of tea for 1

8
of a cup. For 12 people, she needs 12 × 6

8
= 9 ounces of tea.

Answer: 9
1. Thought: 6 ounces of tea is needed for each person. Since there are 12 people, 12× 6 = 72 ounces of tea are needed. Since
each ounce of tea is used for 1 cup, 72 ounces of tea will make 72 cups of tea. Answer: 72
2. Thought: 6 ounces of tea is 6

8
= 3

4
of an 8-ounce cup. For 12 people, she needs 12× 3

4
= 9 ounces of tea. Answer: 9

3. Thought: 12 × 6 = 72 ounces of tea needed. Since each ounce of tea is used for 1 cup, Artemis needs 72 ounces of tea.
Answer: 72
4. Thought: 8 ounces of tea is used for 1 cup. So for 6 ounces of tea, she will use 6

8
= 3

4
of the amount of tea. For 12 people, she

will need 12× 3
4
= 9 ounces of tea. Answer: 9

Analysis:
Let’s think step by step. Artemis uses 1 ounce of tea for an 8-ounce cup, so for a 6-ounce cup, she will use 6

8
= 3

4
of an ounce of

tea. For 12 people, she needs 12× 3
4
= 9 ounces of tea.

Answer:
9

Question:
{User Question}

Your previous answers:
{Previous answers}

Analysis:

Table 12. Performances of different reasoning methods on Accuracy (%) across all benchmarks using Qwen2-70B-Instruct.

Method AIME-2024 GSM8K GSM-Hard SVAMP StrategyQA
Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot Zero Shot Few Shot

COT 0 3.3 91.0 91.0 51.5 65.0 93.0 92.0 79.0 90.0
SC(τ = 0.4) 3.3±2.7 3.3±3.3 93.3±0.6 91.8±1.0 62.3±0.6 68.7±1.5 93.2±0.3 93.8±0.3 78.2±0.8 89.6±1.4

SC(τ = 0.6) 2.2±3.3 2.2±3.8 93.7±0.3 92.2±1.0 62.7±0.3 68.2±1.4 93.8±0.6 93.1±0.5 78.8±1.6 90.0±1.3

SC(τ = 0.8) 3.3±1.9 2.2±1.9 94.0±0.5 93.5±0.5 62.8±2.0 68.3±0.3 93.7±0.3 93.7±0.3 78.4±2.5 88.8±2.3

FIRE 2.2±1.9 3.3±3.8 91.4±0.8 92.5±0.4 60.3±0.6 65.7±2.0 93.5±0.9 93.5±0.5 78.2±1.9 89.5±0.9

CoT-Decoding 2.2±1.9 2.2±1.9 93.6±1.9 93.5±1.1 61.0±2.3 66.0±1.7 94.2±1.2 93.8±1.5 78.8±1.6 89.0±1.5

RAP - 4.4±3.4 - 93.5±0.4 - 69.1±1.9 - 93.7±2.1 - 90.4±2.3

Soft Reasoning 6.7±2.7 11.1±1.7 94.3±0.3 94.8±1.3 63.3±0.6 72.2±0.6 94.0±1.0 94.2±1.3 79.6±0.3 89.2±1.2
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Table 13. Performances of different reasoning methods on Accuracy (%) across all benchmarks.

Method LLaMA3-8B-Instruct Qwen2-7B-Instruct Mistral-7B-Instruct
Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8

GSM8K
COT 53.0±0.0 73.0±0.0 73.5±0.0 79.0±0.0 77.4±0.0 64.5±0.0 70.0±0.0 66.5±0.0 81.5±0.0 82.5±0.0 42.0±0.0 43.5±0.0 53.5±0.0 54.5±0.0 54.0±0.0

SC(τ = 0.4) 73.0±1.6 75.4±2.8 75.7±2.4 80.7±1.1 80.4±1.4 81.2±0.6 82.4±1.8 83.7±0.4 86.9±0.6 85.7±1.5 52.9±0.5 53.5±1.5 59.9±2.3 60.4±1.7 58.3±1.5

SC(τ = 0.6) 73.6±2.5 73.4±3.6 72.6±1.9 80.3±0.9 80.6±1.5 80.2±1.9 84.5±2.1 84.2±0.4 86.5±0.9 85.4±0.9 55.1±3.6 56.5±2.0 59.6±0.7 60.5±1.2 57.4±1.0

SC(τ = 0.8) 65.0±2.0 74.5±0.7 66.8±1.7 80.9±1.5 81.1±1.1 80.0±0.9 82.7±2.9 82.6±0.7 85.4±0.8 85.1±1.6 50.2±2.6 51.4±1.4 56.4±2.7 59.8±2.6 57.7±2.6

FIRE 73.8±2.3 75.4±1.8 76.4±2.0 78.4±3.2 79.6±2.9 81.0±1.8 81.0±2.9 73.6±2.2 82.5±2.1 83.0±1.3 47.2±2.9 52.4±2.3 53.8±1.7 60.6±0.9 56.1±3.2

CoT-Decoding 73.9±1.9 76.7±1.4 78.6±1.7 81.4±1.8 80.3±1.7 82.0±2.8 81.6±2.5 76.2±2.5 85.7±0.8 84.5±2.1 47.3±3.0 56.4±3.3 57.3±2.5 57.6±3.4 58.2±2.3

RAP - 77.4±1.7 79.4±1.6 80.4±1.4 80.7±1.4 - 84.7±2.0 85.7±1.0 87.4±0.9 86.2±1.2 - 57.6±1.8 57.1±1.7 59.8±1.6 58.6±1.8

Soft Reasoning 79.4±1.2 79.4±2.8 83.0±0.8 83.5±0.9 84.3±1.4 88.6±1.2 88.8±1.4 88.4±1.0 89.8±2.5 90.0±1.4 61.4±2.5 61.2±2.5 61.2±0.9 61.4±1.9 62.7±1.0

GSM-Hard
COT 14.0±0.0 22.5±0.0 24.5±0.0 26.5±0.0 28.0±0.0 40.0±0.0 39.0±0.0 48.0±0.0 53.0±0.0 55.5±0.0 14.5±0.0 22.0±0.0 21.5±0.0 23.5±0.0 24.0±0.0

SC(τ = 0.4) 25.7±0.4 25.3±0.4 28.6±1.2 32.2±0.4 31.8±1.8 47.5±1.4 48.6±1.4 53.7±1.3 55.2±1.5 55.4±0.7 19.5±1.0 26.5±1.6 26.9±1.4 27.3±1.0 26.1±1.5

SC(τ = 0.6) 24.5±1.1 25.7±0.5 28.4±1.4 32.0±1.1 31.2±1.3 46.2±1.9 50.1±2.9 54.2±0.7 56.0±1.1 53.4±0.6 20.7±1.5 25.7±0.9 27.8±1.2 31.0±2.5 25.3±1.6

SC(τ = 0.8) 21.8±1.3 24.8±1.9 28.2±2.7 30.6±1.2 30.8±0.9 47.3±1.3 47.8±2.7 54.8±1.5 55.7±1.3 55.4±0.9 19.1±2.0 26.8±2.5 26.6±1.2 29.8±2.1 26.6±1.1

FIRE 25.2±3.0 24.1±1.5 27.0±1.5 27.9±1.8 25.7±2.1 45.1±2.0 43.4±2.5 52.9±1.9 49.0±2.5 51.0±1.8 18.1±1.9 25.8±1.3 27.0±1.7 25.5±2.8 26.3±1.4

CoT-Decoding 24.8±1.3 27.3±1.6 28.0±0.4 31.0±1.8 30.3±1.3 46.7±2.3 44.1±1.8 53.9±1.5 50.1±1.2 52.1±1.0 16.6±0.7 26.6±2.6 28.0±0.7 26.0±2.0 27.4±1.6

RAP - 26.7±1.0 31.4±1.2 32.4±1.1 32.7±1.2 - 53.2±1.9 55.1±1.2 55.9±1.3 56.2±0.8 - 27.4±1.5 28.0±1.0 28.4±1.7 27.6±1.2

Soft Reasoning 28.2±1.8 30.2±1.2 35.3±1.4 33.2±0.6 35.7±1.0 53.7±1.6 57.4±0.7 57.5±0.8 57.4±1.2 58.7±0.5 25.8±1.8 29.1±1.2 32.3±0.4 30.0±1.2 32.5±1.5

SVAMP
COT 61.0±0.0 81.0±0.0 83.5±0.0 84.0±0.0 83.0±0.0 43.5±0.0 83.0±0.0 84.0±0.0 85.5±0.0 86.0±0.0 52.0±0.0 65.0±0.0 66.0±0.0 69.5±0.0 72.0±0.0

SC(τ = 0.4) 79.1±1.2 85.8±1.5 86.5±0.7 87.3±0.8 87.1±1.0 72.3±2.0 90.2±1.0 89.4±0.5 90.3±0.9 90.3±1.2 67.4±2.5 74.5±1.7 73.7±1.0 76.5±1.5 77.8±1.0

SC(τ = 0.6) 76.1±3.9 86.2±0.5 86.8±1.7 86.9±1.2 87.7±1.2 77.3±1.2 90.6±0.9 90.2±0.8 91.4±0.9 90.4±0.6 69.7±1.6 75.8±1.5 75.6±0.8 75.8±1.4 78.4±2.0

SC(τ = 0.8) 69.6±2.0 86.3±2.2 86.9±1.0 87.4±1.5 87.4±1.2 78.6±2.1 90.3±0.7 90.1±1.0 90.8±0.7 90.6±1.2 68.3±0.9 75.1±0.7 76.6±1.5 76.9±1.6 77.6±1.1

FIRE 81.5±0.8 86.6±1.8 86.1±1.3 86.1±1.4 87.6±2.0 76.3±2.2 89.9±1.4 89.7±0.8 89.3±0.9 90.6±0.2 67.1±1.9 77.7±1.1 76.9±2.7 77.8±1.2 78.4±1.2

CoT-Decoding 83.2±1.2 87.8±1.0 87.5±1.0 87.5±1.3 88.2±1.0 78.6±1.6 90.3±0.4 90.0±1.0 90.3±1.0 89.7±0.5 69.4±2.5 77.8±2.0 77.7±1.5 76.9±2.5 78.6±1.4

RAP - 78.4±1.2 87.4±1.0 86.8±1.0 87.9±1.1 - 90.8±0.7 91.2±0.7 90.1±0.7 90.8±0.6 - 0.0±1.2 0.0±1.3 78.4±1.4 79.4±1.1

Soft Reasoning 88.2±1.3 89.2±1.5 88.8±1.0 89.1±0.8 90.2±0.6 83.4±2.4 92.3±0.8 92.4±0.8 90.8±0.8 92.2±0.8 72.2±2.2 79.0±0.9 78.4±1.3 80.0±1.4 82.1±1.2

StrategyQA
COT 58.5±0.0 63.0±0.0 68.0±0.0 67.5±0.0 68.5±0.0 63.0±0.0 54.5±0.0 63.5±0.0 66.0±0.0 70.0±0.0 62.0±0.0 62.5±0.0 63.5±0.0 68.5±0.0 69.0±0.0

SC(τ = 0.4) 64.7±0.7 68.4±2.4 68.6±1.7 69.2±1.2 71.6±0.8 67.1±1.5 67.4±2.0 66.5±1.2 69.1±1.2 71.1±1.6 63.9±1.5 57.6±2.0 65.9±0.7 70.2±1.9 72.6±1.2

SC(τ = 0.6) 59.9±2.0 69.9±1.2 68.2±0.8 70.7±2.2 71.3±1.5 67.5±0.7 66.5±1.7 67.4±2.6 67.7±1.4 69.1±1.2 64.2±1.0 58.7±1.3 64.8±0.7 69.6±1.2 71.7±0.8

SC(τ = 0.8) 54.4±2.6 68.0±2.0 67.9±0.7 70.4±0.9 72.7±1.2 67.0±1.0 68.0±1.9 68.3±1.2 67.7±2.5 70.1±0.8 64.9±1.0 59.9±1.2 66.5±0.4 69.9±1.4 72.1±1.5

FIRE 63.0±3.7 70.8±1.6 71.8±1.3 70.2±2.0 72.8±1.5 67.6±0.8 68.4±0.8 68.4±1.8 67.3±1.2 68.1±0.8 64.2±1.0 66.5±1.5 68.2±1.4 72.6±2.1 71.0±2.2

CoT-Decoding 64.6±1.6 71.1±3.1 71.4±2.0 70.5±2.0 73.3±1.8 65.9±1.5 68.3±2.5 68.7±0.7 67.5±1.5 69.5±2.1 63.5±1.5 68.2±0.4 68.6±0.7 70.6±1.6 72.7±2.1

RAP - 71.6±1.7 70.6±1.1 71.5±1.4 73.4±1.1 - 67.5±1.5 68.2±1.3 68.5±1.3 71.3±1.1 - 68.5±1.1 70.6±0.7 72.1±1.4 72.4±1.3

Soft Reasoning 67.2±0.7 71.0±0.9 72.3±1.2 73.8±1.2 75.6±0.8 68.1±1.5 69.6±1.6 69.7±1.2 68.9±0.5 70.3±1.3 66.1±1.9 70.1±0.7 71.2±1.4 72.7±1.0 72.8±1.5

Table 14. Coverage rates of correct answers across different models (%) on all benchmarks.

Method LLaMA3-8B-Instruct Qwen2-7B-Instruct Mistral-7B-Instruct
Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8 Shot 0 Shot 1 Shot 2 Shot 4 Shot 8

GSM8K
SC(τ=0.4) 79.8±0.8 69.2±2.8 75.7±2.4 89.5±1.4 91.0±1.5 93.1±0.4 88.9±1.7 91.4±1.0 93.5±0.7 94.5±0.6 73.2±3.0 69.3±1.6 75.5±2.2 74.9±1.9 73.4±1.0

SC(τ=0.6) 78.4±2.2 66.6±3.6 72.6±1.9 90.6±1.3 91.1±0.8 94.2±0.7 88.5±1.5 92.4±0.7 93.8±0.7 94.2±1.3 73.0±1.3 72.7±2.7 76.2±1.6 76.5±2.5 73.5±2.0

SC(τ=0.8) 71.0±1.2 62.1±0.7 66.8±1.7 90.4±1.6 90.2±1.6 92.9±1.2 88.6±1.5 91.6±1.1 93.1±0.9 93.8±0.7 71.2±1.8 70.1±2.0 74.3±2.8 74.5±2.8 73.2±1.4

FIRE 84.5±1.3 83.9±2.0 88.8±2.0 89.4±1.1 88.2±0.6 86.8±1.8 78.1±2.6 84.2±1.3 90.6±1.9 90.8±0.9 63.1±2.5 70.4±2.5 70.9±1.6 76.7±2.2 73.9±2.8

CoT-Decoding 85.3±1.7 88.1±1.2 90.6±1.1 90.2±0.8 90.5±0.9 88.4±2.1 81.2±2.0 85.5±2.4 92.0±0.9 91.7±0.8 63.2±2.4 72.6±2.7 75.5±2.5 74.3±2.3 76.6±1.2

RAP - 87.6±0.9 89.1±1.3 88.9±1.2 89.5±0.8 - 88.3±1.2 92.4±1.2 93.4±1.1 92.3±0.7 - 72.4±2.1 74.5±1.3 75.8±1.5 75.6±1.3

Soft Reasoning 91.8±1.4 91.1±0.8 92.4±1.1 92.6±1.4 92.2±0.8 95.9±0.1 96.8±0.6 96.4±1.0 96.8±1.4 96.6±0.7 85.4±1.4 79.0±2.4 82.3±1.0 81.9±1.4 82.5±0.9

GSM-Hard
SC(τ=0.4) 27.3±0.4 31.7±0.5 38.6±1.9 41.6±1.8 43.4±0.4 62.6±1.6 53.4±1.7 62.4±1.2 62.6±1.7 64.3±0.7 31.1±1.1 37.5±1.6 40.9±1.2 39.9±1.6 38.2±1.5

SC(τ=0.6) 28.2±1.6 33.0±0.8 38.0±1.4 39.9±2.2 43.0±1.1 63.3±2.0 56.2±2.2 62.4±1.1 65.3±0.7 65.8±1.4 30.2±1.7 37.3±0.9 38.8±1.3 41.3±1.4 39.1±2.5

SC(τ=0.8) 25.1±0.9 32.3±2.4 37.8±1.2 39.3±1.2 42.2±1.1 61.8±0.5 54.9±1.9 64.1±1.0 63.8±1.8 65.1±1.0 31.7±1.4 38.2±1.6 39.2±1.0 40.9±1.8 37.0±1.1

FIRE 32.0±2.3 33.1±2.5 38.3±1.4 39.9±1.1 40.6±2.0 54.4±2.1 49.3±2.3 56.7±2.1 56.8±2.1 60.6±1.2 26.2±2.5 37.4±2.1 39.8±1.8 39.1±2.7 35.8±1.6

CoT-Decoding 33.1±0.9 33.6±1.9 39.8±1.4 42.3±1.2 42.2±1.5 55.1±1.0 49.3±2.2 56.6±1.3 57.4±0.6 61.5±1.4 27.7±1.2 36.9±1.0 40.3±1.6 38.5±1.4 38.4±0.7

RAP - 33.4±1.6 40.2±1.5 41.9±1.0 43.9±1.3 - 53.7±1.8 60.2±1.2 62.1±1.1 64.2±1.2 - 37.6±1.5 40.6±1.2 40.3±1.7 38.4±1.4

Soft Reasoning 37.0±1.5 37.0±0.8 46.4±2.5 47.3±2.2 49.8±1.0 69.4±1.7 67.8±0.9 70.7±1.0 71.1±1.1 71.1±1.1 40.7±1.2 43.3±1.2 44.4±1.5 45.9±1.1 45.2±1.9

SVAMP
SC(τ=0.4) 84.6±1.1 91.8±0.5 91.6±1.6 92.8±0.4 92.9±0.6 91.7±1.8 94.3±0.6 93.9±0.7 93.7±0.4 94.0±0.9 61.9±1.7 85.2±1.3 84.5±1.1 86.3±1.3 87.7±0.4

SC(τ=0.6) 82.1±2.7 92.3±0.2 92.7±1.0 93.0±0.6 93.8±0.4 92.3±1.5 94.4±0.6 94.6±0.6 94.3±0.5 94.0±1.0 67.5±1.4 85.7±0.5 86.3±1.2 87.9±1.4 88.9±1.4

SC(τ=0.8) 73.8±2.6 91.7±1.7 93.3±0.5 93.5±0.8 94.6±0.7 92.5±1.1 94.5±0.7 94.5±0.5 94.1±0.9 94.0±0.9 72.1±2.3 86.5±0.8 87.1±1.1 88.3±1.0 88.2±1.2

FIRE 89.9±0.5 93.7±0.3 93.5±0.9 92.9±1.2 93.8±1.3 91.5±0.5 93.9±1.1 94.7±1.0 94.5±1.8 95.1±0.7 68.2±1.4 87.9±1.3 89.9±1.7 90.2±1.5 90.1±1.6

CoT-Decoding 90.8±0.8 93.5±1.2 94.2±0.8 93.8±0.8 93.9±1.3 91.2±1.0 94.4±0.5 94.2±0.7 94.6±1.0 93.4±0.9 67.0±2.9 89.5±0.5 88.7±1.3 88.9±1.7 90.4±1.2

RAP - 93.6±1.1 93.8±0.8 93.4±0.9 94.1±1.1 - 94.3±1.8 94.7±0.9 94.7±1.2 94.8±0.7 - 88.7±1.2 89.7±1.4 89.7±1.3 90.7±1.0

Soft Reasoning 93.8±0.4 95.5±0.9 95.5±0.8 95.1±0.7 95.8±1.2 97.0±0.7 96.8±0.3 95.6±0.8 96.0±1.2 97.8±0.5 78.1±0.8 91.2±1.7 90.5±1.4 90.6±1.0 91.0±0.6

StrategyQA
SC(τ=0.4) 85.3±0.2 85.8±1.5 84.7±1.0 84.0±0.3 85.7±1.0 83.5±1.3 84.7±0.8 85.7±1.1 85.0±1.7 86.7±1.7 73.8±1.6 70.5±1.1 74.9±0.6 84.4±0.9 85.4±1.9

SC(τ=0.6) 84.1±1.7 89.2±2.0 86.3±2.0 87.1±2.3 88.5±1.3 83.2±1.4 85.4±1.4 86.4±2.1 85.9±1.4 87.5±1.3 75.0±0.8 73.6±1.2 76.9±1.0 86.1±1.0 88.0±1.0

SC(τ=0.8) 86.6±2.9 88.9±2.7 87.1±0.9 88.1±0.9 89.6±1.2 84.8±1.7 84.9±2.8 86.9±1.3 85.2±1.2 88.2±1.5 76.0±1.4 74.1±0.9 77.2±1.6 87.8±1.2 89.8±0.8

FIRE 91.2±1.5 92.6±1.0 90.1±2.1 89.1±2.1 90.6±1.1 84.4±1.6 87.0±1.7 88.4±2.2 88.1±2.3 89.4±1.4 74.9±1.6 81.0±1.0 79.6±1.4 86.4±1.7 89.7±1.5

CoT-Decoding 92.4±0.4 93.4±1.1 87.4±1.4 89.1±0.8 90.6±1.6 84.7±2.3 87.3±1.8 86.9±1.1 86.8±0.8 88.9±2.4 75.6±0.8 82.2±2.8 79.7±1.4 87.3±1.4 89.0±1.3

RAP - 93.5±1.2 89.6±1.4 89.3±1.5 91.1±1.3 - 88.6±1.4 87.6±0.9 88.6±1.2 88.7±1.6 - 81.6±1.5 79.2±1.3 86.6±1.2 89.3±1.2

Soft Reasoning 93.7±1.4 94.0±1.3 93.5±1.2 90.9±1.3 93.3±1.8 88.4±0.7 89.0±0.8 89.8±0.8 91.6±0.8 90.4±1.0 81.2±1.3 84.1±0.7 82.4±1.6 87.3±0.9 90.2±1.4
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